Fast and Secure Routing Algorithms for Quantum
Key Distribution Networks

Vishnu B
Dept. of Electrical Engineering
Indian Institute of Technology Madras
vishnubejil@gmail.com

Abstract—This paper considers the problem of secure packet
routing at the maximum achievable rate in a Quantum key
distribution (QKD) network. Assume that a QKD protocol
generates symmetric private keys for secure communication over
each link in a multi-hop network. The quantum key generation
process, which is affected by noise, is assumed to be modeled by a
stochastic counting process. Packets are first encrypted with the
available quantum keys for each hop and then transmitted on a
point-to-point basis over the communication links. A fundamental
problem that arises in this setting is to design a secure and
capacity-achieving routing policy that accounts for the time-
varying availability of the quantum keys for encryption and finite
link capacities for transmission. In this paper, by combining the
QKD protocol with the Universal Max Weight (UMW) routing
policy [1]-[3], we design a new secure throughput-optimal routing
policy, called Tandem Queue Decomposition (TQD). TQD solves
the problem of secure routing efficiently for a wide class of traffic,
including unicast, broadcast, and multicast. One of our main
contributions in this paper is to show that the problem can
be reduced to the usual generalized network flow problem on
a transformed network without the key availability constraints.
Simulation results show that the proposed policy incurs a
substantially smaller delay as compared to the state-of-the-art
routing and key management policies. The proof of throughput-
optimality of the proposed policy makes use of the Lyapunov
stability theory along with a careful treatment of the key-storage
dynamics.

Index Terms—Quantum Key Distribution,
optimal routing, Network Algorithms.
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I. INTRODUCTION

Quantum key distribution (QKD) allows remote commu-
nication parties to exchange symmetric private keys, whose
information-theoretical security is guaranteed by the fundamen-
tal principles of quantum mechanics [4]-[6]. The private keys
are used for encrypting messages that are communicated over
classical channels (e.g., free space or optical fibers). Many
QKD protocols are known and already in use, including BB84
[5], E91 [7], and B92 [8]. QKD protocols make use of the
physical Quantum Entanglement mechanism in an essential
way for detecting any possible eavesdropping by an adversarial
third party. Once the secret keys have been agreed upon
by the peers, the messages between them can be securely
encrypted using standard symmetric ciphers, such as One-time
pad (OTP) or variants of Advanced Encryption Standard (AES).
We emphasize that QKD is used only for distributing the secret
keys - the encrypted messages are transmitted exclusively over
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the classical links. QKD schemes should be contrasted with
the ongoing research on Post-Quantum Cryptography (PQC)
that are believed to be secure against attack with quantum
computers but are lacking sufficient mathematical guarantees
for their security properties [9]. Much progress has recently
been made in the practical implementations of various QKD
schemes [10], [11]. In this paper, we optimize a QKD system
similar to the one recently implemented by a team from Oak
Ridge and Los Alamos National Labs [12]. See Figure 1 for
an illustration of a one-hop QKD system.
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Fig. 1. Depicting a QKD link with the One-Time Pad (OTP) encryption
protocol. A sufficiently long symmetric encryption key k is first established
between Alice and Bob via the Quantum Link using Quantum Entanglement
mechanisms. Next, the message m from Alice to Bob is encrypted at the
source by taking XOR of the message with the shared key (bit-by-bit). The
encrypted message m @ k is then transmitted over the classical link. Upon
receiving the encrypted message, Bob securely decrypt XORing it again the
same shared secret key as (m @ k) @ k = m. The eavesdropper may try to
peek at the message transmitted over the classical link.

Despite having several security advantages, traditional QKD
is distance-limited and requires multiple repeaters for long-haul
communication. However, these limitations can be mitigated by
building QKD networks with stand-alone QKD links. In this
paper, we consider the so-called “Trusted Node” setup, where
each communication link is assumed to be equipped with a
dedicated QKD channel with secure endpoints. Each packet
is sequentially encrypted and decrypted along its path by the
trusted nodes on each of the intermediate hops [8], [10], [12]-
[14]. The transmitted messages on each link must be encrypted
to prevent the eavesdropper from compromising the secrecy of
the ongoing transmissions. Trusted nodes allow scalable, secure
communication, thus overcoming the restrictions imposed by
distance-limited pairwise QKD schemes.



From the perspective of resource allocations, each link in a
QKD network is characterized by two different resources - (A)
the physical link capacity, which remains invariant over time,
and (B) the quantum keys currently available for encrypting
the link traffic. The latter resource is time-varying and heavily
depends on the routing policy (recall that transmitting one
message bit using OTP consumes one bit of key). In order
to achieve the maximum possible end-to-end throughput, the
routing policy must utilize both the resources in an optimal
fashion. Throughput-optimal policies for classical networks,
such as Back Pressure [15] optimize the routing policy with
respect to the link capacities (A) only. The additional constraint
stemming from the availability of the keys (B) is unique to
the Quantum key distribution Networks, which we address in
this paper.

