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Linearized oscillations of a vortex column:
the singular eigenfunctions
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In 1880 Lord Kelvin analysed the linearized inviscid oscillations of a Rankine vortex
as part of a theory of vortex atoms. These eponymously named neutrally stable modes
are, however, exceptional regular oscillations that make up the discrete spectrum of
the Rankine vortex. In this paper, we examine the singular oscillations that make up
the continuous spectrum (CS) and span the entire base state range of frequencies. In
two dimensions, the CS eigenfunctions have a twin-vortex-sheet structure similar to
that known from earlier investigations of parallel flows with piecewise linear velocity
profiles. The vortex sheets are cylindrical, being threaded by axial lines, with one
sheet at the edge of the core and the other at the critical radius in the irrotational
exterior; the latter refers to the radial location at which the fluid co-rotates with the
eigenmode. In three dimensions, the CS eigenfunctions have core vorticity and may be
classified into two families based on the singularity at the critical radius. For the first
family, the singularity is a cylindrical vortex sheet threaded by helical vortex lines,
while for the second family it has a localized dipole structure with radial vorticity.
The presence of perturbation vorticity in the otherwise irrotational exterior implies
that the CS modes, unlike the Kelvin modes, offer a modal interpretation for the
(linearized) interaction of the Rankine vortex with an external vortical disturbance. It
is shown that an arbitrary initial distribution of perturbation vorticity, both in two and
three dimensions, may be evolved as a superposition over the discrete and CS modes;
this modal representation being equivalent to a solution of the corresponding initial
value problem. For the restricted case of an initial axial vorticity distribution in two
dimensions, the modal representation may be generalized to a smooth vortex. Finally,
for the three-dimensional case, the analogy between rotational flows and stratified
shear flows, and the known analytical solution for stratified Couette flow, are used
to clarify the singular manner in which the modal superposition for a smooth vortex
approaches the Rankine limit.
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1. Introduction
Helmholtz’s demonstration of the permanence of vortical structures in an inviscid

fluid, and the resulting implications for a theory of vortex atoms, motivated Lord
Kelvin to carry out exhaustive investigations on inviscid vortex motion and stability
in the late nineteenth century. Of particular importance is his 1880 paper wherein he
characterized the spectrum of waves supported on a central core of rigidly rotating
liquid surrounded by an irrotational flow (Kelvin 1880). This top-hat vorticity profile,
commonly referred to as the Rankine vortex, was shown to support a countable
infinity of neutrally stable oscillations now known as the Kelvin modes. A schematic
of the resulting dispersion curves are shown in figure 1 where the modal frequency
(ω) is plotted as a function of the axial wavenumber (k) for a fixed non-zero azimuthal
wavenumber (m). For any non-zero k, one may evidently classify the modes into two
groups: the co-grade modes (ω>mΩ , Ω being the core angular velocity) that travel
faster than the fluid in the undisturbed core and the retrograde modes (ω<mΩ) that
travel slower (Saffman 1992). An underlying feature of the Kelvin modes is that the
perturbation vorticity arises due to the oscillating column, and is evidently restricted
to the region within the core and its edge; there is no perturbation vorticity outside the
core. The analysis here shows that the Kelvin modes constitute the discrete spectrum
of a Rankine vortex. There is an additional continuous spectrum (CS) consisting of
singular non-axisymmetric modes that make up the frequency intervals between the
neighbouring retrograde dispersion curves in figure 1 (see, for instance, figure 3 in
§ 2.2), thereby spanning the entire base state range of frequencies (ωε(0,mΩ)). These
singular eigenfunctions have perturbation vorticity outside the vortex core. While the
Kelvin modes are sufficient to determine the linearized inviscid evolution of an
initially deformed vortex column (Arendt, Fritts & Andreassen 1997), the inclusion
of additional singular modes is necessary to similarly characterize the interactions of
such a column with external vortical disturbances (ambient turbulence).

Apart from its fundamental significance, the interaction of a vortex column with
ambient turbulence is relevant to the stability of aircraft trailing vortices (Widnall
1975; Spalart 1998), and to the dynamics of coherent structures in quasi-geostrophic
turbulence (McWilliams 1984). Motivated by such applications, there have been
several studies of vortex column dynamics from both modal and non-modal
perspectives. Modal analyses include those of Le Dizès and co-workers who have
examined, using a WKBJ formalism, the characteristics of Kelvin modes for a wide
class of homogeneous swirling flows with or without an axial flow component in
appropriate asymptotic limits (Le Dizès & Lacaze 2005; Fabre, Sipp & Jacquin
2006; Heaton 2007a; Le Dizès & Fabre 2007; Fabre & Le Dizès 2008). Recent
investigations along these lines have included the effects of a stable stratification
along the rotation axis (Le Dizès & Billant 2009). Fabre et al. (2006) have conducted
a detailed numerical study of the viscous eigenspectrum of a Lamb–Oseen profile.
The authors show that, in contrast to the neutral retrograde modes of the Rankine
vortex, one obtains instead multiple families of singular (inviscidly) damped modes in
the base state range of frequencies, the damping arising from a viscous critical layer.
Further, there arises a new family of modes that owes its origin entirely to viscosity.
These results, although substantially more complicated, are similar in a sense to the
non-trivial differences originally identified between the eigenspectra of the Rayleigh
and the Orr–Sommerfeld equations in the context of parallel shearing flows (Lin
1955). Complementing such modal investigations are the studies of Hussain and
co-workers (Melander & Hussain 1993; Pradeep & Hussain 2006, 2010) and others
(Antkowiak & Brancher 2004; Heaton 2007b) who have examined the transient growth
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FIGURE 1. A sketch of the dispersion curves for the non-axisymmetric (m 6= 0) modes
associated with a Rankine vortex. Here m and k are the azimuthal and axial wavenumbers,
respectively.

of a vortex column via both linear and nonlinear direct numerical simulations. This
short-time algebraic growth of column perturbations owes its origin to the non-normal
evolution operator and the physics of the transient growth, in the linear regime, has
been elucidated in detail (Pradeep & Hussain 2006). However, quantitative results
for the growth amplitude, and the nature of optimal perturbations, are restricted to a
Lamb–Oseen profile, and to Reynolds numbers (Re) up to O(104).

The formidable difficulty of the eigenvalue problem for a general swirling flow
implies that the above modal investigations are typically restricted to a fraction of
the full eigenspectrum. The complexity of the latter is particularly evident with the
inclusion of an axial flow which leads to an intricate array of instabilities of both
inviscid (Lessen, Singh & Paillet 1974; Mayer & Powell 1992; Heaton & Peake
2006, 2007) and viscous origins (Khorrami 1991; Fabre & Le Dizès 2008). The
instabilities typically occur as nearly convected centre modes, in the vicinity of the
CS, with the eigenfunction concentrated in a region asymptotically close to the critical
radius: the spatial location corresponding to the singularity of the inviscid equations,
and that arises from co-rotation of the fluid in the base state with the eigenmode.
Such modes have been shown to determine the inviscid stability characteristics of
the Batchelor vortex (Heaton 2007b). However, even for a linearly stable base state
with purely azimuthal flow and monotonically decreasing (axial) vorticity profile, a
sensible comparison of the results (Fabre 2002; Fabre et al. 2006) with those of a
Rankine vortex is impeded by the unavailability of the complete eigenspectrum in the
latter case. The Rankine vortex may be regarded as the equivalent of Couette flow for
swirling flows, since both correspond to (piecewise) constant vorticity profiles, leading
to analytically soluble eigenvalue problems. It was originally shown by Case (1960a)
that the singular modes comprising the inviscid CS of Couette flow are flow-aligned
vortex sheets in two dimensions. For a nonlinear base state, these eigenfunctions
possess a principal-value (PV) singularity in addition to the vortex-sheet contribution
(Case 1959; Balmforth & Morrison 1995). While the Rankine vortex eigenfunctions
in two dimensions consist of cylindrical vortex sheets, similar to Couette flow, the
three-dimensional spectrum exhibits interesting differences. In contrast to Couette
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flow (a purely continuous inviscid spectrum (Fadeev 1971)) or piecewise variants of
the same (discrete neutral modes arise solely due to kinks in the base state profile
(Sazonov 1989)), as already mentioned, the restoring action of Coriolis forces implies
that the Rankine vortex supports a denumerable infinity of discrete modes. Only one
of these, the so-called structureless or isolated mode, (the dispersion curve in figure 1
with ω→ (m− 1)Ω for k→ 0), arises from the discontinuity in the top-hat vorticity
profile. Even for the CS modes, the singularity in the vorticity eigenfunctions at
the critical radius, in three dimensions, differs from that known for parallel flows
(Sazonov 1996). The analysis for the Rankine vortex here, while similar in spirit to
that of Case (1960a), accounts for these crucial differences in characterizing the CS.
The discrete (Kelvin) modes emerge as an exceptional instance when the amplitude of
the singular vortical structure goes to zero. Indeed, the requirement that this amplitude
equal zero yields the Kelvin-mode dispersion relation (Saffman 1992). The Rankine
analysis may thus be regarded as a ‘baseline’ scenario for more general vorticity
profiles, at least as far as the singular modes are concerned. It should also serve as a
starting point towards unravelling the more complicated continuous spectra that would
emerge with the incorporation of stratification or viscoelasticity. In the latter case,
for instance, the structure of the singular eigenfunctions has largely been examined
in the inertialess limit (Graham 1998; Kupferman 2005), and little is known for the
case where inertial effects are dominant (Rallison & Hinch 1995). To this end, we
first extend the results for the Rankine spectrum in two dimensions to a smooth
vorticity profile, and then, for the three-dimensional case, we present a local analysis,
based on Frobenius expansions, that examines the non-trivial effect of a small but
finite base state vorticity (present for a smooth vorticity profile) on the nature of the
singularity in the CS eigenfunctions. By way of an analogy with stratified flows, the
approach to the Rankine limit is then elucidated.

The initial value problem (IVP) for a Rankine vortex that extends the analysis
of Arendt et al. (1997) to include exterior vortical disturbances, and its equivalence
to the modal representation given here, will be reported separately (Roy 2013). It
is nevertheless worth noting here the relation between the modal and non-modal
(IVP) perspectives. Studies of parallel shearing flows show that the transient growth
phenomenon is intimately related to an underlying inviscid CS. While the original IVP
analyses for Couette flow were in terms of Fourier modes with time-dependent wave
vectors (see Farrell (1984), also known as Kelvin modes), an equivalent description
exists in terms of a convected superposition of flow-aligned vortex sheets (the
CS modes). The work of Farrell and co-workers (Farrell 1984, 1989; Farrell &
Ioannou 1993b) has shown that one of the mechanisms leading to transient growth,
the Orr mechanism (Orr 1907), involves the progressive phase alignment of an
initially staggered superposition of singular vortex-sheet eigenfunctions. The second
mechanism, the lift-up effect (Landahl 1980), responsible for the growth of spanwise
perturbations, may also be interpreted in terms of the asymptotic de-phasing of
a superposition of vortex-sheet eigenfunctions, and the corresponding ensemble of
singular Squire-jet modes (Roy & Subramanian 2012). In general, for problems where
the CS alone governs the temporal evolution, the dynamics may be divided into three
regimes: an initial phase characterized by the aforementioned algebraic growth, a
terminal phase with an algebraic decay in integral measures such as the perturbation
kinetic energy due to the eventual de-phasing of the CS modes by the ambient
shear (Bassom & Gilbert 1998), and an intermediate phase with an exponential
decay (the presence of additional discrete modes would lead to a long-time
saturated response rather than a terminal algebraic decay). In the aforementioned

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

66
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.666


408 A. Roy and G. Subramanian

intermediate phase, appropriate superpositions of the CS modes behave as decaying
discrete (quasi-)modes, a phenomenon known as Landau damping in the plasma
physics context (Briggs, Daugherty & Levy 1970; Schecter et al. 2000; Schecter &
Montgomery 2003). Both Couette flow and the Rankine vortex constitute important
and singular limiting scenarios in that although neither exhibits the aforementioned
intermediate asymptotics, the addition of a small curvature or a small vorticity
gradient/vorticity does lead to quasi-modes (Balmforth, Smith & Young 2001; Shrira
& Sazonov 2001, 2003). For instance the solution of the two-dimensional IVP shows
that a ‘near-Rankine’ profile exhibits an exponential decay phase with the damping
rate being proportional to the (small) vorticity gradient at the critical radius (Le Dizès
2000; Schecter et al. 2000). The analogous scenario for three dimensions is not known.
However, numerical results for a Lamb–Oseen profile indicate a denumerable infinite
of quasi-modes (Fabre 2002). Although we discuss the Rankine vortex and ‘near-
Rankine’ profiles from the normal-mode perspective in this paper, the above discussion
highlights the relevance of these limiting scenarios from the IVP perspective.

The paper is organized as follows. In § 2, we examine the inviscid CS of a
Rankine vortex. Section 2.1 analyses the two-dimensional singular modes for which
the perturbation vorticity is confined to a pair of cylindrical vortex sheets: one at the
edge of the core and the other at the critical radius, the radial location where the base
state angular velocity equals the modal frequency. A physical interpretation of the
twin-vortex-sheet structure is given. A second family of singular eigenfunctions, in
two dimensions, takes the form of (infinitely) localized axial jets. The localization of
the axial velocity perturbation implies that these jets remain valid eigenfunctions for
an arbitrary base-state vorticity profile. It is then shown that an arbitrary distribution
of axial vorticity may be evolved as a superposition of the two-dimensional CS
modes. In § 2.2, the analysis is extended to three-dimensional modes, all of which
also possess vorticity in the interior of the core. The CS eigenfunctions that arise, in
addition to the denumerably infinite number of Kelvin modes, may be conveniently
classified based on the nature of the singularity in the perturbation vorticity at the
critical radius. The first family (§ 2.2.1) resembles the two-dimensional singular modes
in that the singularity is again a cylindrical vortex sheet, one threaded by helical
vortex lines, in the otherwise irrotational exterior. For the second family (§ 2.2.2), the
singular structure includes radial vorticity and has a dipole singularity at the critical
radius. Members of this latter family asymptote to the aforementioned axial-jet
eigenfunctions in the limit of a vanishing axial wavenumber. In § 2.2.3, it is shown
that an arbitrary initial distribution of vorticity may be evolved as a superposition of
the discrete and CS modes, this modal representation being equivalent to the solution
of the corresponding IVP for the Rankine vortex (Roy 2013). In § 3, the Rankine
modal representation in § 2.1, for an initial distribution of axial vorticity, is extended
to a smooth vorticity profile. Next, the three-dimensional singular eigenfunctions
of a smooth vorticity profile are analysed using Frobenius expansions, valid in the
vicinity of the critical radius, the perturbation vorticity field then being obtained by
drawing on an analogy with the eigenfunctions known for a stratified shear flow.
The approach towards the singular forms obtained for the Rankine vortex in earlier
sections, is then examined. In § 4, we discuss the existence of inviscid centre-modes
for smooth vortices and their disappearance in the Rankine limit. Finally in § 5, we
present a summary of the main results.
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2. Inviscid normal mode analysis for a Rankine vortex
If a and Ω0 be the core radius and angular velocity, respectively, the Rankine

velocity profile is given by u(0)θ = rΩ(r), with Ω(r) = Ω0 for r < a and Ω(r) =
Ω0(a/r)2 for r > a; the base-state (axial) vorticity (Z) and vorticity gradient are
Z(r)= 2Ω0H(a− r) and DZ(r)=−2Ω0δ(r − a), H(z) and δ(z) being the Heaviside
and delta functions. The Rankine vortex corresponds to a stable stratification of
angular momentum, and supports neutrally stable axisymmetric oscillations in
the absence of viscosity (Chandrasekhar 1961). Further, Z being a monotonically
decreasing (generalized) function of r, the analogue of Rayleigh’s inflection point
theorem in a cylindrical geometry implies (modal) stability to non-axisymmetric
perturbations (Michalke & Timme 1967; Drazin & Reid 1981). The governing
equation for the linearized evolution of inviscid perturbations is, however, singular at
the point (the critical radius) where the modal frequency equals the base state angular
velocity, and this leads to an inviscid CS. The normal mode analysis in the following
subsections is carried out with an emphasis on the CS modes. Two-dimensional
perturbations are examined in § 2.1, and the analysis is extended to perturbations
with a finite axial wavenumber (k) in § 2.2.

2.1. The two-dimensional CS modes

Assuming small-amplitude perturbations of the form (u′r, u′θ) = (ûr(r), ûθ(r))ei(mθ−ωt),
where m is the azimuthal wavenumber and ω is the (real) angular frequency, the
inviscid stability equation governing the radial velocity eigenfunction, ûr(r), may be
derived along lines similar to that for the Rayleigh equation for parallel shear flows
(Drazin & Reid 1981), and is given by

[(ω−mΩ){r2D2 + 3rD− (m2 − 1)} +mrDZ]ûr = 0, (2.1)

where D ≡ d/dr. As one can see that ω(m) = −ω(−m), ûr(r; m) = ûr(r; −m), it is
sufficient to restrict the analysis to positive values of m. Since Z is constant within
the core and zero outside it, equation (2.1) simplifies to

(ω−mΩ){r2D2 + 3rD− (m2 − 1)}ûr = 0 (2.2)

for r 6= a, and thereby allows for two possibilities. The first rather obvious one is the
homogeneous solution,

{r2D2 + 3rD− (m2 − 1)}ûr = 0. (2.3)

Physically, this corresponds to an irrotational velocity perturbation both within and
outside the core. The perturbation vorticity resides in a cylindrical vortex sheet at
r = a, and is the linearized representation of a small-amplitude wavy deformation.
The eigenvalue problem involving (2.3), with the required continuity of radial and
(total) tangential velocity components at r= a, was originally solved by Lord Kelvin
(see Kelvin 1880), and yields a single neutral mode for each m with ωd = (m− 1)Ω0.
The mode lags behind the fluid motion in the core since the velocity perturbation
acts to deform the core in a retrograde sense. These Kelvin modes make up the
two-dimensional discrete spectrum (see Saffman 1992). They are interpreted here
as (regular) discrete modes despite the singular vorticity eigenfunction (∝ δ(r − a)),
since the singularity arises solely due to the discontinuity in the base state vorticity
profile. If the Rankine profile were to be smoothed such that Z decreases from 2Ω0
to 0 in a small but finite interval, then the vorticity eigenfunction would no longer
be singular. On the other hand, the CS modes, to be discussed below, continue to be
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singular even with this smoothing, since they owe their origin to the singular point
in the governing equation (2.2).

