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Abstract

A novel form of an explicit numeric-analytic technique is developed for solving strongly nonlinear oscillators of engineering interest.
The analytic part of this technique makes use of Adomian Decomposition Method (ADM), but unlike other analytical solutions it does
not rely on the functional form of the solution over the whole domain of the independent variable. Instead it discretizes the domain and
solves multiple IVPs recursively. ADM uses a rearranged Taylor series expansion about a function and finds a series of functions which
add up to generate the required solution. The present method discretizes the axis of the independent variable and only collects lower
powers of the chosen step size in series solution. Each function constituting the series solution is found analytically. It is next shown that
the modified ADM can be used to obtain the analytical solution,in a piecewise form. For nonlinear oscillators such a piecewise solution is
valid only within a chosen time step. An attempt has been made to address few issues like the order of local error and convergence of the
method. Emphasis has been on the application of the present method to a number of well known oscillators. The method has the advan-
tage of giving a functional form of the solution within each time interval thus one has access to finer details of the solution over the
interval. This is not possible in purely numerical techniques like the Runge–Kutta method, which provides solution only at the two ends
of a given time interval, provided that the interval is chosen small enough for convergence. It is shown that the present technique suc-
cessfully overcomes many limitations of the conventional form of ADM. The present method has the versatility and advantages of
numerical methods for being applied directly to highly nonlinear problems and also have the elegance and other benefits of analytical
techniques.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In many practical situations a system of coupled, pos-
sibly damped, nonlinear ordinary differential equations
model the dynamical behavior of mechanical systems.
For example, these equations arise (following some discret-
ization procedure) while studying the mechanical response
of systems such as strings, beams, absorbers, plates, and so
on. In general, exact solutions of such equations are
unknown and thus numerical integration, perturbation
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techniques or geometrical methods (see [1–4] and references
there in) have been applied to obtain their approximate
solutions. However, in many of the analytical techniques,
it becomes necessary to resort to linearization techniques
or assumption of weak nonlinearity, except for a small
class of low-dimensional problems which can be trans-
formed to linear equations. This so-called weak non-
linearity or small parameter assumption greatly restricts
applications of perturbation techniques known that an
overwhelming majority of nonlinear problems have no
small parameters at all. Therefore such analytic routes
may not be able to treat strongly nonlinear problems.
Recently there are few attempts to overcome this restric-
tion of weak nonlinearity (see, for instance [5–7]), but they
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either use the small parameter assumption indirectly or
lack the versatility and applicability to all kinds of prob-
lems. Numerical integration methods, even though more
versatile than their analytical counterparts, sometimes
respond too sensitively to the choice of time-step size to
be reliable (see, for instance, Yamaguti and Ushiki [8]; Lor-
enz [9]). Moreover, numerical integration schemes always
offer approximate solutions in a discretized form thereby
making it difficult to obtain a continuous representation.
A third route, based on numeric-analytical algorithms,
has also been tried out for nonlinear deterministic and
stochastic initial value problems (IVPs). The phase-space
linearization (PSL) method, proposed by Roy [10,11] and
Iyengar and Roy [12,13] and implicit local linearization
method termed as the Locally Transversal Linearization
(LTL) [4,14] are two such ways. The present objective is
to follow them up with yet another numerical-analytic
technique based on Adomian Decomposition technique.
George Adomian introduced a method in [15] for solving
nonlinear functional equations of various kinds (algebraic,
differential, delay differential, etc.), and the method is
known as Adomian Decomposition Method (ADM). This
method and its application are well documented in [16–22].
The technique uses a decomposition of the nonlinear term
into a series of functions. Each term of this series is a gen-
eralized polynomial called Adomian’s polynomial. These
polynomials generate an infinite set of functions whose
sum determines the actual solution. This method has signif-
icant advantages: it is not restricted with weak nonlinearity
assumption, and provides a rapidly convergent series [19].
A more detailed description about the mathematical back-
ground of this method is available in [22]. Another impor-
tant work by Rach [20] is worthy of mention here. It makes
a comparison between Picard’s method and ADM, and
concludes that these two methods are not the same, with
Picard’s method being applicable only if the vector field
satisfies the Lipschitz condition. The concept of noise terms
is introduced in [23] for a faster convergence of decom-
posed series solution. Noise terms have been defined as
the identical terms with opposite signs that appear in the
first two terms of the series solution. It is also shown that
noise terms appear always for inhomogeneous equations.
Though easy computations of series terms are closely
related to global accuracy and applicability of the method,
this aspect has never been explored in previous works. In
Section 2 of this study, it is demonstrated that the finite ser-
ies approximation is inaccurate. Unless the decomposed
solution is valid over long time intervals, easier computa-
tions of series terms are not of importance. Indeed, in the
context of integration of equations of motion of nonlinear
oscillators, the global accuracy of the method needs to be
addressed rigorously. To the authors’ knowledge such
issues have not been addressed, especially for simulations
of strongly nonlinear and possibly chaotic oscillators using
ADM.

It has been stated that the proof of convergence of Ado-
mian series may be based on
(1) the fixed point theorem [19,22];
(2) the assumption that the nonlinear function is replace-

able by an infinite series with a convergence radius
equal to infinity [24].

Supplemented by the assumption that the convergence
is fast. But for all practical purposes, this series converges
only locally because it is based on a Taylor series expan-
sion about an initial function which is often monotonically
increasing. This observation will be substantiated in the
present work through application of the conventional
ADM to dynamical system. This lack of global conver-
gence is overcome here by recursively applying ADM over
successive time intervals, thereby solving a sequence of
IVPs, each valid over a given time interval. However, it
is found that this discretization technique fails to provide
accurate solutions when there are forcing terms and in sev-
eral other cases where the system’s nonlinearity is of a non-
polynomial form. The reason behind is that it is too com-
plicated to compute series terms other than first few in
such cases using the conventional ADM. So, the forcing
function is also expanded in a Taylor series and appropri-
ately distributed in all the series terms. Finally, terms with
higher powers of increments of the independent variable
are removed. This provides a systematic algorithm for
the analytical computation of series terms. Indeed the
removal of higher power helps considerably in simplifying
the analytical derivation of series terms. These techniques
will be discussed in Section 3. Computation of local error
and its global propagation is investigated theoretically as
well as with help of examples and compared with existing
numerical techniques. Special attention is given to ap-
plicability of this method to oscillators responding in the
chaotic regime. The present method demands the usage
of extensive symbolic computation in obtaining the
series terms. But this method has certain advantages as
follows,

(1) Conventional ADM gives only locally convergent
results (see Section 2.1). It is shown that the present
method successfully overcomes such limitations and
has applicability to a large class of nonlinear dynam-
ical systems of engineering interest.

(2) Like other numerical techniques this method is also
versatile and can solve strongly nonlinear and chaotic
systems – something not possible through purely ana-
lytical techniques.

(3) The present method can provide a piecewise func-
tional form of the solution within each discrete inter-
val. The approximated solution may thus be made as
smooth as desired, which is not possible with any
purely numerical technique like the Runge–Kutta
method as the latter merely provides a discretized
approximation of the true solution.

(4) The order of accuracy is quite high and may be fur-
ther increased by simply generating more series terms
without decreasing the time-step size.
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(5) Compared to most existing numerical methods, the
proposed method can work with relatively much lar-
ger time-step sizes.