In addition to the regular unicast-type traffic where each
packet has a single destination, in this paper, we also consider
broadcast and multicast-type traffic, where a single packet needs
to be delivered to multiple nodes in the network. Broadcasting
and multicasting are essential primitives in tactical military
networks where a packet needs to be securely transmitted from
a command and control center to multiple terminal nodes. These
types of traffic are also common in emergent applications such
as video-conferencing and live data-streaming. Our proposed
routing algorithm supports any arrival rate within the interior
of the capacity region. Furthermore, the proposed algorithm
does not need to know either the external packet arrival rates
or the quantum key generation rates in advance and works
in an online fashion. If the arrival rate vector lies outside the
capacity region, suitable admission control mechanisms, such
as the one developed in [3], may be used in conjunction with
the algorithm developed in this paper.

Our policy, which we name Tandem Queue Decomposi-
tion (TQD), works with a virtual network of queues, which are
implemented as a vector of counters. The main ingredient of our
policy is a new queueing architecture consisting of rwo virtual
queues in tandem for each communication link in the network.
The reader should compare and contrast this architecture with
the original UMW architecture given in [1] that defines one
virtual queue per link. In our case, the second virtual queue is
essential to account for the transmission constraint imposed by
the (un)availability of quantum keys. We refer the reader to
section III for a detailed description of the construction of the
virtual queues. The route of each packet (e.g., a path or tree
depending on whether the packet belongs to unicast, multicast,
or broadcast flow) is chosen dynamically using a “weighted-
shortest-path” computation on the network weighted by the
virtual queue lengths. We show that the proposed algorithm
is throughput-optimal and demonstrate its efficacy through
numerical simulations.

Related work: To achieve the network-layer capacity of
a multi-hop network, one must use the multi-path routing in
an optimal fashion that is commensurate with the external
packet arrival rates. In a seminal paper [15], Tassiulas and
Ephremides proposed the celebrated Back-pressure algorithm,
which is proven to be throughput-optimal for unicast traffic.

Numerous extensions and enhancements to the basic Back-
pressure algorithm have been proposed in the literature for the
last thirty years [16]. However, the Back-pressure policy is
specific to unicast flows only, and hence, it does not support
broadcast or multicast traffic [17]. Using the Back-pressure
algorithm as a building block, the paper [18] proposes quantum
key management and unicast routing policy to maximize the
utility in a QKD network. In addition to being limited to unicast
flows only, a major technical limitation of the scheme of [18]
is that, in order to stabilize the data queues, the authors place
an artificial upper bound on the number of keys a node can
have at its disposal (see Lemma 1 of [18]). However, unlike
the data packets in transit, the abundance of quantum keys
is always desirable as they can be used to encrypt more data
packets. Hence, the utility achieved by the algorithm in [18]
could be sub-optimal.

Building upon our earlier work on the Universal Max-Weight
algorithm [1], in this paper, we propose an efficient universal
routing policy (TQD) that does not limit the number of keys in
a node yet achieves the full throughput region of the network.
Our policy supports a wide range of traffic types, including
unicast, broadcast, and multicast. Furthermore, since TQD
admits loop-free routing, it offers a better delay performance
than [18] for unicast flows. To achieve this, TQD uses the
UMW policy on a transformed network with twice the number
of edges compared to the original network.

The rest of the paper is organized as follows: In section (II),
we discuss the system model and formulate the problem. In
section (III), we give a brief overview of the proposed TQD
policy and the structure and dynamics of the virtual queues
on which TQD is based. In section (IV), we prove its stability
property in the multi-hop physical network. In section (V), we
present some illustrative numerical simulation results before
concluding the paper in section (VI).

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network Model

We consider a network with an arbitrary topology, repre-
sented by a graph G(V, E), where V denotes the set of nodes
(V| = n) and E denotes the set of edges (|E| = m). The
edges could be either directed or undirected. Time evolves
in discrete slots. Each edge in the network encompasses two
types of links - a physical link and a QKD link. The capacity
of the physical link e is 7., i.e., it can transmit . number
of encrypted packets per slot. The QKD links are used for
symmetric quantum key agreement between the nodes and not
for the actual data transfer, which takes place over the physical
links. Although the network topology is assumed to be static
in this paper, our proposed policy works even in the case of
a time-varying network. Furthermore, all of our results can
be straightforwardly generalized to networks with scheduling
constraints (e.g., wireless networks).

B. Quantum Keys - Generation, Distribution, and Utilization

The keys generated by the quantum entanglement mechanism
between two trusted nodes are shared via the overlay QKD



channels. The generated keys are stored in key banks, which
are typically implemented with text files on both sides of the
links [12]. Note that the key banks are different from the
data queues; while the data queues hold physical data packets,
the key banks store private symmetric quantum keys, which
are used for encrypting or decrypting the data packets before
each transmission (see Figure 1). Due to noise originating
from quantum decoherence, the amount of usable quantum
keys generated per slot varies randomly. Let K. (t) be the
number of keys generated over the QKD link e in the time
slot ¢. In this paper, we assume that {K.(¢)};>1 is an ii.d.
stochastic process with E(K.(t)) = 7n. such that K.(t) <
Kinax, Vt, e for some finite constant K, .. Without any loss
of generality, we normalize the unit of the key generation so
that one unit of key encodes precisely one data packet for
a given encryption standard. Due to the technological and
physical challenges arising from the entanglement generation
and quantum decoherence [19], the quantum key generation is
usually the bottleneck for information transmission [20]. Since
the abundance of encryption keys is always desirable, we do

not impose any hard upper limit on the size of the key banks.

