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In this paper, we give a modal interpretation of the lift-up effect, one of two
well-known mechanisms that lead to an algebraic instability in parallel shearing
flows, the other being the Orr mechanism. To this end, we first obtain the two
families of continuous spectrum modes that make up the complete spectrum for a
non-inflectional velocity profile. One of these families consists of modified versions
of the vortex-sheet eigenmodes originally found by Case (Phys. Fluids, vol. 3, 1960,
pp. 143–148) for plane Couette flow, while the second family consists of singular jet
modes first found by Sazonov (Izv. Acad. Nauk SSSR Atmos. Ocean. Phys., vol. 32,
1996, pp. 21–28), again for Couette flow. The two families are used to construct
the modal superposition for an arbitrary three-dimensional distribution of vorticity at
the initial instant. The so-called non-modal growth that underlies the lift-up effect is
associated with an initial condition consisting of rolls, aligned with the streamwise
direction, and with a spanwise modulation (that is, a modulation along the vorticity
direction of the base-state shearing flow). This growth is shown to arise from an
appropriate superposition of the aforementioned continuous spectrum mode families.
The modal superposition is then generalized to an inflectional velocity profile by
including additional discrete modes associated with the inflection points. Finally, the
non-trivial connection between an inviscid eigenmode and the viscous eigenmodes for
large but finite Reynolds number, and the relation between the corresponding modal
superpositions, is highlighted.

Key words: boundary layer stability, instability, transition to turbulence

1. Introduction
The non-modal behaviour of infinitesimal disturbances in shear flows is attributed

mathematically to the non-normal nature of the underlying linearized operator (Schmid
& Henningson 2001, p. 101). The two dominant physical mechanisms for non-modal
behaviour, leading to short-time algebraic growth, are the Orr mechanism and the
lift-up effect. A Reynolds-stress-based argument, which allows for a transfer of
energy between the mean flow and an imposed perturbation, is usually offered as
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An inviscid modal interpretation of the ‘lift-up’ effect 83

an explanation for the Orr mechanism (see e.g. Farrell 1987; Pradeep & Hussain
2006). The lift-up effect comes in to play only in the presence of a perturbation
with an added spanwise variation. (Hereafter, the term ‘spanwise variation’ is used
to refer to the component of variation, of the perturbation field, along the vorticity
direction of the base-state shearing flow. The lift-up effect thus requires consideration
of a three-dimensional (3D) perturbation, as opposed to the two-dimensional (2D)
perturbations that, on account of Squire’s theorem, determine the critical Reynolds
number for exponential stability (Drazin & Reid 1981).) The commonly offered
explanation for the lift-up effect is based on the redistribution of base-state flow
momentum in the transverse direction (see Benney & Lin 1960). The mechanism
may be best understood for disturbances that are streamwise uniform. For such
disturbances, the wall-normal disturbance velocity is time independent, and transports
(‘lifts up’) the mean momentum, riding on its gradient, to produce a streamwise
disturbance velocity that grows linearly in time (Schmid & Henningson 2001). In
fact, in this limit of no streamwise variation, this mechanism remains unaltered even
for finite-amplitude perturbations (Ellingsen & Palm 1975). It is worth noting that,
although Ellingsen & Palm (1975) and Landahl (1980) are often credited as being the
first to offer an explanation for the ‘lift-up’ effect based on a solution of the initial
value problem, the possibility of algebraic growth of general disturbances in shear
flows was noted earlier: by Moffatt (1965) in the context of the linear interaction of a
turbulence velocity field with an imposed uniform shear, and by Arnol’d (1972) who
attributed the growth to the presence of a Jordan block structure in the linear stability
operator. The transient growth associated with the lift-up effect is thought to play an
important role in the so-called bypass transition to turbulence for a laminar boundary
layer (Andersson, Berggren & Henningson 1999; Reshotko 2001; Tumin & Reshotko
2001). The general mechanism involving the transport of streamwise momentum by
transverse velocity fluctuations remains relevant outside the linear stability scenario.
For instance, it is responsible for the interplay between streamwise-aligned vortices
and streaks that characterize the dynamics in both homogeneous sheared (Rogers &
Moin 1987; Lee, Kim & Moin 1990) and near-wall turbulence (Jimenez & Pinelli
1999).

Albeit more cumbersome, a perturbation-vorticity-based stretching and/or tilting
mechanism may also be used to explain the lift-up effect and, in fact, lends more
insight. This complementary vortex-tilting-based explanation, for a perturbation in the
form of a single spanwise Fourier mode, is illustrated in figure 1. In this picture,
the lift-up effect arises because the shear in the mean vorticity direction, due to
the spanwise variation in the vertical perturbation velocity (∂uz/∂y, representative
of a ‘roll’ initial condition), tilts the mean vorticity (−U′), producing a linearly
growing wall-normal perturbation vorticity (wz, representative of the vorticity field of
a growing streak). Note that a general roll initial condition (as opposed to the single
Fourier mode in figure 1) would have an associated ∂uy/∂y, and would therefore
also stretch the base-state vorticity at linear order. There is also a contribution to
the streamwise perturbation vorticity, which grows linearly in time, since the wz
generated above is tilted by the mean shear (U′) towards the flow direction. But such
a contribution is exactly cancelled by a similarly growing contribution that arises
from the tilting of the base-state vorticity (−U′) due to the spanwise variation of
the streamwise perturbation velocity (∂ux/∂y induced by wz). As a result, only the
growing streak survives. Such a cancellation, however, occurs only for plane-parallel
flows, in which case the base-state velocity gradient and vorticity are given by U′ and
−U′, respectively. This is no longer the case for curvilinear (vortical) flows, and the
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The ‘roll’
Fourier mode

The growing ‘streak’
Fourier mode

(Base-state vorticity)

FIGURE 1. (Colour online) Illustration of the algebraic growth in a shear flow associated
with the tilting of a spanwise ‘roll’ Fourier mode (with velocity uz and vorticity wx) into
a ‘streak’ Fourier mode (with velocity ux and vorticity wz). The bold arrows denote the
(linear) shearing flow in the base state U(z), −U′ denotes the base-state vorticity, and
the curved arrows denote the tilting process. In accordance with the terminology used in
the text, a spanwise Fourier mode has its wavevector aligned with the base-state vorticity
direction.

second secular contribution noted above persists in these cases (Roy 2013). In fact,
the traditional lift-up effect is vanishingly small in regions of negligible base-state
vorticity, being identically zero for the limiting case of an irrotational flow induced
by a point vortex. In this latter instance, the second secular contribution alone is
responsible for algebraic growth, and has been referred as the ‘anti-lift-up’ effect
(Antkowiak & Brancher 2004).

The algebraic growth mechanisms discussed above are essentially of an inviscid
origin, with viscosity only leading to an eventual exponential decay of the perturbation
kinetic energy on a time scale that, in convective units, is proportional to the
Reynolds number (Schmid & Henningson 2001). Thus, there must exist an alternative
interpretation of the algebraic growth, in plane-parallel shearing flows, in terms of
the dynamics of the inviscid continuous spectra (CS) associated with the Rayleigh
operator (Case 1960; Sazonov 1996; Roy & Subramanian 2014). Note that both
growth scenarios involve a streamline pattern that changes with time – due to the
tilting of wavefronts (constant-vorticity contours) by the base-state shear for the Orr
mechanism (see below), and due to the transition of streamwise-aligned rolls to
growing streaks for the lift-up effect. The dynamics cannot therefore be described in
terms of a single shape-preserving normal mode, and must involve a superposition
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of many such modes instead. Such a modal interpretation is most easily seen for the
Orr mechanism in Couette flow for 2D perturbations in the plane of shear. Now, the
original analyses of the initial value problem, describing the Orr mechanism in Couette
flow (see e.g. Farrell 1987), were in terms of Kelvin modes – plane waves with a
time-dependent wavevector that is turned by the ambient linear flow (for Couette
flow, the wavevector aligns with the gradient direction for long times). However, an
equivalent description may be given in terms of a convected superposition of CS
modes. In the Kelvin-mode interpretation, the temporal dynamics of the perturbation
kinetic energy may be divided into growth and decay phases that are symmetrically
located relative to the instant of maximum kinetic energy, and correspond to the
wavefronts of the mode having upstream and downstream inclinations, respectively,
at the initial time instant. As shown in figure 2(a), the shearing flow turns the
wavefronts from the former to the latter orientation during the growth phase, and the
instant of maximum kinetic energy corresponds to vertical wavefronts aligned with the
gradient direction of the base-state shear. Now, the singular modes comprising the CS
spectrum for inviscid Couette flow are flow-aligned vortex sheets for 2D perturbations
(Case 1960). In the equivalent CS mode interpretation of the Orr mechanism, one
considers the action of a shearing flow on an ensemble of such vortex-sheet CS
modes staggered in the upstream direction (figure 2b). The greater the upstream
inclination, the smaller is the degree of coherence (in phase) in the vorticity field,
and the smaller is the kinetic energy associated with the initial perturbation. The
differential convection due to shear brings the vortex sheets into phase alignment,
and the instant of maximum coherence in the gradient direction corresponds to the
maximum kinetic energy (Lindzen 1988). Further convection by shear causes the
vortex sheets to decohere progressively, leading to a decrease in the kinetic energy
for later times. Although not essential, the superposition of vortex sheets may be
such as to reproduce the delocalized periodic vorticity field associated with a single
Kelvin mode at a given instant, in which case the Kelvin mode and the CS mode
interpretations are coincident. The perturbation kinetic energy decays as O(t−2) for
long times in the inviscid limit. This may be seen by noting that the motion for
long times is primarily along the horizontal, and the kinetic energy therefore scales
as O[ky(t)ψ]2, with ψ being the streamfunction and ky(t) being the (time-dependent)
inverse length scale in the gradient direction. Since the vorticity field does not decay
in the inviscid case, ∇2ψ = wz may be written in the form k2

y(t)ψ ∼ O(1) with
ky ∼O(t) for long times.