The second possibility, leading to the CS, was recognized by Case (1960a) (among
others; see Dikii 1960), in the context of Couette flow; that equation (2.2) also allows
for

{r2D2 + 3rD− (m2 − 1)}ûr ∝ δ(ω−mΩ), (2.4)

since xδ(x) = 0 is an equality in the generalized sense (Lighthill 1958). Physically,
equation (2.4) implies the existence of a cylindrical vortex sheet, threaded by axial
vortex lines, and coincident with the streamsurface at the critical radius, rf , satisfying
ω = mΩ(rf ). The sheet is convected with the base-state velocity at r = rf , while
its infinitesimal thickness prevents smearing out by the shear. One therefore has a
singular normal mode. The Rankine core is degenerate in the sense that an arbitrary
distribution of axial vorticity is convected unchanged in this region. It is therefore
sufficient to consider the case where the vortex sheet is located outside the core.
The equality ω = mΩ(rf ) implies rf = (mΩ0/ω)

1/2a, and for rf ranging from a+ to
infinity, one obtains the two-dimensional CS with ω decreasing from mΩ0 to 0. There
remains the one exceptional value of rf where the vortex sheet amplitude goes to
zero, corresponding to the Kelvin mode above. To see this, one may rewrite (2.4) as

{r2D2 + 3rD− (m2 − 1)}ûr = imrf A(rf )δ(r− rf ), (2.5)

where −A(rf ) denotes the (unknown) vortex sheet strength. The solution of (2.5) is
readily obtained by separate consideration of the regions: r < a, a< r < rf and rf <
r<∞. The solutions in these regions, consistent with the absence of singularities at
the origin and at infinity, are (m> 0)

û1
r = d

( r
a

)m−1
, (0< r< a), (2.6)

û2
r = c1

( r
a

)m−1 + c2

(a
r

)m+1
, (a< r< rf ), (2.7)

û3
r =Ω0

a2

rf

(a
r

)m+1
, (r> rf ), (2.8)

where the constant in (2.8) is chosen as (Ω0a2/rf ) for convenience. The constants
c1 and c2 may be determined following the standard procedure for the determination
of the Green’s function of a second-order differential equation (Friedman 1990).
Thus, integrating (2.5) over an infinitesimal interval including r= rf , one obtains the
following matching conditions:

û2
r = û3

r at r= rf , (2.9)

Dû3
r −Dû2

r =
imA(rf )

rf
at r= rf , (2.10)

with the latter denoting the jump in the tangential velocity component across the
vortex sheet at r= rf . From (2.7) to (2.10),

c1=− iA(rf )

2

(
a
rf

)m−1

, (2.11)

c2= Ω0a2

rf
+ iA(rf )

2

(rf

a

)m+1
. (2.12)
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The constant d in (2.6) is determined from the continuity of the radial velocity at
r= a:

d= Ω0a2

rf
+ iA(rf )

2

[(rf

a

)m+1 −
(

a
rf

)m−1
]
. (2.13)

Finally, the vortex sheet amplitude, A(rf ), is determined by the jump in tangential
velocity across r=a. The latter is obtained by integrating (2.5), with DZ=−2Ω0δ(r−
a) included, over an infinitesimal interval including r= a:

(ω−mΩ0)
[
Dû2

r −Dû1
r

]= 2m
Ω0

a
ûr at r= a. (2.14)

Using ω=mΩ0(a/rf )
2, and after some algebra,

A= 2iΩ0
(
a2/rf

)
(ωd −ω)

Ω0
(
a/rf

)m−1 + (ωd −ω)
(
rf /a

)m+1 (2.15)

where ωd = (m − 1)Ω0 is the frequency of the two-dimensional Kelvin mode. The
denominator in (2.15) may be written in the form

(m− 1)
(rf

a

)m −m
(rf

a

)m−2 +
(

a
rf

)m

=
[(

rf /a
)2 − 1

]

(
rf /a

)m

[[(rf

a

)2m−2 − 1
]
+
[(rf

a

)2m−2 −
(rf

a

)2
]
+ · · ·

+
[(rf

a

)2m−2 −
(rf

a

)2m−4
]]
, (2.16)

and is always positive when rf > a. The sign of Re(A(rf )) is therefore determined
by the numerator in (2.15); in particular, the vortex sheet disappears when ω=ωd or
rfk = (m/(m− 1))1/2 a. Thus, the generic eigenmodes comprising the two-dimensional
CS have a twin-vortex-sheet structure, and for the chosen normalization, the vorticity
eigenfunction is given by

ŵCSM
z (r; rf )=

[
2iΩ0d
ω−mΩ0

δ(r− a)− A(rf )δ(r− rf )

]
. (2.17)

The jumps in tangential velocity across the two vortex sheets have the same sign for
r > rfk(Re(A) < 0), and having opposite signs when a < rf < rfk (Re(A) > 0); see
figure 2. The amplitude of the second vortex sheet vanishes for rf = rfk, leading to
the Kelvin-mode eigenfunction:

ŵKelvin
z (r)=−2iΩ0a2

rfk
δ(r− a), (2.18)

with a single vortex sheet at r = a. In contrast to Case’s original analysis of the
two-dimensional CS in Couette flow, for which the normal component of the velocity
perturbation in Couette flow is required to vanish at each boundary (or at infinity for
an unbounded domain), the radial velocity field induced by the vortex sheet at r= rf
will not, in general, vanish at r = a. Instead, it acts to deform the core, leading to
the additional edge vortex sheet. Although the strength, A(rf ), of the vortex sheet at
r= rf is still arbitrary, as in Couette flow, the ratio of the strengths of the two vortex
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Tangential velocity jump
decelerates the fluid en-route
to vortex core

Second vortex sheet reduces
the source and sink strengths

Tangential velocity jump
accelerates the fluid en-route
to vortex core

Second vortex sheet increases
the source and sink strengths

(a)

(b)

FIGURE 2. (Colour online) (a) The disturbance velocity field when the vortex sheet at
r= rf co-rotates with the elliptically deformed vortex core at a frequency lower than the
m = 2 Kelvin mode; (b) the disturbance velocity field when the vortex sheet at r = rf
co-rotates with the elliptically deformed vortex core at a frequency higher than the m= 2
Kelvin mode. The dash–dot circle denotes the ring of fluid rotating at the Kelvin-mode
frequency.
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    the singular modes for any k

k

(a () b)

FIGURE 3. (Colour online) The sketch on the left is of dispersion curves that result from
(2.35) for a given m. The sketch on the right includes the CS depicted by the shaded
region; the additional dashed curves in the retrograde frequency range denote the three-
dimensional vessel modes defined by (A 10). For each k, the singular eigenmodes that
make up the CS fill up the frequency intervals between the retrograde dispersion curves.

sheets is not, and a discrete mode arises when this ratio is zero. The exact analogue
of Couette flow would be a point vortex that results for Ω0→∞, a→ 0 with Ω0a2

fixed. In this limit, rfk→ 0, and a purely CS remains. On the other hand, the parallel
flow analogue of the Rankine vortex is the piecewise linear profile, with a single jump
in the velocity gradient, analysed by Sazonov (1989).

The existence of singular modes becomes evident on considering the underlying
physical mechanism. Without loss of generality, one may look at m = 2, in which
case the Kelvin mode is the small-amplitude limit of the well-known Kirchoff vortex
(Lamb 1932). The exterior velocity field associated with the Kelvin mode may be
regarded as the result of a distribution of sources and sinks along the edge of the
unperturbed core, the strength of the source or sink being proportional to the local
slope of the wavy core perturbation. The source and sink strengths are greatest
midway between the principal axes of the elliptical core, and the regions of outflow
and inflow are centred around these directions. The core rotation may be slowed down
or accelerated, and the modal frequency altered, by an appropriate change of the
strength of these radial flows. A co-rotating vortex sheet in the otherwise irrotational
region, via tangential velocity jumps, provides for just such a mechanism, and leads
to the two-dimensional CS modes. Figure 2 shows the velocity field associated with
CS modes with frequencies both lower and higher than the corresponding Kelvin
mode. In each case, the perturbation velocity field for r> rf remains identical to the
Kelvin mode (2.8), but the jumps in tangential velocity across r= rf alter the velocity
field in the region r< rf .

The discussion above applies to m > 2. The case m = 1, in two dimensions,
corresponds to a mere displacement of the vortex core. Translational invariance
for an unbounded domain implies the absence of any restoring force, and the
two-dimensional Kelvin modes are therefore restricted to m > 2 (rfk→∞ for m= 1).
The CS modes continue to exist for m = 1 since the outer vortex sheet breaks the
invariance. However, naively setting m=1 in (2.15) leads to a divergence of the vortex
sheet amplitude for any rf . This is because the analysis above proceeds by normalizing
the velocity field for r > rf , while for m = 1, the second vortex sheet ‘screens’ the
disturbance velocity field induced by the displaced core, and the velocity perturbation
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is confined to the region r < rf . Physically, the m = 1 CS modes correspond to the
small-amplitude orbiting motion of the displaced (but undeformed) vortex core around
the centre of a cylindrical vessel with radius rf . The image vorticity needed to satisfy
the impenetrability condition at the vessel wall is, to linear order, a vortex sheet
coincident with the vessel wall. The ratio of the vortex sheet strengths, predicted
by the analysis above, is unaffected by the velocity field normalization, and equals
−(a/rf ). The trivial translatory (discrete) mode thus corresponds to a vessel with an
infinitely large radius (rf →∞). In § 2.2, we encounter modes of a similar nature
for a finite axial wavenumber. Unlike the two-dimensional case, where an m= 1 CS
mode may be interpreted as a vessel mode for any rf > a, the analogy, for a non-zero
axial wavenumber, remains true only for a denumerably infinite sequence of rf (see
appendix A). A subtle point related to the analysis for m= 1 above (and later in § 2.2
for a finite k) is the dependence of A(rf ) of the order of the limits m→ 1 and a→ 0.
The vessel mode results when m is taken as unity to begin with. The opposite order
leads to a non-trivial exterior velocity field corresponding to a translating potential
dipole. It may, however, be shown that the modal superpositions that appear below
remain insensitive to the order of the limiting processes.

The discussion of the CS modes has thus far been for cases where the perturbation
vorticity is restricted to the region r> a. As pointed out earlier, modes with core axial
vorticity are expected to have a degenerate character, since rigid-body rotation allows
for an arbitrary axial vorticity distribution to evolve with its structure unchanged.
From a normal-mode perspective, there is still a mild restriction, however, since an
arbitrary core vorticity distribution would deform the core, thereby also exciting a
Kelvin mode. This would lead to a pair of frequencies that characterize the evolution
for a given azimuthal wavenumber: the first being the core angular frequency (mΩ0)
corresponding to the interior vorticity and the second being the Kelvin-mode frequency
((m − 1)Ω0) corresponding to the edge vorticity. Thus, any normal mode with core
vorticity must have, in addition, a projection at the edge of the core that cancels out
the Kelvin-mode contribution. Assuming the core vorticity distribution to be given
by g (r/a) (with g (r/a) = 0 for r > a), it may be shown that the (axial) vorticity
eigenfunction of a two-dimensional core eigenmode is given by

ŵcore
z (r)= g

( r
a

)
− δ(r− a)

∫ a

0
g
(

r′

a

)(
r′

a

)m+1

dr′, (2.19)

where the delta function denotes the additional edge-vorticity component. That
g (r/a) is arbitrary is consistent with the aforementioned degeneracy. The velocity
eigenfunction is restricted to r<a, so the exterior irrotational region remains quiescent.
These two-dimensional core eigenmodes find a mention in Kopiev & Chernyshev
(1997) in the context of vortex ring oscillations. Note that g (r/a) may be expanded
in terms of any of the standard orthogonal families, and each of these expansions
will lead to a particular, denumerably infinite, representation of the core eigenmodes.
One such representation, in terms of Bessel functions, arises naturally as the limiting
form of the three-dimensional structured modes in § 2.2.

Interestingly, the degeneracy associated with the core-eigenmodes, and the resulting
arbitrariness in their functional form, disappears on considering the analogous modes
for a vortex ring. This is because the base-state circumferential vorticity is required to
increase in proportion to the distance from the axis of symmetry in order satisfy the
Euler equations that now include an additional vortex-stretching term. The resulting
differential shear in a meridional plane, within the vortex ring core, ensures that the
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CS modes have a uniquely determined structure. The analogue of the two-dimensional
column disturbances are the axisymmetrical ring modes that do not depend on the
coordinate along the ring perimeter. For the isochronous ring, where the ratio of
the azimuthal vorticity to the transverse radial distance is a constant (in the limit of
small-cored rings, this is only one of an infinite set of vorticity distributions that allow
for a steadily propagating distribution of vorticity (Fraenkel 1970)), the axisymmetric
CS modes have indeed been shown to exhibit a twin-vortex-sheet structure, the vortex
sheets being in the form of hollow tori (Kopiev & Chernyshev 1997). Although the
original analysis was for rings with a small cross-section, and restricted to the CS
modes within the ring cores, similar conclusions would apply to the CS modes
that govern the evolution of vortical disturbances in the much larger envelope of
irrotational fluid that is entrained by the propagating ring.

The evolution of an initial axial vorticity distribution of the form wz0(r)eimθ , as an
integral superposition of the two-dimensional Kelvin and CS modes, is given by

wz(r, θ, t)=wcore
z eim(θ−Ω0t) +

∫ ∞

a+
B1(rf )ŵCSM

z (r; rf )eim(θ−Ω(rf )t) drf

+
∫ ∞

0
B2(rf )ŵKelvin

z (r)ei(mθ−ωd t) drf , (2.20)

where ŵCSM
z and ŵKelvin

r are given by (2.17) and (2.18), and the respective eigenfunction
amplitudes are given by B1(rf ) = −wz0(rf )/A(rf ), B2(rf ) = −(i/2)(wz0(rf )rfk/a2(ωd −
mΩ))

(
a/rf

)qm−1 and q= sgn(rf − a). On substituting the expressions for B1, B2 and
A(rf ), equation (2.20) can be simplified to

wz(r, θ, t)=wz0(r)ei[m(θ−Ω(r)t)]H(r− a)+ ŵcore
z eim[θ−Ω0t]

+ δ(r− a)

[
e−iωd t

∫ a

0
wz0(rf )

(rf

a

)m+1
drf

+
∫ ∞

a+
Ω0

(
a
rf

)m−1

wz0(rf )
e−imΩ(rf )t − e−iωd t

(ωd −mΩ(rf ))
drf

]
eimθ . (2.21)

In (2.20), the second term accounts for the distribution of CS modes required to
represent a specified axial vorticity distribution outside the core. The edge-vorticity
contribution that arises from this superposition is then projected onto the Kelvin mode
which appears as the third term in (2.20); the lower limit a+ instead of a ensures that
an initial condition consisting solely of edge vorticity evolves as a Kelvin mode. The
equivalence of (2.20) to a solution of the two-dimensional IVP is readily established
(Roy 2013). The coefficients B1 and B2 are singular at rf = rfk, when A(rf )= 0, and
this is a signature of the secular growth for an initial condition localized at the Kelvin
critical radius. The growth is linear in time for the velocity field, and with reference
to the plasma physics literature (Hirota, Tatsuno & Yoshida 2003), the secular growth
may be interpreted as a resonance between the discrete (point) and continuous spectra.

For a point vortex, as pointed out earlier, the inviscid spectrum is purely continuous,
and an initial axial vorticity distribution evolves as a superposition of the CS modes
alone. Thus, (2.20) reduces to the much simpler form:

wz(r, θ, t)=
∫ ∞

0
wz0(rf )ŵCSM

z (r; rf )eim(θ−Ω(rf )t) drf (2.22)

with ŵCSM
z (r; rf )= δ(r− rf ).
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Finally, there are certain exceptional eigenmodes, those that do not involve a
radial velocity perturbation, and are therefore not covered by the above analysis. The
simplest among these is the trivial case of an axisymmetric hollow vortex sheet at
r = a. The resulting perturbation velocity field corresponds to a quiescent core, and
is identical to the base state (u′θ ∼ 1/r) outside it. This mode is, in fact, included
in (2.19). In enforcing a quiescent exterior for all m, (2.19), for m = 0, requires an
axisymmetric vortex sheet at the edge of the core with a strength equal and opposite
to the core circulation. A second class of eigenmodes neglected by the analysis are
those wherein the axial velocity component itself has a delta-function singularity.
Physically, this corresponds to a concentrated jet-like profile and the localization
of the velocity field ensures that these jet-like modes remain eigenfunctions of an
arbitrary smooth vorticity profile. Although not relevant to an IVP involving only
an axial vorticity component as given by (2.20) above, these modes rise as limiting
forms of the three-dimensional CS modes (the Λ2 family) that include radial vorticity.
Sazonov (1996) has identified similar modes for inviscid Couette flow which, together
with the three-dimensional generalization of the Case vortex sheets, complete the
three-dimensional CS for the specific flow profile.

2.2. The three-dimensional CS modes
In this section we analyse the CS modes with a non-zero axial wavenumber. The
equations governing the inviscid evolution of three-dimensional disturbances have been
written down in various forms by different authors. Howard & Gupta (1962) reduce
the set of stability equations to a single one governing the radial velocity eigenfunction
(the Howard–Gupta equation) as in § 2.1. On the other hand, Saffman (1992) derives
an equation governing the disturbance pressure field that has since been generalized
to a base state with axial flow (Le Dizès 2004). Here, following Arendt et al. (1997),
we write down the stability equation in terms of the axial velocity eigenfunction ûz(r)
which is best suited for the Rankine vortex. For small-amplitude perturbations of the
form (u′r, u′θ , u′z)= [ûr(r), ûθ(r), ûz(r)]ei(kz+mθ−ωt), one obtains

[(ω−mΩ)2{r2D2 + rD−m2 − k2r2} − r(ω−mΩ){m(2rΩ ′D+DZ)
+Q′Q−1{(ω−mΩ)rD−mZ}} + 2k2r2ΩZ]ûz = 0, (2.23)

for a general vorticity profile where Q ≡ {(ω − mΩ)2 − 2ΩZ}. Here, 2ΩZ
is proportional to the Rayleigh discriminant governing centrifugal stability (see
Chandrasekhar 1961), and equals 4Ω2

0 H(a− r) for a Rankine vortex. The radial and
azimuthal components of the perturbation velocity field are given by

Qûr =− i
rk
(ω−mΩ)[(ω−mΩ)rD−mZ]ûz, (2.24)

Qûθ =− 1
rk
[Z(ω−mΩ)rD−m{(ω−mΩ)2 + rΩ ′Z}]ûz. (2.25)

Owing to the symmetry ω(m, k) = ω(m, −k) = −ω(−m, k) (Fabre et al. 2006) with
ûz(r,m, k)= ûz(r,−m, k)= ûz(r,m,−k)= ûz(r,−m,−k), valid for real-valued ω, it is
sufficient to restrict the analysis to positive values of m and k.

For a Rankine vortex, equation (2.23) may be solved, separately, inside the core
(r 6 a) and in the irrotational exterior (r > a). Note that (2.23) involves the base
state vorticity itself in addition to its radial gradient, and equations inside the
core therefore differ in form from those outside. This is a reflection of Coriolis
forces coming into play within the core in three dimensions. Inviscid axisymmetric
oscillations (the ‘sausaging’ modes) of a vortex column result from Coriolis forces
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driving the alternate expansion and contraction of closed material curves, within the
core, in a plane transverse to the rotation axis (Batchelor 1967); there exists an
equivalent interpretation in terms of the periodic twisting and untwisting of vortex
lines (Melander & Hussain 1994). Since Ω =Ω0, Z= 2Ω0 and Q′= 0 inside the core,
equations (2.23)–(2.25) reduce to

[(ω−mΩ0)
2{r2D2 + rD−m2 − k2r2} + 4k2r2Ω2

0 ]ûi
z = 0, (2.26)

{(ω−mΩ0)
2 − 4Ω2

0 }ûi
r =−

i
rk
(ω−mΩ0)[(ω−mΩ0)rD− 2mΩ0]ûi

z, (2.27)

{(ω−mΩ0)
2 − 4Ω2

0 }ûi
θ =−

1
rk
(ω−mΩ0)[2Ω0rD−m(ω−mΩ0)]ûi

z. (2.28)

In the outer irrotational region, Z = 0 and (2.23)–(2.25) simplify to

(ω−mΩ)2[r2D2 + rD−m2 − k2r2]ûo
z = 0, (2.29)

ûo
r =−

i
k

Dûo
z , (2.30)

ûo
θ =

m
rk

ûo
z , (2.31)

where the superscripts i and o denote the core and exterior regions, respectively.
The equation for ûi

z may be rewritten as a Bessel equation, and analyticity at the
origin implies

ûi
z ∝ dJm(βr). (2.32)

In (2.32), β2 ≡ k2(4Ω2
0 − g2)/g2 with g = (mΩ0 − ω) may be regarded as a radial

wavenumber. The equation for ûo
z is the modified Bessel equation, and similar to the

two-dimensional scenario, allows for two possibilities. The first is the homogeneous
solution of (2.29) consistent with a decaying far-field:

ûo
z ∝Km(kr), (2.33)

Km(z) being the modified Bessel function of the second kind, and leads to an
irrotational velocity field outside the core. Continuity of uz at r= a gives

ûi
z =

Jm(βr)
Jm(βa)

, ûo
z =

Km(kr)
Km(ka)

, (2.34)

and, further, enforcing continuity of ur at r= a gives the familiar dispersion relation
for the three-dimensional Kelvin modes (see Saffman 1992):

g2

(4Ω2
0 − g2)

[
βaJ′m(βa)

Jm(βa)
+ 2mΩ0

g

]
=−kaK′m(ka)

Km(ka)
. (2.35)