In the next section (Section 2) a brief description of
ADM is provided. A brief description of the limitations
of conventional ADM, which led to the development of
the present method, is also outlined. In Section 3, the
method developed in the present work is discussed in detail
in the context of multi-dimensional systems. To emphasize
the higher accuracy of the present method, existing proof
of convergence of ADM is discussed and the order of local
error for the present method is derived in Section 4. In
order to elucidate the implementation of the present
schemes, numerical illustrations are provided on a range
of strongly nonlinear oscillators in Section 5. Different pro-
gramming techniques have been adopted for the bet-
terment of this method, and they will be discussed in this
section too.
2. Brief description of adomian decomposition method

Consider a dynamical system F(u) = g(t) where F is a
nonlinear ordinary differential operator with linear and
nonlinear terms. The linear term is written as Lu + Ru

where L is chosen as the highest-ordered derivative. Thus
the whole equation may be written as Lu + Ru + Nu = g(t),
where Nu denotes the nonlinear terms. u lies in a Banach
space G. The equation is now recast as:

Lu ¼ g � Ru� Nu;

L�1Lu ¼ L�1g � L�1Ru� L�1Nu:
ð1Þ

If this corresponds to an IVP and L is a differential opera-
tor then L�1 may be regarded as multiple definite integra-
tions from 0 to t. For example when L is d2/dt2, the last
equation becomes

u ¼ Aþ Bt þ L�1g � L�1Ru� L�1Nu; ð2Þ

where A and B are integration constants. For IVPs, they
need to be found from initial conditions and may be iden-
tified as u(0) and duð0Þ

dt , respectively. Here, N is assumed to
be a contracting nonlinear analytical operator and decom-
posed as an infinite sum of functions,

Nu ¼
X1
n¼0

Anðu0; u1; . . . unÞ; ð3Þ

where the An are the Adomian polynomials valid only for
the specific Nu. Adomian polynomials An depend on ui

for i = 0, . . . ,n � 1 and form a rapidly convergent series
[17]. Now, let the solution u of Eq. (1) be found as a series
of functions un i.e.,

u ¼
X1
n¼0

un: ð4Þ
Furthermore, this series is taken to be absolutely conver-
gent, i.e.,

P1
n¼0junj <1, where, u0 is identified as the func-

tion A + Bt + L�1g. This reduces Eq. (2) to

X1
n¼0

un ¼ u0 � L�1R
X1
n¼0

un � L�1
X1
n¼0

An: ð5Þ
Consequently, one may write

u1 ¼ �L�1Ru0 � L�1A0;

u2 ¼ �L�1Ru1 � L�1A1;

..

.

unþ1 ¼ �L�1Run � L�1An;

..

.

ð6Þ
With the preceeding assumptions on u and N, the Adomian
series Eqs. (4) and (6) is a solution of Eq. (1) [25,22].

Next it is required to find Adomian’s polynomials of
Eq. (3), which are needed to derive series solution of
Eq. (6). With the solution already written in the form
u ¼

P1
n¼0un, one may introduce the following power series

in terms of an arbitrary scalar parameter k

ûðkÞ ¼
X1
n¼0

unk
n; ð7Þ

where the series has a convergence radius q. Since both û
and N are analytic over OD(0, q) (i.e., an open disc in G

with centre at 0 and whose radius is q), Nû is analytic over
OD(0,q). Therefore, there exists operators Ak so that

NûðkÞ ¼
X1
k¼0

Akk
n: ð8Þ

When the convergence radius is 1, ûð1Þ converges to u. By
Abel’s theorem [26] one can arrive at limk!1� ûðkÞ ¼ u, (k
being a real number). Therefore

lim
k!1�

NûðkÞ ¼ Nu: ð9Þ

Eq. (8) can be considered as a Taylor–Maclaurin series
expansion of the function Nû. Then from Eqs. (7)–(9)
one gets

Ak ¼
1

k!

dk

dkk f
X1
n¼0

unk
n

 ! !
k¼0

; ð10Þ

where f(u) is the functional form of nonlinear term Nu. For
more detailed derivation of Adomian polynomials one may
refer [22].

The generation of Adomian polynomials may also be
done by simply rearranging the Taylor series expansion
of f(u) with respect to a function u0 as described in [27].
The Taylor series expansion of f(u) about u0 is as follows
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Fig. 1. Duffing’s oscillator of Eq. (16), exact solution and solution by
ADM with first six series terms.
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f ðuÞ ¼ f ðu0Þ þ ðu� u0Þf 0ðu0Þ þ
1

2!
ðu� u0Þ2f 00ðu0Þ

þ 1

3!
ðu� u0Þ3f 000ðu0Þ þ � � �

¼ f ðu0Þ þ ðu1 þ u2 þ u3 þ � � �Þf 0ðu0Þ

þ 1

2!
ðu1 þ u2 þ u3 þ � � � Þ2f 00ðu0Þ þ � � �

This can be rearranged as

f ðuÞ¼ f ðu0Þþ
1

1!

X1

i1¼1

d1;i1 ui1

 !
f 0ðu0Þ

" #

þ 1

1!

X2

i1¼1

d2;i1 ui1

 !
f 0ðu0Þþ

1

2!

X1

i1 ;i2¼1

d2;i1þi2 ui1 ui2

 !
f 00ðu0Þ

" #

þ 1

1!

X3

i1¼1

d3;i1 ui1

 !
f 0ðu0Þþ

1

2!

X2

i1 ;i2¼1

d3;i1þi2 ui1 ui2

 !
f 00ðu0Þ

"

þ 1

3!

X1

i1;i2 ;i3¼1

d3;i1þi2þi3 ui1 ui2 ui3

 !
f 000ðu0Þ

#
þ�� � ð11Þ

As a consequence, the nonlinear function becomes

f ðuÞ ¼ f ðu0Þ þ
X1
n¼1

Xn

m¼1

1

m!

Xnþ1�m

i1;i2;���;im¼1

ui1 ui2 � � � uim

 !
f mu0

" #
;

ð12Þ
where di,j is the usual Kroneker delta function and f m de-
notes mth derivative of f with respect to u0. Now replacing

An ¼
Xn

m¼1

1

m!

Xnþ1�m

i1;i2;���;im¼1

ui1 ui2 � � � uim

 !
f mu0

" #
ð13Þ

one can write the nonlinear term as

f ðuÞ ¼
X1
n¼0

An: ð14Þ

From this

A0 ¼ f ðu0Þ;
A1 ¼ u1f 0ðu0Þ;

A2 ¼ u2f 0ðu0Þ þ
u2

1

2!
f 00ðu0Þ;

A3 ¼ u3f 0ðu0Þ þ u1u2f 00ðu0Þ þ
u3

1

3!
f 000ðu0Þ;

..

.

ð15Þ

where (.) 0 denotes derivative with respect to u0. From the
above discussion it is evident that polynomials An are not
unique and that

P1
n¼0An is a generalized Taylor series

expansion of Nu about function u0(t), and the series terms
approach zero as 1

ðmnÞ! where m is the order of highest differ-

ential operator [17].

2.1. Limitations of ADM

Though ADM has been applied to a wide class of prob-
lems ranging from Navier–Stokes, Schrödinger, Elliptic,
Korteweg–de Vries, Lotka–Volterra to Fractional Differen-
tial Equations [17,28], it has some serious drawbacks. Jiao
et al. [29] has observed that although the series can be rap-
idly convergent in a very small region, it has very slow con-
vergence rate in the wider region and the truncated series
solution is an inaccurate solution in that region, which will
greatly restrict the application area of the method. Venka-
tarangan and Rajalakshmi [30] while studying nonlinear
oscillatory systems (Duffing, van der Pol and Rayleigh
equation) with ADM have observed that the solution is
not periodic. They proposed an alternative technique,
where they have applied Laplace transformation to the ser-
ies obtained by ADM, and then converted the transformed
series into a meromorphic function by forming its Padé
approximant, and then inverted the approximant, which
yields a better solution that is periodic. But they have not
shown any detailed error analysis and their plots show
conceivable errors in the solutions.