To the best of our knowledge, there exists no modal explanation for the inviscid
lift-up effect along the above lines. That is to say, there does not appear to be a
representation, in terms of the underlying inviscid CS modes, that accounts for the
growth from a streamwise-uniform perturbation, with only a spanwise variation, when
there can be no contribution due to the Orr mechanism; and more generally, for any
3D perturbation, when the growth is no longer solely due to the Orr mechanism
(Farrell & Ioannou 1993). As mentioned earlier, the usual explanation for the
lift-up effect is either based on the linearized inviscid equations of motion, or
rather generically attributed to the non-normality of the underlying Orr–Sommerfeld
operator, and the resulting non-orthogonality of the discrete viscous modes for large
Reynolds number (Re) (Reshotko 2001; Schmid & Henningson 2001, p. 101). In
the present work we attempt to explain the lift-up effect based on the nature of
the inviscid eigenmodes of the underlying Rayleigh operator, and argue that this is
superior to the alternative generic explanation in terms of the large-Re viscous modes
(Reshotko 2001; Schmid & Henningson 2001), particularly because the individual
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FIGURE 2. Two equivalent interpretations of the Orr mechanism. (a) The time-dependent
streamline pattern associated with a Kelvin mode, the evolution occurring due to (b) tilting
of the wavefronts by the background shear. The streamfunction corresponds to the field:
ux= z+[2(t2− t+ 1)/(1+ (1− t)2)] cos[x+ (1− t)z] and uz=[2/(1+ (1− t)2)] cos[x+ (1−
t)z]. (c) The evolution of a stack of flow-aligned vortex sheets (singular modes) starting
from a configuration staggered in the upstream direction (filled and empty segments denote
the harmonic variation of the vortex-sheet strength). The evolution in this interpretation
occurs due to the differential convection of the modes by the shear. The superimposed
curve shows the time-dependent kinetic energy, with the vertically aligned plane-wave and
vortex-sheet configurations corresponding to the maximum kinetic energy at t = tmax; at
this instant, the region where the streamline pattern deviates from that of the base-state
shear (a) has the greatest vertical extent.

viscous modes do not usually have sensible limits for Re→∞. The superposition
of CS modes that produces a roll initial condition is not as simple as that for the
2D Orr mechanism above, and we therefore arrive at the required superposition after
characterizing the general evolution starting from an arbitrary 3D vorticity field at
the initial instant.
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The paper is organized as follows. In § 2 the problem is formulated for a
base state that is an arbitrary plane-parallel shear flow. Herein, the choice of a
wavevector-aligned coordinate system, instead of the usual flow-aligned one, allows
one to simplify the normal-mode analysis. Next, in § 3, based on the existing
knowledge of the 3D CS modes for Couette flow (Sazonov 1996) and the 2D
CS modes for nonlinear shear flows (Balmforth & Morrison 1995), the two families
of CS eigenfunctions, for a nonlinear shear flow, are obtained. This description is next
used in § 4 to develop an inviscid modal superposition. In § 4.1, such a superposition
is developed for an arbitrary initial condition. Next, in § 4.2, the superposition for a
specific ‘roll’ initial condition is used to exhibit the algebraic instability corresponding
to the ‘lift-up’ effect. Since exponentially unstable modes are not responsible for the
‘lift-up’ effect, the analysis above is developed for a non-inflectional smooth velocity
profile in which case the spectrum is absolutely continuous (see Lin 1955; Fadeev
1971). In § 4.3, the modal superposition is generalized to accommodate inflectional
velocity profiles by allowing for additional pairs of discrete modes associated with
each inflection point. The inviscid modal interpretation of the ‘lift-up’ effect given
here, in a sense, complements an existing qualitative interpretation in terms of
non-orthogonal viscous discrete modes (Schmid & Henningson 2001, pp. 106–107),
although the relation between the two is non-trivial. Thus, § 5 is devoted to a
discussion of the connection between an inviscid eigenmode and the discrete viscous
modes, for large but finite Re, in the context of the analytically solvable problem of
Couette flow. Section 6 concludes by summarizing the main findings of this paper.

2. Problem formulation

Consider a normal mode imposed on a unidirectional shearing flow with velocity
profile U(z). It will be seen in § 4 that the modal superposition takes its simplest form
in wavevector-aligned coordinates, and we will therefore obtain the expressions for the
singular normal modes in a wavevector-aligned coordinate system (x′, y′, z) instead of
the usual flow-aligned coordinate system (x, y, z) with x, y and z in the latter case
corresponding, respectively, to the flow, vorticity and gradient directions of the base
state. The two coordinate systems are related by a rotation about the z-axis as shown
in figure 3. Since the flow and vorticity directions are homogeneous, the wavevector
lies in the flow–vorticity plane with k≡ (kx, ky), and if ψ is the angle made by k with
the flow direction, we have the following relations between the coordinate systems:

(kx = k cosψ, ky =−k sinψ),
(

kx′ = k=
√

k2
x + k2

y , ky ′ = 0
)
, (2.1a,b)

ux′ = ux cosψ − uy sinψ, uy ′ = uy cosψ + ux sinψ, u′z = uz. (2.2a–c)

A normal mode will have the general form F̂(z) ei[kx(x−ct)+kyy] in flow-aligned
coordinates, and the form F̂(z) eik(x′−c′t) in wavevector-aligned coordinates, with c
and c′ being the phase speeds in the x and x′ directions, respectively, and F̂(z)
denoting the z-dependent amplitude of the relevant perturbation field. The linearized
equations of motion for the normal-mode amplitudes may be derived in the usual
manner (Drazin & Reid 1981). These, together with the continuity equation and the
expressions for the different components of the perturbation vorticity field, in the two
coordinate systems, are summarized in table 1; here, D denotes d/dz.
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U(z)

y

x
k

FIGURE 3. Shear flow in the flow-aligned and wavevector-aligned coordinate systems.

Flow-aligned Wavevector-aligned

Momentum equation

ikx(U − c)ûx + ûzU′ =−ikxp̂ ikx(U − c)ûx′ + ûzU′ cosψ =−ikp̂
ikx(U − c)ûy =−ikyp̂ ikx(U − c)ûy ′ + ûzU′ sinψ = 0
ikx(U − c)ûz =−Dp̂ ikx(U − c)ûz =−Dp̂

ikxûx + ikyûy +Dûz = 0 ikûx′ +Dûz = 0

Vorticity components

ŵz = ikxûy − ikyûx ŵz = ikûy ′

ŵx = ikyûz −Dûy ŵx′ =−Dûy ′

ŵy =Dûx − ikxûz ŵy ′ =Dûx′ − ikûz

(D2 − k2)ûz = ikyŵx − ikxŵy (D2 − k2)ûz =−ikŵy ′

TABLE 1. Relevant equations in the flow-aligned and wavevector-aligned coordinate
systems.

From the governing equations above, one may derive the following equations
governing the normal velocity and vorticity fields:

(U − c)(D2 − k2)ûz −U′′ûz = 0, (2.3)
kx(U − c)ŵz =U′kyûz. (2.4)

Equations (2.3) and (2.4) are the Rayleigh and the (inviscid) Squire equations for 3D
perturbations (Drazin & Reid 1981, p. 129). Note that (2.3) is identical to that for 2D
perturbations except for kx being replaced by the total wavenumber k. The addition of
O(1/Re) viscous terms in (2.3) and (2.4) leads to the Orr–Sommerfeld–Squire system,
whose properties have been discussed in detail (see e.g. Schmid & Henningson 2001,
pp. 56–61).

In § 3, it is shown that the system (2.3)–(2.4) supports two families of continuous
spectrum (CS) modes. For non-inflectional velocity profiles that possess only a CS
(Fadeev 1971), it will be shown, by construction, that these two CS mode families

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

48
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.485


An inviscid modal interpretation of the ‘lift-up’ effect 89

constitute a complete set of (singular) eigenfunctions capable of representing an
arbitrary initial vorticity distribution. One of the families arises from the homogeneous
solution of (2.3), with the resulting normal velocity field forcing the Squire equation;
these are the Rayleigh or, as we shall term them, the Λ1 modes. The second family is
a homogeneous solution of (2.4), with a velocity field restricted to the flow–vorticity
plane. These inviscid Squire modes will be termed the Λ2 modes in what follows.
The terminology is motivated by our identification of these families with the CS
mode families found recently in the case of a Rankine vortex (Roy & Subramanian
2014). Although there are differences in detail in the structure of the vorticity fields
in the two cases, there is an exact analogy in the 2D limit (for the parallel flow case,
this corresponds to ψ = 0, and for the vortex case, the limit implies the absence of
any modulation along the axis of rotation).

3. The continuous spectrum of the linearized Euler equations
3.1. The Λ1 family – inclined Case vortex sheets

We first write (2.3) in terms of the vorticity component, ŵy ′ , in the form

ik(U − c)ŵy ′ =−U′′ûz. (3.1)

Assuming c to be in the base-state range of velocities, one may write c=U(zc), with
zc denoting the critical level where the fluid in the base state moves at the same speed
as the perturbation, and (3.1) takes the form

[U(z)−U(zc)]ŵy ′ = i
k

U′′ûz. (3.2)

Now, [U(z) − U(zc)] ≈ U′(zc)(z − zc) for z close to zc, and (3.2) therefore has the
homogeneous solution ŵy ′ ∝ δ(z − zc), where we have used the generalized function
identity (z− zc)δ(z− zc)= 0 (Lighthill 1958); in the hydrodynamical context, this was
first recognized by Case (1960) for the case of Couette flow (U(z)∝ z). The general
solution of (3.1) may now be written as the sum of the above homogeneous solution
and a particular solution driven by U′′, and this leads to the total ŵy ′ field associated
with a Λ1 CS mode. From (2.4), using ŵz = ikûy ′ , the normal velocity field induced
by the ŵy ′ field is seen to lead to a non-zero ûy ′ . A 3D Λ1 CS mode is therefore
characterized by

ŵΛ1
y ′,k =−C1δ(z− zc)+P

i
k

U′′(z)ûz,k

U(z)− c
, (3.3)

ûΛ1
y ′,k =P

ky

ikkx

U′(z)ûz,k

U(z)− c
, (3.4)

where the subscript k denotes quantities associated with a single Fourier mode of
wavenumber k and P implies a Cauchy principal value (PV) interpretation. Both the
ŵy ′ and ûy ′ fields are singular at z= zc. Here, zc = U−1(c), and the requirement that
zc lie within the domain implies that c spans the base-state range of velocities – the
interval corresponding to the CS associated with the Rayleigh equation.

In (3.3) the homogeneous solution denotes a localized vortex-sheet contribution. A
flow-aligned vortex sheet, on account of its infinitesimal thickness, satisfies the
essential requirement of a normal mode, that of remaining undistorted by the
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base-state shear. For a nonlinear shear flow (U′′ 6= 0), the particular solution in
(3.3) denotes an additional non-local contribution that arises due to the induction
mechanism associated with convection of the inhomogeneous base-state vorticity
gradient by the perturbation normal velocity (ûz,k) induced, in part, by the vortex
sheet. In a reference frame translating with c, the convection of ŵy ′ by the base-state
shear becomes small, being O(z − zc) for z close to zc, while the rate of induction
remains finite for a non-zero U′′(zc) provided ûz,k also remains finite. Thus, the
non-local contribution to ŵy ′ needs to increase as (z − zc)

−1 in order for a steady
balance (in the chosen reference frame) between the two mechanisms to prevail
close to zc. The PV interpretation of this singularity in (3.3) may be regarded as a
self-consistency requirement, since it corresponds to a finite ûz,k induced at the critical
level due to the cancelling singularities in the ŵy ′ field for z→ z±c . The expression
(3.3) is identical to the structure of the 2D CS modes (with ky=0) originally identified
by Case (1959) in the context of perturbations to the electron velocity distribution,
as governed by the Vlasov equation, and discussed in more detail in the specific
context of inviscid hydrodynamic stability by Balmforth & Morrison (1995). In the
hydrodynamical context, (3.3) and (3.4) may be regarded as the generalization of the
vortex sheets, originally found by Case (1960) for 2D perturbations, to the case of
an inclined wavevector.