The relation (2.35) yields a denumerable infinity of modes for a fixed k and m.
For a given non-zero m, the dispersion curves (see the left-hand side of figure 3)
span the interval ω ≡ [(m − 2)Ω0, (m + 2)Ω0]. The modes may be classified based
on the sign of the Doppler frequency; g < 0 corresponds to the co-grade modes
and g > 0 to the retrograde modes. The co-grade and retrograde families are not
symmetric (about mΩ0) for non-zero m. Apart from numerical differences in the
ω values for a given k, the retrograde family includes an additional (structureless)
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branch that reduces to the two-dimensional Kelvin mode with ω → (m − 1)Ω0
for k → 0. It is convenient to use a modal index, n, to enumerate the solutions
(βn,b) of (2.35) where βn,+1 and βn,−1, with n being a positive integer, correspond
to the retrograde and co-grade families, respectively. Here β1,1 corresponds to the
structureless mode, while the remainder of the dispersion curves, both co-grade and
retrograde, correspond to the ‘structured’ modes, a measure of this structure being
the number of zero crossings of the axial vorticity (wz ∝ Jm(βn,br)) which increases
with increasing n. Further, βn,b→∞, ωb

n→mΩ0 for n→∞, so the structured modes
become nearly-convected modes, concentrated in the vicinity of the symmetry axis,
for large n. The Kelvin-mode vorticity eigenfunctions are given by

ŵKelvin
z,nb (r)=− 2gn,bΩ0β

2
n,b

k{g2
n,b − 4Ω2

0 }
Jm(βn,br)
Jm(βn,ba)

H(a− r)+ [ûθ
]r=a+

r=a− δ(r− a), (2.36)

ŵKelvin
r,nb (r)=− 2iΩ0

r{g2
n,b − 4Ω2

0 }
[

gn,b
βn,brJ′m(βn,br)

Jm(βn,ba)
+ 2mΩ0

Jm(βn,br)
Jm(βn,ba)

]
H(a− r), (2.37)

ŵKelvin
θ,nb (r)=

2Ω0

r{g2
n,b − 4Ω2

0 }
[

2Ω0
βn,brJ′m(βn,br)

Jm(βn,ba)
+mgn,b

Jm(βn,br)
Jm(βn,ba)

]
H(a− r), (2.38)

where [
ûθ
]r=a+

r=a− =−
2Ω0

ka(g2
n,b − 4Ω2

0 )

{
gn,b

βn,baJ′m(βn,ba)
Jm(βn,ba)

+ 2mΩ0

}
, (2.39)

with gn,b= (mΩ0−ωb
n) and β2

n,b= k2(4Ω2
0 − g2

n,b)/g
2
n,b; the subscript b=±1 in (2.36)–

(2.38) discriminates between retrograde and co-grade modes.
The inclusion of viscosity in the linearized stability equations should lead to a weak

O(Re−1) damping of the Rankine Kelvin modes. Self-consistency requires, however,
that the effect of viscosity also be included in the base state which must then lead
to a smooth non-compact vorticity profile. As mentioned in the introduction, the
two-dimensional Kelvin mode transforms into a damped singular mode for a general
smooth vorticity profile with DZ(rf ) 6= 0 (Le Dizès 2000). Importantly, the damping
rate is independent of Re for Re � 1, arising due to an increasingly fine-scaled
structure (the radial scale being O(Re−1/2)) inside a viscous critical layer with a
thickness of O(DZ) around rf (Lin 1955). Both computations for large Re, and
estimates based on a contour deformation calculation show that for a Lamb–Oseen
profile the three-dimensional retrograde modes of a Rankine vortex are again replaced
by inviscidly damped critical-layer modes (Fabre 2002; Fabre et al. 2006). There
appear to exist a countable infinity of such modes with the damping rate possibly
dependent on the values of both Z and DZ at rf . The singular effect of viscosity
is especially important for the retrograde structured modes. In sharp contrast to the
predictions of (2.35), the relevant dispersion curves for the Lamb–Oseen profile do
not asymptote to the core angular frequency in the limit k → 0. Bending modes
(m = 1) are particularly important in this regard, since (2.35) for m = 1 allows for
modes with a negative ω (counter-grade) that then lie outside the base state range
of frequencies. Every retrograde bending mode invariably becomes counter-grade for
large enough k and, correspondingly, the critical radius moves off to infinity and onto
the complex plane. Counter-grade modes for a smooth vorticity profile are therefore
expected to remain qualitatively unaltered for a general vorticity profile and with the
inclusion of viscosity, as is confirmed by numerical calculations (Fabre et al. 2006).

The dispersion curves for axisymmetric column oscillations, as given by (2.35)
with m = 0, are symmetric about ω = 0, and denote sausaging modes that travel
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in opposite directions along the core. The dynamics involves the alternate twisting
and untwisting of the vortex lines on surfaces approximately concentric with the
cylindrical core boundary. The associated radial displacements are smaller for larger
n, and the weaker (Coriolis) restoring forces imply that ωb

n → 0 for n→∞. The
absence of a critical layer singularity also implies that the dispersion curves for
the sausaging modes remain qualitatively unaltered for a smooth vorticity profile
and for large but finite Re (Fabre 2002). Importantly, equation (2.23), for m = 0,
defines a regular Sturm–Liouville problem for an arbitrary axial vorticity profile and
the completeness of the denumerably infinite family of axisymmetric modes follows
(Ince 1956; Chandrasekhar 1961). Thus, for a general non-compact vorticity profile,
an arbitrary small-amplitude axisymmetric disturbance may still be represented as a
superposition of evolving axisymmetric Kelvin modes. For a Rankine vortex, however,
the complete separation of the regions of strain (r > a) and vorticity (r < a) implies
that one must distinguish between vortical perturbations related to an axisymmetric
column deformation and similar disturbances present in the irrotational exterior. The
standard Sturm–Liouville arguments allow one to infer the completeness of the
axisymmetric Kelvin modes, with frequencies obtained from (2.35), for the former
class of disturbances (column deformations). The question regarding the response of
the Rankine vortex to exterior vortical perturbations remains. Since any perturbation
with m = 0 evolves unchanged even in the presence of differential shear, there is
evidently a degeneracy as regards a modal decomposition for exterior perturbations.
We return to this point, and the related implications for the transient growth observed
in recent simulations, even for m = 0 (Pradeep & Hussain 2006), after the analysis
for the non-axisymmetric CS modes in §§ 2.2.1 and 2.2.2.

Since the Kelvin modes above arise from the homogeneous solution of (2.29),
they have vorticity within the core and an axial vortex sheet at its edge. A natural
question is whether these modes can therefore represent an arbitrary vortical initial
condition restricted to the region r 6 a, that is to say, an arbitrary small-amplitude
deformation of the vortex column. The discussion in the preceding paragraph shows
that this is certainly true for m = 0. For non-zero m, however, equation (2.23) has
singular coefficients, and the standard Sturm–Liouville arguments do not apply. Thus,
the completeness of the Kelvin modes alone, in the absence of additional singular
eigenmodes (constituting the CS), is not obvious. This question has been recently
answered in the affirmative by Arendt et al. (1997), and our primary focus here
is on the complementary situation: the additional modes required for the evolution
of an arbitrary vortical initial condition outside the core, a situation of particular
relevance to the transient growth recently observed for single vortices (see Antkowiak
& Brancher 2004; Pradeep & Hussain 2006). In what follows, we show that there are
two retrograde families of singular eigenmodes needed to evolve an arbitrary initial
condition (an arbitrary solenoidal distribution of vorticity). With the inclusion of
these singular eigenmodes, every retrograde frequency except for that corresponding
to the Kelvin modes, is doubly degenerate. There is some leeway as to how the
aforementioned partition of the CS into two families may be made, and we choose a
division based on the presence or absence of radial vorticity in the singular part of
the eigenfunction. For the eigenfunctions in the first family, the singular structure is
a cylindrical vortex sheet at the critical radius, threaded by helical lines, and thereby
devoid of radial vorticity. For the eigenfunctions in the second family, the singular
structure is again localized at the critical radius, but possesses radial vorticity; the
vortex lines in this case form cells of an infinitesimal thickness in the plane transverse
to the rotation axis.
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2.2.1. Three-dimensional CS modes: the Λ1 family (zero radial vorticity)
The Λ1 eigenmodes are the natural generalization of the two-dimensional CS modes

analysed in § 2.1. Equation (2.29) allows for a vortex sheet, threaded by helical lines,
in the outer irrotational region. Thus,

[r2D2 + rD−m2 − r2k2]ûo
z = a1δ(ω−mΩ)+ a2δ

′(ω−mΩ), (2.40)

so that, as in (2.4), there is again an inhomogeneity proportional to a generalized
function. Here, we have used the identity x2{a1δ(x) + a2δ

′(x)} = 0. One may rewrite
(2.40) as

[r2D2 + rD−m2 − r2k2]ûo
z = A1(rf )δ(r− rf )+ A2(rf )δ

′(r− rf ), (2.41)

with rf = (mΩ0/ω)
1/2a denoting the location of the exterior vortex sheet. For the vortex

sheet to lie in the physical domain, rf must be real, and ω must therefore lie in the
base state range of angular frequencies. The analysis that follows is thus restricted
to the retrograde frequency range (0,mΩ0]. Using w=∇ ∧ u, and in the absence of
radial vorticity (ŵr= 0), the following relation between ûz and the vorticity field holds
for r > a:

[r2D2 + rD−m2 − r2k2]ûz =−rD(rŵθ). (2.42)

Note that ŵθ for the Λ1 family is proportional to δ(r − rf ). One may now equate
(2.41) and (2.42) which leads to the relation between A1 and A2 such that the singular
forcing in (2.41) represents a cylindrical vortex sheet. One obtains A2(rf )=−rf A1(rf ).
The azimuthal and axial components of the (helical) vortex sheet strength (AΛ1) are
AθΛ1 = A1(rf )/rf and AzΛ1 =−mA1(rf )/(kr2

f ), respectively, the pitch of a helical vortex
line being |2πrf (AzΛ1/AθΛ1)| = (2πm)/k.

The solution of (2.41) is obtained by separate consideration of three (r < a, a <
r < rf and r > rf ) rather than two regions (as was the case for the regular Kelvin
modes). The solutions in these regions, consistent with regularity both at the origin
and at infinity, are

ûi1
z = dJm(βr), (0< r< a), (2.43)

ûo2
z = c1Im(kr)+ c2Km(kr), (a< r< rf ), (2.44)

ûo3
z = f (ka)

Ω0a2

rf
Km(kr), (r> rf ), (2.45)

where the normalization, as in § 2.1, is applied to the region outside the vortex sheet
at r = rf . As will be seen later, the normalizing factor, f (ka) = −i/[mkaKm(ka)],
enforces agreement between the limiting forms of the three-dimensional modes, for
k→ 0, and the two-dimensional modes found earlier. The constants c1 and c2 are
now determined from the following matching conditions obtained by integrating (2.41)
over an infinitesimal interval including r= rf :

A2(rf )=−rf A1(rf ), (2.46)

ûo2
z − ûo3

z =−
A2(rf )

r2
f
= A1(rf )

rf
at r= rf , (2.47)

Dûo2
z =Dûo3

z at r= rf . (2.48)

The condition (2.46) has already been obtained above, and shows that the jumps in
the axial and azimuthal components of the velocity perturbation are not independent,
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being related by the fact that the pitch of the helical vortex lines at r= rf is entirely
determined by m and k. Equation (2.48) enforces continuity of the radial velocity
perturbation, thereby excluding a singular jet-like profile riding on the vortex sheet,
while (2.47) characterizes the jump in the axial velocity across the helical vortex sheet
at r= rf . From (2.44), (2.45), (2.47) and (2.48), one obtains

c1=−kK′m(krf )A1(rf ), (2.49)

c2= f (ka)
Ω0a2

rf
+ kI′m(krf )A1(rf ), (2.50)

the simplified expressions arising from use of the Wronskian for the modified Bessel
equation. The constant d in (2.43) is determined from the continuity of the axial
velocity at r= a, and given by

d= (f (ka)Ω0a2/rf )Km(ka)+ kA1(rf ){I′m(krf )Km(ka)−K′m(krf )Im(ka)}
Jm(βa)

. (2.51)

From (2.27) and (2.30) we have the following expressions for radial velocity at r= a,

ûi1
r |r=a=− idg

ka(g2 − 4Ω2
0 )
{gβaJ′m(βa)+ 2mΩ0Jm(βa)}, (2.52)

ûo2
r |r=a=− i

I′m(krf )
[c2{I′m(krf )K′m(ka)−K′m(krf )I′m(ka)} +K′m(krf )I′m(ka)]. (2.53)

Equating (2.52) and (2.53), to enforce continuity of the radial velocity at r = a, one
obtains, after some algebra, the following expression for the vortex-sheet amplitude:

A1(rf )= f (ka)
Ω0a2

rf

M(rf ; ka, βa)
k{K′m(krf )N(rf ; ka, βa)− I′m(krf )M(rf ; ka, βa)} , (2.54)

where
M(rf ; ka, βa)= g2βaJ′m(βa)Km(ka)+ 2mΩ0gJm(βa)Km(ka)

+ (4Ω2
0 − g2)Jm(βa)kaK′m(ka), (2.55)

N(rf ; ka, βa)= g2βaJ′m(βa)Im(ka)+ 2mΩ0gJm(βa)Im(ka)

+ (4Ω2
0 − g2)Jm(βa)kaI′m(ka). (2.56)

As in § 2.1, the retrograde Kelvin modes naturally emerge as those for which
A1(rf ) = 0. The functions M and N remain finite for any finite rf , and so do the
modified Bessel functions. Further, since the zeros of M and N interlace each
other, the condition of a vanishing vortex-sheet amplitude implies M = 0; this is
precisely the dispersion relation for the Kelvin modes (see (2.35)). In contrast
to the two-dimensional case, where a vanishing vortex-sheet amplitude led to a
single value of rf (the structureless mode) for a fixed m (rfk = (m/(m− 1))1/2a), in
three-dimensional one has a countable infinity of critical radii for a given m and k.
The vorticity field associated with a Λ1 eigenmode is given by

ŵΛ1
z (r; rf )=−2dgΩ0β

2Jm(βr)
k{g2 − 4Ω2

0 }
H(a− r)+ [ûθ

]r=a+

r=a− δ(r− a)− mA1(rf )

kr2
f

δ(r− rf ),

(2.57)
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(a) (b) (c) (d)

FIGURE 4. (a) Schematic of a two-dimensional CS mode for m= 2 with an elliptically
deformed core and with axial vortex lines threading the cylindrical sheet in the irrotational
exterior. Here wz 6= 0. (b,c) Schematics of the three-dimensional Λ1-modes for m = 1
(a single helical phase contour is shown) and m = 2 (only one of two helical phase
contours is shown), respectively, with helical lines that thread the cylindrical sheet. Here
wz 6= 0, wθ 6= 0. (d) Schematic of the Λ− 2 modes for m= 3 with the core deformed into
a three-lobed structure, and the vortex lines within the infinitesimal cylindrical sheet now
corresponding to a singular dipole structure. Here wr 6= 0,wθ 6= 0.

ŵΛ1
r (r; rf )=− 2idΩ0

r{g2 − 4Ω2
0 }
[
gβrJ′m(βr)+ 2mΩ0Jm(βr)

]
H(a− r), (2.58)

ŵΛ1
θ (r; rf )= 2dΩ0

r{g2 − 4Ω2
0 }
[
2Ω0βrJ′m(βr)+mgJm(βr)

]
H(a− r)+ A1(rf )

rf
δ(r− rf ),

(2.59)

where

[
ûθ
]r=a+

r=a− =
m
ka

[c1Im(ka)+ c2Km(ka)]− dg
ka{g2 − 4Ω2

0 }
[
2Ω0βaJ′m(βa)+mgJm(βa)

]
,

(2.60)

with the radial vorticity field, expectedly, being confined to the core region. Here, c1,
c2 and d are given by (2.49)–(2.51). Typical Λ1 eigenmodes are shown in figure 4.

Figure 5 plots A1(rf ) as a function of rf for m= 2 and k= 3; the essential features
remain unchanged for other values of m and k. Interestingly, in addition to the
values of rf corresponding to the Kelvin-mode frequencies, for which A1(rf ) = 0,
there are values at which A1(rf ) diverges. Since M and N have zeros interlacing
each other as a function of rf , the zeros and singularities of A1(rf ) also interlace
each other, and the latter again form a countably infinite set. The divergences are
an artifact of the normalization used in (2.43)–(2.45), and physically, at these rf , the
vortex sheet entirely screens the perturbation velocity field induced by the oscillating
column (that is, ûo3

z = 0). In doing so, the sheet acts as an impenetrable wall, and,
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FIGURE 5. (Colour online) The vortex-sheet amplitude, A1(rf ), for m = 2 and k = 3.
The vertical dashed lines, defined by 1/A1 = 0, correspond to the vessel mode loci (that
interlace the Kelvin-mode frequencies). The amplitude changes sign at an increasingly
rapid rate as rf → 1, and the inset offers a magnified view of the variation near the core.

for the given m and k, the corresponding frequency must therefore be a solution of
the dispersion relation for a Rankine vortex in a cylindrical vessel of size rf . From
(2.54), the locations at which A1(rf )→∞ must satisfy K′m(krf )N − I′m(krf )M = 0; in
appendix A, it is shown that this is indeed the relation governing the normal modes
of a Rankine vortex with a core of radius a embedded in a vessel of radius rf . For
a fixed rf , and thence, a fixed ω( = mΩ0(a/rf )

2) in the range [(m − 2)Ω0, mΩ0],
the singular eigenmodes are coincident with vessel modes, in the region 0 < r < rf ,
at a denumerable infinity of axial wavenumbers (the limit point being infinity).
Clearly, not all vessel modes will be recovered from the present analysis since, for
a vessel unbounded in the vertical direction, one expects the regular modes to span
a continuum of axial wavenumbers. This is because, in the bounded problem, while
the vessel wall may be regarded as a vortex sheet, it is required to convect at the
modal angular velocity. On the other hand, in the present context, the vortex sheet
must convect with the base-state angular velocity at r = rf . Thus, only those vessel
modes are recovered for which these two angular velocities are coincident.

A sketch of the frequency intervals spanned by the CS modes, including the vessel
mode loci, appears on the right-hand side in figure 3. (Note that this is a schematic
depiction. As shown in figure 5, the locations corresponding to the divergences of
the singular structure amplitude are very close to the zeros, implying that, in reality,
a given vessel mode curve is much closer to one of the neighbouring Kelvin-mode
curves than the other.) The CS modes occupy the intervals between the discrete
retrograde frequencies, and with their inclusion, the Rankine spectrum, for fixed m
and k, consists of the denumerable infinity of co-grade frequencies together with the
entire retrograde frequency interval (0, mΩ0). The case m= 1 is an exception, since
the counter-grade mode frequencies remain unaffected, and the spectrum therefore
remains discrete in the interval [−Ω0, 0]. The analysis for the Λ1 eigenmodes above,
although more involved algebraically, is still analogous to that in two dimensions,
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in the sense that the difference between the regular (retrograde Kelvin) and singular
eigenmodes is the existence, in the latter case, of an additional vortex sheet at the
critical radius. This may be seen from comparing the vorticity eigenfunctions for
a Λ1 eigenmode, given by (2.57)–(2.59), with those of a Kelvin mode given by
(2.36)–(2.38).

The singularity of the Λ2 eigenmodes analysed below, although not a vortex sheet,
is again localized at the critical radius. This localization of the vorticity is possible
due to the complete spatial separation of the regions of (base state) vorticity and
shear for a Rankine vortex. For a parallel flow, on the other hand, both the vorticity
and shear are proportional to U’, and the impossibility of a spatial separation between
the two, makes the three-dimensional singular eigenmodes quite different from the
two-dimensional ones. As shown in Sazonov (1996), for unbounded Couette flow,
the singular modes with wave vectors inclined to the plane of shear are no longer
localized vortex sheets coincident with streamlines of the base state flow like those
originally found by Case (1960a) in two dimensions. Instead, the spanwise variation of
the perturbation velocity field acts to stretch and tilt the ambient vorticity, leading to
additional non-local contributions (with a PV singularity) to the perturbation vorticity
field. As will be seen in § 2.2.3, this makes the solution of the three-dimensional IVP
for the Rankine vortex, via a modal superposition, (conceptually) easier than that for
Couette flow (Roy & Subramanian 2012).