Cherrault [19] pointed out that the decomposition
method does not assure, on its own, existence and unique-
ness of solutions. In fact it can only be safely applied when
a fixed point theorem holds. While, approximate analytical
methods work with similar accuracy over the entire time
axis, the known form of ADM lacks this property. Here
examples of Duffing’s oscillator, van der Pol oscillator
and mathematical pendulum are used to demonstrate the
lack of global validity of ADM (Figs. 1–3) with a finite
number of terms in the series solution.

The governing equations of motion of free undamped
Duffing’s oscillator, van der Pol oscillator and mathemati-
cal pendulum considered here are

€xþ xþ x3 ¼ 0; xð0Þ ¼ a; _xð0Þ ¼ 0; ð16Þ
€xþ lð1� x2Þ _x ¼ 0; xð0Þ ¼ a; _xð0Þ ¼ b; ð17Þ
€hþ k2 sin h ¼ 0; hð0Þ ¼ a; _hð0Þ ¼ b: ð18Þ

In integrating Duffing’s oscillator, a six term ADM
approximant is taken. Fig. 1 shows that even a six term
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Fig. 2. Solution of the van der Pol oscillator (weakly nonlinear l = 0.01, see Eq. (17)) using ODE45 and ADM: (a) ADM series up to four terms,
(b) ADM series up to six terms.
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Fig. 3. Pendulum problem of Eq. (18): a comparison of solutions by ODE45 and ADM with first 10 series terms, (a) k = 0.1, (b) k = 0.5, (c) k = 1.
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approximation is insufficient and ADM solution diverges
rapidly from the exact solution after 0.7 s. Similar conclu-
sions may be drawn for van der Pol and indeed, any other
oscillator. Even though very weak nonlinearity is consid-
ered, ADM solution diverges. It may be observed that
as the number of terms in the series increases, the time
of divergence also increases. In a computer implementa-
tion, the maximum number of terms that may be included
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in the series has to be limited, as there would be unaccept-
ably high floating point errors trying to evaluate higher
order terms. Solutions of a mathematical pendulum are
shown in Fig. 3 for different value of k, and it is clear that
ADM solutions diverge from actual solutions for all
orders of nonlinearity. MATLAB software [31] command
ODE45 is used and considered as accurate.1 Here up to
eleven terms in the approximation series are taken in
ADM, and even this approximation becomes insufficient.
As nonlinearity becomes more predominant, the time of
divergence decreases. Therefore it is once more evident
that the ADM solution is not globally valid, it diverges
suddenly and sharply away from the true solution. This
shows that a few terms approximant is inadequate to rep-
resent the solution of a dynamical system in the long
times.
3. The present method

The purpose of this section is to outline the methodol-
ogy, herein proposed, within a general setting. Let G be a
Banach space. We are required to solve a dynamical system
in the Banach space G of the functions u = u(t), which are
continuous and almost everywhere bounded. We will con-
sider a general nonlinear dynamical system which is posed
as an IVP and described as DX = F, where

X ¼ XðtÞ : ½0; T � � R! G

and the initial conditions (ICs) are assumed to have been
prescribed. Here X 2 G, D is an operator which is a combi-
nation of differential and algebraic operators and contains
nonlinearity. Moreover, F : ½0; T � � R! G is a representa-
tion of the forcing terms. Now let the IVP be rewritten
as

LXþ RXþNX ¼ F; ð19Þ

where L is the linear operator corresponding to the highest
order derivative and R is the linear operator having deriv-
atives of lower orders. N is the nonlinear operator. Apply-
ing L�1 on both sides and using the first fundamental
theorem of calculus one gets

X ¼ bX � L�1RX� L�1NXþ L�1F; ð20Þ
1 Throughout this text whenever exact analytical solution is not
available the MATLAB software command ODE45 is used. ODE45
solves initial value problems for ordinary differential equations (ODEs)
with adaptive step sizes. ODE45 is based on an explicit Runge–Kutta (4,5)
formula, the Dormand–Prince pair [32]. It is a one-step solver – in
computing y(tn), it needs only the solution at the immediately preceding
time point, y(tn � 1). Throughout this text ODE45 is used with both
absolute and relative tolerance equal to 2.2 · 10�14. Thus this is
considered as quite accurate and whenever the exact solution is not
available, error is computed with respect to this.
where bX ¼ ðx̂1; x̂2; . . . ; x̂mÞt is a vector function of initial
conditions, to be described shortly; where, m is the length
of the vector X. The matrix form of Eqs. (19) and (20) is

L11

L22

. .
.

26664
37775

x1

x2

..

.

0BBB@
1CCCAþ

R11 R12 . . .

R21 R22 . . .

..

. ..
. . .

.

26664
37775

x1

x2

..

.

0BBB@
1CCCA

þ

N 1X

N 2X

..

.

0BBB@
1CCCA ¼

f1

f2

..

.

0BBB@
1CCCA; ð21Þ

where Ni is an analytic nonlinear operator, and a function
of vector X. Since only the highest order differential oper-
ator is taken, this gives a diagonal coefficient matrix on
the left hand side. This leads to

x1

x2

..

.

0BBB@
1CCCA¼

x̂1

x̂2

..

.

0BBB@
1CCCA�

L�1
11

L�1
22

. .
.

266664
377775

R11 R12 . . .

R21 R22 . . .

..

. ..
. . .

.

26664
37775

x1

x2

..

.

0BBB@
1CCCA

�

L�1
11

L�1
22

. .
.

266664
377775

N 1X

N 2X

..

.

0BBB@
1CCCAþ

L�1
11

L�1
22

. .
.

266664
377775

f1

f2

..

.

0BBB@
1CCCA:

ð22Þ

One has, for the ith scaler component of bX, the following
Taylor expansion

x̂i ¼ xið0Þ þ
dxið0Þ

dt
t þ d2xið0Þ

dt2

t2

2!
þ . . .þ dnii xð0Þ

dtnii

tnii

nii!
;

i ¼ 1; 2; . . . ;m; ð23Þ

where nii + 1 is equal to the order of differentiation in Lii.
Now, the solution X and nonlinear terms N are approxi-
mated as

N 1X

N 2X

..

.

0BB@
1CCA ¼

X1
n¼0

A1n

X1
n¼0

A2n

..

.

0BBBBBBB@

1CCCCCCCA ð24Þ

and

x1

x2

..

.

0BB@
1CCA ¼

X1
n¼0

x1n

X1
n¼0

x2n

..

.

0BBBBBBB@

1CCCCCCCA: ð25Þ
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Thus Eq. (21) reduces toX1
n¼0

x1n

X1
n¼0

x2n

..

.

0BBBBBBB@

1CCCCCCCA ¼
x10

x20

..

.

0BB@
1CCA�

L�1
11

L�1
22

. .
.

2664
3775

R11 R12 . . .

R21 R22 . . .

..

. ..
. . .

.

2664
3775

�

X1
n¼0

x1n

X1
n¼0

x2n

..

.

0BBBBBBB@

1CCCCCCCA�
L�1

11

L�1
22

. .
.

2664
3775

X1
n¼0

A1n

X1
n¼0

A2n

..

.

0BBBBBBB@

1CCCCCCCA;

ð26Þ

where

X0 ¼
x10

x20

..

.

0BB@
1CCA ¼

x̂1 þ L�1
11 f1

x̂2 þ L�1
22 f2

..

.

0BB@
1CCA: ð27Þ

Eq. (26) may now be written as

x1ðnþ1Þ

x2ðnþ1Þ

..

.

0BB@
1CCA ¼

�L�1
11

Xm

j¼1

R1jxjn � L�1
11 A1n

�L�1
22

Xm

j¼1

R2jxjn � L�1
22 A2n

..

.