For a 2D CS mode, ûy ′,k = 0, and the vortex-sheet contribution in (3.3) induces
a discontinuity in slope of ûz across the critical level. As evident from (3.4), the
3D Λ1 mode has an additional stronger singularity in the ûy ′ field. This component
is PV-singular at z = zc, and arises from (2.4) due to the tilting of the base-state
vorticity field, which occurs at a finite rate even at the critical level. The PV-singular
terms in a single Λ1 CS mode imply that the evolution towards such a mode, starting
from a vortex-sheet initial condition (due to, say, a localized baroclinic forcing at the
initial instant; see Kelbert & Sazonov 1996), has a non-trivial character. For the 2D
case, it has been shown that, although the velocity in most of the domain converges
to that of a propagating CS mode for long times, there remains an unsteady region
surrounding the critical level, with an extent of O(1/t) (t being the time) where the
tangential velocity increases as ln t, and thereby departs from that associated with the
steady singular mode (Dickinson 1970; Tung 1983). For Couette flow, the PV-singular
term in the vorticity field vanishes, and the ŵy ′,k eigenmode is exactly a vortex sheet.
The perturbation vorticity field, however, continues to be 3D on account of ûy ′,k. The
PV-singular uy ′,k field arises from vortex tilting and not from a base-state vorticity
gradient, and therefore, persists even for Couette flow (see Sazonov 1996).

Inverting the relation, (D2 − k2)ûz,k = (−ikŵy ′,k) from table 1, in terms of a
Green’s function, we have the following expression for the normal component of the
perturbation velocity field associated with ŵΛ1

y ′,k in (3.3):

ûΛ1
z,k(z; zc)=−ikC1G(z; zc)+ i

k
P
∫ 1

−1

G(z; z′)U′′(z′)ûΛ1
z,k(z; z′)

U(z′)−U(zc)
dz′, (3.5)

where G(z; zc) is the Green’s function. For a bounded domain, z ε [−1, 1], with the
boundary conditions ûΛ1

z,k(±1; zc)= 0, the Green’s function is given by

G(z; zc)=−sinh(k(1− z>)) sinh(k(1+ z<))
k sinh 2k

, (3.6)
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with z< (z>) denoting the smaller (larger) of z and zc. On normalizing the total y′
vorticity associated with a given Λ1 mode,∫ 1

−1
ŵΛ1

y ′,k(z
′; zc) dz′ =Σ1, (3.7)

one may characterize each Λ1 CS mode by the following expressions for the vorticity
and velocity fields:

ŵΛ1
y ′,k(z; zc)=

{
Σ1 − i

k
P
∫ 1

−1

U′′(z′)ûΛ1
z,k(z′; zc)

U(z′)−U(zc)
dz′
}
δ(z− zc)+P

i
k

U′′(z)ûΛ1
z,k(z; zc)

U(z)−U(zc)
,

(3.8)

ûΛ1
z,k(z; zc)=−ikC1G(z; zc)+ i

k

∫ 1

−1
U′′(z′)ûΛ1

z,k(z
′; zc)

G(z; z′)− G(z; zc)

U(z′)−U(zc)
dz′, (3.9)

ûΛ1
y ′,k(z; zc)=P

kyU′(z)û
Λ1
z,k(z; zc)

ikkx(U(z)− c)
. (3.10)

Note that the normalization based on Σ1 above assumes the total y′ vorticity associated
with the eigenmode to be non-zero (see Balmforth & Morrison 1995). This may not
always be the case (see e.g. Sazonov 1989; Roy & Subramanian 2014), but in the
analysis here we will neglect these instances, regarding them as exceptional.

It is important to note that, in the inviscid framework, the general character of
the Λ1 modes remains the same regardless of whether the domain is bounded or
unbounded. This is due to the localization of the perturbation vorticity field at the
critical level. The vortex-sheet contribution in (3.3) evidently remains the same for
both bounded and unbounded domains. The change in the induced velocity field
implies that the non-local PV-singular contribution to the vorticity field in (3.3), and
that corresponding to (3.4), will be different in the two cases. However, the induced
velocity fields for a bounded and unbounded domain only differ by an irrotational
component needed to satisfy the impenetrability conditions at the boundaries in the
former case. Since this irrotational contribution is regular within the domain, the
structure of the PV-singular term in the vorticity field at z = zc remains unaltered.
There is therefore no real loss of generality in writing down (3.8)–(3.10) using the
Green’s function defined by (3.6). The only change in going to an unbounded domain
would be to use the relevant Green’s function, given by G(z; zc)=−exp(−k|z− zc|)/2
and satisfying the decay conditions for z→±∞, and to extend the range of integration
in (3.8)–(3.10) to (−∞,∞).

3.2. The Λ2 family – Squire jets
The Λ2 CS modes are homogeneous solutions of (2.4) with ûy ′ being the only non-
zero velocity component in wavevector-aligned coordinates. Since the Squire operator
in (2.4) is just the multiplication operator, use of the identity (z − zc)δ(z − zc) = 0
implies that ûΛ2

y ′,k = δ(z− zc). One may accordingly term such modes as ‘Squire jets’.
Note that since ŵy ′,k= ûz,k=0, the Rayleigh equation (3.2) is trivially satisfied in these
cases. Thus, we have a Λ2 CS mode being characterized by the following velocity and
vorticity fields:

ûΛ2
y ′,k(z; zc) = Σ2δ(z− zc), (3.11)
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ŵΛ2
z,k(z; zc) = ikΣ2δ(z− zc), (3.12)

ŵΛ2
x′,k(z; zc) = −Σ2δ

′(z− zc). (3.13)

Here, again, zc is such that c spans the base-state range of velocities – the inviscid
Squire CS. The normalization Σ2 =

∫ 1
−1 uΛ2

y ′,k(z
′; zc) dz′ used above may be interpreted

as the volume flux per (half-)wavelength associated with each mode. These modes
were originally written down by Sazonov (1996) while studying the evolution of
3D disturbances in Couette flow. The localized perturbation velocity field implies,
however, that the evolution of such a mode only depends on the velocity gradient
at the critical level, and therefore, (3.11)–(3.13) remain solutions of the linearized
equations of motion for an arbitrary nonlinear base-state velocity profile. In addition,
the localization of the velocity field at z= zc implies the Λ2 modes remain the same
for both bounded and unbounded domains.

To summarize, the velocity and vorticity fields associated with the Λ1 and Λ2 CS
modes are given by (3.8)–(3.10) and (3.11)–(3.13), respectively, with zc spanning
the domain. As shown originally by Case (1960) for Couette flow, and later by
Balmforth & Morrison (1995) for a general nonlinear shearing flow, an arbitrary
vortical perturbation in two dimensions (that is, with ky = 0, and the perturbation
velocity field restricted to the xz plane) may be expressed as a superposition of the
Λ1 CS modes alone. Thus, these are the only modes needed for an interpretation of
the Orr mechanism in two dimensions, and the schematic in figure 2 is an example
of such an interpretation for Couette flow. On the other hand, the Λ2 modes come
into play only for a perturbation that includes a spanwise variation, and, as will be
seen in § 4.2, are crucial to explaining the lift-up effect.

Finally, it must be noted that, unlike the inviscid eigenfunctions above, there
are crucial differences in the nature of the viscous spectrum and the associated
eigenfunctions between bounded and unbounded domains. For a bounded domain,
as originally argued by Lin (1955), the spectrum of the Orr–Sommerfeld equation
is purely discrete. The spectrum for the unbounded case, however, depends on the
nature of the base-state velocity profile. On the one hand, considering a semi-infinite
domain with a velocity profile that approaches a uniform flow at infinity leads to
the appearance of a viscous CS consisting of eigenfunctions that oscillate finitely
rather than decay at infinity. This was originally found numerically for the Blasius
profile (Mack 1976), and appears to be a generic feature of Blasius-like profiles in
a semi-infinite domain (Murdock & Stewartson 1977); the interval corresponding to
the CS for such profiles has also been established (Grosch & Salwen 1978, 1981).
On the other hand, for velocity profiles that asymptote to a finite shear at infinity,
for instance, unbounded Couette flow (U(z)∝ z, z ε(−∞,∞)), the spectrum remains
discrete except for disturbances that only have a spanwise variation. At least for
unbounded Couette flow, there is neither a discrete nor a continuous spectrum in the
absence of boundaries, and as shown in § 5, the crucial role of boundaries in this
case leads to a non-trivial relation between the inviscid CS modes, analysed above in
§§ 3.1 and 3.2, and the viscous modes for large but finite Re. In particular, each CS
mode may be sensibly interpreted only as the limiting form of a viscous wavepacket,
since the individual viscous eigenmodes do not approach sensible limiting forms for
Re→∞.

4. The modal representation of a vortical initial condition
4.1. A general initial condition

The determination of the arbitrary time evolution of a general initial velocity field
u(x, 0) may be reduced to the problem of the evolution of a single Fourier mode in
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the wavevector-aligned coordinate system as follows:

u(x, t) =
∫ ∞
−∞

∫ ∞
−∞

dkx dky ûk(z, t) ei(kxx+kyy),

=
∫ ∞
−∞

∫ ∞
−∞

dkx dky{ûx,k(z, t)x̂+ ûy,k(z, t)ŷ+ ûz,k(z, t)ẑ} ei(kxx+kyy), (4.1)

in terms of the Fourier modes in flow-aligned coordinates. Here [x̂, ŷ, ẑ] denotes the
unit vector triad aligned with the base-state flow, gradient and vorticity directions.
Transforming to wavevector-aligned coordinates, and with the aid of the continuity
equation, one obtains

u(x, t) =
∫ ∞
−∞

∫ ∞
−∞

dkx dky

[{
i
k

Dûz,k(z, t) cosψ + ûy ′,k(z, t) sinψ
}

x̂

+
{

ûy ′,k(z, t) cosψ − i
k

Dûz,k(z, t) sinψ
}

ŷ+ ûz,k(z, t)ẑ
]

ei(kxx+kyy), (4.2)

where we have used that ûz′,k(z, t)= ûz,k(z, t).
It is clear from (4.2) that a description of ûz,k(z, t) (or, equivalently, ŵy ′,k(z, t)) and

ûy ′,k(z, t) for a given k, in terms of a superposition over the singular eigenfunctions
of the aforementioned Λ1 and Λ2 families, would lead to the required modal
representation for an arbitrary u(x, t) via the Fourier integral representation. Hence,
we now examine the evolution of a single Fourier mode that, at the initial instant,
has a vertical structure given by (ŵy ′,k(z, 0), ûy ′,k(z, 0))≡ (Q1(z),Q2(z)). This choice
of perturbation fields is motivated by the structure of the Λ2 family. As shown
below, the fact that the Λ2 eigenmodes have ŵy ′,k = 0 allows one to arrive at the
modal superposition in a simple sequential manner. The continuity equation, and the
kinematic relation between streamfunction and vorticity, may be used to obtain the
remaining disturbance velocity fields in terms ŵ′y and û′y. The choice of perturbation
fields above is in contrast to the usual choice of the wall-normal velocity (ûz,k)
and the wall-normal vorticity (ŵz,k) fields (see e.g. Schmid & Henningson 2001).
However, the two choices may be readily related: ûz,k(z, 0) is related to ŵy ′,k(z, 0) via
the Poisson equation, so (D2 − k2)ûz,k(z, 0)=−ikQ1(z); and ŵz,k(z, 0)= ikQ2(z) (see
table 1).