Thus, unlike the paper [18], we do not require the key banks
to be stable. Our objective is to design a policy that stabilizes
only the data queues for any arrival rate within the capacity
region (see Definition 3).

C. Data Traffic Model

We consider a generalized traffic model, where a packet
arriving at a source node s can have either a single destination
(Unicast), or multiple destinations (Multicast) [1]. A special
case of Multicast traffic is Broadcast, where the incoming
packet to a node is required to be delivered to all other nodes
in the network. Formally, we categorize the incoming packets
into multiple classes C depending on its source (s(°)) and the
set of destination(s) (D(C)). Packets belonging to the class ¢
is assumed to arrive at the source at rate A\° i.i.d. at every
slot. In other words, if A(°)(t) denotes the number of external
packets from class c that arrives at the source 59, we have
EA©(t) = A9 Ve € C. The arrival rate vector X is obtained
by concatenating the arrival rates from each class, i.e., A =
(A1, A2, .., Ajep). We also assume that the total number of
new packet arrivals to the entire network at any time slot is
upper bounded by a finite constant A .

D. Policy Space

An admissible policy for this problem is responsible for
the following tasks - (1) selecting the routes for each packet
based on their traffic class and possibly duplicate the packets
as necessary (in the case of broadcast and multicast traffic),
(2) encrypting the link traffic with the available keys, and (3)

forwarding the encrypted packets over the communication links.

Note that a data packet can be forwarded over a link only if
sufficiently many quantum keys are available for encryption.
Otherwise, the policy must wait until the keys are generated.
The set of all admissible policies is denoted by II.

We say that a policy 7 € II securely supports an arrival rate
vector A if under the action of the policy 7, the destination
node(s) of class c receive(s) encrypted class c packets at the rate
A Ve € C. Formally, let R()(t) denote the total number of
encrypted class ¢ packets commonly received by the destination
node(s) D(©) under the action of the policy 7 up to time ¢. We
now make the following definitions.

Definition 1 (Policy Securely Supporting an Arrival Rate
Vector A\). A policy m € 1l is said to securely support an
arrival rate vector X\ if

RO)(t)

lim inf =9, veec,
t—o0

wp. 1

Definition 2 (Stability Region of a Policy). The stability
region A (G,m,~) of an admissible policy w is defined to be
the set of all arrival rate vectors securely supported by the
policy m, i.e.,
Aﬂ' (g7 777 ’7) (d;f)
In the above definition, we have made the dependence of the
stability region with the network topology (G), key-generation
rates (1), and the link capacities () explicit. The secure
capacity region A(G,n,~) is defined to be the set of all arrival
rate vectors supported by an admissible policy. Formally,

{Ae le‘ : m securely supports A},

Definition 3 (Secure Capacity Region of a Network). The
secure capacity region A(G,m,~) of a network is defined to
be the set of all supportable rates, i.e.,

A(g’n’7) = U Aﬂ(ganv’Y)'

mell

Finally, we define the notion of a secure Throughput-Optimal
policy, which generalizes the notion of Throughput-Optimal
policies as given in [15].

Definition 4 (Secure Throughput-Optimal Policy). A secure
throughput-optimal policy is an admissible policy * € 11, that
supports any arrival rate X in the interior of the secure capacity
region A(G,n,7y).

From the above definition, it is unclear whether a secure
throughput-optimal policy exists as two different rate vectors
in the secure capacity region might not be achieved by the
same admissible policy. One of the major contributions of the
paper is to show that a secure throughput-optimal policy exists
and can be efficiently implemented.

E. Characterization of the Secure Capacity Region

Let G, be a capacitated version of the given network such
that the link capacity w, for the edge e is defined as follows:

We = min(Ye, Ne ), Ve € E.

In Theorem 1 below, we show that the capacity region of
the network is given by the generalized multi-commodity
flow region of the capacitated graph G,,. One direction of
this result is quite intuitive; the long-term rate of encrypted
packet flow over an edge e is limited by the quantum key



generation rates and the capacity of the communication link e.
Consider an arrival rate vector A € A(G,n,~y). By definition,
there exists an admissible policy m € II that supports the
arrival rate A. Upon taking a long-term time-average over the
actions of the policy =, it is evident that we can obtain a
randomized flow-decomposition on G, such that none of the
edges are overloaded. In other words, for every A € A(G,~,n),
there exist a non-negative scalar /\EC), associated with the ™
admissible route Ti(c) € T Vi, ¢, such that

\(©) — Z )\1(6)7 (D
#T D eT (@
2, @ Z AN <., VecE. (2)
(i,c):eETi(C)’
Ti(C)ET(C)

Eqn. (1) shows that there exists such a valid flow decomposition
across the routes. The inequality in (2) states that no edge in
G., is overloaded. To formally state our result we need the
following definition for the feasible flow region A, of G.,.

Definition 5. A, is defined as the set of all arrival vectors X €
lel for which there exists a non-negative flow decomposition
{)\1(-5)} such that Eqns. (1) and (2) are satisfied.