0BBBBBBBB@

1CCCCCCCCA
ð28Þ

equivalently,

xiðnþ1Þ ¼ �L�1
ii

Xm

j¼1

Rijxjn � L�1
ii Ain ; n ¼ 0; 1; 2; . . . ;1;

ð29Þ

where i = 1, 2, . . . ,m.
Since ADM uses a functional form of Taylor series

expansion of nonlinear terms about a function u0, then
Adomian’s polynomials represent the nonlinear function
accurately near u0, if u � u0 is sufficiently small. Addition-
ally, for practical purposes, one has to take only a finite
number of terms, which would yield wrong results in a glo-
bal sense (refer to Section 2.1). To overcome this problem
the present method discretizes the time axis just like any
other numerical method and solves multiple initial value
problems (IVPs). The ICs for the IVP valid over each inter-
val are taken from the solutions of the last IVP. Let the
subset of time axis [0, T] be divided into f subintervals
and so ordered that 0 = t0 < t1 < t2 < . . . < tf = T, and
hi = ti � ti�1, i 2 N.2 Now, the ADM is applied as an algo-
rithm for the analytical approximation of the dynamical
2 Throughout this work uniform step size is adopted, i.e. hi = h for all i.
response in that sequence of time intervals. Considering
the ith time interval [ti�1,ti], Eq. (19) may be written as:

XðsÞ ¼ bXðsÞ � L�1RXðsÞ � L�1NXðsÞ þ L�1Fðti�1 þ sÞ
¼ X0ðsÞ � L�1RXðsÞ � L�1NXðsÞ

s ¼ t � ti�1 and s 2 ½0; hi�: ð30Þ

Here, L�1 is a diagonal matrix whose elements are definite
integral operators from 0 to s.

3.1. Expansion of the forcing term

Since xi0 appears in the recursive derivation of all Ado-
mian polynomials (Ain), xi0 needs to be a simple function to
work with (for i = 1, 2, . . . ,m). Towards this, L�1F is
expanded in a Taylor series and only the first term is taken
into X0, and rest of the terms are distributed in xi; i > 0.
This helps in effective computation of Adomian poly-
nomials and hence the series solution. Let L�1F ¼ bF ¼
ðf̂ 1; f̂ 2; . . . ; f̂ mÞt. Taylor series expansion of its elements are

f̂ i ¼ f̂ iðs ¼ 0Þ þ df̂ iðs ¼ 0Þ
ds

sþ d2f̂ iðs ¼ 0Þ
ds2

s2

2!
þ � � � ; ð31Þ

where i = 1, . . . ,m.
Thus Eq. (27) becomes

X0 ¼ bX þ
f̂ 1ðs ¼ 0Þ
f̂ 2ðs ¼ 0Þ

..

.

0BB@
1CCA ð32Þ

and Eq. (29) becomes

xiðnþ1Þ ¼ �L�1
ii

Xm

j¼1

Rijxjn � L�1
ii Ain þ

dnþ1f̂ iðs ¼ 0Þ
dsnþ1

snþ1

ðnþ 1Þ! ;

n ¼ 0; 1; . . . ;1: ð33Þ
3.2. Removal of higher order terms

Even after implementing the schemes mentioned above
along with conventional ADM, some times it is extremely
difficult to derive analytical expressions of series terms of
the solution. The reason is that L�1

ii is an integrating oper-
ator, so higher powers of s are generated and pose difficul-
ties in the analytical computation of xin’s. Thus one is
restricted to retain only the first few terms of the series in
Eq. (25). However, this restriction may be used to one’s
advantage if, terms containing higher powers of s are judi-
ciously removed. This is the crux of this new technique.
Removing higher powers of s results in an amazing simpli-
fication towards an approximate analytical derivation of
series solutions. Though at a first glance it appears that
removal of terms containing higher powers of s (sn, say
n P 10) may reduce the accuracy of the solution, but in
turn it makes the method more accurate by avoiding a
source of possible numerical inaccuracies, including under-
flows, for s < 1. Indeed, the order of accuracy of the
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method is determined by the highest power of s retained in
the approximation. In other words, this technique helps in
easy computation of more series terms, at the same time it
enables more accurate derivation of coefficients of lower
powers of s.
4. Convergence of the series solution and error analysis

The objective of this section is to theoretically explore
the convergence of the proposed approach and to obtain
estimates on its order in terms of powers of a chosen step
size. In the first part of this section, we will discuss the
proof of convergence (to the true solution) of the the series
solution, from the point of view of dynamical systems. In
other words, we investigate the issue of convergence of
the two series

P1
n¼0un and

P1
n¼0An. In the second part,

we will present an error analysis and, in the sequel, derive
the order of accuracy of the present method. While we
present the proofs in the context of one-dimensional sys-
tems, one may readily extend the arguments for higher
dimensional systems.
4.1. Convergence of Adomian’s series

Some earlier investigations on ADM used fixed point
theorems for proving convergence [19,22]. Particularly the
assumption that the nonlinear operator is contractive
may not be valid for all practical cases. We need to avoid
this hypothesis which lacks universatality and which are
difficult to verify in physical problems. In fact, in the con-
text of dynamical systems, a contraction mapping may be
regarded as a stable solution, which may not be the case
always. For instance, one may have a saddle node which
is not contractive in nature. In the present work we attempt
to show that the new method based on ADM may be
extended to such cases and even to chaotic regimes. This
proof mainly follows [24]. First note that Eq. (2) may be
rewritten as another nonlinear functional equation

u� NðuÞ ¼ f ; ð34Þ

where N denotes another nonlinear operator. The solution
of Eq. (34) is given by u ¼

P1
n¼0un, where the terms in the

series are:

u0 ¼ f ;

u1 ¼ A0ðu0Þ;

..

.

unþ1 ¼ Anðu0; . . . ; unÞ;

..

.

ð35Þ

In the above equations, Ai’s are the Adomian’s polynomi-
als generated by the Mclaurin expansion of the nonlinear
operator with respect to the artificial parameter k, (see
Eq. (10)). Cherrualut and Adomian [24] proved the conver-
gence based on two assumptions on u and N(u), and these
are

(1) the solution u of Eq. (34) may be found as a series
of functions ui, i.e., u ¼

P1
n¼0un. Furthermore, this

series is supposed absolutely convergent, i.e.,P1
n¼0junj < þ1;

(2) the nonlinear function N(u) is developable in an
entire series with a convergence radius equal to infin-
ity. In other words, one may write
NðuÞ ¼
X1
n¼0

N ðnÞð0Þ u
n

n!
; juj <1: ð36Þ
Based on these two hypotheses, one may readily prove the
following.

Theorem. When hypotheses 1 and 2 are true and ui’s satisfy

Eq. (35), the series u ¼
P1

n¼0un is a solution of Eq. (34).
Proof. Since the radius of convergence is infinity, by
hypothesis 2 the series of Eq. (36) converges for any u.
Moreover, by hypothesis 1 we know that u ¼

P1
n¼0un is

absolutely convergent and therefore the series may be
substituted in Eq. (36) to obtain:

NðuÞ ¼
X1
n¼0

N ðnÞð0Þ
ð
X1

n¼0
unÞn

n!

" #
; juj <1: ð37Þ

Owing to hypothesis 1, there exists absolute convergence
of
P1

n¼0un ¼ U <1. Now, N(u) needs to be rearranged.
Rewriting un as

un ¼
X1
i¼0

ui

 !n

¼
X1
j¼0

cnjðu0; . . . ; ujÞ; ð38Þ

where cnj is a function, which depends only on (u0,. . .,uj),
(this can be easily proved by following [33]). Thus series
of Eq. (37) can be written as

NðuÞ ¼
X1
n¼0

N ðnÞð0Þ
n!