To construct the ensemble of the Λi modes (i= 1, 2) that reproduce the above initial
condition, for a fixed k, we now exploit the fact that the Λ2 family is devoid of wy ′ .
As a result, one may construct the required modal superposition by first determining
the superposition of Λ1 modes required to represent ŵy ′,k(z, 0)≡Q1(z). That is, we
have

Q1(z)=
∫ 1

−1
AΛ1(z′)ŵΛ1

y ′,k(z; z′) dz′, (4.3)

where AΛ1(z′) is the unknown amplitude distribution that needs to be determined.
Provided one knows AΛ1 , the vorticity field ŵy ′,k, at an arbitrary time instant, follows
immediately on convecting each of the Λ1 modes with the base-state velocity at its
critical level. Thus,

ŵy ′,k(z, t)=
∫ 1

−1
AΛ1(z′)ŵΛ1

y ′,k(z; z′) e−ikxU(z′)t dz′, (4.4)
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with an analogous equation for ûz,k(z, t). Using (3.8) with zc = z′ for ŵΛ1
y ′,k(z; z′) in

(4.3), one obtains the following Cauchy integral equation (Gakhov 1990) to be solved
for AΛ1(z):

Q1(z)=AΛ1(z)

{
Σ1 − i

k
P
∫ 1

−1

U′′(z′)ûΛ1
z,k(z′; z)

U(z′)−U(z)
dz′
}
− i

k
U′′(z)P

∫ 1

−1

AΛ1(z′)ûΛ1
z,k(z; z′)

U(z′)−U(z)
dz′,

(4.5)
where the symbol P implies that the integrals must be interpreted in the sense of a
Cauchy PV. The solution of an analogous integral equation in plasma physics, which
arose from a governing Vlasov equation, was originally accomplished by Case (1959)
in terms of the solution of a Riemann–Hilbert problem in the complex plane (Gakhov
1990). The solutions of similar integral equations arising in the context of both parallel
shearing flows (Balmforth & Morrison 1995) and vortical flows (Roy & Subramanian
2014) have also been obtained. We refer the reader to these references for details of
the solution procedure, and write down the final expression for AΛ1(z):

AΛ1(z)= 1
ε2

R + ε2
L

[
εRQ1(z)− εLU′

ûΛ1
z (z; z)

P
∫ 1

−1

ûΛ1
z (z; z′)Q1(z′)
U(z′)−U(z)

dz′
]
, (4.6)

where

εR =Σ1 − i
k
P
∫ 1

−1

U′′(z′)ûΛ1
z (z; z′)

U(z′)−U(z)
dz′, (4.7)

εL =− iπ
k

U′′(z)ûΛ1
z (z; z)

U′(z)
. (4.8)

Provided there are no singularities, (4.6) implies that an arbitrary initial ŵy ′ field may
be expressed as a superposition of the Λ1 CS modes. As will be seen in § 4.3, the
expression for the amplitude distribution only becomes singular in the presence of
discrete modes. For non-inflectional shearing flows, (4.6) is therefore equivalent to the
Λ1 modes forming a complete basis for ŵy ′,k perturbations.

It is important to note that, although the solution via the Riemann–Hilbert problem
achieves the formal inversion, thereby expressing the amplitude distribution of the
CS modes in terms of the initial vorticity field, the explicit analytical forms for the
individual Λ1 eigenmodes (that is, ûΛ1

z in (4.6)–(4.8)) will, for a general velocity
profile, require a numerical solution. As shown by Balmforth & Morrison (1995), in
the context of 2D perturbations, this may be accomplished in the present case by
writing the velocity components ûz,k and ûx′,k in terms of a scalar streamfunction (since
ûy ′,k does not depend on the coordinate along k). The streamfunction then satisfies a
Fredholm integral equation of the second kind rather than the singular Cauchy integral
equation above (a Fredholm equation of the first kind results for exceptional modes
with zero net y′ vorticity). For Couette flow, of course, the perturbation velocity fields
are available in closed form. An approximate analytical inversion may be achieved,
to O(U′′), when the curvature of the base-state velocity profile is small (Kelbert &
Sazonov 1996).

Since each of the Λ1 modes has an associated ûy ′,k(z) given by (3.10), the Λ1
superposition needed to reproduce ŵy ′,k(z, 0) would also generate a ûy ′ contribution
given by

∫ 1
−1 AΛ1(z′)ûΛ1

y ′ (z; z′) dz′ at the initial instant. This, of course, will not in
general coincide with the initial ûy ′,k field given by Q2(z). Thus, the superposition
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of the Λ2 modes needs to account for the difference between the Q2(z) and that
corresponding to the Λ1 superposition above. One may write

Q2(z) =
∫ 1

−1
AΛ1(z′)ûΛ1

y ′,k(z; z′) dz′ +
∫ 1

−1
AΛ2(z′)ûΛ2

y ′,k(z; z′) dz′,

= U′(z)ky

ikkx
P
∫ 1

−1

AΛ1(z′)ûΛ1
z,k(z; z′)

U(z)−U(z′)
dz′ + AΛ2(z)Σ2, (4.9)

where we have used the expression for ûΛ1
y ′,k(z; z′) from (3.10), and the fact that

ûΛ2
y ′,k(z; z′) is just a delta function. The latter fact ensures that any initial ûy ′ field

may trivially be represented as a superposition of the Λ2 modes, since this merely
amounts to the identity f (z)= ∫ δ(z− z′) f (z′) dz′ for an arbitrary function f . Thus,

AΛ2(z)= 1
Σ2

[
Q2(z)− U′(z)ky

ikkx
P
∫ 1

−1

AΛ1(z′)ûΛ1
z,k(z; z′)

U(z)−U(z′)
dz′
]
, (4.10)

where AΛ1(z) is known from (4.6). Combining (4.9) and (4.10), and accounting for
the convection of the Λ2 modes with the base-state velocities at the individual critical
levels, we have the following expression for the arbitrary time evolution of ûy ′,k(z, t):

ûy ′,k(z, t)=Q2(z) e−ikxU(z)t+ U′(z)ky

ikkx

∫ 1

−1
AΛ1(z′)ûΛ1

z,k(z; z′)
e−ikxU(z′)t − e−ikxU(z)t

U(z)−U(z′)
dz′. (4.11)

Provided AΛ1 given by (4.6) is non-singular, so is AΛ2 as given by (4.10), and
a combination of the Λ1 and Λ2 CS mode families then forms a complete basis
for an arbitrary initial combination of the ŵy ′,k and ûy ′,k fields. Since all other
perturbation fields associated with a given Fourier mode may be expressed in terms
of ŵy ′,k and ûy ′,k, and non-wave-like disturbances may be incorporated via the Fourier
integral in (4.2), a combination of the Λ1 and Λ2 CS mode families is complete for
non-inflectional shearing flows.

Equation (4.4) with ŵΛ1
y ′,k replaced by ûΛ1

z,k , together with (4.11), yield the modal
superposition for a single Fourier mode with wavevector k. One may now use (4.2)
to obtain a superposition that underlies an arbitrary initial velocity field. To do this,
(4.2) is rewritten in the form

u(x, t) =
∫ ∞
−∞

∫ ∞
−∞

dkx dky ei(kxx+kyy)[{x̂ik−1 cosψ D− ŷik−1 sinψ D+ ẑ}ûz,k(z, t)

+{x̂ sinψ + ŷ cosψ}ûy ′,k(z, t)], (4.12)

where ûz,k(z, t) and ûy ′,k(z, t) may be expressed as a superposition over the Λi modes
(i= 1, 2). On using (4.4) written in terms of ûΛ1

z,k and (4.11), one obtains the arbitrary
time evolution in terms of the flow-aligned components of the initial perturbation
velocity field:

u(x, t) =
∫ ∞
−∞

∫ ∞
−∞

dkx dky ei(kxx+kyy)

×
[
{x̂ik−1 cosψ D− ŷik−1 sinψ D+ ẑ}

∫ 1

−1
AΛ1(z′)ûΛ1

z,k(z; z′) e−ikxU(z′)t dz′
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+{x̂ sinψ + ŷ cosψ}
{
[ûx,k(z, 0) sinψ + ûy,k(z, 0) cosψ] e−ikxU(z)t

− U′(z)ky

ikkx

∫ 1

−1
AΛ1(z′)ûΛ1

z,k(z; z′)
e−ikxU(z′)t − e−ikxU(z)t

U(z)−U(z′)
dz′
}]
. (4.13)

Here, from (4.6), AΛ1(z) may be expressed in terms of the initial perturbation field
as:

AΛ1(z) = 1
ε2

R + ε2
L

εR

(
i
k
(D2 − k2)

)
ûz,k(z, 0)

− εLU′

uΛ1
z (z; z)

P
∫ 1

−1

uΛ1
z (z; z′)

(
i
k
(D2 − k2)

)
ûz,k(z′, 0)

U(z′)−U(z)
dz′

, (4.14)

with εR and εL being given by (4.7) and (4.8). It is worth noting that ψ =
tan−1(ky/kx) in (4.13), and thus is not a constant since the singular-mode superposition
corresponding to each elementary Fourier wave is constructed in a different coordinate
system. Finally, the fact that the Λ2 velocity field is a delta function (see (3.11)) may
be used to rewrite (4.13) formally as the following superposition of separate terms
involving the Λ1 and Λ2 modes:

u(x, t) =
∫ ∞
−∞

∫ ∞
−∞

dkx dky ei(kxx+kyy)

×
[∫ 1

−1
AΛ1(z′)

[
e−ikxU(z′)t{x̂ik−1 cosψ D− ŷik−1 sinψ D+ ẑ}

− U′(z)ky

ikkx

e−ikxU(z′)t − e−ikxU(z)t

U(z)−U(z′)
{x̂ sinψ + ŷ cosψ}

]
ûΛ1

z,k(z; z′) dz′

+ 1
Σ2

∫ 1

−1
{x̂ sinψ + ŷ cosψ}[ûx,k(z′, 0) sinψ + ûy,k(z′, 0) cosψ]

× e−ikxU(z′)tûΛ2
y ′,k(z; z′) dz′

]
, (4.15)

with AΛ1 being given by (4.14), and uΛ1
z,k and uΛ2

y ′,k being given by (3.9) and (3.11),
respectively. The initial Fourier amplitudes, ûk(z, 0), used in (4.15) and (4.14), may
be obtained from the following partial transform of the initial perturbation velocity
field: (1/(2π)2)

∫
dx dy e−i(kxx+kyy)u(x, 0).