Let int(-) denote the interior of a subset of an n-dimensional
Euclidean space. The following theorem characterizes the
secure capacity region of a network.

Theorem 1 (Characterization of the Capacity region). The
network-layer secured capacity region A(G,m,) is identical
to the set A, up to the boundary, i.e.,

1) [Converse] A C A,,.

2) [Achievability] int(A,) C A and there exists an

admissible policy which achieves any rate in int(A,).

The proof of the converse (i) is given in Appendix A. The
achievability result in part (ii) is more challenging. We establish
the achievability by designing an efficient policy, called TQD,

that supports all rates within the set int(A).

III. A SECURE THROUGHPUT-OPTIMAL POLICY

In this section, we describe a policy that achieves the entire
secure capacity region of a network. The presence of the key
availability constraints makes this problem more challenging
than the vanilla universal network flow problem considered in
[1]. We solve this problem using a novel yet straightforward
Tandem Queue Decomposition (TQD) method that reduces the
current problem to an instance of the universal flow problem.

A. The Tandem Queue Decomposition Method (TQD)

To enforce the constraint that only encrypted packets can
be transmitted over the physical links, we first construct a
transformed network where each edge is split into two edges
in tandem, each containing one queue. The first edge, which is
internal to the nodes, corresponds to the process of encrypting
the packets with the available quantum keys. The second edge
corresponds to the process of transmitting the encrypted packets

over the physical links. We illustrate the construction of the
transformed network via the following example.

Example: Consider an edge (A, B) that connects node A
to node B as shown in Figure 2. Assume that, the quantum
keys are generated for the link (A, B) at the rate 745 and the
communication link can transmit packets at the rate of y4p
packets per second. In the transformed network, we replace
the edge (A, B) by introducing two internal nodes a1 and ao,
an internal edge (a1,as) connecting them, and an external
edge (az,b1). The queue X 45, corresponding to the internal
edge (a1, as9), holds the set of unencrypted packets that are
waiting for the keys to become available. The queue Y4p,
corresponding to the external edge (as,b;), holds the set of
encrypted packets that are waiting to cross the link AB. Similar
decompositions are performed for each link in the network.

It is easy to see that the above transformation does not
change the capacity region of the network. Hence, it is enough
to design a throughput-optimal policy for the transformed
network. In the following, we use the Universal Max-Weight
policy [1] on the transformed network for achieving this goal.

— Classical Link

- - - Quantum Link — Abstract Link

Node A

Fig. 2. Consider a data packet moving from Node A to Node C' via Node
B. The upper part of the schematic shows the physical connections between
the nodes, and the bottom part denotes its algorithmic abstraction after the
Tandem Queue Decomposition. The link between two trusted nodes A and
B consists of the classical data link for packet transfer, the quantum link for
mutual key agreement, and an abstract link to an intermediate node where the
encrypted data is stored before sending it via the communication link.

B. Precedence Constraints and the Virtual Queueing Process

Due to the precedence constraints, a packet, which is routed
along the route ' = e; — e3 — ... — e, reaches the j‘h link e;
only after crossing the links located before e;. This follows
from the principle of causality applied to multi-hop networks.
Similar to the UMW policy, we first relax this constraint to
obtain a single-hop virtual network, which is used for deciding
the routes for the incoming packets.

Similar to UMW, we define a 2m-dimensional virtual
queueing process Q(t) := {X (t),Y (t)}. We associate one
virtual queue corresponding to each edge in the transformed
network. Hence, X corresponds to the virtual queues consisting
of the unencrypted packets waiting for keys, and Y corresponds
to the virtual queues consisting of the encrypted packets waiting
to be transmitted over the communication links in the virtual



network. We emphasize that virtual queues correspond to a
state vector that follows simplified queueing dynamics without
precedence constraints [1].

~

Note: In the physical system, there are two tandem
queues, with X, followed by Y, for each edge e € E
as shown in Figure 2. The corresponding virtual queues
are denoted by X, and Y,. The packets in X, at slot
t get encrypted with the available quantum keys in the
key bank and then forwarded to the physical queue Y.
From Y., the packets get transmitted to the next link
e’ and get queued at X,.

The TQD policy first decides a route 7€) (t) € T for a
class ¢ packet immediately upon its arrival. If we denote the
links on a prescribed route T(°)(t) by {e;]i = 1,2,...,k}, the
incoming packet induces a virtual packet arrival at slot ¢ simulta-
neously at each of the virtual queues {X,,|i = 1,2,...,k} and
(Y. |i= ., k}. By foregoing the precedence constraints,
any packet present in the virtual queues can be serviced at the
same time. Thus the number of packet arrivals A7 (¢) to both
the virtual queues Q. = {X,,Y,} at time ¢ under the action
of a policy 7 can be expressed as:

=Y AD@w)1

ceC

(e T¥(), VYeeE. (3

The symmetric quantum key pairs generated at slot ¢ are
stored into the key banks on both sides of the edge e. The
keys that are not utilized for encryption in the current slot are
stored for use in the future. Let k.(¢) denote the number of
keys available for encrypting the packets crossing the edge e
at slot ¢ and k. (t) denote the number of unused keys in the
key bank available from the previous rounds. Hence, k. (t) =
K. (t) + k(t), where we recall that K, (t) is the number of
new keys generated by the QKD link e at slot ¢. Note that the
process {k(t)}4>1 is highly correlated with the routing policy.