2.2.2. Three-dimensional CS modes: the Λ2 family (with radial vorticity)
Unlike the Λ1 family, the Λ2 eigenmodes possess radial vorticity localized in the

singular vortical structure at the critical radius (see figure 4d). It is convenient to
analyse this case starting from (2.42) now generalized to a non-zero ŵr:

[r2D2 + rD−m2 − r2k2]ûz =−rD(rŵθ)+ imrŵr. (2.61)

The Λ2 family, in its simplest form, may be obtained by setting ŵz = 0 for r > a,
while allowing for the radial vorticity field to include a delta function. The resulting
singular structure at r= rf is characterized by a vorticity field in the plane transverse
to the rotation axis, (ŵr, ŵθ)≡ [ArΛ2δ(r− rf ), rf AθΛ2δ

′(r− rf )], with rf > a and ArΛ2 =−imAθΛ2 . Equation (2.61) takes the form

[r2D2 + rD−m2 − r2k2]ûo
z = A1(rf )δ(r− rf )+ A2(rf )δ

′(r− rf )+ A3(rf )δ
′′(r− rf ),

(2.62)

where A1 = (m2 − 1)rf AθΛ2 , A2 = 3r2
f AθΛ2 and A3 = −r3

f AθΛ2 . For the Λ2 modes,
ûr is discontinuous at r = rf , implying a delta-function singularity in ûz, and
thence, a localized axial jet riding on the convected singular structure. With
ûz = ûreg

z + P1δ(r − rf ), P1 being a measure of the jet volumetric flux per unit
wavelength along the azimuth, the following matching conditions result from
integrating (2.62) in an infinitesimal interval around rf :

r2
f [Dûreg

z ]
r+f
r−f
− rf [ûreg

z ]
r+f
r−f
− P1{(m2 − 1)+ (krf )

2} = A1, (2.63)

−r2
f [ûreg

z ]
r+f
r−f
+ 3rf P1 =−A2, (2.64)

2r2
f P1 = 2A3. (2.65)

The expressions for the velocity fields and the different regions under consideration
remain identical to § 2.2.1. Enforcing the continuity of the radial and axial velocity
components at r = a, and a little algebra, leads to the following expressions for the
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constants characterizing the velocity fields in the different regions (see (2.43)–(2.44)
and (2.45)):

c1 = AθΛ2Km(krf )(krf )
2, (2.66)

c2 = f (ka)
Ω0a2

rf
− AθΛ2Im(krf )(krf )

2, (2.67)

d= (f (ka)Ω0a2/rf )Km(ka)+ AθΛ2(krf )
2{Km(krf )Im(ka)− Im(krf )Km(ka)}

Jm(βa)
. (2.68)

The amplitude of the singular vortical structure at r= rf is given by

AθΛ2(rf )=−f (ka)
Ω0a2

rf

M(rf ; ka, βa)
(krf )2{Km(krf )N(rf ; ka, βa)− Im(krf )M(rf ; ka, βa)} (2.69)

with P1 = rf AθΛ2 ; a sketch of a typical Λ2 eigenmode (m= 3) appears in figure 4(d).
From (2.69), and similar to the Λ1 modes, the singular structure again disappears for
M=0, the dispersion relation for the Kelvin modes. The amplitude, AθΛ2 , also diverges
at the zeros of Km(krf )N− Im(krf )M with the zeros and divergences of AθΛ2 interlacing
each other as shown in figure 6(a). The singularities again imply a quiescent exterior
(r > rf ) as the singular structure at these radii screens the perturbation velocity field
induced by the column oscillations. An analogy with a bounded domain problem is,
however, not evident owing to the axial jet riding on the vessel walls. Finally, the
vorticity field associated with a Λ2 eigenmode is given by

ŵΛ2
z (r; rf )=−2dgΩ0β

2Jm(βr)
k{g2 − 4Ω2

0 }
H(a− r)+ [ûθ

]r=a+
r=a− δ(r− a), (2.70)

ŵΛ2
r (r; rf )=− 2idΩ0

r{g2 − 4Ω2
0 }
[
gβrJ′m(βr)+ 2mΩ0Jm(βr)

]
H(a− r)− imAθΛ2δ(r− rf ),

(2.71)

ŵΛ2
θ (r; rf )= 2dΩ0

r{g2 − 4Ω2
0 }
[
2Ω0βrJ′m(βr)+mgJm(βr)

]
H(a− r)+ rf AθΛ2δ

′(r− rf ),

(2.72)

where
[
ûθ
]r=a+

r=a− =
m
ka

[c1Im(ka)+ c2Km(ka)]− dg
ka{g2 − 4Ω2

0 }
[
2Ω0βaJ′m(βa)+mgJm(βa)

]
,

(2.73)

and c1, c2 and d being given by (2.66)–(2.68). As shown in figure 6(b), in light
of the Λ1 and Λ2 families, the Kelvin-mode frequencies and the corresponding
eigenfunctions (2.36)–(2.38) may now be regarded as degenerate in that they
correspond to the zeros of both A1(rf ) and AθΛ2(rf ).

2.2.3. The modal decomposition for an arbitrary vortical initial condition
For a fixed m ( 6= 0) and k, an arbitrary smooth initial distribution of vorticity of

the form w(x, 0) = [wr0(r), wθ0(r), (i/(kr))(imwθ0(r) + (rwr0(r))′)]ei(kz+mθ) may now
be evolved as the following superposition of the Kelvin modes, and the Λ1 and Λ2
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FIGURE 6. (a) The amplitude of the vortex sheet for Λ2 family, AθΛ2 , as a function of
rf , for m= 2 and k= 2. (b) A magnified view of the rapid variation near the core of the
amplitudes of the singular structures for the Λ2 (dashed) family and its comparison with
its Λ1 (continuous) counterpart. The amplitudes A1 and AθΛ2 evidently have coincident
zeros (which correspond to the Kelvin radii) but distinct singularities.

families:

w(x, t)=
∫ ∞

a+

[
XΛ1(rf )ŵ

Λ1(r; rf )+ XΛ2(rf )ŵ
Λ2(r; rf )

]
ei[kz+m(θ−Ω(rf )t)] drf

+
{∑

b=±1

∞∑

n=1

(Cnb − Anb)ŵ
Kelvin
nb (r)e−iωb

n t

}
ei(kz+mθ), (2.74)

where
XΛ1(rf )= rf

A1

[
wθ0(rf )H(rf − a)− i

m

(
rf wr0(rf )H(rf − a)

)′
]
, (2.75)

XΛ2(rf )= i
m

wr0(rf )H(rf − a)
AθΛ2

, (2.76)
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and ŵKelvin
nb , ŵΛ1 and ŵΛ2 are known from (2.36)–(2.38), (2.57)–(2.59) and (2.70)–

(2.72), respectively. The ωb
n in (2.74) are the Kelvin-mode frequencies obtained

from (2.35), and the Cnb and Anb denote the corresponding modal amplitudes. The
expression (2.74) has been shown to be equivalent to one obtained from a solution of
the IVP (Roy 2013), and this will reported in detail elsewhere. Herein, we argue that
the general form of (2.74) may be arrived at by examining the modal superposition
at t = 0. Our choice of the CS-mode families, in particular, the absence of radial
vorticity in the Λ2 family eigenfunctions, in the irrotational exterior, allows one to
construct this initial superposition in a simple sequential manner. To begin with, a
superposition of Λ2 eigenmodes alone is needed to represent the initial radial vorticity
in r > a, the required amplitude distribution being given by (2.76). The difference
between the initial and Λ2 azimuthal vorticities, for r> a, may then be represented by
a superposition of Λ1 eigenmodes (the axial component is automatically determined
from the solenoidal constraint) with the amplitude distribution being given by (2.75).
This superposition of Λ1 and Λ2 eigenmodes now accounts for the entire initial
vorticity outside the core. What remains is the difference between the initial vorticity
inside the core (and a possible axial vortex sheet at its edge) and the additional core
and edge vorticities generated by the Λi superposition. This vorticity distribution is
equivalent to a column deformation and, therefore, using the results of Arendt et al.
(1997), it may be expressed as a summation over Kelvin modes, and the required
Kelvin-mode amplitude distributions are

Cnb(Anb)=
[

gC(A)(a)J′m(kξn,ba)
kξn,baJm(kξn,ba)

− a
g′C(A)(a)
(kξn,ba)2

+ PC(A)

]
Bb

n, (2.77)

where Cnb and Anb, respectively, correspond to the Kelvin-mode superpositions needed
to represent the original initial vorticity, and that in the Λi superpositions. The various
quantities in (2.77) are as defined below:

Bb
n=

2ξ 2
n,bbiΩ0

(ξ 2
n,b + 1)3/2


 2J′m(kξn,ba)

kξn,baJm(kξn,ba)
+
{

J′m(kξn,ba)
Jm(kξn,ba)

}2

+ 1− m2

(kξn,ba)2
+ bm(ξ 2

n,b + 2)√
ξ 2

n,b + 1(kξn,ba)2



−1

, (2.78)

PC(A)= 1
k2a

{
2Ω0wcore

rC(A)(a)+ i(ωb
n −mΩ0)wcore

θC(A)(a)
(ωb

n −mΩ0)2 − 4Ω2
0

}
, (2.79)

gC(A)(a)=
∫ a

0

πr′

2

[
2Ω0ik

(ωb
n −mΩ0)2

wcore
zC(A) −

i
ωb

n −mΩ0

{
d

dr′
(r′wcore

θC(A))− imwcore
rC(A)

}]

× {Ym(kξn,ba)Jm(kξn,br′)− Jm(kξn,ba)Ym(kξn,br′)
}

dr′, (2.80)

where

ξn,b = βn,b

k
= 4Ω2

0

g2
n,b
− 1, gn,b = (mΩ0 −ωb

n). (2.81)

The expressions (2.79) and (2.81) suggest singularities at the frequency values
ω = mΩ0 and ω = (m ± 2)Ω0, corresponding to the limits k → 0 and k → ∞,
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respectively, of the Kelvin dispersion curves. It may be shown that ω = (m ± 2)Ω0
are apparent singularities. The core angular frequency (ω = mΩ0), although an
essential singularity of the Bessel functions in (2.78), does not contribute for any
initial condition that lacks a singular wθ projection at the edge of the core (∝ δ(r− a)).
Thus, equation (2.77) may be written in the following simplified form:

Cnb(Anb)=− Bb
n

g2
n,b(βn,ba)2

[∫ a

0

{
2Ω0ikr′wcore

zC(A) + ign,b

{
d

dr′
(r′wcore

θC(A))

− imwcore
rC(A)

}}
Jm(kξn,br′)
Jm(kξn,ba)

dr′ + a
{

wcore
rC(A)(a)− ign,bwcore

θC(A)(a)
}]
. (2.82)

Here, wcore
C (x, t) is the initial vorticity in the core, namely (wcore

rC (r), wcore
θC (r)) ≡

(wr0(r),wθ0(r))H(a− r)ei(kz+mθ), and wcore
A (x, t) is the core projection of the Λi modes

given by

wcore
rA (r)= ∫∞a+ XΛ2(rf )ŵΛ2

r (r; rf ) drf H(a− r), (2.83)

wcore
θA (r)=

∫∞
a+
[
XΛ1(rf )w

Λ1
θ (r; rf )+ XΛ2(rf )w

Λ2
θ (r; rf )

]
drf H(a− r). (2.84)

The modal superposition, (2.74), may now be rewritten as

w(x, t)=
∫ ∞

a+

[
XΛ1(rf )ŵ

Λ1(r; rf )+ XΛ2(rf )ŵ
Λ2(r; rf )

]
ei[kz+m(θ−Ω(rf )t)] drfH(r− a)

+
{∑

b=±1

∞∑

n=1

CnbŵKelvin
nb (r)e−iωb

n t −
∫ ∞

a+

∑

b=±1

∞∑

n=1

[
XΛ1(rf )G

Λ1
nb + XΛ2(rf )G

Λ2
nb

]

× ŵKelvin
nb (r)(e−iωb

n t − e−imΩ(rf )t) drf

}
ei(kz+mθ), (2.85)

with

GΛi
nb =

[
gi(a)J′m(kξn,ba)
kξn,baJm(kξn,ba)

− a
g′i(a)

(kξn,ba)2
+ Pi

]
Bb

n, (2.86)

where

Pi= 1
k2a

{
2Ω0wΛi

r (a)+ i(ωb
n −mΩ0)w

Λi
θ (a)

(ωb
n −mΩ0)2 − 4Ω2

0

}
, (2.87)

gi(a)=
∫ a

0

πr′

2

[
2Ω0ik

(ωb
n −mΩ0)2

wΛi
z −

i
ωb

n −mΩ0

{
d

dr′
(rwΛi

θ )− imwΛi
r

}]

× {Ym(kξn,ba)Jm(kξn,br′)− Jm(kξn,ba)Ym(kξn,br′)
}

dr′, (2.88)

and i= 1, 2. Using the expressions for CS-mode vorticity fields (wΛi
r , wΛi

θ , wΛi
z ) from

(2.57)–(2.59) and (2.70)–(2.72) one can simplify GΛi
nb to

GΛi
nb =

dΛi

i(ωb
n −mΩ)

M
(ka)2Km(ka)

1
4Ω2

0 − g2
Bb

n, (2.89)

where M is defined in (2.55) (M = 0 being the Kelvin-mode dispersion relation).
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For any finite t, each of the Λi modes in the initial superposition is convected with
the local angular velocity Ω(rf ) in the irrotational exterior, leading to the first term
in (2.85) that denotes exterior vorticity. The evolution of the initial core vorticity
is entirely characterized by the Kelvin modes, leading to the second term in (2.85).
Finally, the third term accounts for the dephasing between the core projection of
the Λi eigenmodes that is convected with Ω(rf ), and the Kelvin-mode contributions,
characterized by the ωb

n, that cancel out this core projection at the initial instant.
The amplitude coefficients in this term, Anb, have a denumerably infinite sequence
of singularities of at ω = ωb

n corresponding to the zeros of A1 and AθΛ2. These
singularities are the signatures of the secular growth that would occur for singular
initial conditions localized at the Kelvin critical radii, and as in the two-dimensional
case, may again be interpreted as resonances between the point and continuous
spectra. For helical vortex-sheet-type initial conditions, localized at one or more
Kelvin radii, resonant interactions between the advected sheet and the corresponding
Kelvin mode(s) lead to a quadratic growth in the kinetic energy. In three dimensions,
one may also have a localized initial radial vorticity field, in which case there is a
further enhancement due to the tilting and stretching of the initial radial vorticity field
by the shear in the irrotational exterior. A resonant interaction arises now between a
Kelvin mode and a co-rotating exterior azimuthal vorticity field that grows linearly
with time, and the resulting kinetic energy grows quartically with time (Roy 2013).

For a point vortex, the spectrum is purely continuous, being made up of the
Λ1 and Λ2 families, and only the first term in (2.85) remains. Redefining the
CS-mode eigenfunctions as w̃Λ1 ≡ (0, −krf δ(r − rf ), mδ(r − rf )) and w̃Λ2 ≡
(−imkrf δ(r− rf ), kr2

f δ
′(r− rf ),0), an arbitrary initial condition evolves as the following

integral superposition of these convected modes:

w(x, t)=
∫ ∞

0

{
Xp
Λ1
(rf )ŵΛ1(r; rf )+ Xp

Λ2
(rf )ŵΛ2(r; rf )

}
ei[kz+m(θ−Ω(rf )t)] drf , (2.90)

where Xp
Λ1
(rf ) = −(1/krf )(wθ0(rf ) − (i/m)(d/drf )(rwr0(rf ))) and Xp

Λ2
(rf ) = (i/m)

(wr0(rf )/krf ). For an initial condition with wr0= 0, the evolution is solely on account
of differential convection, and (2.90) reduces to w(x, t) = w(x, 0)ei[kz+m(θ−Ω(r)t)].
With radial vorticity, an integration by parts of δ′(r − rf ) naturally accounts
for the (non-modal) linear growth in wθ with t, and one obtains w(x, t) =
[wr0(r), wθ0(r) − 2Ω(r)twr0(r), wz0(r)]ei[kz+m(θ−Ω(r)t)]. The equivalence of (2.90) to
the solution of the corresponding IVP is readily established, while that of (2.85) is
shown in Roy (2013).

2.2.4. The axisymmetric eigenmodes
As already pointed out, axisymmetric Kelvin modes are the eigenfunctions of an

ordinary differential equation that conforms to classical Sturm–Liouville theory (Ince
1956; Chandrasekhar 1961) provided only that the base state vorticity is non-zero.
However, the spatial separation of the regions of strain and vorticity in the Rankine
vortex means that the completeness of these oscillatory modes only extends to
axisymmetric column deformations. Radial-vorticity in the region r > a leads to a
non-modal (secular) response. This is immediate from the governing (linearized)
equation for wθ which, for axisymmetric perturbations outside the core, takes the
form ∂wθ/∂t = (wrr)(∂Ω/∂r) with Ω(r) =Ω0a2/r2; so, an arbitrary wr(r) for r > a
leads to wθ(r, t) ∝ t. Although the modal representation in the earlier section, given
by (2.74), was developed for a non-zero m, the evolution of an arbitrary axisymmetric
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vorticity field at the initial instant may nevertheless be obtained by taking the limit
m→ 0 in (2.74).

For m= 0, the dispersion curves for positive and negative ω are symmetric about
ω = 0, there no longer being a structureless branch, with the positive and negatives
values of ω corresponding to waves that propagate in the downward and upward
directions, respectively. We therefore reorder the modes such that b = −1, n = 1
is now the first mode for both wave families (recall that, for non-zero m, the
labelling was asymmetric on account of the structureless branch). Thus, we have
ω−1

n = −ω+1
n , B−1

n = −B+1
n , ŵKelvin

r,n(−1)(r) = −ŵKelvin
r,n(+1)(r) and ŵKelvin

θ,n(−1)(r) = ŵKelvin
θ,n(+1)(r),

and the modal superposition may be expressed in terms of either family. With
ŵKelvin

r,n (r) ≡ ŵKelvin
r,n(+1)(r), ŵKelvin

θ,n (r) ≡ ŵKelvin
θ,n(+1)(r), ωn ≡ ω+1

n and Bn ≡ B+1
n , the radial and

azimuthal vorticity components at time t are given by

wr(x, t)=wr0(r)H(r− a)eikz

+ 2
∞∑

n=1

Bn

ω2
n(βn,ba)2

ŵKelvin
r,n (r) {2Ω0 cos(ωnt)Fn1 −ωn sin(ωnt)Fn2} eikz

+ 2
∞∑

n=1

Bn

ωn
ŵKelvin

r,n (r)eikz

{
sin(ωnt)

∫ ∞

a

K0(kr′)
(ka)2K0(ka)

d
dr′
[r′wθ0(r′)] dr′

+ cos(ωnt)− 1
ωn

∫ ∞

a

K0(kr′)
(ka)2K0(ka)

2Ωwr0(r′) dr′
}
, (2.91)

wθ(x, t)= {wθ0(r)− 2Ωtwr0(r)}H(r− a)eikz

− 2i
∞∑

n=1

Bn

ω2
n(βn,ba)2

ŵKelvin
θ,n (r) {2Ω0 sin(ωnt)Fn1

+ ωn cos(ωnt)Fn2} eikz + 2i
∞∑

n=1

Bn

ωn
ŵKelvin
θ,n (r)eikz

×
{
(cos(ωnt)− 1)

∫ ∞

a

K0(kr′)
(ka)2K0(ka)

d
dr′
[r′wθ0(r′)] dr′

+
(

t− sin(ωnt)
ωn

) ∫ ∞

a

K0(kr′)
(ka)2K0(ka)

2Ωwr0(r′) dr′
}
, (2.92)

where
Fn1=

∫ a

0
ikr′wz0(r′)

J0(βnr′)
J0(βna)

dr′ + awr0(a), (2.93)

Fn2=
∫ a

0

d
dr′
(
r′wθ0(r′)

) J0(βnr′)
J0(βna)

dr′ − awθ0(a), (2.94)

and the secular term in (2.92) arises due to the initial radial vorticity. With wr0(r)= 0,
wθ(x, t) reduces to the following simpler form:

wθ (x, t)=wθ0(r)H(r− a)eikz − 2i
∞∑

n=1

Bn

ωn(βn,ba)2
ŵKelvin
θ,n (r) cos(ωnt)Fn2eikz

+ 2i
∞∑

n=1

B−1
n

ωn
ŵKelvin
θ,n (r)eikz (cos(ωnt)− 1)

∫ ∞

a

K0(kr′)
(ka)2K0(ka)

d
dr′
(
r′wθ0(r′)

)
dr′,

(2.95)
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without algebraically growing terms. The response given by (2.95) may be divided
into two components: the term proportional to Fn2 denotes the initial core vorticity
that evolves as a discrete summation of sausaging modes; the first and the last
terms together denote the response to exterior azimuthal vorticity and involve both
a superposition of sausaging modes and a steady contribution. The unsteady part
arises due to the vortex column deformation induced by the exterior vorticity. Since
this deformation is driven by ur|r=a =

∫∞
a (d/dr′)[r′wθ0(r′)]K0(kr′) dr′, the restriction∫∞

a (d/dr′)[r′wθ0(r′)]K0(kr′) dr′ = 0, Fn2 = 0, leads to an undeformed vortex column
with a quiescent core. The resulting steady vorticity field, wθ0(r)H(r − a)eikz, or
the associated velocity field given by uz = eikz[K0(kr)

∫ r
a I0(kr′)(d/dr′)[r′wθ0(r′)] dr′ +

I0(kr)
∫∞

r K0(kr′)(d/dr′)[r′wθ0(r′)] dr′]H(r − a) may be regarded as the degenerate
zero-frequency axisymmetric eigenmode.