For 2D perturbations, with ψ = 0, (4.15) takes the much simpler form:

u(x, t) =
∫ ∞
−∞

dkx eikxx

[∫ 1

−1
AΛ1(z′) e−ikxU(z′)t(x̂ik−1D+ ẑ)ûΛ1

z,kx
(z; z′) dz′

+ ŷ
Σ2

∫ 1

−1
ûy,kx(z

′, 0) e−ikxU(z′)tûΛ2
y,kx
(z; z′) dz′

]
. (4.16)
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Here the ky integral in (4.15) has been eliminated, and the notation in (4.16) accounts
for the coincidence of the flow-aligned and wavevector-aligned coordinate systems.
Note that the individual velocity eigenfunctions remain unaltered in form (except
for k being replaced by kx), and AΛ1 is still given by (4.14) with k replaced by
kx. The modal superposition in (4.16) degenerates into two decoupled contributions,
and this may be explicitly seen by writing down the separate integral superpositions
corresponding to the normal and spanwise components of the perturbation velocity
field (the first term in the operator, (x̂ik−1D+ ẑ), merely reflects the incompressibility
constraint that relates the x and z components of the perturbation field). From (4.16),
we have

uz(x, t) =
∫ ∞
−∞

dkx eikxx
∫ 1

−1
AΛ1(z′) e−ikxU(z′)tûΛ1

z,k(z; z′) dz′, (4.17)

uy(x, t) = 1
Σ2

∫ 1

−1
ûy,k(z′, 0) e−ikxU(z′)tûΛ2

y,kx
(z; z′) dz′. (4.18)

The expression (4.18) merely represents a spanwise perturbation, convected by the
shear flow, and independent of the dynamics of perturbations in the plane of shear.
Operating (4.17) with (i/k)(D2− k2) on both sides leads to an equivalent superposition
in terms of the ŵΛ1

y (z, z′) vorticity field that is already known (Balmforth & Morrison
1995). For Couette flow, ŵΛ1

y (z, z
′)∝ δ(z− z′), and (4.17) takes the same form as (4.18)

since both the spanwise vorticity and velocity fields are merely convected by the flow
in this limit. The physical interpretation of the Orr mechanism, based on this ŵΛ1

y
superposition, was discussed in the introduction (see figure 2).

4.2. Transient growth for a ‘roll’ initial condition
Considering again the superposition for a fixed k, we note that, for a vanishingly small
streamwise wavenumber, (4.11) reduces to

ûy ′,k(z, t) = ûy ′,k(z, 0)−U′(z)
[

tûz,k(z, 0)

− ikxt2

2

∫ 1

−1
AΛ1(z′)ûΛ1

z,k(z; z′){U(z′)+U(z)} dz′ +O(k2
x t3)

]
,

= ûy ′,k(z, 0)−U′(z)t
[

ûz,k(z, 0)

− ikxt
2

{
ûz,k(z, 0)U(z)+

∫ 1

−1
AΛ1(z′)ûΛ1

z,k(z; z′)U(z′) dz′
}
+O(kxt)2

]
,

(4.19)

where we have used ky =−k(ψ =−π/2), and that

ûz,k(z, 0)=
∫ 1

−1
AΛ1(z′)ûΛ1

z,k(z; z′) dz′. (4.20)

Thus, the relevant (dimensionless) small parameter in (4.19) is kxŪct, Ūc being a
characteristic velocity scale of the base-state profile, and not kx alone. The expression
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(4.19) evidently predicts an algebraic growth over a time scale t � O(kxŪc)
−1. For

times of O(kxŪc)
−1, however, all terms in the series expansion within brackets

become comparable and the resulting mutual cancellation leads to a saturation of the
initial algebraic growth. Physically, this is indicative of differential convection of the
perturbation by the base-state shear, leading to decoherence (phase mixing) for long
times. For kx = 0, that is, a streamwise-uniform initial condition, the role of shear in
phase mixing becomes redundant and the algebraic growth persists for all times, with

ûy ′,k(z, t)= ûx,k(z, t)= ûx,k(z, 0)−U′(z)t ûz,k(z, 0), (4.21)

where we have used that the y′-axis coincides with the flow direction (x) for a
streamwise-uniform perturbation. The expression (4.21) is the algebraic instability
for a streamwise-uniform Fourier mode (k = ky) where an upward normal velocity
perturbation associated with a ‘roll’ Fourier mode carries slow-moving fluid to higher
z locations, creating a negative uy ′ perturbation. An inverse Fourier transform leads
one precisely to the relation obtained by Ellingsen & Palm (1975). Thus, the algebraic
instability for 3D disturbances in shear flows is contained in the modal superposition
of the Λi eigenfunctions.

In order to obtain a clearer physical picture of the instability, we consider the
manner in which the modal superposition in (4.11) reproduces a ‘roll’ initial condition
with the velocity field restricted to the (x′, z) plane. We further simplify the physical
picture by restricting ourselves to Couette flow with U′′(z) = 0, in which case the
wy ′ component of a Λ1 mode reduces to a delta function. There is no real loss of
generality since, as is evident from (4.21), it is the velocity gradient (U′) and not the
vorticity gradient (∝U′′) that is responsible for the algebraic instability. The latter is,
of course, crucial to the existence of unstable discrete modes that are analysed briefly
in the next subsection. The 2D nature of the roll implies that the only non-zero
vorticity component in the initial condition is wy ′(z, 0). This initial field may readily
be formed by a stack of Λ1 CS modes. The amplitude of a particular eigenmode,
this being the strength of the wy ′ vortex sheet, is proportional to wy ′(z, 0) at the z
corresponding to the location of the wy ′ vortex sheet (which, of course, is the critical
level of the particular mode considered). Note that, except for 2D perturbations, the
vorticity field associated with a Λ1 mode remains 3D, and the term ‘vortex sheet’
here refers only to the delta function in wy ′ . Now, for any k that has a spanwise
projection, each of the Λ1 modes also has a PV-singular uy ′ field not present in the
roll initial condition. This uy ′ field generated by the Λ1 superposition must therefore
be precisely cancelled out by an appropriate superposition of Squire jets at the initial
instant. Since the jet refers to a delta function uy ′ field, the amplitude of each Squire
jet in this superposition must again be equal in magnitude, but opposite in sign, to
the local uy ′ induced by the Λ1 superposition. The precise cancellation in uy ′ can
only happen at t= 0, however. For subsequent times, the differential convection of the
CS modes by the base-state shear undoes the cancellation, leading to a growing uy ′ ,
that is, a temporally growing streak. For any finite kx, eventual decoherence in phase
will terminate the initial algebraic growth but, as the initial condition approaches
streamwise uniformity (kx→ 0), this phase mixing becomes infinitely slow. Figure 4
illustrates the above picture for the case of an initial roll with kx = 0, and whose
velocity field in the (x′, z) ≡ (x, z) plane is that associated with a single Λ1 mode.
The amplitude distribution of the Λ2 modes therefore follows an envelope that has
a principal value singularity at the critical level of the Λ1 mode, and a growing
streak results in this case from the differential convection of the Squire jets alone. In
summary, the ‘lift-up’ effect, in a modal approach, may be interpreted as resulting
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(Spanwise) roll
initial condition

Base-state shear

Base-state 
shear

Base-state 
shear

Initial modal superposition

 mode – critical 
level

Generalized (spanwise)
Case vortex-sheet mode

Generalized (spanwise)
Case vortex-sheet mode

Cancelling ensemble 
of flow-directed Squire jets

PV-singular envelope
of Squire-jet amplitudes

Spanwise roll Temporally
growing streak

Squire jet ensemble convected
by the base-state shear

(a)

(b)

(c)

 mode – critical 
level

FIGURE 4. An initial roll evolving, via a superposition of a single Case vortex sheet and
a Squire jet ensemble, in a reference frame that translates with the base-state flow velocity
at the critical level of the Case vortex sheet. (a) Spanwise-oriented roll initial condition
corresponding to the (partial) velocity field of a single Case mode. (b) Initial superposition
of a single Case mode and the ensemble of Squire jets that effects a precise cancellation
of the streamwise velocity component. (c) Dephasing of Squire jets due to differential
convection by the base-state shear flow, leading to a growing streak. Both the non-modal
(upper left) and modal interpretations are depicted.
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from the evolution of a flow-aligned cancelling superposition of the Λ1 vortex-sheet
modes and the corresponding ensemble of Squire jets at the initial instant. Finally,
we note that (4.21) is valid even for nonlinear velocity profiles with a non-trivial
base-state vorticity gradient. The argument above also holds in these cases, except
that the details of the superposition become complicated. For instance, the amplitude
AΛ1(z), instead of obeying a trivial algebraic relation, AΛ1(z′)Σ1 =Q1, as for Couette
flow, is now determined by an integral equation instead (see (4.6)).

4.3. Inclusion of discrete modes
The expression (4.13) for the evolution of a general initial condition in terms of the
Λ1 and Λ2 families can be generalized to the case of inflectional velocity profiles by
accommodating additional discrete modes associated with each inflection point. This
may be done using the original formulation of Case (1959) in the plasma physics
context, and has already been adapted by Balmforth & Morrison (1995) and Roy &
Subramanian (2014) in the hydrodynamical context. We will therefore be brief here.
As already mentioned, the expression (4.14) for AΛ1(z) is obtained as the solution of
a Riemann–Hilbert problem, and is, in fact, the limiting form (on the real axis) of the
following relation in the complex plane:

Ψ (z)= χ(z)
1+ 2πiΦ(z)

, (4.22)

where z= zR + izI is now regarded as a complex variable, and where

Ψ (z)= 1
2πi

∫ 1

−1

AΛ1(z′)ûΛ1
z (z; z′)

U(z′)−U(z)
dz′, (4.23)

Φ(z)= 1
2πi

( −i
kΣ1

) ∫ 1

−1

U′′(z′)ûΛ1
z (z

′; z)
U(z′)−U(z)

dz′ (4.24)

and

χ(z)= 1
2πi

(
1
Σ1

) ∫ 1

−1

Q1(z′)ûΛ1
z (z; z′)

U(z′)−U(z)
dz′ (4.25)

are sectionally analytic functions in the complex plane with a branch cut along
z ε(−1, 1). The expression (4.14) is valid when the only singularity of Ψ (z) is the
aforementioned branch cut. This is, however, no longer true when there exist points
z = cn in the complex plane, in the strip −1 < zR < 1 (on account of the Howard
semi-circle theorem; see Drazin & Reid (1981)), where 1+ 2πiΦ(cn)= 0. Using the
definition of Φ(z) above, this relation may be written as

1− i
kΣ1

∫ 1

−1

U′′(z′)ûΛ1
z′,k(z; cn)