Thus, the one-step evolution (Lindley recursion) of the virtual
queue processes X and Y can be written as:

“4)
S

(Xe(t) + AT () — re(t)), Vee E
(Yo(t) + A7 (t) Ve € E.

With the above description of the queueing architecture in
place, we now present our proposed capacity-achieving routing
policy in Algorithm 1. We note down a few salient feature of
the algorithm:

Xo(t+1) =

Y/e(t'i_l): _'Ve)+>

1) The routing policy is oblivious to the arrival rates A, the
key generation rates 77 and the capacities of the links ~.

2) The shortest path computations depend on the virtual
queue lengths through the sum of the encrypted and
unencrypted queues in each link and not on the individual
virtual queue lengths.

In the following section, we show that the proposed policy
stabilizes the virtual and the physical queues for all arrival
rates within the interior of the capacity region.
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, keys in key banks ;
- - Bl ey
l l (Encrypted packcts) |
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Fig. 3. Illustration of the virtual queue system for the 5-node network G.
When a packet arrives at source 1 with desination 5, and given the assigned
route 7, = {{1,2},{2,3},{3,5}}, the following queue updations occur.
The packet is counted simultaneously as an arrival to the virtual data queues
X192, X23, X35, Y12, Ya3, Y35 at the same slot. Following this, we reserve
the quantum keys at simultaneously at the same slot, thereby reducing the
number of quantum keys in those virtual queues. The physical packet reaches
these edges only at a later time slot.

IV. DERIVATION OF A STABILIZING ROUTING POLICY FOR
THE VIRTUAL NETWORK

Due to the packet transmission constraint arising from the
availability of the quantum keys in the key banks, our proof of
strong stability differs from the proof given in [1]. To derive
a stabilizing policy for the virtual network, we consider the
following quadratic Lyapunov function L(Q(t)) defined in
terms of the virtual queue lengths:

ST (X2 + YA()).

ecE

L(Q(t) = (6)

The Lyapunov function (6) defined above should be contrasted
with the Lyapunov function considered in Eqn. (9) of [18],
which includes the number of available keys as the second term
in the quadratic. Thus, any drift minimizing policy for their
Lyapunov function implicitly limits the number of usable keys
in the key banks as well, which is not practically desirable.
From the one-step dynamics given in Eqn. (4), we have:

X.(t+1)? < X (t )2 + AT (1) + Ko (t)? + 2X (t) AT (t)
—2Xe(t)re(t) — 2A7 (t)re(t),
Ye(t +1)% < Ye(8)? + AT (1) + 97 + 2Ye (1) AT (¢)

2Y()76_2A ()



Algorithm 1 Tandem Queue Decomposition (TQD) algorithm
at slot ¢ for the Generalized Flow Problem
Require: Graph G(V, E), Virtual Queue lengths {X,(t),e €
E} and {Y,(t),e € E} at the slot t
1: [Edge-Weight Assignment] Assign each edge of the
original graph e € E a weight W, (t) equal to X, (t) +
Y. (1), ie

W(t) « X(t) + Y (¢).

2: [Route Assignment] Compute a Minimum-Weight Route
T©(t) € T©(t) for a class ¢ incoming packet in the
weighted graph G(V, E).

3: [Key Generation] Generate symmetric private keys for
every edge e via QKD and store them in the key banks.

4: [Encryption] Encrypt the data packets waiting in physical
queue X, with the available keys in the key bank and
move the encrypted packets to the downstream queue Y,
for every edge e.

5: [Packet Forwarding] Forward the encrypted physical
packets from the queue Y, to the queue X, for every
edge e according to some packet scheduling policy (ENTO,
FIFO etc). Here €’ is the next edge in the assigned route
of a packet.

6: [Decryption] Decrypt the data packets received at physical
queue X, for every edge e using the symmetric key
generated earlier via the QKD process.

7: [Queue Counter Updation] Update the virtual key queues
and virtual data queues assuming a precedence-relaxed
system, i.e.,

Xt +1)  (Xe(t) + AT(1) — ke(t)) ", Ve € E
Yo(t+1) « (Yo(t) + AT(t) —7.) ", Vee€E.

Since Xe(t) > 0,kc(t) >0, AT(¢t) > 0 and v, > 0, we can
write:

Xe(t+1)? = X (t)* <

A
n
Yo(t+1)2 Y, (1)< A
+ 3)

Next, observe that X.(t)k.(t) = 0. This can be argued
as follows. Since all currently available keys are used for
encryption, if there are packets in the queue waiting to
be encrypted (i.e., if X.(t) > 0), there cannot be any
unused keys from the previous round (i.e., k.(t) = 0.) Since
Ke(t) = ke(t) + K.(t), for X.(t) > 0, we can rewrite the
inequality (7) as:

X2t +1) = X2(t) < AT (1) + K2(t)
+2X (AT (t) — 2X () K. (). (9)