Transient growth has been observed in numerical simulations for axisymmetric
perturbations to a smooth (Lamb–Oseen) vorticity profile (Pradeep & Hussain 2006),
and would appear to go against the notion of such growth only being associated
with non-normal differential operators with an underlying CS (Trefethen et al. 1993;
Schimd & Henningson 2001). There is no contradiction, however. The self-adjointness
of the differential operator for the axisymmetric case is not in the energy norm,
and the velocity eigenfunctions are by themselves not mutually orthogonal. Except
for rigid-body rotation (Greenspan 1968) the energy associated with any modal
superposition will therefore necessarily vary with time, albeit only in an oscillatory
fashion in the inviscid limit (there are quantities such as the pseudo-momentum
and the pseudo-energy that are indeed time-invariant, and point to additional
weighting functions that must be included in an inner product in order to render
the eigenfunctions orthogonal (Held 1985)). Physically, the presence of a shear
allows for an exchange of energy between the base state and the perturbation, via
a Reynolds stress contribution, but this exchange averages out to zero over a time
period of oscillation for m = 0. For sufficiently slow oscillations, the short-time
dynamics of the energy is indistinguishable from transient growth, and is governed
by the same physical mechanisms.

The response of a Rankine vortex to an axisymmetric perturbation is a singular
limiting case of a smooth profile. In the latter case, the perturbation vorticity field
associated with the eigenfunctions extends throughout the domain, allowing for an
arbitrary axisymmetric vorticity field evolve as a summation over sausaging modes
alone. For a monotonically decaying base-state vorticity profile, the radial length scale
of a typical vorticity eigenfunction increases with increasing r with a corresponding
decrease in the eigenfunction amplitude. For sufficiently large modal indices, the
vorticity eigenfunction for a smooth vortex exhibits a rapid large-amplitude oscillation
in the near-field that transitions to a small-amplitude increasingly gentle waviness in
the distant, nearly irrotational, exterior. If one now considers an initial distribution of
radial vorticity localized in the irrotational region, the required modal superposition
will involve eigenfunctions with a projection in this region having a length scale of
the same order as that characterizing the initial condition. The near-field projection of
each of these eigenfunctions has a much larger amplitude, and is also characterized by
a much smaller radial length scale. These near-field contributions from the different
eigenfunctions involved in the superposition will cancel out at the initial instant,
but the gradual dephasing with time would eventually lead to a large-amplitude
fine-scaled oscillatory core response (Pradeep & Hussain 2006). The approach to
this large-amplitude oscillation would be via a short-time transient wherein core
perturbations are driven by an exterior azimuthal vorticity field that grows linearly
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with time. The deviation from this behaviour due to the eventual decay of the source
term (wr), on account of Coriolis forces, would occur on a much longer time scale
of the order of the inverse eigenfrequency. The Rankine limit corresponds to the
oscillation time period approaching infinity, leading to a true algebraic growth.

2.2.5. The relation between the two-dimensional and three-dimensional eigenspectra
It is easily shown that a Λ1 mode, characterized by (2.57)–(2.59), approaches the

corresponding two-dimensional singular mode given by (2.17) for k → 0 and for
a fixed ω (or rf ). On the other hand, a Λ2 mode, characterized by (2.70)–(2.72),
approaches an axial jet localized at the critical radius (uΛ2

z ∝ δ(r − rf ); uΛ2
r , uΛ2

θ → 0)
in the same limit, and plays no role in the evolution of an axial vorticity distribution.
Of most relevance is the k→ 0 limit along a fixed dispersion curve (that is, with
ω ∼ O(k) for k → 0 rather than with ω fixed). The approach of the structureless
mode, in this limit, to the two-dimensional Kelvin mode given by (2.18), is well
documented (see Leibovich & Ma 1983; Saffman 1992), and we consider only the
structured modes with ωb

n → mΩ0 for k→ 0. The frequency intervals between the
structured modes, corresponding to the CS, become vanishingly small for k → 0,
and it suffices to examine the dispersion curves (discrete modes) alone. Further,
consideration of the co-grade family (b = −1) is sufficient since the βn,b for the
co-grade and retro-grade families (excluding the structureless branch, n = 1) equal
each other in the limit k→ 0, and the corresponding eigenfunctions are no longer
independent. The co-grade eigenfunctions are given by (2.36)–(2.38). The small k
asymptotes for ωb

n of co-grade modes are given by

ω−1
n =





2ka
j0
n

[
1− (1− 2 log ka)

(ka)2

2j02
n

]
+ · · · for m= 0,

mΩ0 +Ω0
2ka
jm
n

[
1− (m− 2)

m
(ka)2

2jm2
n

]
+ · · · for m 6= 0,

(2.96)

(see table 1) and the βn,b are readily obtained from (2.35) as

lim
k→0
(βn,−1a)= jm

n −
(ka)2

mjm
n

, (2.97)

for m 6= 0, where jm
n is the nth zero of Jm(x) (Watson 1927). The use of (2.97) in

(2.36)–(2.38) leads to the following limiting expressions for the vorticity components
of the co-grade modes:

lim
k→0

ŵKelvin
z,n(−1)=

mjm
n

a(ka)2

[
jm
n Jm(jm

n
r
a)

J′m(jm
n )
+ aδ(r− a)

]
, (2.98)

lim
k→0

ŵKelvin
r,n(−1)=−

im2jm
n

(ka)2

[
Jm(jm

n
r
a)

rJ′m(jm
n )

]
, (2.99)

lim
k→0

ŵKelvin
θ,n(−1)=

mjm
n

a(ka)2

[
jm
n J′m(j

m
n

r
a)

J′m(jm
n )

]
. (2.100)

The above vorticity field drives an O(1/k2) flow within the core. The normalization
used in the analysis is based on the exterior axial velocity field which therefore
remains O(1) with the exterior radial component being O(1/k). Thus, the exterior
becomes increasingly quiescent relative to the core for k→ 0, suggesting a relation
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Structureless (ωd) Structured

ωb
n (m− 1)Ω0 mΩ0 − bΩ0

2ka
jm
η

gn,b Ω0 bΩ0
2ka
jm
η

ξn,b

√
3

jm
η

ka

βn,ba
√

3ka jm
η −

(ka)2

mjm
η

Bb
n

iΩ0

2
(ka)2

m
2ibΩ0

m2

(ka)5

(jm
η )

3

ŵKelvin
z,nb (r)

2m
ka
δ(r− a) − bmjm

η

a(ka)2





jm
η Jm

(
jm
η

r
a

)

J′m(jm
η )

+ aδ(r− a)





TABLE 1. The asymptotic forms, for k→ 0, of quantities related to the structureless and
structured Kelvin modes. Here η= n and n− 1 for the co-grade and structured retrograde
modes, respectively.

between the long-wavelength structured modes and the two-dimensional core
eigenmodes in § 2.1. Considering the general expression, (2.19), for the latter, and
expanding g(r/a) as a Fourier–Bessel series, one obtains

ŵcore
z =

∞∑

n=1

an

[
Jm

(
jm
n

r
a

)
− δ(r− a)

∫ a

0

(
r′

a

)m+1

Jm

(
jm
n

r′

a

)
dr′
]
, (2.101)

where the an are the coefficients in the Fourier–Bessel expansion of g(r/a), being
defined as

an = 2
J2

m+1(jm
n )

∫ 1

0
xg(x)Jm(jm

n x) dx. (2.102)

Using the relation xm = ∑∞p=1 (2Jm(jm
p x)/jm

p Jm+1(jm
p )) (see Watson 1927), equation

(2.101) takes the form

ŵcore
z =

∑∞
n=1 an

[
Jm
(
jm
n

r
a

)− δ(r− a)
∑∞

p=1
2

jmp Jm+1(jmp )

∫ a
0

r′
a Jm

(
jm
n

r′
a

)
Jm
(
jm
p

r′
a

)
dr′
]
.

(2.103)

Using the orthogonality of the Bessel functions, and that Jm+1(jm
n )=−J′m(j

m
n ), the above

expression simplifies to

ŵcore
z =

∞∑

n=1

an

[
Jm

(
jm
n

r
a

)
+ aJ′m(j

m
n )

jm
n

δ(r− a)
]
, (2.104)
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which may be rewritten as

ŵcore
z =

∞∑

n=1

a′n lim
k→0

ŵKelvin
z,n(−1), (2.105)

with a′n = an(J′m(j
m
n )/m)(ka/jm

n )
2 and ŵKelvin

z,n(−1) being given by (2.98). Thus, a linear
superposition of the axial vorticity components of the structured Kelvin modes, in
the limit of vanishing axial wavenumber, maps onto the Fourier–Bessel representation
of the general core eigenmode given by (2.19). It is interesting to note that the
radial and azimuthal vorticity components of the structured modes are of the same
order as the axial vorticity for k → 0 (see (2.98) and (2.99)), but drive a purely
axial flow in this limit. Thus, the original three-dimensional velocity field decouples
into independent axial ([ŵz; ûr, ûθ ] and transverse ([ŵr, ŵθ ; ûz]) components in the
long-wavelength limit.

The main result obtained thus far is a modal interpretation of the IVP involving a
Rankine vortex. Such an interpretation leads to (2.20) and (2.74)–(2.85) for vortical
initial conditions in two and three dimensions, respectively. In the final part of this
section, we examine the manner in which (2.74) reduces to (2.20) for k→ 0, and for
this purpose, we consider an initial vorticity field devoid of radial vorticity, w(x, 0)=
[0,−(kr/m)wz0(r), wz0(r)]ei(kz+mθ). This is because any additional radial vorticity will
only drive an axial flow in the limit k→ 0, and this is, in any case, not included in
(2.20). Thus, with XΛ1 =−(kr2

f /mA1)wz0(rf )H(rf − a),XΛ2 = 0, we consider the k→ 0
limit of the arbitrary time expression for axial vorticity:

wz(x, t)=
∫ ∞

a+
XΛ1(rf )ŵΛ1

z (r; rf )ei[kz+m(θ−Ω(rf )t)] drfH(r− a)

+
{∑

b=±1

∞∑

n=1

CnbŵKelvin
z,nb (r)e−iωb

n t

−
∫ ∞

a+

∑

b=±1

∞∑

n=1

XΛ1(rf )G
Λ1
nb ŵKelvin

z,nb (r)(e−iωb
n t − e−imΩ(rf )t) drf

}
ei(kz+mθ).

(2.106)

Further simplification results from using the expression for GΛ1
nb from (2.89), and that

for Cnb from (2.82), leading to

wz(x, t)=wz0(r)ei[kz+m(θ−Ω(r)t)]H(r− a)+
[
−ika

∑

b=±1

∞∑

n=1

Bb
n

g2
n,b(βn,ba)2

ŵKelvin
z,nb (r)

×
∫ a

0
wz0(rf )

(rf

a

){
2Ω0

Jm(βn,brf )

Jm(βn,ba)
+ gn,b

m
βn,brf J′m(βn,brf )

Jm(βn,ba)

}
drf e−iωb

n t

+
∑

b=±1

∞∑

n=1

Bb
nŵKelvin

z,nb (r)
∫ ∞

a+

(rf

a

)2 K′m(krf )

Km(ka)
wz0(rf )

m
e−iωb

n t − e−imΩ(rf )t

i(ωb
n −mΩ(rf ))

drf

]

× ei(kz+mθ). (2.107)

The summations in the above expression can be split into two contributions, one from
the structureless branch (ω+1

1 → (m− 1)Ω0), and the other from the structured branch
(ωb

n→mΩ0), as k→ 0. Table 1 highlights the various asymptotic forms for k→ 0 for
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both these cases. Use of these asymptotic results shows that, in the second summation
in (2.107), only the structureless branch survives for k→ 0, the structured branches
being O(k2) smaller. In contrast, the first summation will have contributions from
both structured and structureless branches. The double summation for the structured
branches can be reduced to a single summation by noting that B−1

n = −B+1
n+1 and

ŵKelvin
z,n(−1)(r) = −ŵKelvin

z,n+1(+1)(r) ≡ ŵKelvin
z,n (r). On substituting the expressions from table 1,

one finds

wz(x, t)=wz0(r)ei[m(θ−Ω(r)t)]H(r− a)

+
[
δ(r− a)e−iωd t

∫ a

0
wz0(rf )

(rf

a

)m+1
drf

+ 2
∞∑

n=1

1
m

(
ka
jm
n

)2 ∫ a

0
wz0(rf )

rf

a

Jm

(
jm
n

rf

a

)

J′m(jm
n )

drf

× mjm
n

a(ka)2





jm
n Jm

(
jm
n

r
a

)

J′m(jm
n )

+ aδ(r− a)





e−imΩ0t

+ δ(r− a)
∫ ∞

a+
Ω0

(
a
rf

)m−1

wz0(rf )
e−imΩ(rf )t − e−iωnt

(ωd −mΩ(rf ))
drf

]
eimθ ,

=wz0(r)ei[m(θ−Ω(r)t)]H(r− a)+ ŵcore
z eim[θ−Ω0t]

+ δ(r− a)

[
e−iωd t

∫ a

0
wz0(rf )

(rf

a

)m+1
drf

+
∫ ∞

a+
Ω0

(
a
rf

)m−1

wz0(rf )
e−imΩ(rf )t − e−iωd t

(ωd −mΩ(rf ))
drf

]
eimθ , (2.108)

which leads to the two-dimensional modal superposition given in (2.20)–(2.21). Here,
the reduction of the summation to ŵcore

z has been done using (2.104).

3. The singular eigenspectrum of a smooth vortex
The analysis for the non-axisymmetric modes in § 2 has been restricted to a

Rankine vortex. The natural question is as to how the results, including the modal
representations (2.20) and (2.74), generalize to a smooth vorticity profile. For
two-dimensional perturbations, this is answered in § 3.1 below by adapting the
analysis of Balmforth & Morrison (1995), developed originally for homogeneous
nonlinear parallel flows, to the vortex case. The nature of the regular singular point
in the governing linearized equations for two-dimensional perturbations remains the
same in both cases, with DZ for the vortex column playing the role of U′′ in a
parallel flow. The Frobenius indices associated with the singular point are integers
(0 and 1), and one of the radial velocity eigenfunctions must, for non-zero DZ,
have a logarithmic branch point at the critical radius (rf ). As a result, the vorticity
eigenfunctions of the two-dimensional CS modes associated with a smooth vortex
include both a delta-function singularity and a non-local PV singularity, proportional
to DZ, arising from the aforementioned logarithmic term. Physically, the latter term
arises due to the radial velocity perturbation acting to convect the inhomogeneous
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base-state vorticity field to the to the vicinity of the critical radius. This contribution
is evidently absent for a Rankine vortex since DZ is zero for r> a.

The three-dimensional spectrum of a smooth vortex bears an analogy to stratified
parallel flows, and one may indeed define a Richardson number associated with a
perturbation of a given axial wavenumber involving the local vorticity and vorticity
gradient (Le Dizès 2004, see also § 4). Physically, the Coriolis forces in the case
of a smooth vortex play the same role as buoyancy forces in the stratified context.
As a result, a rigidly rotating incompressible fluid supports transverse waves with
the same dispersive characteristics as the internal gravity waves supported by an
otherwise quiescent stably stratified fluid. In § 3.2, we focus on the structure of the
smooth-vortex three-dimensional CS modes in the vicinity of rf . The differences in
the nature of the singularity in the three-dimensional vorticity eigenfunctions relative
to those of a Rankine vortex (where both two-dimensional and three-dimensional
vorticity eigenfunctions have only localized generalized function singularities), and
those for two-dimensional perturbations (where the vorticity eigenfunctions have an
additional non-local PV-singular term) that arise due to the singular point of the
Howard–Gupta equation now having fractional Frobenius exponents are highlighted.
In particular, it is shown, based on the known solution for stratified Couette flow
(Engevik 1971), that the singular terms in the vorticity eigenfunctions of the
three-dimensional CS modes must be interpreted in the sense of a principal finite part
(Lighthill 1958; Gel’fand & Shilov 1964). This in turn implies that the forcing terms
localized at the critical radius that must appear in the governing equation for the
three-dimensional CS modes (that is identical in form to the Taylor–Goldstein (TG)
equation in the vicinity of rf ), are not the delta function and its derivative as for
the Rankine vortex (see (2.41) and (2.62) for the Λ1 and Λ2 families). Instead, the
forcing terms correspond to genuinely non-summable singularities and are, therefore,
not even generalized functions (Gel’fand & Shilov 1964). They may, symbolically,
be likened to the product of a delta function and an inverse algebraic power that
depends on the Frobenius exponent.

3.1. Two-dimensional singular eigenspectrum
With (2.1) governing the evolution of two-dimensional perturbations, the axial vorticity
eigenfunction for the CS mode associated with a smooth vortex may be written as
(Van Kampen 1955; Case 1959; Balmforth & Morrison 1995)

ŵCSM
z (r; rf )= A1(rf )δ(r− rf )−P

1
r

DZ(r)ψ̂CSM(r; rf )

Ω(r)−Ω(rf )
, (3.1)

where the symbol P implies that the second term in (3.1), integrated over an
interval that includes rf , must be interpreted in the sense of a Cauchy PV. Thus, the
two-dimensional CS modes associated with a smooth vortex have, in addition to a
delta-function singularity, a non-local PV-singular contribution proportional to DZ.
This latter singularity arises because for any DZ, however small, in a reference frame
that rotates with Ω(rf ), the azimuthal convection of ŵz becomes asymptotically weak
close to rf , compared with the finite rate at which the base-state vorticity field is
convected towards the critical radius. The PV interpretation may be understood as
a self-consistency requirement. That is, a PV interpretation of the integral in (3.1)
ensures that the radial velocity induced at the critical radius remains finite despite
the non-integrable singularity in the vorticity field, this being consistent with the
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finite rate of induction in the original argument (Roy & Subramanian 2012). The
perturbation streamfunction, ψ̂CSM, in (3.1) satisfies

(
rD2 +D− m2

r

)
ψ̂CSM(r; rf )=−rŵCSM

z (r; rf ). (3.2)

A normalization that is particularly convenient is one based on the total (axial)
vorticity in a CS mode. As shown by Balmforth & Morrison (1995), with

∫∞
0 ŵCSM

z
(r′; rf ) dr′ = 1, equation (3.1) takes the form

ŵCSM
z (r; rf )=

{
1+P

∫ ∞

0

1
r′

DZ(r′)ψ̂CSM(r′; rf )

Ω(r′)−Ω(rf )
dr′
}
δ(r− rf )

−P
1
r

DZ(r)ψ̂CSM(r; rf )

Ω(r)−Ω(rf )
. (3.3)

The streamfunction ψ̂CSM then satisfies an inhomogeneous Fredholm integral equation
of the second kind, rather than a Cauchy integral equation with a PV-singular kernel,
and is readily obtained by numerical means. Using (3.2) and (3.3), it is easily shown
that

ψ̂CSM(r; rf )−
∫ ∞

0
M(r, r′; rf )ψ̂

CSM(r′; rf ) dr′ =−rfG(r; rf ), (3.4)

where G(r; rf )=−(1/2m)(r</r>)m, with r< (r>) denoting the smaller (larger) of r and
rf , is the Green’s function of (3.2), and the regularized kernel, M(r, r′; rf ), is given
by

M(r, r′; rf )= DZ(r′)
r′

{
r′G(r; r′)− rfG(r; rf )

Ω(r′)−Ω(rf )

}
. (3.5)

An artifact of the above normalization is that the CS modes that are homogeneous
solutions of (3.4) must be handled separately (see Balmforth & Morrison 1995 for
details). Such solutions are expected for smooth vortices, at least those that closely
approximate the Rankine profile, and correspond to the CS mode having zero net axial
vorticity in r ε [0,∞) for any θ . For the Rankine vortex, this would be equivalent to
the sum of the vortex sheet amplitudes at r = a and r = rf being zero; using (2.15)
and (2.17), this implies m(a/rf )

2+ (a/rf )
(m−1)= (m− 1), which has a unique solution

in (a,∞) for any m > 1. It must be emphasized that the homogeneous solutions of
the Fredholm equation are generic CS modes and do not have any particular physical
significance. However, the homogeneous solutions of the original Cauchy integral
equation (that is, those with A1 = 0) correspond to singular free oscillations. This is
in contrast to the Kelvin mode which is the regular free oscillation of the deformed
Rankine vortex. Such singular oscillations (one for each m > 2) are consistent with
a nonlinear critical layer at the particular rf , of a vanishingly small thickness that
supports a zero phase jump across it, and are therefore the vortex analogues of the
Benney–Bergeron–Davis modes for parallel flows (Benney & Bergeron 1969; Davis
1969).