X1
j¼0

cnjðu0; . . . ; ujÞ
" #

¼
X1
n¼0

X1
j¼0

N ðnÞð0Þ
n!

cnj: ð39Þ

Since,
P1

j¼0cnj 6 Un, one can write, taking the absolute
value

jNðuÞj 6
X1
n¼0

N ðnÞð0Þ
n!

���� ����U n: ð40Þ

The last series converges due to the hypothesis 2. There-
fore, it is proved that series defining N(u) converges abso-
lutely, thus can be rearranged. It is already stated that
Adomian series

P1
n¼0An is a generalization of Taylor series

[19]. Now one has to prove that ui satisfies Eq. (35). Now,
substituting the last two series in Eq. (34) leads toX1
n¼0

un �
X1
n¼0

An ¼ f : ð41Þ
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Eq. (41) is identically satisfied if we have the relationships
u0 = f, u1 = A0 , . . . ,un = An�1, . . . This gives Adomian’s
relationships of Eq. (35), hence the theorem is proved. h

Thus ADM provides a solution which converges to the
true solution as one takes more and more terms in the ser-
ies. Since, none of the hypothesis is violated by the discret-
ization technique the present method also can provide a
series solution, which converges to the true solution. In fact
with the help of discretization of time axis boundedness
assumption of u, becomes more realistic.
4.2. Error estimates

We make an attempt to have a better understanding
of the method developed in the present work through
an estimation of local errors. It is evident from the last
paragraph that the ADM based solution converges to
the true solution only if one considers infinitely many
terms in the series solution, since the radius of convergence
is infinitely large as noted in hypothesis 2. Taking infinitely
many terms in the series solution is not feasible for
practical implementations. Moreover when the indepen-
dent variable (time) is not bounded, the ADM based series
solution will diverge from the true solution at high values
of time, even if very large number of series terms are taken.
This is where the discretization of time axis makes itself
indispensable. With the best of authors’ knowledge this
concept of a relationship between convergence and discret-
ization is novel and has been taken up for the first time in
this paper. Thus discretization of time axis provides a
bound on time intervals and hence on (increments of) u,
which obviates the necessity of a boundedness assumption
on u. In this section we will compute the error for the
finite series solution by restricting attention of a single
time step. Let first p terms are taken in series solution so
that:

u ffi
Xp

i¼0

ui: ð42Þ

From Eq. (13), it is evident that calculation of An requires
inclusion of terms up to N nðu0Þðu� u0Þn 1

n!
in the Taylor

series expansion of N(u) with respect to u0. So it is evident
that error in calculation of An is of order Oðu� u0Þn. Recall
the discretization of time axis of Section 3, for ith time
interval

uðsÞ � u0 ¼ uðti�1Þ þ
du
ds
ðti�1Þsþ . . .þ sk

k!

dku
dsk
ðti�1Þ

þ skþ1

ðk þ 1Þ!
dkþ1u
dskþ1

ðti�1Þ þ . . .

� uðti�1Þ þ
du
ds
ðti�1Þsþ . . .þ sk

k!

dku
dsk
ðti�1Þ

� �
¼
X1

m¼kþ1

sm

m!

dmu
dsm
ðti�1Þ s 2 ½ti�1; ti�:
Therefore the maximum difference between u and u0 is of
the order hk+1. Here, k is the order of the differential oper-
ator L of Eq. (1) and h = ti � ti�1.

Now, the error in the truncated series is:

E ¼ u�
Xp

i¼0

ui

�����
����� ¼ X1

i¼pþ1

ui

�����
�����: ð43Þ

Referring to the Eq. (5) one gets

uiþ1 ¼ �L�1Rui � L�1Ai: ð44Þ
Therefore the order of error in ui+1 is equal to that in Ai,
which is

Oðu� u0Þi: ð45Þ
Thus, a estimate of local error over a particular time inter-
val is given by:

ELocal ¼
X1

i¼pþ1

ui

�����
����� � Oðu� u0Þp � Oðhpðkþ1ÞÞ: ð46Þ

The global error order is one integral order less than the
corresponding local error order

EGlobal ¼ Oðhpðkþ1Þ�1Þ: ð47Þ
Since the order of operator L cannot be controlled, one has
to increase p to get better solutions. The advantage of using
ADM which uses the Taylor series expansion with respect
to a function u0 is evident here- we achieve error
Oðhpðkþ1Þ�1Þ instead Oðhp�1Þ. Thus it is clear that by increas-
ing the number of series terms, one can achieve more ac-
curate solution and a far higher rate of convergence
(depending on the value of k, and, for mechanical oscilla-
tors, k = 2) than is possible with most of the available
numerical integration techniques.

5. Illustrative examples and numerical results

5.1. Single degree of freedom system

In this section, a few non-chaotic single degree of
freedom systems, are considered and applications of the
method explored.

5.1.1. The duffing oscillator
The following Eq. (48) models a nonlinear spring prob-

lem (the Duffing oscillator). Present work takes only posi-
tive values of a.

d2x
dt2
þ xþ ax3 ¼ 0 xð0Þ ¼ a; _xð0Þ ¼ b: ð48Þ

For a > 0 this equation represents a hard spring and for
a < 0 it represents a soft spring. It is sometimes used as
an approximation for the pendulum by setting a = �1/6.
Here a is taken as 1.

5.1.1.1. Exact solution. The exact solution (refer [34]) in
terms of Jacobian elliptic functions is
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xðtÞ ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 � 1
p ffiffiffi

a
p cn Wt þ D;

W2 � 1

2W2

� �
a > 0; ð49Þ

where W and D are two independent arbitrary constants of
the general solution of the second order ODE. Since it is an
autonomous ODE, one of the arbitrary constants will be
the phase D. cn denotes the Jacobian elliptic CN function.
Note that the modulus m (the second argument of the cn
function) is fixed in terms of the arbitrary W. Since
0 6 m 6 1, the cn solution is valid when a > 0, W2 P 1.

5.1.1.2. Solution using present method. Comparing the
Duffing equation with the standard form (see Eq. (1)),
the operators can be identified as L ¼ d2

dt2, R = 1, Nx = x3.
The choice made here (i.e., L ¼ d2

dt2, R = 1) yields the sim-
plest Green’s function for computation. In this case, L�1

is a two-fold definite integral from 0 to t. Generally, this
choice for L having the highest ordered derivative is the
most desirable one, because the integrations are the sim-
plest. If we invert the entire linear operator, convergence
is expected to be much faster as suggested in [16], but to
achieve a simpler computational procedure, we split the lin-
ear operator and invert only L. Therefore, for the ith time
interval, the solution becomes:

x ¼ xðti�1Þ þ
dxðti�1Þ

ds
s� L�1x� aL�1x3: ð50Þ

The initial conditions for the IVP in the ith interval is taken
from end value of solutions over the (i � 1)th interval. That
is, x(s = 0) and _xðs ¼ 0Þ in the ith interval is equal to x(ti�1)
and _xðti�1Þ, which are taken from ith interval. Thus,X1
n¼0

xn ¼ x0 � L�1
X1
n¼0

xn � aL�1
X1
n¼0

An; ð51Þ

where An are the Adomian polynomials for Nx = x3. Now,
using Eq. (15), one gets:

A0 ¼ x3
0;

A1 ¼ 3x2
0x1;

A2 ¼ 3x0x2
1 þ 3x2

0x2;

A3 ¼ x3
0 þ 6x0x1x2 þ 3x2

0x3;

A4 ¼ 3x2
1x2 þ 3x0x2

2 þ 6x0x1x3 þ 3x2
0x4;

..

.

ð52Þ

Therefore from Eq. (51) one gets series terms of the solu-
tion as:

x0 ¼ aþ bs;

x1 ¼ �L�1x0 � aL�1A0;

x2 ¼ �L�1x1 � aL�1A1;

..

.