On the other hand, if X, (t) = 0, trivially we have X, (t+1) <
AT (t). Thus, even in this case, the bound in Eqn. (9) continues

to hold. Hence, from Eqn. (9) and (8), the expected one-step
Lyapunov drift A™(¢), conditioned on the current virtual queue
lengths Q(t), under the operation of any admissible policy
7 € II may be upper bounded as:

AT(t) = E(L(@(t 1) - L(Q(t))@(t))
<B+2Y (K1) + V() E(AT ()G (0)

ecE
—2)  Xe(t)ne =2 Ye(t)ve, (10)
ecE eck

where B is a finite constant that depends on the upper bounds
of the packet arrival and quantum key generation rates. Note
that, in Eqn. (10), we have used the fact that

E(Ke(1)|Q(t) = E(Kc(t) = ne.
A. A Drift Minimizing Routing Policy:
We now design a routing policy which minimizes the upper
bound for the one-step Lyapunov drift as given by the RHS
of Eqn. (10). By inspecting the terms, it is clear that the

policy must choose the route for each packets to minimize the
following routing cost:

RoutingCost™ = Z (Xe(t) + Ye(1) AT (1)
eck

Using Eqn (3), we can express this cost as:

RoutingCost™ = Z A©(¢) Z (Xe(t)+}76(t))ﬂ(e e T(t)),
ceC ecFE

where 7€) (t) € T()(¢) and T (¢) is the set of all admissible
routes for the packets belonging to the traffic class c. Decompos-
ing the above cost function into distinct traffic classes, we see
that the drift minimizing policy chooses routes for the packets
in class c at time t by solving the following combinatorial
optimization problem:

T (1) € argmin > (Xe(t) + Ye(t))L(e € T@) (11)
TOETE (1) fep

Let Z,(t) = X.(t) + Y.(t) be the sum of the lengths of the
virtual queues (consisting of both unencrypted and encrypted
packets) for the edge e at time t. Now consider an edge-
weighted version of the graph G, where the weight of the edge

e is taken to be Z,(t). For different traffic types, the optimal

route for each packet is chosen as follows:

o Unicast: The shortest s(°) — t(°) path in the
weighted-graph.

e Broadcast: The minimum-weight spanning
tree(MST) with root s(©), in the weighted-graph.

o Multicast: The minimum-weight Steiner tree with
root 5(©) and covering all destinations D(°) in the
weighted-graph.

« Anycast: The shortest of the k shortest s(¢) —
tl(-c), 1 < i < k paths in the weighted-graph.




For routing multicast traffic, we may use an efficient
approximation algorithm for the Min-weight Steiner tree
problem (such as the one described in [21]), as solving the
problem optimally is NP-hard for arbitrary graphs. For all
other traffic classes, there exist efficient and standard algorithms
that may be directly used [22].

B. Strong Stability of the Virtual Queues

Theorem 2. Under the TOD routing policy, the virtual queue
process {Q(t) }i>o is strongly stable for any arrival rate vector
A €int(A), ie.,

hmsup— ZZE X

T—oo t=0 ecE

Ye(t) < o0

Proof: Consider an arrival rate vector X € int(A). From
Egns. (1) and (2), it follows that there exists a scalar ¢ > 0
such that we can decompose the total arrival for each class
c € C into a finite number of routes, such that

A= >

(i,c):eETfC)7
(e) ]
T eT(®

AN <w.—e VeeE (12

We now define an auxiliary stationary randomized routing
policy mranp € II such that the policy mranp assigns an
incoming packet from class ¢ the route T( € T©(t) with

probability /\( ),Vz c. Hence, it follows that the expected
number of packets that is routed along a path (or tree) that
includes the edge e is given by:

B H) =h= Y
(i,c):eGTiFC),
T eT(®

A9 veeR.  (13)

Since the TQD policy minimizes the drift expression in Eqn.

(10) among the set of all feasible routing policies 7w € II, by

comparing it with the randomized policy mranp, We can write:

AT () < B+2 Y (Re(t) + Vo) E(A7 (1)]Qe (1))
ecE
—2) Xo(tme—2)_ Ye(t)y (14)
ecl eck

Using the fact that Randomized policy is memoryless, and
hence, independent of the virtual queue lengths Q.(t), the
above drift inequality simplifies to:

AT (1) < B+ 2 Z (()\ Xe(t) + (Ae — ne)?e(t)>
ecE
<B+2) ((/\e — min(ve, 7e)) Xe ()
ecE

+ ()\e — min(’Ya ne))}}e(t)>
—B+2 Z(Ae — we) (Xe(t) + Ye(t))

eckE

<B -2y (Xo(t) + Yo(1)),

eckE

where we have used the inequality from Eqn. (12). Taking
expectation of both sides w.r.t. the virtual queue lengths Q(t),
we bound the expected drift at slot ¢ as:

EL(Q(t+1)) —EL(Q(t)) < B —2¢ Y E(X. Y, (t

eckE

\_/
~—

Upon summing the above inequality from ¢ = 0 to 7" — 1,
dividing both sides by T and upon realizing that L(Q(0)) =0
we have:

g%—FZZE

t=0 ecE

Ye(t) < (15)

N

Finally, using the fact that L(Q(T)) > 0 and L(Q(0)) = 0,
we get

HTL0) < 5

1 T—1 B
T > E(Xe(t
t=0 ecE

Taking lim sup on both sides we get that

hmsup— Z ZJE

T—o0 t=0 ecE

Y.(t)) < o0,

which shows that the virtual queue processes { X (t)};>1 and
{Y (t)};>1 are strongly stable. |