The evolution of an initial axial vorticity distribution of the form wz0(r)eimθ , as an
integral superposition of the two-dimensional CS modes (and the singular discrete
mode), is given by

wz(r, θ, t)=
∫ ∞

0
Π(rf )ŵCSM

z (r; rf )eim(θ−Ω(rf )t) drf , (3.6)
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where the amplitude distribution of the CS modes is given by

Π(rf )= 1
(ε2

R + ε2
L)

{
εRwz0(rf )− εL

π

Ω ′(rf )

ψ̂CSM(rf ; rf )
P
∫ ∞

0

wz0(r′)ψ̂CSM(rf ; r′)
Ω(r′)−Ω(rf )

dr′
}
;

(3.7)

εR= 1+P
∫ ∞

0

1
r′

DZ(r′)ψ̂CSM(r′; rf )

Ω(r′)−Ω(rf )
dr′; εL =π

DZ(rf )ψ̂
CSM(rf ; rf )

rfΩ ′(rf )
. (3.8)

The above modal representation is obtained from the solution of a Riemann–Hilbert
problem in the complex plane (Case 1959; Gakhov 1990), and is the required
extension of (2.20) to a smooth vorticity profile. Note that the representation is only
known in terms of the singular eigenfunctions, and for a general smooth vorticity
profile, the latter must be obtained from the numerical solution of (3.4). The analysis
leading to (3.6) closely parallels that of Balmforth & Morrison (1995) for a parallel
shearing flow, and is therefore relegated to appendix B.

As pointed out in the introduction, unlike the Rankine vortex, the large-t analysis of
(3.6) reveals an intermediate asymptotic regime, with an exponential decaying velocity
perturbation associated with a quasi-mode, that precedes the eventual (and expected)
algebraic decay for still longer times arising from the dephasing of the CS-mode
superposition. For smooth vortices approaching the Rankine profile, the decay rate
(Landau damping) in this exponential regime is well known (see, for instance Briggs
et al. 1970; Schecter et al. 2000) and may be obtained from (3.6) by identifying the
zeros of ε2

R+ ε2
L in the complex plane. The integration contour (over rε[0,∞)) in the

PV-singular integral in (3.8) is now interpreted as passing below the critical radius of
the quasi-mode in the complex plane. Regarding the contour as the real axis would
lead to no zeros for a monotonically decaying vorticity profile, consistent with the
Rayleigh criterion. Writing ε2

R + ε2
L = ε+ε− (see appendix B), with

ε± = 1+P
∫ ∞

0

1
r′

DZ(r′)ψ̂CSM(r′; r)
Ω(r′)−Ω(r) dr′ ±πi

DZ(r)ψ̂CSM(r; r)
rΩ ′(r)

, (3.9)

and anticipating a decaying mode, the zeros must correspond to those of ε−. Further,
assuming the critical radius of the quasi-mode (rQ) to be close to the real axis with
the real part being rQr (rQr→ rfk for DZ→−2Ω0δ(r − a)), one may write Ω(rQ)≈
ΩrQr − iΩi with Ωi � ΩrQr and rQi ≈ Ωi/Ω

′(rfk). The relation ε−(rQ) = 0 takes the
approximate form:

1+
∫ ∞

0

1
r′

DZ(r′)ψ̂CSM(r′; rQr)

Ω(r′)−Ω(rQr)+ iΩi
dr′ −πi

DZ(r)ψ̂CSM(rQr; rQr)

rQrΩ ′(rQr)
= 0, (3.10)

where, for non-zero Ωi, the integral in (3.10) does not need a PV interpretation.
Expanding for small Ωi, one obtains

1+P
∫ ∞

0

1
r′

DZ(r′)ψ̂CSM(r′; rQr)

Ω(r′)−Ω(rQr)
dr′ ≈ 0, (3.11)

from the real part with the resulting rQr determining the angular frequency of the
quasi-mode. Using the approximate form, DZ ≈−2Ω0δ(r− a), for a Rankine vortex,
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one obtains rQr = rfk and ΩrQr ≈ ((m− 1)/m) Ω0. The imaginary part of (3.10) leads
to

Ωi ≈−π
DZ(rQr)ψ̂

CSM(rQr; rQr)

rQrΩ ′(rQr)

[
P
∫ ∞

0

DZ(r′)Dψ̂CSM(r′; rQr)

r′Ω ′(rQr)

1
(Ω(r′)−Ω(rQr))2

dr′

+ Pf.
∫ ∞

0

1
r′

DZ(r′)ψ̂CSM(r′; rQr)

(Ω(r′)−Ω(rQr))2
dr′
]−1

, (3.12)

which characterizes the decay rate of the quasi-mode; here Pf. denotes the principal-
finite part of the singular integral (Gel’fand & Shilov 1964). Again, using the
expressions for DZ, ψ̂CSM and Dψ̂CSM for a Rankine profile, one obtains

Ωi ≈− πa
4m2

DZ(rQr)

(
m− 1

m

)m−3/2

. (3.13)

Although the expression for the damping rate originally given by Briggs et al. (1970)
is correct, there appears to be an error in the expressions given in Balmforth &
Morrison (1995) (the analogue of (3.13) for parallel flows), and in Le Dizès (2000)
which has the exponent in (3.13) as (m− 1) rather than (m− 3/2).

3.2. Three-dimensional singular eigenspectrum
The three-dimensional eigenvalue problem for a smooth vorticity profile is, of course,
analytically intractable, and we therefore analyse the three-dimensional smooth-vortex
CS modes only in the vicinity of rf . This is the region of interest since the Rankine
vortex is a singular limit, and the approach of the vorticity eigenfunctions of a smooth
(Rankine-like) profile to the corresponding Rankine eigenfunctions is non-uniform,
there always being an arbitrarily large difference between the two sufficiently close
to rf . The Howard–Gupta (HG) equation for ûr, rather than (2.23) for ûz, is suited to
such a local analysis, and is given by (Howard & Gupta 1962)

(
S
r
(rûr)

′
)′
− ûr +

(
SZ
r2

)′ mrûr

Σ
+ 2k2SZΩ

Σ2
ûr = 0, (3.14)

with S= r2/(m2 + (kr)2) and Σ =ω−mΩ . For r close to rf , equation (3.14) reduces
to

û′′r +
2k2Z(rf )Ω(rf )

[mΩ ′(rf )]2
ûr

(r− rf )2
= 0 (3.15)

which is similar to the well-known TG equation that governs the inviscid evolution
of infinitesimal disturbances in stratified shear flows (Turner 1973). The TG equation
for stratified Couette flow, with U(y)∝ y1x, is given by

(
d2

dy2
− k2

)
ûy + Ri

ûy

(y− yc)2
= 0, (3.16)

for the normal velocity component of a single Fourier mode of the form uy =
ûy(y)eik(x−ct), with yc being the critical level at which the wave speed (c) equals
that of the shear flow. Here, Ri is the Richardson number, a dimensionless measure
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of competing buoyancy and inertial forces. Notwithstanding the additional term
proportional to k2uy which does not affect the nature of the singular point (as
characterized by the Frobenius exponents; see (3.17)), the similarity between (3.15)
and (3.16) is evident. One may therefore define Riv = 2k2Z(rf )Ω(rf )/[mΩ ′(rf )]2 as a
local Richardson number for a smooth vortex (Le Dizès 2004), and the singularity
of the three-dimensional CS modes must be analogous to those of the CS modes in
stratified shear flows. The solution of (3.15) in the vicinity of rf may then be written
as a generalized Frobenius expansion:

ûr = A0|r− rf |1/2−ν{1+ α1(r− rf )+ α2(r− rf )
2}

+B0|r− rf |1/2+ν{1+ β1(r− rf )+ β2(r− rf )
2}, (3.17)

where

A0= A−0 H(rf − r)+ A+0 H(r− rf )], (3.18)
B0= B−0 H(rf − r)+ B+0 H(r− rf )], (3.19)

and ν = √1/4− Riv; the series coefficients αi and βi may be determined in the
usual manner. From (3.17), it is seen that for any finite Riv(rf ) however small, the
constraining effects of Coriolis forces become dominant at r = rf , and the radial
velocity associated with any three-dimensional singular mode must therefore be zero
at the critical radius. An appropriate choice of the constants A±0 and B±0 should lead
to the analogue of the Λ1 and Λ2 CS-mode families. Since the Frobenius exponents
(1/2 + ν) and (1/2 − ν) approach 1 and 0 in the Rankine limit (Riv → 0 due to
Z→ 0 with k and rf fixed, the latter at a point in the irrotational exterior). The radial
velocity eigenfunctions corresponding to the Λ1 and Λ2 families are given by

ûΛ1
r (r; rf )= A0|r− rf |1/2−ν + B−0 |r− rf |1/2+ν r< rf , (3.20)

= A0|r− rf |1/2−ν + B+0 |r− rf |1/2+ν r> rf ,

ûΛ2
r (r; rf )= A−0 |r− rf |1/2−ν + B0|r− rf |1/2+ν r< rf , (3.21)

= A+0 |r− rf |1/2−ν − B0|r− rf |1/2+ν r> rf ,

for r close to rf . The connection with the Λi families of the Rankine vortex may
be seen by expanding the Frobenius forms above for small Riv (Maslowe & Nigam
2008), whence one obtains the corresponding forms for the homogeneous case except
in a region of O(e−1/Riv ) around rf wherein the expansion breaks down owing to the
singular nature of the Rankine limit. Consistent with the Rankine analysis in § 2.2,
this outer solution has an apparent kink at r = rf for the choice of constants (A−0 =
A+0 =A0) in (3.20) and an apparent step discontinuity for the choice (B−0 =−B+0 =B0)
in (3.21). Using ûθ = ik2S

(−(Z/Σ)ur + (m/(kr)2)(rur)
′), and the continuity equation,

one obtains the remaining velocity components as

ûΛi
θ (r; rf )= RΛi

1 |r− rf |−1/2−ν + RΛi
2 |r− rf |−1/2+ν + RΛi

3 |r− rf |1/2−ν
+RΛi

4 |r− rf |1/2+ν + RΛi
5 |r− rf |3/2−ν +O(|r− rf |3/2+ν), (3.22)

ûΛi
z (r; rf )=QΛi

1 |r− rf |−1/2−ν +QΛi
2 |r− rf |−1/2+ν +QΛi

3 |r− rf |1/2−ν
+QΛi

4 |r− rf |1/2+ν +QΛi
5 |r− rf |3/2−ν +O(|r− rf |3/2+ν), (3.23)

where the coefficients RΛi
1 − RΛi

5 , QΛi
1 − QΛi

5 are listed in appendix C. In obtaining
(3.22) and (3.23), we have used |x|αδ(x) = 0 for any α > 0. Strictly speaking,
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the product of the two generalized functions |x|α and δ(x) is not a generalized
function and, thus, xαδ(x), for fractional α, cannot be regarded as a generalized zero.
The interpretation needed is discussed below after the expressions for the vorticity
eigenfunctions.

Given the local forms (3.20)–(3.23) for the Λ1 and Λ2 families, it is now of
interest to determine the singular forcing that must appear in the HG equation in
each case. Note that, in doing so, we are proceeding for the smooth vortex in a
manner opposite to that for the Rankine vortex. This is because the nature of the
singular structures in the latter case, a vortex sheet for the Λ1 family (see (2.41)
in § 2.2.1) and a localized axial jet for the Λ2 family (see (2.62) in § 2.2.2), was
clear from physical considerations associated with a shape-preserving inviscid normal
mode. From the mathematical standpoint, the required singular forcings were the
usual generalized functions. In contrast, a vortex sheet (or any derivative singular
structures thereof) cannot constitute the singular forcing for a smooth vortex since
such a structure leads to a non-zero radial velocity at rf , and is thereby inconsistent
with the aforementioned Frobenius forms. To arrive at the singular forcing for a
smooth-vortex CS mode, we first note that the dominant contribution to the axial
vorticity eigenfunction, for r close to rf , is proportional to d2ûr/dr2, implying that the
vorticity eigenfunctions associated with the Λ1 or Λ2 analogues of a smooth vortex
are, on the one hand, non-local due to the distributed ‘baroclinic’ source of vorticity,
and on the other hand, have a non-integrable singularity at rf . A non-integrable
singularity at the critical radius is, however, inconsistent with the requirements of a
modal superposition which involves an integration over the CS, with appropriately
weighted amplitudes, over the entire domain. It was first shown by Engevik (1971),
in the context of Couette flow with a uniform (stable) stratification, that a sensible
modal superposition emerges only when the divergent integrals involving the vorticity
eigenfunctions are interpreted in the sense of a Pf. part (Gel’fand & Shilov 1964).
Based on the local analogy with the stratified flow CS modes, the CS modes, given
by (3.20) and (3.21), must therefore be regarded as generalized functions requiring a
Pf. interpretation; the Pf. interpretation also implies that the singular forcing cannot
be a generalized function. The vorticity eigenfunctions corresponding to (3.20) and
(3.21) may now be written as

ŵΛ1
z (r; rf )= Pf.

iScm(B−0 + B+0 )
rf

{−ε|r− rf |−ε−1
}+ · · · , (3.24)

ŵΛ1
r (r; rf )=−Pf.

mA0

krf
εsgn(r− rf )|r− rf |ε−1 + · · · , (3.25)

ŵΛ1
θ (r; rf )=−Pf. ikSc(B−0 + B+0 )

{−ε|r− rf |−ε−1
}+ · · · , (3.26)

and fontsize1012

ŵΛ2
z (r; rf )= Pf.

imSc

rf

(
A−0 − A+0

2

)(
α1 + 1

rf

){
−ε

2
|r− rf |−ε−1 − ε

2
|r− rf |ε−1

}
+ · · · ,

(3.27)

ŵΛ2
r (r; rf )= Pf.

m
krf

(
A−0 − A+0

2

)
ε|r− rf |ε−1 + · · · , (3.28)

ŵΛ2
θ (r; rf )=−Pf.

i
k

(
A−0 − A+0

2

)
εsgn(r− rf )|r− rf |ε−2 + · · · , (3.29)
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where we have only included the most singular contributions. From the theory of
generalized functions (Lighthill 1958; Gel’fand & Shilov 1964), it is known that

lim
λ→−2k−1

|x|λ
Γ ((λ+ 1)/2)

= (−1)kk!
(2k)! δ

(2k)(x), (3.30)

lim
λ→−2k

|x|λsgn(x)
Γ ((λ+ 2)/2)

= (−1)k(k− 1)!
(2k− 1)! δ(2k−1)(x), (3.31)

and zero otherwise. Using these, one obtains from (3.24)–(3.26), limν→1/2 ŵΛ1
z =

iScm(B−0 + B+0 )/rf δ(r − rf ), limν→1/2 ŵΛ1
r = 0, limν→1/2 ŵΛ1

θ =−ikSc(B−0 + B+0 )δ(r − rf );
and from (3.27)–(3.29) limν→1/2 ŵΛ2

z = 0, limν→1/2 ŵΛ2
r = m/(krf )(A−0 − A+0 )δ(r − rf ),

limν→1/2 ŵΛ2
θ = i/k(A−0 −A+0 )δ′(r− rf ). All regular contributions, not explicitly included

in (3.24)–(3.29) vanish in this limit. This then ensures consistency with the singular
form of the Rankine CS modes in the irrotational exterior.

The nature of the singular forcing leading to the three-dimensional smooth-vortex
CS modes is an issue that needs elaboration. For shearing flows, the discrete spectrum
is almost always finite (Drazin & Reid 1981), and it is thus routinely mentioned (for
instance, see Maslowe (1986)) that the additional CS modes, needed for purposes
of completeness, arise from including generalized function forcings in the governing
equation for linearized perturbations. This is true only for homogeneous shearing
flows, and for the two-dimensional modes in the vortex case as seen in § 2.1. In these
cases, the forcings are indeed proportional to the delta function and/or its derivatives.
The Pf. interpretation needed for the stratified flow and the three-dimensional
smooth-vortex CS modes implies, however, that the underlying singular forcing
is no longer a generalized function. This may be seen from (3.15) in which such
a forcing is precisely what needs to be subtracted from the baroclinic source term
to remove the non-integrable singularity in the vorticity field. Loosely speaking, the
Pf. interpretation implies that the source term in (3.15) not be Rivur/(r− rf )

2, but
instead be Riv[ur/(r− rf )

2 − F1δ(r− rf )/(r− rf )
1/2−ν − F2δ(r− rf )/(r− rf )

1/2+ν], with
the Fi being related to the coefficients of the Frobenius forms in ur. In turn, this
points to a forced HG equation of the form:

(
S
r
(rûr)

′
)′
− ûr +

(
SZ
r2

)′ mrûr

Σ
+ 2k2SZΩ

Σ2
ûr

= Riv

[
ur

(r− rf )2
− F1

δ(r− rf )

(r− rf )1/2−ν
− F2

δ(r− rf )

(r− rf )1/2+ν

]
, (3.32)

for the three-dimensional CS modes, with S being defined as before. Now, the
mathematical theory constructs a linear space of generalized functions, and within
this framework, the product of an infinitely differentiable function with a generalized
function is allowed, but the product of two generalized functions does not in general
have an unambiguous interpretation (Gel’fand & Shilov 1964). In other words, the
terms proportional to δ(r − rf ) on the right-hand side in (3.32) are not generalized
functions for non-integral (1/2 ± ν). In the Rankine limit (Riv → 0, ν → 1/2),
however, the non-generalized function forcings become vanishingly small while the
baroclinic source term on the left-hand side reduces to the generalized function forcing
that led to the Λ1 and Λ2 families in §§ 2.2.1 and 2.2.2. This crucial difference in
the nature of the singular forcing, at least as far as its mathematical interpretation is
concerned, is often not recognized. This fact does not find explicit mention in the
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early work on the CS of stratified Couette flow (see Eliassen, Hoiland & Riis 1953;
Engevik 1971), and there have been cases where the forcings have been erroneously
taken to be similar to those for the homogeneous case: for instance, Case (1960b),
in extending his analysis from the homogeneous case to the stratified scenario, writes
down the inhomogeneous TG equation forced with a delta function and its derivative.