ð53Þ

where a = x(s = 0) and b ¼ _xðs ¼ 0Þ. By standard ADM
the terms may be calculated as (see Eq. (6))
x0 ¼ aþ bs;

x1 ¼�1=20ab3s5 � 1=4aab2s4 þ ð�1=6b� 1=2aa2bÞs3

þ ð�1=2a� 1=2aa3Þs2;

x2 ¼
1

480
a2b5s9 þ 3

160
a2ab4s8

þ 1

840
ab3 � 1=14að�1=6b� 1=2aa2bÞb2 þ 11

280
a2a2b3

� �
s7

þ 1

120
aab2 � 1=10að�1=2a� 1=2aa3Þb2

�
�1=5að�1=6b� 1=2aa2bÞabþ 1=40a2a3b2

�
s6

þ �3=10að�1=2a� 1=2aa3Þab� 3

20
að�1=6b� 1=2aa2bÞa2

�
þ 1

120
bþ 1=40aa2b

�
s5

þ ð�1=4að�1=2a� 1=2aa3Þa2 þ 1=24aþ 1=24aa3Þs4;

..

.

x¼
X1
n¼0

xn: ð54Þ

Here a four term approximation is taken, i.e., x ¼
P3

n¼0xn.
In order to remain focussed on the central issues, a uni-
form step size has presently been chosen. For different step
sizes we have plotted the solution by the present method
and corresponding error. Fig. 4 shows that the present
method gives an excellent result for this oscillator. Error
comparison with RK4 shows that error through the
present method is much less than that of RK4 for step
size = 0.01. This method works with very high step sizes
say 0.4 (see Fig. 5), where RK4 fails with a step size 0.3
(see Fig. 6). For this problem, nonlinearity is of a simple
polynomial form and L�1 is the double integral. As men-
tioned before, terms of orders s10 or more are removed.
In this way, up to first 10 terms of the series solution are
obtained yielding an accurate result. It is worth mentioning
that method of perturbation fails for such a highly non-
linear problem (a = 1).
5.1.2. The van der pol oscillator

The van der Pol oscillator is prototypical of systems
describing self-sustaining oscillations in which energy is
fed into small oscillations and removed from large oscilla-
tions. This equation arises in the study of circuits contain-
ing vacuum tubes and can be written along with the initial
conditions as:

d2x
dt2
� lð1� x2Þ dx

dt
þ x ¼ 0; xð0Þ ¼ a; _xð0Þ ¼ b: ð55Þ

If l = 0 the equation reduces to that of a simple harmonic
oscillator. Here cases with l 5 0 will only be considered.
One may see that the sign of the damping term,
�lð1� x2Þ dx

dt switches, depending upon whether jxj is larger
or smaller than unity. Since x2 dx

dt ¼ 1
3

dx3

dt , one may rewrite
Eq. (55) as:
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d2x
dt2
� l

dx
dt
þ xþ l

3

dx3

dt
¼ 0: ð56Þ

Thus the equation gets reduced to a more convenient
standard form Lu + Ru + Nu = g(t) where, L ¼ d2

dt2, R ¼
�l d

dt þ 1, Nx ¼ l
3

d
dt Mx, M is another nonlinear operator

defined as Mx = x3. This way of representation of the non-
linear term provides for an ease of calculating ADM poly-
nomials since we know Ans for M from the solution of
Duffing oscillator (see Eq. (52)). This trick is followed from
[16]. The choice for the operators here are, L ¼ d2

dt2,
R ¼ �l d

dt þ 1 and this choice yields simpler Green’s func-
tion for computations than L ¼ d2

dt2 � l d
dt þ 1 and R = 0.

Thus, over the ith time interval, one has:

x ¼ xðti�1Þ þ
dxðti�1Þ

ds
sþ lL�1 dx

ds
� L�1x� l

3
L�1 d

ds
Mx;X1

n¼0

xn ¼ x0 þ lL�1 d

ds

X1
n¼0

xn � L�1
X1
n¼0

xn �
l
3

L�1 d

ds

X1
n¼0

An:

ð57Þ
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Note that the differential operator and summation com-
mute and thus from the above equation one gets the series
terms of the solution as

x0 ¼ aþ bds;

x1 ¼ lL�1 dx0

ds
� L�1x0 �

l
3

L�1 d

ds
A0;

x2 ¼ lL�1 dx1

ds
� L�1x1 �

l
3

L�1 d

ds
A1;

..

.

ð58Þ

These terms may be formed to be (see Eq. (6)):
x0 ¼ aþ bs;

x1 ¼�
1

12
lb3s4þ 1

3
�1

2
b� lab2

� �
s3þ 1

2
ðlb� a� la2bÞs2;

x2 ¼
1

84
l2b5s7þ 1

6

1

60
lb3� 1

15
l 3 �1

2
b� lab2

� �
b2� 2lb4a

��
þ 6 �1

6
b� 1

3
lab2

� �
b� 1

12
lb3a

� �
b
��

s6

þ 1

5

�
1

24
bþ 1

12
lab2� 1

12
l2b3� 1

12
l

�
3ð�la2bþ lb� aÞb2

þ 6 �1

2
b� lab2

� �
ab� lb3a2

þ 6 �1

2
la2bþ 1

2
lb� 1

2
a

� �
bþ �1

6
b� 1

3
lab2

� �
a

� �
b
��

s5

þ 1

4

1

3
l �1

2
b� lab2

� �
� 1

9
l

�
6ð�la2bþ lb� aÞab

�
þ3 �1

2
b� lab2

� �
a2þ 6 �1

2
la2bþ 1

2
lb� 1

2
a

� �
ab
�

þ1

6
la2b� 1

6
lbþ 1

6
a
�

s4

þ 1

3

1

2
lð�la2bþ lb� aÞ� 1

2
lð�la2bþ lb� aÞa2

� �
s3

..

.

ð59Þ

First five terms are taken in the the series solution. No ex-
act analytical solution is available for this equation [35], so
we resort to ODE45 of MATLAB to compare results from
the present work. Fig. 7 shows solutions of the van der Pol
oscillator through the present method and ODE45. When
the higher power terms are not removed, we could compute
only up to the first 5 terms of the series solution. However,
with almost the same computational effort, we could com-
pute up to the first 10 terms when terms of order higher
than s15 are removed. Whereas the removal of higher
power terms can lead to such a high step size as 0.35, with-
out this removal, the maximum step size may only be about
0.2, as shown in Figs. 7(a) and 8(a). It is noteworthy that
the present method enables the treatment of strong nonlin-
earity, albeit with relatively smaller step sizes (see Fig. 7(a)
and (b)).
5.1.3. The simple pendulum

The equation of motion for a simple pendulum is given
by

d2h
dt2
þ k2 sinðhÞ ¼ 0; hð0Þ ¼ a;

dhð0Þ
dt
¼ b ð60Þ
where k2 is a constant. The angle h, is the angle from the
vertically down position, with counter-clockwise rotation
being positive. Depending on initial conditions, two kinds
of motions are possible, one is the pendulum rotations
and the other is the pendulum oscillations (when the pen-
dulum oscillates, it does not have enough energy to trace
a complete circle by crossing the separatrix at h = p). It is
the latter case that will be studied through present method.
In standard form, Eq. (60) becomes Lh + Nh = 0 where,
L ¼ d2

dt2, Nh = k2 sin(h). In this case also for ith time interval,
L�1 is the two-fold definite integral from 0 to s, s 2 [ti�1,ti].
Therefore, over ith interval, the solution becomes

h ¼ hðti�1Þ þ
dhðti�1Þ

ds
s� k2L�1 sinðhÞ ð61Þ
or

X1
n¼0

hn ¼ h0 � k2L�1
X1
n¼0

An; ð62Þ
where the Ans are the appropriate polynomials for
Nh = sin(h). Here, h0 is given by hð0Þ þ dhð0Þ

ds s. Now, using
Eq. (15), one gets:

A0 ¼ sinðh0Þ;
A1 ¼ h1 cosðh0Þ;

A2 ¼ h2 cosðh0Þ �
1

2
h2

1 sinðh0Þ;

A3 ¼ h3 cosðh0Þ � h1h2 sinðh0Þ �
1

6
h3

1 cosðh0Þ;

..