U(z′)− cn
dz′ = 0. (4.26)

This is the dispersion relation for the discrete modes associated with the Rayleigh
operator. The normalization based on the total ŵy ′ field implies that ûΛ1

z′,k is purely
imaginary, and the coefficients in (4.26) are therefore real-valued, allowing for both
cn and c∗n as solutions; here ‘∗’ denotes a complex conjugate. The corresponding
eigenfunctions bear a similar relation. In other words, as is well known, the inviscid
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discrete modes occur in conjugate pairs. In the presence of discrete modes, one may
use the modified function

χm(z)
1

2πi

(
1
Σ1

) ∫ 1

−1

Q1(z′)ûΛ1
z (z; z′)−

∑
n

[AnûΛ1
z,k(z; cn)+ A∗nûΛ1

z,k(z; c∗n)]

U(z′)−U(z)
dz′, (4.27)

where ûΛ1
z,k(z; cn) and ûΛ1

z,k(z; c∗n) are the discrete mode eigenfunctions, and An and A∗n
are their amplitudes. The summation with respect to n is over all pairs of discrete
modes. The discrete modal amplitudes are determined by enforcing the analyticity of
Ψ (z), now defined by a relation similar to (4.22) but involving χm(z), at the points
z= cn and z= c∗n. The resulting expressions for uz,k(z, t) and uy ′,k(z, t) are given by

ŵy ′,k(z, t) =
∑

n

[AnŵΛ1
z,k(z; cn) e−ikxcnt + A∗nŵΛ1

z,k(z; c∗n) e−ikxc∗n t]

+
∫ 1

−1
AΛ1(z′)ŵΛ1

z,k(z; z′) e−ikxU(z′)t dz′, (4.28)

ûy ′,k(z, t) = Q2(z) e−ikxU(z)t + U′(z)ky

ikkx

∫ 1

−1
AΛ1(z′)ûΛ1

z,k(z; z′)
e−ikxU(z′)t − e−ikxU(z)t

U(z)−U(z′)
dz′

+ U′(z)ky

ikkx

∑
n

[
AnûΛ1

z,k(z; cn)
e−ikxcnt − e−ikxU(z)t

U(z)− cn

+A∗nûΛ1
z,k(z; c∗n)

e−ikxc∗n t − e−ikxU(z)t

U(z)− c∗n

]
, (4.29)

where AΛ1(z) is now given by

AΛ1(z) = 1
ε2

R + ε2
L

[
εRR1 − εLU′

uΛ1
z (z; z)

P
∫ 1

−1

ûΛ1
z,k(z; z′)R1(z′)
U(z′)−U(z)

dz′
]
, (4.30)

R1(z) = Q1(z)− i
k
(D2 − k2)

∑
n

[Anûz,k(z; cn)+ A∗nûz,k(z; c∗n)], (4.31)

An =

∫ 1

−1

Q1(z)uzn(z; cn)

U(z)− cn
dz

i
k

∫ 1

−1

{
ûz,k(z; cn)

U(z)− cn

}2

U′′(z) dz

, (4.32)

with εR and εL being given by (4.7) and (4.8) and Q1(z) = (i/k)(D2 − k2)ûz,k(z, 0)
as before. When compared with (4.6) for a non-inflectional profile (with a purely
continuous spectrum), (4.30) highlights the removal, from the initial condition, of its
projection onto the discrete modes. Note that the discrete spectrum in the inviscid limit
is associated with the Rayleigh operator alone, and as evident from the expression
for (4.29) for the û′y field, the inviscid Squire spectrum remains purely continuous
regardless of inflection points.
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5. The relation between the inviscid and viscous modal superpositions
The earlier sections have dealt with an inviscid modal interpretation of the lift-up

effect. For any finite Re, the dynamics of the linearized perturbations is governed by
the Orr–Sommerfeld and Squire equations, which, in non-dimensional form, are given
by [(

∂

∂t
+U

∂

∂x
− 1

Re
∇2

)
∇2 −U′′

∂

∂x

]
uz = 0, (5.1)[

∂

∂t
+U

∂

∂x
− 1

Re
∇2

]
wz =−U′

∂uz

∂y
. (5.2)

Written in normal-mode form, the homogeneous solution of (5.1), together with the
forced solution of (5.2), is termed an Orr–Sommerfeld (OS) eigenmode, while the
homogeneous solution of (5.2) with uz = 0 is termed a Squire eigenmode (Schmid &
Henningson 2001). This is analogous to our classification of the inviscid eigenmodes,
satisfying (2.3) and (2.4), in terms of the Λ1 and Λ2 families, but for the difference
in the coordinate systems (space-fixed here as opposed to wavevector-aligned in § 2).

An explanation for the lift-up effect, based on the evolution of an initial cancelling
superposition of the aforementioned viscous eigenmodes, appears in Schmid &
Henningson (2001, pp. 106–107). We quote a brief passage from this description:

Suppose that we expand an initial condition with zero normal vorticity.
This will excite a number of Orr–Sommerfeld modes to represent the initial
normal velocity. Each Orr–Sommerfeld mode has an associated particular
normal vorticity, which now needs to be cancelled by an appropriate
combination of Squire modes. Thus both Orr–Sommerfeld and Squire
modes are excited by an initial condition of zero normal vorticity. As the
disturbance evolves downstream, each mode evolves in time according
to its eigenvalue. Because the phase speeds and decay rates are different
the modes will propagate apart and the cancellation that was enforced
for t = 0 will not persist. Consequently, the disturbance will experience
transient growth in the normal vorticity component.

Unlike the inviscid problem, the viscous eigenmodes involved in such a super-
position, and the viscous spectrum itself, are not known in closed form owing to the
analytical intractability of the OS equation. Nevertheless, it is worth examining the
relation between the inviscid and viscous modal superpositions. A pertinent question
is whether there is a one-to-one correspondence between the inviscid eigenmodes and
the viscous eigenmodes for large Re involved in the superposition that reproduces a
roll initial condition. As will be shown below, this is not so, at least in the example
considered, that of Couette flow, owing to fundamental differences between the
inviscid spectrum and the large-Re viscous spectrum.

In what follows, we examine the evolution of a given initial condition, via inviscid
singular eigenfunctions, and as a superposition of viscous discrete modes in the limit
of a vanishingly small viscosity, for the analytically soluble example of Couette
flow. The constancy of the base-state vorticity makes it convenient to formulate the
linearized dynamics in Couette flow in terms of an appropriate component of the
perturbation vorticity field that satisfies the advection–diffusion equation. If φ is the
particular vorticity component, we have

∂φ

∂t
+U(z)

∂φ

∂x
= ν∇2φ, (5.3)
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where U(z) = γ̇ z, γ̇ being the shear rate (taken to be unity in earlier sections).
Assuming a Fourier mode of the form φ(x, t) = φ̂(z, t) ei(kxx+kyy), and using k−1 and
(γ̇ cos ψ)−1 as characteristic length and time scales (the angle ψ is defined in
figure 3), the non-dimensional equation in modal form is

∂φ̂

∂t
+ izφ̂ = 1

Re

(
∂2φ̂

∂z2
− φ̂

)
, (5.4)

where Re = γ̇ cos ψ (νk2)−1. For the Squire equation, φ̂ = ŵz, with homogeneous
boundary conditions. For the OS equation, φ̂ ∝ ŵy ′ , with homogeneous boundary
conditions for the normal and tangential velocities given by (∂2/∂z2 − k2)−1φ̂ and
(∂/∂z)(∂2/∂z2 − k2)−1φ̂, respectively. We analyse, in turn, the relations between the
inviscid spectra and the limiting forms of the viscous spectra for the Squire and OS
operators. Finally, we consider streamwise-uniform disturbances (ψ =±(π/2)), which
require separate consideration, since Re, as defined above, approaches zero, and the
time scale must be modified to reflect the diffusive decay of the eigenmodes.

5.1. Viscous spectrum of the Squire equation
For Re=∞, (5.4) supports an inviscid CS over the base-state range of velocities. A
given eigenmode is convected with the local fluid velocity at z = z1 (say), being of
the form φ̂(z, t)= δ(z− z1) e−iz1t. Physically, this infinitely localized vortical structure
corresponds to a Squire jet. Viscosity, however, causes the width of the vorticity
distribution to grow as O(t/Re)1/2. The form of the finite-Re response, for any t, is
given by the Green’s function, G(z, t; z1), of the advection–diffusion operator defined
as

∂G
∂t
+ izG − 1

Re

(
∂2G
∂z2
− G

)
= δ(z− z1)δ(t), (5.5)

which is readily solved to obtain

G(z, t; z1)=
√

Re
4πt

exp
[
− it(z+ z1)

2
− t

Re

(
t2

12
+ 1
)
− (z− z1)

2Re
4t

]
, (5.6)

for an unbounded domain. For a semi-infinite domain, the condition G = 0 at z= 0 is
satisfied by adding image vorticity of the opposite sign at z=−z1 (Marcus & Press
1977). The effect of boundaries is, however, secondary in the arguments that follow,
the focus being on the structure of the viscous eigenmodes outside wall boundary
layers. Since (5.6) may be written in the form

G(z, t; z1) =
√

Re
4πt

exp
[
− t

Re

(
t2

12
+ 1
)]

×
∫ ∞
−∞

exp
[

it(z′ − z1)

2
− (z

′ − z1)
2Re

4t

]
δ(z− z′) e−iz′t dz′, (5.7)

the finite-Re solution may be interpreted as a time-varying superposition of localized
jets, the amplitude envelope of this superposition broadening as the square root of
time. The most important point is the non-separable dependence on z and t, implying
that (5.6) is not of a normal-mode form. That a non-modal viscous structure reduces to
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FIGURE 5. (Colour online) The viscous Squire spectrum for semi-infinite Couette flow
(U∝ z with 06 z<∞) for (a) Re= 100 and (b) Re= 500: ∗, equation (5.9); �, equation
(5.10).

a single inviscid mode (a convected jet) in the limit Re→∞ highlights the non-trivial
nature of the viscous–inviscid relation.