The nature of the singular forcing is also relevant from the standpoint of an
initial-value problem. The singular forcing in the governing equation for linearized
perturbations is the initial impulsive forcing that recovers an isolated CS mode
for long times. A weaker forcing will lead to a long-time algebraic decay, while
a stronger forcing will lead to secular growth (even in the absence of a resonant
interaction). Physically, the presence of the singular forcing implies that a CS mode
is associated with perturbation vorticity generated by an extraneous (baroclinic) force
distribution. Here, extraneous refers to mechanisms outside of the physics already
included in the governing linearized equations. For instance, in homogeneous flows,
the (regular) discrete modes arise from a rearrangement of the base state vorticity
while the CS modes require the generation of a vortex sheet via a baroclinic force
distribution proportional to a delta function. An example in this regard was seen in
the earlier paragraph where a vanishingly small stratification, together with a localized
density perturbation, can act as the vorticity generating forcing in the homogeneous
case. For Couette flow, an initial gradient-directed impulsive forcing of the form
δ(y− yc)eikx generates precisely a single CS mode with ω= kyc. For a nonlinear flow
profile, such a forcing leads to an isolated CS mode but only in the limit of long
times. This is because the forcing only generates the vortex-sheet contribution and
not the PV-singular contribution of a single CS mode, and the finite-time response is
therefore a polychromatic one involving the entire CS spectrum (Kelbert & Sazonov
1996). For the Rankine vortex, a localized forcing of the form δ(r− rf )ei(mθ+kz) must
similarly lead to the corresponding (two-dimensional or three-dimensional) CS mode,
together with a superposition of Kelvin modes, when rf does not coincide with any
of the Kelvin-mode critical radii. A similar forcing with k = 0, for a smooth vortex,
must again lead to a finite-time polychromatic response. For stratified shear flows,
however, a delta-function extraneous forcing is weaker than the non-generalized
function forcings, associated with the Pf. interpretation, that appear in (3.32). Thus,
one expects a non-modal response for long times characterized by an algebraic
decay ( ∝ t−1/2±ν), the associated exponents being precisely those appearing in the
denominators of the right-hand side terms in (3.32). This has been shown for the
case of Couette flow with uniform stratification (Booker & Bretherton 1967; Brown
& Stewartson 1980), and a similar scenario must hold for a smooth vortex in three
dimensions. Finally, one may also regard the singular forcings in the Rayleigh and TG
equations (and their vortex analogues) as resulting in the limit of a vanishing viscosity
for the homogeneous case, and in the limit of both vanishing viscosity and (mass or
thermal) diffusivity for the stratified case. It then follows that the viscous critical-layer
solution (Stewartson 1981), in the homogeneous case, must approach a generalized
function forcing in the limit Re → ∞ and for the critical layer thickness being
asymptotically small, and that the analogous critical-layer solution in the stratified
case must not exhibit this property in the limit Re, (Re · Pr)→∞ (Pr is the Prandtl
number and denotes the ratio of the relevant diffusivities). A small but finite viscosity
and/or diffusivity may also be regarded as the extraneous physics, responsible for
the appearance of a singular forcing in the relevant inviscid equation. However, this
no longer allows for an arbitrary (real) phase relationship between the solutions on
either side of the critical layer. These relations now involve a complex-valued phase
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angle, and are well documented for both the homogeneous (Lin 1955) and stratified
cases (Miles 1961).

3.3. The modal decomposition for an arbitrary vortical initial condition
Having examined the local structure of the three-dimensional CS modes, we clarify the
manner in which the modal superposition for a smooth vorticity profile, corresponding
to an evolving (arbitrary) three-dimensional distribution of perturbation vorticity,
would approach that obtained in § 2.2.3 for the Rankine vortex. The clarification must
necessarily be an indirect one, since analytical forms for the eigenmodes associated
with a smooth vorticity profile do not exist. The non-trivial aspect in the comparison
between the Rankine vortex and smooth Rankine-like profiles concerns the crucial
difference in the structure of the three-dimensional CS modes in the vicinity of the
critical radius, and the relation between the two modal superpositions may therefore
be illustrated by considering the respective analogies with parallel shearing flows,
the analogy being based on the structure of the CS modes. The Rankine vortex
would correspond to homogeneous Couette flow, the analytically tractable analog of a
smooth vorticity profile would be a Couette flow with a uniform stable stratification,
and the approach to the Rankine limit involves making the stratification vanishingly
small.

The modal superpositions in the parallel flow analogies evolve an arbitrary initial
distribution of vorticity and density perturbations. The azimuthal vorticity (wθ ) in the
vortex case corresponds to the vorticity in the stratified flow problem (wz being the
only non-zero component in this case since the perturbation field is taken to be two-
dimensional), and the radial vorticity (wr) in the vortex case corresponds to the density
perturbation (ρ ′) in stratified flow. The remaining perturbation fields are determined
from solenoidal constraints. Assuming U(y) and ρ0(y) to characterize the unperturbed
stratified flow, the correspondence (wθ ,wr)↔ (wz, ρ

′), may be seen from the governing
equations which, in the inviscid non-diffusive limit, are given by(

∂

∂t
+Ω(r) ∂

∂θ

)
wθ = Z

∂uθ
∂z
+ [rΩ ′(r)]wr, (3.33)

(
∂

∂t
+Ω(r) ∂

∂θ

)
wr = Z

∂ur

∂z
, (3.34)

for the case of a smooth vortex, and(
∂

∂t
+U(y)

∂

∂x

)
wz=−g

∂ρ ′

∂x
, (3.35)

(
∂

∂t
+U(y)

∂

∂x

)
ρ ′=−dρ0

dy
uy (3.36)

for the stratified shear flow. The wr and ρ ′ perturbations are seen to arise from a
balance between the convection and induction terms: the latter term is proportional to
the base-state vorticity in (3.34) and to the density gradient in (3.36). The resulting
induced perturbations then act as source terms for wθ and wz, respectively, via (3.33)
and (3.35). The changes in wθ and wz couple back to (3.34) and (3.36) via ur and
uy, and the overall effect is that of buoyancy forces resisting the deformation of the
horizontal isopycnal lines, and the related density perturbations. In the same manner
that the Coriolis forces resist the generation of radial vorticity by endowing the (axial)
vortex lines in the base state with a certain stiffness. For homogeneous Couette flow,
ρ0 is a constant, and for the Rankine vortex, Z = 0 (the irrotational exterior being

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

66
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.666


Linearized oscillations of a vortex column: the singular eigenfunctions 445

the region of interest, since the analogy is based on the structure of the CS modes
in the respective problems), so ρ ′ and wr behave as passive scalars in these limits.
The correspondence between the vortex and stratified shear problems is not an exact
one since there exists an additional source term for wθ in the vortex case. But the
contribution from this term becomes asymptotically small in the Rankine limit (Z→0).
If one were to neglect this contribution in (3.33), then the resulting equation for ur
would involve a modified Richardson number that differs from Riv in (3.15) only by
O(Z2) in the limit Z→ 0.

We now examine the manner in which the modal superposition for stratified
Couette flow involving singular Pf. eigenfunctions, originally obtained by Engevik
(1971), approaches the simpler more familiar form, involving delta functions (and
their derivatives), for homogeneous Couette flow in the limit of a vanishingly small
stratification. Equations (3.35) and (3.36) written in terms of the streamfunction ψ
and ρ ′ are given by

(∂t + y∂x)∇2ψ =− 1
Fr2 ∂xρ

′, (3.37)

(∂t + y∂x) ρ
′= N2

N2
0
∂xψ, (3.38)

in dimensionless form with ∇2 ≡ ∂2/∂x2 + ∂2/∂y2. The parameter Fr = U0/(N0L)1/2
in (3.37) is a reference Froude number with U0/L being a characteristic inverse time
scale for the base state velocity gradient. The ratio N/N0 in (3.38) is a dimensionless
measure of the base state stratification with N2 =−(g/ρm)(dρ0/dy) being the square
of the (constant) Brunt–Väisälä frequency, N0 = (g/L)1/2 is again a reference
inverse time scale, and ρm is an appropriate mean density within the Boussinesq
approximation (there exists a rotational equivalent of the Brunt–Väisälä frequency,
the epicyclic frequency, denoting angular momentum stratification; see Shore (1992)).
The separation of the single parameter, the Richardson number (Ri= (N2/N2

0)Fr−2) in
the TG equation that results from combining (3.37) and (3.38), into two parameters,
one in each of (3.37) and (3.38), allows one to discriminate between the cases
where Ri vanishes due to the absence of gravity (N/N0 finite, Fr−1→ 0, leading to
a decoupling of the velocity and density fields), and where Ri vanishes because of
a homogeneous base state (N/N0→ 0 with Fr finite). We are interested in the latter
case since this allows for density perturbations to persist and drive a flow even in
the homogeneous limit.

For the simpler case of homogeneous Couette flow with N/N0 = 0 in (3.38),
assuming a normal mode form proportional to eik(x−yct) one obtains

(y− yc)wz=− 1
Fr2ρ

′, (3.39)

(y− yc) ρ
′= 0, (3.40)

where wz = (D2 − k2)ψ . The above system of equations supports two families of CS
modes. The Case vortex-sheet modes with wz ∝ δ(y − yc), discussed in § 2.1, arise
from the homogeneous solution of (3.39), and are the analogue of the Λ1 family for
the Rankine vortex. The analog of the Λ2 family are density sheets with a dipole
singularity (wz∝ δ′(y− yc)) corresponding to a tangential jet riding at the critical level.
Thus,

(wΛ1
z , ρ

′Λ1)= (δ(y− yc), 0), (3.41)

(wΛ2
z , ρ

′Λ2)=
(

1
Fr2 δ

′(y− yc), δ(y− yc)

)
. (3.42)
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For a bounded domain, the arbitrary-time vorticity field may then be written as the
following modal superposition:

wz(y, t)=
∫ 1

−1
XΛ1w

Λ1
z e−ikyct dyc +

∫ 1

−1
XΛ2w

Λ2
z e−ikyct dyc (3.43)

with XΛ1 =wz0(yc)− (1/Fr2)ρ ′0(yc) and XΛ2 = ρ ′0(yc). The superposition is obtained by
first finding the Λ2 superposition needed to represent the initial perturbation density
field (ρ ′0), and then finding the necessary Λ1 superposition to account for the residual
vorticity field.

For stratified Couette flow, the equations in normal-mode form are

(y− yc)wz=− 1
Fr2ρ

′, (3.44)

(y− yc) ρ
′= N2

N2
0
ψ. (3.45)

The TG equation obtained from combining the above pair of equations has
linearly independent solutions given by f (y) = √ik(y− yc)J−ν[ik(y − yc)] and
g(y) = √ik(y− yc)Jν[ik(y − yc)] with ν = √1/4− Ri as before (Taylor 1931). For
y→ yc, these Bessel solutions reduce to the local Frobenius forms, obtained from
(3.16), and that are valid for a general Ri profile. For a constant-Ri Couette flow,
the spectrum is purely continuous when 0 < Ri < 1/4 (Taylor 1931; Eliassen et al.
1953; Dyson 1960). There arises an additional discrete spectrum consisting of a
denumerable infinity of forward- and backward-propagating sheared internal gravity
(IG) waves for Ri > 1/4, with the spectrum becoming purely discrete for Ri→∞.
It is worth noting that the degenerate coalescence of an infinity of discrete modes
at Ri = 1/4 is specific to Couette flow with a constant stratification (Banks, Drazin
& Zaturska 1976), but since our focus is on CS-mode superposition, the analysis
that follows is restricted to the interval 0 < Ri < 1/4. From the results of Engevik
(1971), the arbitrary time streamfunction in this parameter regime may be written as
the following integral superposition over Pf. singular eigenfunctions:

ψ(y, t)= Pf.
∫ y

−1
A1(yc)Ψ (1− yc, y− yc)e−ikyct dyc

+Pf.
∫ 1

y
A2(yc)Ψ (1+ yc, yc − y)e−ikyct dyc, (3.46)

where A1(yc) and A2(yc) are given by

− 4ikA1(yc)f (1− yc)g(1− yc) sin πν − 2ikA2(yc)∆(yc)= B1(yc) cot πν, (3.47)
2ikA1(yc)∆(yc)− 4ikA2(yc)f (1+ yc)g(1+ yc) sin πν = B2(yc) cot πν, (3.48)

with

B1(yc)= Pf.
∫ 1

yc

{
wz0

y− yc
− Fr−2ρ ′0
(y− yc)2

}
Ψ (1− yc, y− yc) dy, (3.49)

B2(yc)= Pf.
∫ yc

−1

{
wz0

yc − y
+ Fr−2ρ ′0
(yc − y)2

}
Ψ (1+ yc, yc − y) dy, (3.50)

∆(yc)= f (1+ yc)g(1− yc)− f (1− yc)g(1+ yc). (3.51)
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In (3.46), the singular CS modes are the ‘one-sided’ eigenfunctions originally defined
by Eliassen et al. (1953), and given by

Pf. Ψ (1− yc, y− yc)= Pf. {g(1− yc)f (y− yc)− f (1− yc)g(y− yc)} if yc < y, (3.52)
= 0 if yc > y (3.53)

Pf.Ψ (1+ yc, yc − z)= Pf. {g(1+ yc)f (yc − z)− f (1+ yc)g(yc − z)} if yc > y. (3.54)
= 0 if yc < y. (3.55)

The modal superposition for wz may be written in the form

wz(y, t)=−Pf.
∫ y

−1
A1(yc)

RiΨ (1− yc, y− yc)

(y− yc)2
e−ikyct dyc

−Pf.
∫ 1

y
A2(yc)

RiΨ (1+ yc, yc − y)
(y− yc)2

e−ikyct dyc. (3.56)

In order to show that (3.43) arises as the limiting form of (3.56) for (N/N0)→ 0,
it is convenient first to consider the following linear combinations of the one-sided
eigenfunctions defined above:

Ψ Λ1 = g(1+ yc)Ψ (1− yc, y− yc)H(y− yc)+ g(1− yc)Ψ (yc + 1, yc − y)H(yc − y),
(3.57)

= cΛ1
1 f (|y− yc|)−

(
cΛ1

2 + cΛ1
3

2

)
g(|y− yc|)

−
(

cΛ1
2 − cΛ1

3

2

)
g(|y− yc|)sgn(y− yc), (3.58)

Ψ Λ2 = f (1+ yc)Ψ (1− yc, y− yc)H(y− yc)− f (1− yc)Ψ (yc + 1, yc − y)H(yc − y),
(3.59)

=−cΛ2
1 g(|y− yc|)sgn(y− yc)+

(
cΛ2

2 − cΛ2
3

2

)
f (|y− yc|)

+
(

cΛ2
2 + cΛ2

3

2

)
f (|y− yc|)sgn(y− yc), (3.60)

where cΛ1
1 = g(1+ yc)g(1− yc), cΛ2

1 = f (1+ yc)f (1− yc), cΛ1
2 = cΛ2

3 = f (1− yc)g(1+ yc)

and cΛ1
3 = cΛ2

2 = f (1 + yc)g(1 − yc). As evident from the notation, the linear
combinations in (3.58) and (3.60) may be identified with the Λ1 and Λ2 analogs
of a smooth vorticity profile with local Frobenius forms similar to those defined in
(3.20) and (3.21). For N/N0→ 0, (3.58) and (3.60) will be seen below to reduce to
the vortex sheets and density sheets defined in (3.41) and (3.42). Using (3.58) and
(3.60), (3.56) may be rewritten as

wz(y, t)=−Pf.
∫ 1

−1
{A1(yc)f (1− yc)+ A2(yc)f (1+ yc)} RiΨ Λ1

(y− yc)2W(yc)
e−ikyct dyc

−Pf.
∫ 1

−1
{A1(yc)g(1− yc)− A2(yc)g(1+ yc)} RiΨ Λ2

(y− yc)2W(yc)
e−ikyct dyc,

(3.61)
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where W(yc)= f (1+ yc)g(1− yc)+ f (1− yc)g(1+ yc) with (3.49) and (3.50) now being
given by

Ri B1(yc)= Pf.
∫ 1

−1

[
f (1− yc)

W(yc)

{
wy0

RiΨ Λ1

|y− yc| − Fr−2ρ0
RiΨ Λ1

(y− yc)2

}

+ g(1− yc)

W(yc)

{
wy0

RiΨ Λ2

|y− yc| − Fr−2ρ0
RiΨ Λ2

(y− yc)2

}]
dy, (3.62)

Ri B2(yc)= Pf.
∫ 1

−1

[
f (1+ yc)

W(yc)

{
wy0

RiΨ Λ1

|y− yc| + Fr−2ρ0
RiΨ Λ1

(y− yc)2

}

+ g(1+ yc)

W(yc)

{
wy0

RiΨ Λ2

|y− yc| + Fr−2ρ0
RiΨ Λ2

(y− yc)2

}]
dy, (3.63)

in terms of Ψ Λ1 and Ψ Λ2 .
In the limit (N/N0)→ 0, we have ∆(yc)∼−2i sinh 2kyc/π and W(yc)∼ 2i sinh 2k/π,

and (3.47) and (3.48) reduce to

B1(yc)π Ri∼ 4k
π
{A1(yc) sinh 2k(1− yc)− A2(yc) sinh 2kyc} , (3.64)

B2(yc)π Ri∼ 4k
π
{A1(yc) sinh 2kyc + A2(yc) sinh 2k(1+ yc)} . (3.65)

Further, only the limiting forms of f and g for y close to yc, given by f (z) ∼
21/2−ε(ikz)ε/Γ (1/2+ ε) and g(z) ∼ 2−1/2+ε(ikz)1−ε/Γ (3/2− ε) are needed in this
limit, and from the theory of generalized functions, we have for these limiting forms

lim
ε→0





Ri
f (|y− yc|)
|y− yc| (1, sgn(y− yc))

Ri
f (|y− yc|)
|y− yc|2 (1, sgn(y− yc))

Ri
g(|y− yc|)
|y− yc| (1, sgn(y− yc))

Ri
g(|y− yc|)
|y− yc|2 (1, sgn(y− yc))

=





2

√
2
π
(δ(y− yc), 0),

−2

√
2
π
(0, δ′(y− yc)),

0,

−2ik

√
2
π
(δ(y− yc), 0).

(3.66)

This leads to the correct expressions for the vorticity eigenfunctions for homogeneous
(unstratified) Couette flow:

lim
N/N0→0

− RiΨ Λ1

(y− yc)2
= k sinh 2k

(
2
π

)3/2

δ(y− yc), (3.67)

limN/N0→0 − RiΨΛ2

(y−yc)2
= i sinh 2k

(
2
π

)3/2
δ′(y− yc). (3.68)

Substituting (3.66) in (3.62) and (3.63) leads to the following simplified expressions:

Ri B1(yc)= i
π

[
cosech 2k{cosh k(3− yc)− cosh k(1+ yc)}(wy0(yc)

−Fr−2ρ ′(yc))− 2k cosh k(1− yc)Fr−2ρ0(yc)
]
, (3.69)

Ri B2(yc)= 2i
π

[
sinh k(1+ yc)(wy0(yc)− Fr−2ρ ′0(yc))+ k cosh k(1+ yc)Fr−2ρ0(yc)

]
.

(3.70)
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Finally, on substituting the above expressions in (3.64) and (3.65), one finds

A1(yc)f (1− yc)+ A2(yc)f (1+ yc)= i
k

√
π

2
(wy0(yc)− Fr−2ρ ′(yc)), (3.71)

A1(yc)g(1− yc)− A2(yc)g(1+ yc)=
√

π

2
Fr−2ρ(yc), (3.72)

which, on substitution in (3.61), and use of (3.67) and (3.68), leads to (3.43).
Although the analysis in this section shows the essential manner in which modal

superposition for a smooth vorticity profile approaches that of a Rankine vortex, it
focuses on the region in the vicinity of the critical radius. Thus, the analogy ends up
ignoring the global nature of the spectrum, in particular, the discrete modes in the
respective problems. As already seen, both Rankine and smooth vortices support a
denumerable infinity of Kelvin modes (only co-grade in the latter case; see Leibovich
& Ma (1983)). In contrast, the spectrum of homogeneous Couette flow is purely
continuous (Case 1960a; Dikii 1960) and stratified Couette flow again exhibits only
a CS when Ri < 1/4 (Taylor 1931). This is not a fundamental constraint, however.
As shown by Roy (2013), one may indeed develop more elaborate stratified shear
flow configurations that mirror both the discrete and continuous spectra of Rankine
and smooth vorticity profiles, and the analysis here may readily be extended to these
cases. Finally, in drawing the analogy between a smooth vorticity profile and stratified
Couette flow, we have neglected the effect of the curvature of the velocity profile on
the CS. This is because the additional induction term in the governing equation for
the vorticity field does not alter the local Frobenius forms and, thence, the nature of
the singular forcing needed at the critical level.