.

ð63Þ
Assuming h(0) = a and _hð0Þ ¼ b, the terms in the series are:

h0 ¼ aþ bs;

h1 ¼ �k2L�1A0;

h2 ¼ �k2L�1A1;

h3 ¼ �k2L�1A2;

..

.

ð64Þ
The series terms of the solutions by ADM as derived here
are
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h0 ¼ aþbs;

h1 ¼�
k2ð�sinðaþbsÞþ cosðaÞsbþ sinðaÞÞ

b2
;

h2 ¼�
1

4

k4

b4
ð�cosðaþbsÞsinðaþbsÞ�bs� 8cosðaÞsinðaþbsÞ

þ 4cosðaÞcosðaþbsÞbsþ4sinðaÞcosðaþ bsÞ
þ 6ðcosðaÞÞ2sbþ 4ðsinðaÞÞ2sbþ5cosðaÞsinðaÞÞ

..

.

ð65Þ

Fig. 9(a) shows that the comparison of present method and
ODE45 is quite good for a typically periodic orbit of a sim-
ple pendulum. Fig. 9(b) shows corresponding phase por-
trait. Present method works for a step size as high as 1,
where the time period is approximately 2p, see Fig. 10(a).
Error comparisons with RK4 show that the present
method results in significantly less error (Fig. 10(b)). As
already stated, one advantage of this method over a numer-
ical technique is that, being a numerical-analytical tech-
nique, it can provide a functional form of the solution
over a time interval, i.e. solutions are obtainable as suffi-
ciently smooth functions (see Fig. 10(a)). It has to be noted
that the very high powers of b in the denominator of Eq.
(65) cause numerical problems and render the algorithm
inapplicable to this problem. Here, b denotes the initial
angular velocity in a particular interval. Whenever, the
extremities of an time interval come very close with the
maxima or minima of the solution, then one may get wrong
solution. One way out is to use adaptive programming
which can control step sizes. Another way is to multiply
the solution with bn, during the whole calculation and sub-
stitute it at the end. Where, maximum power of b in the
denominator is n. These techniques along with others to
tackle such problems will be addressed in the next paper.
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5.2. Forced vibrations and chaotic systems

In this section, the decomposition technique described
thus far is numerically illustrated for solutions of the Duf-
fing oscillator under sinusoidal excitations. The governing
equation is:
€xþ c _xþ k1xþ k2x3 ¼ F cosðxtÞ; xð0Þ ¼ a; _xð0Þ ¼ b:

ð66Þ
The above equation will be referred to as Duffing–Hol-
mes’s oscillator, when the following three parameters writ-
ten as c = 2p�1, k1 = �4p2�2, k2 = 4p2�2, F = 4p2�3, x = 2p
in terms of other three parameters �1, �2, �3, which serves as
a one-mode approximation to lateral vibration of a buck-
led beam.

The forcing term is now expanded in Taylor series as
described in Section 3.1.
F cosðti�1 þ sÞ

¼ 1

2
F cosðxti�1Þs2 � 1

6
F sinðxti�1Þxs3

� 1

24
F cosðxti�1Þx2s4 þ 1

120
F sinðxti�1Þx3s5

þ 1

720
F cosðxti�1Þx4s6 � 1

5040
F sinðxti�1Þx5s7

� 1

40320
F cosðxti�1Þx6s8 þ 1

362880
F sinðxti�1Þx7s9

þ 1

3628800
F cosðxti�1Þx8s10 þ Oðs11Þ: ð67Þ
Thus the series terms become

x0ðsÞ¼ aþbsþ1=2F cosðxti�1Þs2;

x1ðsÞ¼�L�1x0� k1L�1x0� k2L�1A0�1=6F sinðxti�1Þxs3;

x2ðsÞ¼�L�1x1� k1L�1x1� k2L�1A1�1=24F cosðxti�1Þx2s4;

..

.
ð68Þ
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The last equation is valid over the ith time interval [ti�1, ti],
with s 2 [ti�1, ti]. Comparisons of accuracy of this method
vis-a-vis the RK4 are again made with reference to the
solutions through the adaptive solver ODE45; see
Fig. 11. First six terms of series solution have been included
and terms with higher powers than s15 are removed from
solution. It is found that for forced vibration this method
works extremely well. For both the time history and phase
portrait of a typically 3-periodic orbit of Duffing–Holmes’
oscillator, the solution via the present method is indistin-
guishable from that of ODE45. The corresponding error
comparison with RK4 shows that present method is far
superior in terms of accuracy. The same conclusion may
be drawn for other types of periodic orbits, such as the
1-periodic orbit of the Duffing oscillator shown in
Fig. 12. To check the applicability of the method for simu-
lating chaotic solutions, comparisons have been made with
RK4 with ODE45 as the reference solver. Given the
exponentially diverging nature of two nearby chaotic
trajectories, due to the positivity of the maximal Liapunov
exponent, the comparison is good (Figs. 13 and 14). The
phase portrait (Fig. 13(a)) shows a remarkably good match
between solutions via ODE45 and present method; they
are visually indistinguishable. The observation is further
emphasized in Fig. 13(b) showing error comparison
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Fig. 11. (a) A typically 3-periodic orbit of Duffing–Holmes’ oscillator using O
�1 = 0.25, �1 = 0.5, �1 = 0.4. (b) Time-history of the 3-periodic orbit. (c) Error
between present and RK4 methods with respect to
ODE45 for the same step size. Both accumulation of error
and time of divergence of two trajectories, starting from the
same initial condition and being integrated via two differ-
ent integration schemes, are function of the step size used.
Fig. 14 displays the time of divergence for different step
sizes. This shows that for step size (h) equal to 0.1 trajecto-
ries via both present and RK4 methods remain reasonably
close to the trajectory via ODE45 without diverging up to
t = 100 s. But the time of divergence from the ODE45
based trajectory for h = 0.5 and 0.75 using RK4 are
respectively 26 and 24 s. On the other hand, by using
present method, these times are respectively 66 and 43 s.
This shows that, in terms of accuracy, the present method
is considerably better than RK4 with same step size
(Fig. 15 shows the Poincare section of the chaotic orbit).

It must be noted that the present method, when applied to
Eq. (66), without the first two Taylor expansion of the forc-
ing and removal of higher order terms, may only allow con-
struction of the first two terms in the series. Hence such a
scheme would show up large errors and is essentially inappli-
cable to the present problem, even when applied recursively.
The two main reasons behind this failure may be summed up
follows. First, the derivation of Adomian’s polynomials
becomes very difficult if u0 is not a function with a very
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simple form. Second, due to repeated integrations required
during both derivation of Adomian’s polynomials and series
terms, lots of terms with higher powers of s get generated (for
deriving each series term the highest power of s increases by
4), and this makes removal of higher power mandatory.
Thus the above two algorithmic tools are seen to have an
utmost importance, when applied along with a discretization
of the time axis, to a nonlinear dynamical system.
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5.3. Higher dimensional nonlinear oscillator

The methodology developed in this paper in Section 3 is
quite general and may thus be applied to any multi-dimen-
sional, nonlinear dynamical system with a sufficiently
differentiable vector field. Two illustrative examples will
now be discussed.
5.3.1. The Lorenz system