To characterize the viscous spectrum, we consider a solution of (5.4), in the normal-
mode form φ̂(z, t)=Φ(z) e−ict, where Φ(z) satisfies the following differential equation:

d2Φ

dz2
= {iRe(z− c)+ 1}Φ. (5.8)

This has solutions in terms of the two Airy functions Ai[(iRe)1/3{z− c+ (iRe)−1}] and
Bi[(iRe)1/3{z − c + (iRe)−1}]. For purposes of simplicity, we consider a semi-infinite
domain with the boundary conditions Φ(0)= 0 and Φ(z)→ 0 as z→∞. The latter
condition implies that only Ai need be considered, and the viscous eigenvalues satisfy
the relation Ai[(iRe)1/3{−c+ (iRe)−1}] = 0, being given by

cn =− ain

(iRe)1/3
+ 1

iRe
, (5.9)

where ain is the nth zero of Ai(z). The spectrum is evidently discrete. The asymptotic
form of ain (Abramowitz & Stegun 1965) yields the following large-n approximation:

cn ≈
[{

3π(4n− 1)
8

}2 1
iRe

]1/3

+ 1
iRe

. (5.10)

Figure 5 shows the favourable comparison between the eigenvalues evaluated using
(5.9) and (5.10) for Re = 100 and 500. With increasing Re, the spacing between
the eigenvalues decreases, and a given eigenvalue (n fixed) approaches the boundary
(c = 0). The latter arises because unbounded viscous Couette flow does not have
normal modes with the only known solutions having a non-separable space–time
dependence. Those that have a localized wavepacket-like character are given by (5.7),
and the delocalized solutions are viscously decaying Kelvin modes (Farrell & Ioannou
1993). As a result, the normal modes in Couette flow with one or more boundaries
are the so-called ‘wall modes’ (Schmid & Henningson 2001) with a structure that,
for large Re, is localized in the vicinity of the boundary. The balance between
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FIGURE 6. (Colour online) The structure of the Squire eigenmodes for various Re values.
(a) The O(Re−1/3) scaling for a weakly damped wall mode (Squire mode with n = 3).
(b,c) Interior Squire modes that decay at an inviscid rate: (b) nth mode, O(Re−1/2) scaling
of oscillations; (c) nth mode, O(Re−1/3) scaling of the envelope. For a value of Re, the
interior mode is chosen with n∼Re1/2 to ensure that the eigenvalue remains O(1) (cn,r =
Re(cn)).

convection by shear and viscous diffusion implies that the spatial extent of this wall
boundary layer is [O(Re)−1/3]; see figure 6(a). More interestingly, as seen in figure 5,
the spectra for large Re values increasingly lie on a single ray that emerges from
the origin at an angle of π/6 with the real axis. This invariant ray is the limiting
form of the viscous spectrum for Re=∞, as is evident from the term of O(Re−1/3)
in (5.10) (Reddy, Schmid & Henningson 1993). While eigenvalues with a fixed n
approach the origin with increasing Re, one can always find an eigenvalue, with a
sufficiently large modal index (n ∼ O(Re1/2)), that remains on the aforementioned
ray at an O(1) distance from the positive real axis (the inviscid CS). Physically,
ci ∼ O(1) implies that such an ‘interior mode’ decays at an inviscid rate. This may
also be seen from the asymptotic form of the Airy function for large arguments given
by Ai(ζ ) ≈ e−2ζ 3/2/3/(2

√
πζ 1/4) (|arg ζ | < π) with ζ = (iRe)1/3(z − cn) (Abramowitz

& Stegun 1965). For large Re, and with z, cn ∼ O(1), the above asymptote shows
a separation between the O(Re−1/3) length scale characterizing the extent of the
wavepacket and the O(Re−1/2) scale characterizing the oscillations within. The scale
of the oscillations in a packet decreases with increasing Re in precisely such a manner
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as to maintain an inviscid decay rate. The existence of two increasingly disparate
scales in a large-Re viscous eigenfunction is illustrated in figure 6(b,c).

Having characterized the viscous modal solutions, one may now use the adjoint
eigenfunctions of (5.8), and, proceeding along standard lines for an operator
with a discrete spectrum (Stakgold 1968; Friedman 1990), arrive at the following
representation of the delta function in terms of the direct and adjoint viscous modes:

δ(z− z1)=
∞∑

n=1

(iRe)1/3Ai
[
(iRe)1/3

{
z1 − cn + 1

iRe

}]
Ai′
[
(iRe)1/3

{
−cn + 1

iRe

}]2 Ai
[
(iRe)1/3

{
z− cn + 1

iRe

}]
.

(5.11)
Physically, the above representation relates an inviscid Squire eigenmode, at the initial
instant, to a linear superposition of the corresponding viscous discrete modes. The
generalization of (5.11) to any finite time is given by

G ′(z, t; z1)

=
∞∑

n=1

(iRe)1/3Ai
[
(iRe)1/3

{
z1 − cn + 1

iRe

}]
Ai′
[
(iRe)1/3

{
−cn + 1

iRe

}]2 Ai
[
(iRe)1/3

{
z− cn + 1

iRe

}]
e−icnt.

(5.12)

The spatial extent of the viscous wavepacket in (5.12) is governed by Ai[(iRe)1/3{z−
cn + 1/(iRe)}], and the number of viscous modes included in the above summation
therefore corresponds to the number of cn in the interval where (z1− cn)∼O(Re−1/3).
From (5.10), with n∼O(Re1/2), it may be shown that the eigenvalue spacing decreases
as Re−5/6, and thus, even as the spatial extent of the viscous wavepacket in (5.10)
decreases with increasing Re, the number of viscous modes contributing to the
wavepacket diverges as Re1/2. The physical content of the modal superposition is
better seen from (5.6), which emphasizes the slow viscous broadening of the initially
localized jet. Note that, between (5.6) and (5.12), only the latter is constrained to
vanish at z = 0, but the difference between the two is exponentially small at the
boundary for Re� 1 provided z1 is O(1).

In the interest of analytical simplicity, the above discussion has emphasized the
relation between the viscous and inviscid spectra for Couette flow in a semi-infinite
domain, in which case the large-Re Squire spectrum emerges from the origin as
a single ray, at an angle θ = π/6 with the real axis, extending to infinity (see
figure 5). For bounded Couette flow, the spectrum is Y-shaped and there are now
two symmetrical branches consisting of localized wall modes near either boundary
(Schmid & Henningson 2001). The branches meet and continue downwards as a
vertical stem, which consists of stationary eigenmodes given by a linear combination
of the Airy functions of both kinds. Importantly, the Y-shaped locus itself is expected
to remain invariant, with the junction remaining at an O(1) distance from the real
axis even as Re→∞; numerical evidence in this regard is available in Reddy et al.
(1993, figures 9 and 10 therein). Thus, even as the eigenvalues rise up the stem,
and onto the branches, approaching the boundaries for a fixed modal index n and
increasing Re, there are always eigenvalues with n large enough (again of O(Re1/2))
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FIGURE 7. The viscous OS spectrum for semi-infinite Couette flow (U(z) ∝ z with 0 6
z<∞). (a) Numerical solutions of (5.14) compared with the asymptotic values given by
(5.15) for Re= 5000. (b) The OS and Squire eigenvalues for Re= 150 000, highlighting
the correspondence between the large-Re OS (•) and Squire (∗) spectra.

that remain at an O(1) distance from the real axis. In this sense, there are no
qualitative differences in the viscous–inviscid relation for Couette flow in bounded
and semi-infinite domains.

5.2. Viscous spectrum of the Orr–Sommerfeld equation
For the OS spectrum, we solve (5.8), but with Φ ∝ ŵy ′ . For a semi-infinite domain,
Φ(z)=Ai[(iRe)1/3{z− c+ (iRe)−1}] as before, with the normal velocity given by

ûz(z) = − 1
2k

[
e−kz

∫ z

0
(ekz′ − e−kz′)Ai[(iRe)1/3{z′ − c+ (iRe)−1}] dz′

+ (ekz − e−kz)

∫ ∞
z

e−kz′Ai[(iRe)1/3{z′ − c+ (iRe)−1}] dz′
]
, (5.13)

from use of the appropriate Green’s function for the semi-infinite domain. Applying
the tangential velocity boundary condition at z= 0 leads to the following dispersion
relation (Baines, Majumdar & Mitsudera 1996):∫ ∞

0
Ai[(iRe)1/3{z′ − cn + (iRe)−1}] e−z′ dz′ = 0. (5.14)

For Re� 1 the above equation yields the following asymptotic estimates for the OS
eigenvalues (Drazin & Reid 1981):

cn ∼ e−πi/6Re−1/3[ 38π(8n− 1)± 3
2 i cosh−1{π( 3

8(8n− 1))1/2}]2/3, (5.15)

where n= 1, 2, . . . . The OS eigenvalues, together with their analytical estimates, are
plotted in figure 7(a), and the spectrum lies along a pair of approximately parallel rays,
starting from close to the origin, at an angle of approximately π/6. Figure 7(b) shows
the relation between the OS and Squire spectra for Re= 150 000, a value high enough
to emphasize the correspondence between the two eigenvalue sequences. For Re→∞,
with ci ∼O(1), n∼O(Re1/2), it may be shown from (5.15) that the two OS rays are
separated by an asymptotically small distance of O((log Re)/Re1/2), and, except for a
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FIGURE 8. Amplitude plots for the wavevector inclined vorticity (ŵy ′) eigenfunctions for
the (a) first and (b) ninth OS mode pairs; Re= 1000.

region of O(Re−1/3) in the vicinity of the origin, must therefore approach the single
ray θ =π/6 found for the Squire case. Note that the spacing between successive OS
eigenvalues, along the rays, decreases at an asymptotically faster rate as (O(Re−5/6))
than the inter-ray separation.

The amplitude plots in figure 8(a) emphasize the distinction between a pair of wall
modes; the two modes, in fact, exhibit phase contours of opposing inclinations in
an O(Re−1/3) wall boundary layer (see Baines et al. 1996). In contrast, figure 8(b)
shows the ŵy ′ fields for a pair of interior OS modes to be nearly coincident at
large Re. The coincidence of the Squire and OS interior eigenmodes is expected for
large Re since, in either case, the structure of the vorticity field arises from a local
balance of convection and diffusion, with the direct effect of the (differing) boundary
conditions being exponentially small. As a result, an expansion similar to (5.11) must
continue to hold to within an exponentially small error, with the delta function in
(5.11) now corresponding to the ŵy ′ field. Note that each OS wavepacket has a spatial
extent of O(Re−1/3), which is asymptotically greater than the O(Re−1/2) differences
between the OS and Squire eigenvalues. In the limit of large Re, therefore, (5.11)
also corresponds to the relation between an inviscid Rayleigh (vorticity) eigenmode
and the corresponding superposition of the (interior) OS modes.

5.3. Viscous spectrum in the spanwise limit
In the earlier subsections, the Squire and OS spectra, for a general inclined wavevector,
are seen to consist of spatially localized inviscidly decaying vorticity eigenfunctions
with a vertical extent of O(Re−1/3). The O(Re−1/3) scale results from a balance
between shear, projected along k, and viscous diffusion. However, with Re fixed,
the spatial extent of the originally localized wavepackets increases without bound
for ψ → ±π/2 owing to the vanishing effect of the shear for streamwise-uniform
disturbances. Such disturbances require special consideration, and we now examine
the viscous–inviscid relation for ψ =π/2.