4. The inviscid centre modes
Smooth vorticity profiles support a class of eigenmodes generically known as centre

modes. Center modes are nearly-convected modes (that is, with a vanishingly small
Doppler frequency) with their structure concentrated in the vicinity of the rotation axis,
and may have a viscous (Re-dependent growth rate) or inviscid origin (Re-independent
growth rate for sufficiently large Re). They are known to play an important role in
determining the inviscid stability characteristics of aircraft trailing vortices (Fabre &
Le Dizès 2008), and have been extensively studied in two types of swirling flows:
a swirling Poiseuille flow (Stewartson, Ng & Brown 1988) and the Batchelor vortex
(Fabre 2002; Fabre & Jacquin 2004; Le Dizès & Fabre 2007; Heaton 2007a; Fabre
& Le Dizès 2008). For the Batchelor vortex, in particular, the neutral curve is largely
controlled by such modes (Fabre & Le Dizès 2008). Herein, we consider centre modes
of an inviscid origin, and for a base state with only an azimuthal flow component. Our
focus is on what happens to these modes as a smooth vorticity profile approaches
the Rankine limit. In the absence of an axial flow, centre-mode behaviour is observed
only in the limit of small axial wavenumbers (Leibovich, Brown & Patel 1986). Each
of the structured modes of a smooth vortex becomes a centre mode for k→ 0, the
corresponding co-grade eigenfunction being characterized by a vanishingly small radial
length scale (the focus here is on the co-grade modes; the retrograde modes transform
to inviscidly damped singular oscillations best interpreted in terms of a superposition
of decaying quasi-modes).
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The centre-mode behaviour may be seen by considering the one-parameter family of
smooth vorticity profiles given by Ω(r)=Ω0− (r2p/(2p)!)Ω2p for small r with Ω2p>0,
p being a parameter characterizing the flatness of the angular velocity profile around
the rotation axis. Thus, p=1 corresponds to the local quadratic behaviour for a Lamb–
Oseen profile, and the limit p→∞ corresponds to the Rankine vortex. Substitution
in the HG equation gives

r
d
dr

[
m2r

m2 + k2r2

d
dr
(rur)

]

−
[

m2 − 4m
{

k2r2Ω0

m2
+
(

p− k2r2

m2

)
(p+ 1)Ω2pr2p

(2p)!
}
(mΩ −ω)−1

−4k2r2Ω2
0

{
1− r2p(p+ 2)

(2p)!
Ω2p

Ω0
+ r4p(p+ 1)

(2p)!
(
Ω2p

Ω0

)2
}
{(mΩ −ω)2}−1

]
rur = 0,

(4.1)

for r → 0. In the limit of a nearly convected mode, ω ≈ mΩ0, and for r not too
close to the rotation axis, we have (ω−mΩ(r))≈m(Ω(0)−Ω(r))≈O(r2p). This is
equivalent to approximating the two regular singular points, one at the origin and the
other close to it at Ω−1(ω)/m, as being coincident at leading order. The coalescence of
the regular singular points leads to the origin behaving as an irregular singular point.
The resulting divergence of the terms involving the inverse of the Doppler frequency
in (4.1), leads to an increasingly rapid oscillation of the eigenfunction as r approaches
the origin, that is, a centre-mode behaviour. For a Rankine vortex, on the other hand,
Ω = Ω0 and ω − mΩ ∼ O(k) for k→ 0, so that the terms involving the Doppler
frequency remain finite even as r→ 0. In order to resolve the radial oscillation of the
eigenfunction for a smooth vorticity profile, we define ω−mΩ0=−ε(k)(mΩ2p/(2p)!)
and, thence, the following rescaled boundary layer variables: r2p= ε(k)s, rur(r)=U(s).
At leading order, the rescaled HG equation takes the form

s2U′′ + sU′ +
[
− m2

4p2
− p+ 1

p
s

s+ 1
+µ(µ+ 1)

s1/p

(s+ 1)2

]
U = 0, (4.2)

with µ(µ + 1) = 4[(2p − 1)!Ω0]2 and ε(k) = (k/mΩ2p)
2p/(2p−1). Thus, the dispersion

curve in the nearly convected limit has the asymptotic form ω−mΩ0 ∼O(k2p/(2p−1)),
consistent with a vanishing group velocity for k → 0, while the radial extent of
the oscillatory boundary layer around the rotation axis is O(k/mΩ2p)

1/(2p−1) which
determines the radial scale of the eigenmode. The case p= 1, for which ε(k)∼O(k2)

and (4.2) reduces to the hypergeometric equation, was analysed by Leibovich
et al. (1986). For large p, the reduction in the radial length scale ( ∝ k1/2p) of the
eigenfunction with decreasing k becomes increasingly gradual, and correspondingly,
the transition to a centre-mode behaviour with a vanishing group velocity occurs at
an increasingly small value of k. In the limit p→∞, there is no boundary layer,
and consequently no centre-mode behaviour, with ω−mΩ0∼O(k) and a finite group
velocity at k= 0. The implication is that the radial length scale that the radial length
scale (1/βn), characterizing a given structured mode eigenfunction ( ∝ Jm(βnr)) of a
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Plug

Shear

U(y)
U(y)N(y) N(y)

y y

Ri(y) Ri(y)

(a () b)

(c () d)

FIGURE 7. The stratified shear-flow analogues for a Rankine vortex (a) and a smooth
vorticity profile (b). The corresponding Ri–y profiles are shown in (c) and (d), respectively.

Rankine vortex, remains fixed even as k goes to zero. This is seen from the analysis
in § 2.2.5. The relation (2.97) shows that 1/βn≈ a/jm

n for k→ 0, and for k→∞, it is
readily shown using (2.35) that ωn ∼ (m+ 2)Ω0 −Ω0(jm+1

n )2/(ka)2, so 1/βn ≈ a/jm+1
n .

Since 1/βn remains finite in both limits, it is clear that the Rankine limit is a singular
one from the point of view of the existence of centre modes.

The onset of centre-mode behaviour in smooth vortices may be explained in a more
intuitive manner by appealing to the analogy between (stably) stratified shear flows
and rotational flows. The underlying similarity between the stiffening of the vortex
lines and isopycnic lines has already been exploited, in a local sense, in order to
account for the structure of the CS modes in the respective problems (note again that
the analogy is a qualitative one (Yih 1980); an exact mathematical correspondence
only exists in two dimensions with the rotation and stratification axes being at right
angles to each other (Bretherton 1967)). In the context of the centre modes, the key
element is for the Ri–y profile of the stratified shear flow analog to mimic the Riv–r
profile of the vorticity profile, where the Richardson (Ri) and the vortex Richardson
(Riv) numbers have been defined earlier in § 3.2. Given this correspondence, the
centre-mode behaviour in the stratified flow analogue may be seen by examining the
characteristics of the sheared IG waves as a function of N, the characteristic scale for
the Brunt–Väisälä frequency. Here, N plays the role of k in the vortex case, there also
being a correspondence between the streamwise wavenumber in the stratified-flow
analogue and the azimuthal wavenumber in the vortex case. The stratified shear-flow
analogues for a Rankine vortex and a smooth vorticity profile, with the corresponding
Ri–y profiles, are shown in figure 7.

For the Rankine vortex analog, the Ri–y profile is invariant to N with the
plug-flow region always corresponding to Ri = ∞, and the homogeneous shear
zone corresponding to Ri = 0. On the other hand, for the stratified flow analog of
a smooth vortex, Ri =∞ only for y = 0, and for any other y, Ri is finite, and will
decrease with decreasing N. As already discussed in § 3.2, for the analytically soluble
case of stratified Couette flow, with a constant Brunt–Väisälä frequency, and in a
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U(y) N(y)

Plug
region

Plug
region

Plug
region

Ri(y) Ri(y) Ri(y)

y
y

y

'Centre-mode' behavior with decreasing N

(a)

(b)

FIGURE 8. The structure of centre-modes via the stratified shear-flow analogue for a
smooth vorticity profile. In (b) the dashed lines indicate the Ri profile while the continuous
line is the schematic for a centre mode eigenmode that shows the oscillations getting
increasingly squeezed towards a region of smaller y.

bounded domain (Taylor 1931; Eliassen et al. 1953), there exists a regular IG-wave
spectrum only for Ri> 1/4. It follows that, for the smooth-vortex analogue, the plug
region that sustains vorticity oscillations characteristic of IG waves may be identified
with the region Ri > 1/4. Further, as shown in figure 8, with decreasing N for
the smooth-vortex analogue, the plug region becomes progressively thinner in extent.
Even within this plug, the constraint of a normal mode, that is, an invariant transverse
structure, implies that the parts of the wave in higher-Ri regions must travel slower,
and must therefore have a relatively fine-scaled structure (Turner 1973). This in turn
implies that the length scale of the eigenfunction must decrease continuously with
decreasing y, a feature characteristic of centre-mode behaviour.

Similar to the stratified-flow analogue above, the ‘core’ of a smooth vortex, capable
of sustaining vorticity oscillations, may be identified with the region Riv > Ri∗v
(although, Ri∗v will not be 1/4 since, as already indicated, the analogy is not a
precise mathematical one). This core region must recede towards the axis with
decreasing k. There must then be a corresponding reduction in the radial length
scale of the oscillations along a given dispersion curve, and an eventual transition
to centre-mode behaviour for k → 0. The boundary-layer scaling obtained above
is, in fact, physically equivalent to keeping Riv fixed even for k→ 0, and thereby
precludes the structureless branch along which limk→0 Riv = 0. For smooth profiles
approaching the Rankine vortex, the rate of recession of the oscillatory core region
towards the rotation axis becomes increasingly insensitive to a decrease in k as the
angular velocity variation assumes a flatter profile. In the Rankine limit, the size of
the core region (which now corresponds to Riv =∞) becomes independent of k, and
there can be no centre-mode behaviour.
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5. Conclusions
In this paper we have obtained the complete inviscid spectrum for a Rankine

vortex (§§ 2.1 and 2.2). The well-known Kelvin modes do not form a complete set
by themselves. The inclusion of the singular eigenfunctions completes the spectrum,
and these eigenfunctions allow one to represent the evolution of exterior vortical
disturbances. A modal superposition, involving both the discrete and the continuous
spectra, is arrived at for describing evolution of an arbitrary initial vorticity field
((2.20) and (2.74)). The completeness of the modal approach, and thereby its
equivalence to the solution of the IVP, will be shown in a later paper where we
also examine the inviscid resonances arising due to initial conditions localized at
the critical radii of the discrete modes. The analysis for the Rankine vortex is also
extended to the CS modes of smooth vorticity profiles (§§ 3.1 and 3.2). In two
dimensions, one may again obtain the required modal representation by solving a
Riemann–Hilbert problem, even in the absence of closed-form expressions for the
eigenfunctions. But, in three dimensions, the analysis is approximate. It is based on
approximate forms of the eigenfunctions close to the critical radius, and an analogy
with the the known solution for stratified shear flows is used to clarify the nature of
the modal representation is then used to clarify the nature of the modal representation.
Finally, we also rigourously demonstrate the absence of the inviscid centre modes for
a Rankine vortex (§ 4).

Appendix A. The three-dimensional vessel modes
From (2.54), the amplitude of second vortex sheet for the three-dimensional CS

modes of the Λ1 family is given by

A1(rf )= M
k{K′m(krf )N − I′m(krf )M} , (A 1)

where

M = g2βaJ′m(βa)Km(ka)+ 2mgΩ0Jm(βa)Km(ka)+ (4Ω2
0 − g2)Jm(βa)kaK′m(ka), (A 2)

N = g2βaJ′m(βa)Im(ka)+ 2mgΩ0Jm(βa)Im(ka)+ (4Ω2
0 − g2)Jm(βa)kaI′m(ka). (A 3)

As discussed in § 2.2, the zeros of M correspond to the Kelvin modes. The question
arises as to what the singularities of A1(rf ) or, equivalently, the zeros of {K′m(krf )N −
I′m(krf )M} correspond to? The result for m = 1 in § 2.1 suggests that the divergence
of the vortex-sheet amplitude must reflect the confinement of the perturbation velocity
field to the region r 6 rf , and that the zeros of K′m(krf )N − I′m(krf )M must therefore
correspond to the three-dimensional modes of vibration of a Rankine vortex inside a
container of radius rf . That this is indeed the case may be seen by writing down the
velocity field for a Rankine vortex inside a container of radius rf :

r< a
ûz = dJm(βr), (A 4)

ûr =− i
kr

gd
g2 − 4Ω2

0

{
2mΩ0Jm(βr)+ gβrJ′m(βr)

}
, (A 5)

rf > r> a

ûz = c1Km(kr)+ c2Im(kr), (A 6)
ûr =−i{c1K′m(kr)+ c2I′m(kr)}. (A 7)
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(Angular speed of vortex core)
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Kelvin modes for Rankine vortex confined inside a cylinder of radius rf

FIGURE 9. (Colour online) Schematic of dispersion curves for Rankine vortex for m= 1.
The continuous lines represent dispersion curves for an unbounded Rankine vortex whereas
the dash–dot lines are dispersion curves for a Rankine vortex confined in a container of
radius rf .

Without loss of generality, we choose d= 1/Jm(βa). Enforcing continuity of ûz across
the core (r= a) and ûr(rf )= 0 at the cylinder wall (r= rf ), one obtains

c1 = I′M(krf )

Km(ka)I′m(krf )− Im(ka)K′m(krf )
, (A 8)

c2 =− K′M(krf )

Km(ka)I′m(krf )− Im(ka)K′m(krf )
. (A 9)

Finally, enforcing continuity of radial velocity across the vortex core leads to

K′m(krf )N − I′m(krf )M = 0, (A 10)

which is the dispersion relation for three-dimensional vibrations of a vortex column
confined inside a cylindrical vessel of radius rf . Expectedly, the bounded problem too
has a denumerably infinite number of discrete modes. From figure 9 one observes that
the horizontal line, ω=mΩ(rf ), corresponding to the second vortex-sheet location rf ,
intersects the discrete modes of a Rankine vortex inside a cylinder of radius rf at
discrete locations in k space. Thus, for a fixed rf , there exist a denumerably infinite
set of k such that the perturbation velocity field for r> rf is identically zero. Similarly
for every ordered pair (m, k) there exists a denumerably infinite number of CS modes
which are also the discrete modes of a confined vortex column.

Appendix B. Riemann–Hilbert problem for a smooth vortex
To obtain the CS-mode amplitude distribution, Π(rf ), corresponding to an initial

condition of the form wz0(r)eimθ , we will follow the framework developed by
Balmforth & Morrison (1995) for parallel shear flows. The integral equation that
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needs to be solved (see (3.6) in § 3.1) is given by

wz0(r)eimθ =
∫ ∞

0
Π(rf )ŵCSM

z (r; rf )eimθ drf , (B 1)

and, on using (3.3) for ŵCSM
z (r; rf ), equation (B 1) takes the form

wz0(r)=
[

1+P
∫ ∞

0

1
r′

DZ(r′)ψ̂CSM(r′; r)
Ω(r′)−Ω(r) dr′

]
Π(r)

− DZ(r)
r

P
∫ ∞

0

ψ̂CSM(r; rf )

Ω(r)−Ω(rf )
Π(r′) dr′. (B 2)

Equation (B 2) is formulated as a Riemann–Hilbert problem by defining the following
two sectionally analytic functions:

Φ = 1
2πi

P
∫ ∞

0

1
r′

DZ(r′)ψ̂CSM(r′; r)
Ω(r′)−Ω(r) dr′, (B 3)

Ψ = 1
2πi

P
∫ ∞

0

Π(r′)ψ̂CSM(r′; r)
Ω(r′)−Ω(r) dr′, (B 4)

where r is now regarded as a complex variable, and Φ and Φ are analytic except
when rε[0,∞). From the Sokhotski–Plemelj formulae (Gakhov 1990), one has the
following expressions for the limiting values of these functions for r approaching the
positive real axis through complex-valued sequences with positive (+) and negative
(−) imaginary parts:

Φ±=±1
2

DZ(r)ψ̂CSM(r; r)
rΩ ′(r)

+ 1
2πi

P
∫ ∞

0

1
r′

DZ(r′)ψ̂CSM(r′; r)
Ω(r′)−Ω(r) dr′, (B 5)

Ψ ±=±1
2
Π(rf )ψ̂

CSM(r; r)
Ω ′(r)

+ 1
2πi

P
∫ ∞

0

Π(r′)ψ̂CSM(r′; r)
Ω(r′)−Ω(r) dr′. (B 6)

Using (B 5) and (B 6), equation (B 2) may be written as

ψ̂CSM(r; r)wz0(r)
Ω ′(r)

= ε+Ψ + − ε−Ψ −, (B 7)

where ε+= 1+ 2πiΦ+ and ε−= 1+ 2πiΦ−. Further, if one defines another sectionally
analytic function:

Q= 1
2πi

∫ ∞

0

wz0(r′)ψ̂CSM(r′; r)
Ω(r′)−Ω(r) dr′ (B 8)

with the limiting values

Q± =±1
2
ψ̂CSM(r; r)wz0(r)

Ω ′(r)
+ 1

2πi
P
∫ ∞

0

wz0(r′)ψ̂CSM(r′; r)
Ω(r′)−Ω(r) dr′, (B 9)

then (B 7) takes the form

Q+ −Q−= ε+Ψ + − ε−Ψ −, (B 10)
⇒Q+ − ε+Ψ +=Q− − ε−Ψ −. (B 11)

It is clear that the function Q − εΨ is analytic even for rε (0,∞). In the absence
of regular discrete modes, as is the case for a monotonically decreasing base-state
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vorticity profile, this function is, in fact, analytic on the entire complex plane. In
accordance with Liouville’s theorem, it must therefore be a constant. Moreover, since
Q− εΨ → 0 for |r|→∞, we have Q= εΨ = 0, or Ψ =Q/ε. One may now write

Π(r)= Ω ′(r)
ψ̂CSM(r; r) (Ψ

+ −Ψ−),

= Ω ′(r)
ψ̂CSM(r; r)

[
Q+

ε+
− Q−

ε−

]
,

= Ω ′(r)
ε+ε−ψ̂CSM(r; r)

[(
ε+ + ε−

2

)
ψ̂CSM(r; r)wz0(r)

Ω ′(r)

−
(
ε+ − ε−

2πi

)
P
∫ ∞

0

wz0(r′)ψ̂CSM(r′; r)
Ω(r′)−Ω(r) dr′

]
,

⇒Π(r)= 1
ε2

R + ε2
L

{
εRwz0(r)− εL

π
P

Ω ′(r)
ψ̂CSM(r; r)

∫ ∞

0

wz0(r′)ψ̂CSM(r; r′)
Ω(r′)−Ω(r) dr′

}
(B 12)

where εR = (ε+ + ε−)/2 and εL = (ε+ − ε−)/2i.

Appendix C. Constants for smooth-vortex eigenfunctions
We have

R1= ik2ScA0

[
m

k2rf
ε sgn(r− rf )+ Zc

mΩ ′c
sgn(r− rf )

]
, (C 1)

R2= ik2ScB0

[
m

k2rf
(1− ε) sgnr− rf )+ Zc

mΩ ′c
sgn(r− rf )

]
, (C 2)

R3= ik2ScA0

[
mε
k2rf

(
1− α1

rf

)
+ m

k2r2
f
+
(

m
k2rf
+ Zc

mΩ ′c

)
α1 + 2Z′cΩ

′
c − ZcΩ

′′
c

2mΩ ′c

]

+ S′c
Sc

R1 sgn(r− rf ), (C 3)

R4= ik2ScB0

[
m(1− ε)

k2rf

(
β1 − 1

rf

)
+ m

k2r2
f
+
(

m
k2rf
+ Zc

mΩ ′c

)
β1 + 2Z′cΩ

′
c − ZcΩ

′′
c

2mΩ ′c

]

+ S′c
Sc

R2 sgn(r− rf ), (C 4)

R5= iScA0
m
rf

sgn(r− rf )

{
ε

(
α2 − α1

rf
+ 1

r2
f

)
+ 2

(
α2 − 1

r2
f

)}

+ S′c
Sc

(
R3 sgn(r− rf )− S′c

Sc
R1

)
+ R1S′′c

2Sc
(C 5)

Q1= i
k

[
εA0 sgn(r− rf )+ im

rf
R1

]
, (C 6)

Q2= i
k

[
(1− ε)B0 sgn(r− rf )+ im

rf
R2

]
, (C 7)

Q3= i
k

[
(1+ ε)α1A0 + 1

r2
f

{
rf (A0 + imR3)− imR1 sgn(r− rf )

}]
, (C 8)
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Q4= i
k

[
(2− ε)β1B0 + 1

r2
f

{
rf (B0 + imR4)− imR2 sgn(r− rf )

}]
, (C 9)

Q5= i
k

[
(2+ ε)α2A0 + 1

r3
f

{
r2

f

{
A0α1 sgn(r− rf )+ im

(
R5 + R1S′′c

2Sc

)}

−rf sgn(r− rf ) {A0 + imR3} + 2imR1
}]
, (C 10)

where

Sc =
r2

f

m2 + (krf )2
, S′c =

2m2rf

(m2 + (krf )2)2
, S′′c =

2m2(m2 − 3(krf )
2)

(m2 + (krf )2)3
. (C 11)
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