The Lorenz oscillator, introduced by Edward Lorenz in
1963, is a nonlinear three-dimensional dynamical system
derived from the simplified equations of convection rolls
arising in the dynamical equations of the atmosphere.
For a certain set of parameters, the system exhibits chaotic
behavior and displays a strange attractor. Lorenz took a
few Navier–Stokes equations, from the physics field of fluid
dynamics, simplified them and got as a result the following
three-dimensional system.
_x ¼ rðy � xÞ;

_y ¼ rx� y � xz;

_z ¼ �bzþ xy:

ð69Þ

Here x is the rate of convective overturning and y and z the
horizontal and vertical temperature variations respectively.
The parameter r represents the Prandtl number, which is a
ratio of kinematic viscosity to thermal conductivity; r is
called a Rayleigh number and is proportional to the tem-
perature difference between the upper and lower surfaces
of the fluid; and b is a geometric factor. The only nonlinear
terms are the two quadratic ones. The system also arises in
lasers, dynamos, and specific waterwheels. Using the stan-
dard ADM form, Eq. (69) becomes:

Lx ¼ rðy � xÞ;

Ly ¼ rx� y � xz;

Lz ¼ �bzþ xy;

ð70Þ
where L ¼ d
dx. In matrix from this may be written as

LX ¼ RXþNþ F; ð71Þ
where L = diag [L,L,L], X = [x,y,z]t, R = [�r,r, 0;
r,�1,0;0,0,�b], N = [0,�xz,xy]t and F = [0,0,0]t. Now,
the series expansion of X and N are

X ¼

X1
n¼0

xn

X1
n¼0

yn

X1
n¼0

zn

0BBBBBBBBBB@

1CCCCCCCCCCA
and N ¼

0X1
n¼0

A2n

X1
n¼0

A3n

0BBBBBBB@

1CCCCCCCA: ð72Þ
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Thus one can write

A20 ¼ �x0z0; A30 ¼ �x0y0;

A21 ¼ �ðx1z0 þ x0z1Þ; A31 ¼ �ðx1y0 þ x0y1Þ;
A22 ¼ �ðx2z0 þ x1z1 þ x0z2Þ; A32 ¼ �ðx2y0 þ x1y1 þ x0y2Þ;
..
.

ð73Þ
Following regular ADM technique, Eq. (71) may be re-
duced to

x

y

z

0B@
1CA ¼ x̂

ŷ

ẑ

0B@
1CAþ L�1

L�1

L�1

264
375 �r r 0

r �1 0

0 0 b

264
375

�

X1
n¼0

xn

X1
n¼0

yn

X1
n¼0

zn

0BBBBBBBBB@

1CCCCCCCCCA
þ

L�1

L�1

L�1

264
375

0X1
n¼0

A2n

X1
n¼0

A3n

0BBBBBB@

1CCCCCCA;

ð74Þ
where ðx̂; ŷ; ẑÞ ¼ ðxð0Þ; yð0Þ; zð0ÞÞ. One may write

x

y

z

0B@
1CA ¼

x̂þ L�1r
X1
n¼0

yn �
X1
n¼0

xn

 !

ŷ þ L�1 r
X1
n¼0

xn �
X1
n¼0

yn

 !
þ L�1

P1
n¼0

A2n

ẑþ L�1b
X1
n¼0

zn þ L�1
X1
n¼0

A3n

266666666664

377777777775
:

ð75Þ
The series terms are recursively calculated as:

xnþ1 ¼ L�1rðyn � xnÞ;
ynþ1 ¼ L�1ðrxn � ynÞ þ L�1A2n;

znþ1 ¼ L�1ðbznÞ þ L�1A3n:

ð76Þ

Presently, while computing the series solution, up to eleven
terms are included. No removal of higher order terms has
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Fig. 16. Solutions of the Lorenz system
been done due to the simplicity of the nonlinear terms.
The parameter values are as r = 10, b = 8/3, r = 28. The
step size in both RK4 and present method is taken as
0.001. The Lorenz attractor weaves in and out of itself
and it is plotted on a three-dimensional phase space in
Fig. 17(a). Fig. 16 shows time histories of the state vari-
ables in Lorenz equations by ODE45 and present method.
Solutions by the two methods clearly match very well. Figs.
17(b) and 18(a), show the history plots of the state vari-
ables starting from the same IC-s in the chaotic regime
and integrated using ODE45, RK4 and the present meth-
od. While solutions through RK4 diverge from the more
correct ODE45 solution at t = 32, those via the present
method diverge far away at t = 40.

5.3.2. The Rössler system

Otto Rössler [36] observed chaotic dynamics in a small
reaction diffusion system, which arose from work in chem-
ical kinetics.

As with other chaotic systems, the Rössler system is sen-
sitive to ICs, and hence two initial states, no matter how
close they are, will diverge-usually sooner rather than later.
While the equations look simple enough, they lead to coun-
ter intuitively complex trajectories. The equations in the
state space are:

_x ¼ �y � z;

_y ¼ xþ ay;

_z ¼ bþ xz� cz;

ð77Þ

where a, b, and c are constant parameters. In the present
study, we have used a = 0.25, b = 1, c = 5.5. Rössler’s
attractor displays a type of banding, which suggests that
perhaps it is related to the Cantor set. Another interesting
fact about Rössler’s attractor is that it has a half-twist in
it, which makes it look somewhat like a Möbius strip
(Fig. 19). Following the same principle as described for
Lorenz attractor in Section 5.3.1, results have been obtain-
ded the for Rössler’s attractor. Up to eleven terms are
taken in the series solution. No removal of higher order
terms have been done due to the simple forms of the non-
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by (a) ODE45, (b) present method.
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linear terms. Fig. 19 shows that results via the present
method are very close to those via ODE45. Step size in
the decomposition method is taken as 0.05, whereas for
purposes of comparison, step size in RK4 is taken as
0.01. Time histories are plotted for the three state variables
(Fig. 20) and compared with ODE45 and RK4. While, first
visible errors in RK4 appear at time t = 107, 104, 105, these
errors through the present method appear at time t = 180,
177, 183, for x, y and z respectively. Thus the present
scheme works much better than the RK4 even with a step
size that is five time higher. Though analytical derivation of
series terms requires some extra work, the present method
certainly has less error. It might be noted that present
method involves some extra work compared to purely
numerical methods; this is required to maintain an ade-
quately accurate functional form of the solution.
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6. Discussion and conclusions

A recursive and modified form of the Adomian decom-
position is proposed for numeric-analytic integrations of
nonlinear oscillators. A specific advantage of this method
over any purely numerical method is that it offers a
smooth, functional form of the solution over a time step.
In the process, one may readily obtain a piecewise smooth
solution of the nonlinear dynamical system over any time
interval of interest. Moreover, the present procedure offers
an explicit time-marching algorithm that works accurately
over such high step sizes for which most of the available
integration schemes will fail to be accurate. A comparative
study of the solutions through the present method and a
fourth order Runge–Kutta method, applied to several non-
linear oscillators, vis-a-vis exact solutions (whenever avail-
able) or those obtained through the ODE45 integrator of
MATLAB (which works with adaptive step sizes) clearly
brings out this point. The method developed here is also
readily applicable to a general enough nonlinear dynamical
system with an arbitrarily high dimension.

The functional form of the solution obtainable through
the modified ADM enables one to do a stability analysis of
periodic orbits (through computations of Floquet expo-
nents). It also allows one to accurately compute the maxi-
mal Liapunov exponent (for a detection of chaos) by
suitably exploiting the functional form. One may apply
the procedure for solving a class of nonlinear boundary
value problems, which may be conditionally posed as initial
value problems. The algorithm may be extended to solve
nonlinear stochastic differential equations of engineering
interest. Finally, the authors are presently working towards
the development of an Adomian-like finite element (spatial)
discretization scheme for nonlinear partial differential
equations.
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