Observation: 1t is clear that the proof of Theorem 2 goes
through even when we do not store the keys from the past, i.e.
the freshly-generated keys at each slot are used for encrypting
the packets for that slot only and the excess keys (if any) are
discarded at the end of the slots (k.(t) = 0, V¢, e). This is
obviously a practically wasteful way of operating the system,
but it does not affect the throughput-optimality of the TQD
policy. Moreover, one advantage of this scheme is that we can
now operate the system with zero-sized key banks and discard
stale (and potentially unsecured) keys without losing capacity.
See section V for a numerical evaluation of its performance.

C. Stability of the Physical Queues

The physical queues obey precedence constraints and have
a dynamics different from the virtual queues. In the following,
we argue that the physical queues {X (t)};>1 and {Y (¢)}i>1
are also stable.

a) Stability of the {X(t)}+>1 process: Note that the
number of keys generated at each slot for serving the virtual
queue X,(t) and the physical queue X,(t) are identical for
all edges e € I/ and time slot ¢. Since the excess keys are
indefinitely stored in the key banks and by design, the packet
arrivals are counted the virtual queue of unencrypted packets
X, before they arrive in the corresponding physical queue X,

it readily follows that
X (t) < Xe(t), Ve, t. as. (16)

Hence, from Theorem I'V-B, it directly follows that the physical
queues consisting of unencrypted packets are strongly stable.



b) Stability of the {Y (t)}1>1 process: Since, unlike the
upstream queues X, (t)’s, the cumulative unused services of the
links can not be stored for later use, it is not possible to derive
a simple pairwise inequality similar to (16) for the downstream
queues Y.(t),Ve € E. Using the fact that the virtual queue
processes {X (t)};>1 and {Y (t)};>1 are non-negative, and
L(Q(t)) > Yg(t),Ve € FE, (viz. Eqn. (6)) from Eqn. (15) we

have EY2(T) < 8L vT > 1. Furthermore, since the number
of packet arrivals at a slot and the link capacities are bounded,

we see that the conditions of Lemma 3.2 of [23] are satisfied.

Hence, under the TQD policy, we have for any A € int(A,,):

Y,
lim 7e(t)

t—oo t

=0, VeeF, a.s. a7

Next, using an appropriate packet scheduling policy for the

encrypted packets for the outgoing physical links (e.g., the

Nearest to Origin policy [24]), it can be shown that the rate

stability (17) of the virtual queues implies the rate stability of

the physical queues for the encrypted packets as well, i.e.,

Ye(t

lim 7ZCGE ()
t—o00 t

=0, wp. L (18)

We refer the readers to [1] Theorem 3 for a detailed proof using
adversarial queueing theory. From the above, it immediately
follows that the TQD policy is throughput-optimal. We give a
formal proof of this result in Appendix B.

V. SIMULATION RESULTS
A. TOD with Unicast traffic

We simulate the TQD policy on the network shown in Figure
4. All physical links have unit capacity with the quantum key-
generation rates as indicated in the Figure. We consider two
unicast flows from the sources sj, s to the destinations t1, to
with the arrival rates \; and A, respectively. The packet arrivals
and key-generation processes are assumed to be Poisson.

A2
520/

¢, ’ N

Fig. 4. Network topology used for unicast simulation.

In our simulations, we compare the performance of the
proposed Tandem Queue Decomposition policy (with and
without the key-storage) with the Back-Pressure-based routing
policy proposed in [18]. Let A7 = 0.6 and A5 = 0.5. It can be
shown from an LP formulation that A\; + Ao < A7 4+ A5 = 1.1,
for any feasible rate pair (A1, \2). Figure 5 shows the variation
of average physical queue-lengths when the arrival rates are
varied as (A1, A2) = (pA}, pAS), for 0 < p < 1. The physical
queue lengths are averaged over 1000 sample paths, each run

for 10000 time slots. Plot 5 shows that the TQD policy with key
storage performs the best, followed by the Back-Pressure policy.
The TQD policy without key storage is throughput-optimal, but
its delay performance is poor due to the discarding of excess
quantum keys.

35 —— BP
TQD without key storage
—— TQD with key storage

Avg Queue Length

00 02 04 06 08 1.0
o

Fig. 5. Performance comparison between the TQD policy (with and without
key storage) and the Back pressure policy in the unicast setting

B. TOD with Broadcast traffic

In our broadcast simulations, we consider a 3 x 3 grid
network with the source located in the upper-leftmost corner.
Each edge has a uniform key generation rate 7. = 0.5 and
unit capacity. It can be shown that the broadcast capacity of
the network is 0.5 [2]. Figure 6 compares the performance of
two variants of the TQD policy. We see that both policies are
capacity-achieving, yet the TQD policy with key storage has a
far better performance compared to its no-key-storage variant.

a
S

---- TQD without key storage /
TQD with key storage p

N w IS
S S S

Avg Queue Length

=)
\

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6. Delay Performance of the TQD policy for broadcast traffic

VI. CONCLUSION

In this paper, we designed a secure and provably throughput-
optimal routing policy for QKD networks carrying a wide
range of traffic. In the future, we plan to extend the policy
beyond the trusted node setting.
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APPENDIX A
PROOF OF THE CONVERSE PART OF THEOREM 1

Consider any admissible arrival rate vector A € A(G,n, 7).