In the spanwise limit, a bounded domain is a better starting point. Use of the modal
form φ(x, t) = Φ(z) ei(kyy+ωt) in (5.3), the inverse spanwise wavenumber (k−1

y ) as a
characteristic inverse length scale and (νk2

y)
−1 as a characteristic time scale leads to
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the following Squire eigenvalue problem:

d2Φ

dz2
= (1+ iω)Φ, (5.16)

with Φ(0)=Φ(kyH)= 0, H being the vertical extent of the domain. The structure of
a spanwise Squire eigenmode is evidently independent of Re. It is readily shown
that the Squire eigenvalues are given by ωn = i(1 + n2π2/(kyH)2), consistent
with diffusive decay. Even and odd n values correspond to the odd and even
Squire modes (with regard to their z dependence relative to z = H/2), respectively.
The OS eigenvalue problem is again characterized by (5.16), but with Φ now
denoting the streamwise vorticity component, and with the boundary conditions∫ kyH

0 sinh z′Φ(z′) dz′ = ∫ kyH
0 sinh(z′ − kyH)Φ(z′) dz′ = 0. The latter correspond to

the z derivative of the normal velocity vanishing at each boundary; as in § 5.2,
the corresponding conditions for ûz are automatically satisfied on use of the
bounded-domain Green’s function. The resulting dispersion relations are given by

p tan
(

p
kyH

2

)
+ tanh

(
kyH

2

)
= 0, (5.17)

p cot
(

p
kyH

2

)
− coth

(
kyH

2

)
= 0, (5.18)

for the even and odd OS modes, respectively, with ω = i(1 + p2). (It appears that
the results for the Squire and OS eigenvalues given in Schmid & Henningson (2001,
p. 66) are in error.) Each of the equations (5.17) and (5.18) yields a countable infinity
of eigenvalues that are a function of the parameter kyH.

The Squire and the OS vorticity eigenfunctions are now sines and cosines, in sharp
contrast to the localized wavepackets obtained earlier for an inclined wavevector. The
notion of interior modes no longer applies, and the differing boundary conditions in
the two cases must therefore affect the eigenvalues. This is evident from the non-
integer solutions of (5.17) and (5.18), in contrast to the harmonic nature of the Squire
eigenvalues. The higher eigenvalues of (5.17) approach ±(2n)π/(kyH) and those of
(5.18) approach ±(2n+ 1)π/(kyH), although the even and odd modes are transposed
in relation to the Squire spectrum. In the limit of an unbounded domain (kyH→∞),
both the Squire and OS spectra approach a continuum parametrized as ω = i(1 + r)
with r ∈ (0, ∞), and this remains true both for a semi-infinite domain and in the
absence of boundaries.

The relation between the spanwise inviscid and viscous modes may now be seen
for both the Squire and OS cases from the respective resolutions of the delta function
(the inviscid vorticity mode in both cases). Both operators are self-adjoint, with the
OS operator being self-adjoint at the level of the velocity (rather than vorticity)
eigenfunctions. For the bounded domain, the Squire relation reduces to the usual sine
series representation:

δ(z− z1)= 2
kyH

∞∑
n=1

sin
(

nπz
kyH

)
sin
(

nπz′

kyH

)
. (5.19)
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For the OS case, for a bounded domain, one may write an arbitrary function f (z)
formally in the following form in terms of the normalized OS velocity eigenfunctions:

f (z)=
∑

pn

(∫ kyH

0
f (z′)ûeven

zn (z′) dz′
)

ûeven
zn (z)+

∑
qn

(∫ kyH

0
f (z′)ûodd

zn (z
′) dz′

)
ûodd

zn (z).

(5.20)
Here we have used pn and qn to denote the eigenvalues for the even and odd modes,
the OS velocity eigenfunctions being given by

ûeven
zn (z) = Neven

n

[
2 sin

(
pn

kyH
2

)
cosh

(
kyH

2

)
sinh

(
z− kyH

2

)
− sinh(kyH) sin

{
pn

(
z− kyH

2

)}]
, (5.21)

ûodd
zn (z) = Nodd

n

[
2 cos

(
pn

kyH
2

)
sinh

(
kyH

2

)
cosh

(
z− kyH

2

)
− sinh(kyH) cos

{
pn

(
z− kyH

2

)}]
, (5.22)

where Neven and Nodd are normalization constants with a rather complicated
dependence on the eigenvalues and kyH. One may now take f (z) ∝ e−|z−z1| in (5.20),
and operate both sides with (d2/dz2− 1) to obtain the delta function as the following
superposition of OS vorticity modes for a bounded domain:

δ(z− z1)

=
∑

pn

(p2
n + 1) sinh(kyH)Neven

n

(∫ kyH

0
e−|z

′−z1|ûeven
zn (z′) dz′

)
cos
{

pn

(
z− kyH

2

)}

+
∑

qn

(q2
n + 1) sinh(kyH)Nodd

n

(∫ kyH

0
e−|z

′−z1|ûodd
zn (z

′) dz′
)

sin
{

qn

(
z− kyH

2

)}
,

(5.23)

where the cosine and sine functions correspond to the even and odd OS vorticity
modes. In the limit kyH→∞, both (5.19) and (5.23) reduce to the Fourier integral
representation expected for a CS with sinusoidal eigenfunctions (Friedman 1990):

δ(z− z1)=
∫ ∞
−∞

sin(lπz) sin(lπz1) dl. (5.24)

For any finite time, the evolution in terms of the viscous modes is given by

Gsp(z, t; z1) = e−νk2
y t
∫ ∞
−∞

sin(lπz) sin(lπz1) e−νl2π2t dl, (5.25)

= e−νk2
y t

√
πνt

{
exp

[
−(z− z1)

2

4νt

]
− exp

[
−(z+ z1)

2

4νt

]}
. (5.26)

In (5.24) and (5.26) we revert to dimensional variables to emphasize the dependence
of the decay rates on ν alone. The l-independent exponential prefactor (e−νk2

y t) arises
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from the viscous decay due to the spanwise modulation. Equation (5.26) is the
analogue of (5.6) in the absence of shear (with the image contribution included to
satisfy the boundary conditions), and suggests an alternative interpretation of the
dynamics in terms of a diffusively broadening wavepacket, as originally found by
Murdock & Stewartson (1977) for Blasius-like flow profiles.

To summarize, (5.11) and (5.12) for perturbations with an inclined wavevector, and
(5.24) and (5.25) for streamwise-uniform perturbations, are the main results of this
section. They relate the inviscid and viscous modal interpretations, both at the initial
instant and at later times, for Couette flow. It is worth commenting briefly if the
features of the large-Re spectrum found here (spatially localized eigenfunctions and
movement of the eigenvalues towards the boundaries with increasing Re) persist for a
general non-inflectional shearing flow; note that the onset of the Tollmien–Schlichting
instability is a detail in this context, since this only involves a weakly damped wall
mode on the A branch (see below) crossing over to the unstable side. That this might
be so stems from two facts: first, the spatial localization of the Couette eigenfunctions
arises from a local balance between shear and viscous diffusion, and this is likely
to hold even for a nonlinear flow; second, inviscidly decaying quasi-modes are an
exceptional occurrence (Stewartson 1981). For a bounded domain, the spectrum for
a general shearing flow in a bounded domain exhibits a Y-shaped structure with the
two branches (A and P) and a stem (the S branch); Couette flow is a degenerate
example, with two A branches instead (Schmid & Henningson 2001). There does exist
numerical evidence for the invariance of the Y-shape for plane Poiseuille flow (figure 5
in Reddy et al. 1993). For Blasius-like profiles in a semi-infinite domain, there is only
an A branch and a vertical line corresponding to the viscous CS with modes that
propagate at the free-stream velocity (Mack 1976; Grosch & Salwen 1978). Murdock
& Stewartson (1977), via the analysis of a piecewise uniform flow in a semi-infinite
domain (U(z) = H(1 − z) for 0 6 z <∞, H being the Heaviside function), showed
that discrete eigenvalues spring out of the CS and move towards the wall (along the
A branch) with increasing Re.

6. Conclusion

In this paper we have given a modal interpretation of the ‘lift-up’ effect based
on the normal modes of the Rayleigh and inviscid Squire operators. This involved
identifying the two inviscid (Rayleigh and Squire) CS for a non-inflectional shearing
flow in § 3 – the wavevector-aligned version of the so-called Case vortex sheets (see
§ 3.1) and the Squire jets (needed for perturbations with a spanwise component of
variation; see § 3.2). An arbitrary initial condition was expanded in terms of these
two eigenmode families (see § 4.1). The limiting form of this expansion was used to
show how a streamwise-uniform ‘roll’ initial condition leads to an inviscid algebraic
instability (see § 4.2). The formulation was then expanded to include discrete modes
for inflectional profiles (§ 4.3). In § 5, a detailed connection was made between an
inviscid CS mode and a collection of viscous discrete modes, for Couette flow in
a semi-infinite domain. This viscous–inviscid relation reduces to a simpler form for
streamwise-uniform disturbances known from earlier analyses of Blasius-like profiles
(Murdock & Stewartson 1977).

A point that needs emphasis is the non-convergence of the viscous (OS and Squire)
spectra to the corresponding inviscid ones (Rayleigh and inviscid Squire) even in
the limit of infinite Re. As a result, a connection can only be established between
an inviscid eigenmode and an (infinite) superposition of viscous discrete modes.
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The viscous–inviscid relation was examined in § 5 to show how the interpretation
of the lift-up effect in terms of non-orthogonal viscous discrete modes (Schmid &
Henningson 2001) relates to the explanation presented here in terms of the inviscid
CS. Although the two modal interpretations yield the same result, the inviscid one
is superior at large Re, since the underlying modes are independent of Re, and the
structure of the vorticity field is not crucially dependent on the boundaries. This
is in sharp contrast to the viscous case, where the individual modes are not well
defined in the limit Re → ∞ except in the streamwise-uniform limit. The nature
of the spectrum is itself sensitively dependent on the presence of boundaries, and
on the inclination of the wavevector relative to the flow direction. The ‘inefficiency’
of the viscous modal superposition in representing transient growth dynamics at
large Re may also be inferred from the phase plots (not included here). As already
seen, transient growth results from either the degree of coherence increasing with
time starting from an initial condition with an upstream tilt (Orr), or from vertically
coherent roll initial conditions with only a spanwise variation (lift-up). In contrast,
for a general inclined wavevector, the phase contours of the viscous discrete modes
reveal a pronounced downstream tilt at large Re, leading to an asymptotically small
vertical scale of O(Re−1/3). Considering a plane wave (Kelvin mode) as given in (5.7),
the turning wavevector leads to kz ∼ O(kxt). With ky ∼ O(1), a vertical length scale
of k−1

z ∼ O(Re−1/3) results only after an asymptotically long time of O(Re1/3) when
the onset of viscous effects in wall boundary layers prevents further fine scaling,
leading to a permanent propagating structure characteristic of a normal mode. This
is, however, also the time at which transient growth ceases and there is the onset
of viscous decay. In this sense, transient growth dynamics and the viscous discrete
modes correspond naturally to mutually exclusive intervals of time, and attempting
a viscous modal superposition at large Re, to describe transient growth, amounts to
representing a vertically coherent or an upstream-tilted perturbation with a set of
eigenfunctions each of which has a pronounced downstream tilt. Such a limitation is
evidently absent in the inviscid interpretation.
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