By definition, there exists an admissible policy 7 € II which
supports the arrival vector A. Without any loss of generality, we
may assume the policy 7 to be stationary and the associated
DTMC to be ergodic. Let AZ(-C) (0,t) denote the number of
packets belonging to class c that have arrived at all of their
destination(s) along the route Ti(c) € 7 up to time ¢. Recall

that each packet is routed along one admissible route only.

Thus we can say:

> A0,

TV eT

= R1(1), (19)

where R(°)(t) represents the number of distinct class-c packets
received by all destination nodes D(©) under the action of
the policy =, up to time t. We also know that if A()(0, )
represents the total number of class-c packet arrivals to the

source s(©) up to time ¢, then:
> A0,

A(0,1) > (20)
T eT (e

as any packet that has finished its journey along some route
Ti(c) e 7© by the time ¢, must have arrived at the source
before that. By dividing the inequality (20) by ¢ and taking
limit ¢ — oo, we have:

R () I | (©)
tggonhtrggolff Z A;7(0,t)
T T
. (©)
@ )i in LA}
t—o0
© y@.

The equality (a) holds from Eqn. (19) and the equality (b)
holds from the definition (1) and the fact that our policy 7 € II
is claimed to securely support the arrival rate A. By using
SLLN we can say that

AC
A = lim (0,%) )

t—00 t

From this we can conclude that w.p. 1
2D
Using the fact that the policy  is stationary and the associated

DTMC is ergodic, we conclude that the time-average limits
exist and they are constant a.s. For all Ti(c) e T© and ¢ € C,

define
(e)
)\(C) @D yim w (22)
t—o00
Using Eqns. (21) and (22) we get
A= 33, (23)

T eT®

The previous equation (23) proves Eqn. (1) that there exists
a non-negative flow decomposition of the incoming packets
amongst the admissible routes.

For the second part of proof, we consider an edge e € E in
the graph G. Let A.(0,t) be the number of packets that have
crossed edge e till time ¢ under the action of the policy m. We
have that:

S A0, < A0,) £ Y Ke(r),  @4)
(i,c):eETi(C>, 7=0
TV eT©
and
y
() (v)
S A0, < A0,) < D e, (25)
(i,c):eETi(C), =0
TV eT(®

where the left-most sides of the inequalities (24) and (25)
denote the number of delivered packets which has crossed the
edge e by the time ¢. This is clearly a lower-bound on A, (0, t).
The inequality (a) in Eqn. (24) arises from the fact that the
total number of quantum keys generated by the QKD link e
up to time ¢ is an upper bound to the number of packets that
have crossed the edge till time ¢. Similarly, the inequality (b)
in Eqn. (25) arises from the fact that the number of packets
that have crossed edge e till time ¢ cannot be greater than the
cumulative capacity of the link up to time ¢.

Combining inequalities (24) and (25), we have a tighter
bound:

S AP0, <m1n<ZK Z%)

(i,¢):e€T ),
T,<C)€T(C)

(26)

Dividing both sides of the above inequality by ¢ and taking
the limit ¢ — co we get

A0, ¢ tK t
Jim Z N e i ) < min | lim 72:075 (7) , lim 77
Hﬁ,c):eeTﬁ, t— 00 —00
7T

27
Using Eqn. (22) on LHS and SLLN on first term in the RHS
of Eqn. (27), we get

Z )\ < min(7ne, Ye) = we (28)

(i,¢):e€T(,
Ti(e) eT©

By the definition in Eqn. (2) we see that the condition that no
edge is overloaded translates to
Ae < we (29)

This establishes the converse part of Theorem 1. B



APPENDIX B
THROUGHPUT-OPTIMALITY OF TQD

For any class ¢ € C, let A(®)(0,t) be the total number
of incoming packets belonging to class ¢ up to time . The
total number of packets R(®)(t) commonly received by all
destination nodes D) of class ¢ can be bounded as follows:

a b
AL, - ST Xe(t) - Y Yelt) < RO < 40,1,
eckE ecE
(30)

Here the first inequality (a) arises from the observation that
if a packet p of class ¢ has not reached all destination nodes
D), then at least one copy of it must be present in some
of the physical queues. Inequality (b) states the obvious fact
that the number of packets received till time ¢ is less than the
number of packets that have arrived at the source till time ¢.
Since the TQD policy is proven to be rate stable, we know
that

X, (t
lim Leen Xe() =0 and lim

t—00 t t—00

Thus, dividing both sides of the inequality (30) by ¢ and taking
the limit ¢t — oo, we get

(e) (e (©)
lim 490,19 < lim RO) < lim A20,1) (O’t).

ZeEEt Ye(t) 0.

t—00 t ~ t—oo t ~ t—oo
Thus:
R (t Al (0t ;
lim ® _ lim M:A“),vcec.
t—o00 t t—o0 t

This shows that the TQD policy is secure and throughput
optimal. H



