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The collisions in a dilute polydisperse suspension of sub-Kolmogorov spheres with
negligible inertia settling in a turbulent flow and interacting through hydrodynamics
including continuum breakdown on close approach are studied. A statistically significant
decrease in ideal collision rate without gravity is resolved via a Lagrangian stochastic
velocity-gradient model at Taylor microscale Reynolds number larger than those accessible
by current direct numerical simulation capabilities. This arises from the difference
between the mean inward velocity and the root-mean-square particle relative velocity.
Differential sedimentation, comparable to the turbulent shear relative velocity, but
minimally influencing the sampling of the velocity gradient, diminishes the Reynolds
number dependence and enhances the ideal collision rate i.e. the rate without interactions.
The collision rate is retarded by hydrodynamic interactions between sphere pairs and
is governed by non-continuum lubrication as well as full continuum hydrodynamic
interactions at larger separations. The collision efficiency (ratio of actual to ideal collision
rate) depends on the relative strength of differential sedimentation and turbulent shear,
the size ratio of the interacting spheres and the Knudsen number (defined as the ratio of
the mean-free path of the gas to the mean radius of the interacting spheres). We develop
an analytical approximation to concisely report computed results across the parameter
space. This accurate closed form expression could be a critical component in computing
the evolution of the size distribution in applications such as water droplets in clouds or
commercially valuable products in industrial aggregators.
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1. Introduction

Collisional growth driven by turbulence coupled with gravity and modulated by
hydrodynamic interactions, that includes breakdown of continuum, sets the particle size
evolution in a wide range of systems. A study of this phenomenon can potentially improve
predictions of growth of cloud droplets through the ‘size gap’ of 15–40 μm droplets, which
are too large to grow by condensation and too small to collide purely by their weight.
Droplet size evolution affects local weather through the time to rain formation and global
climate by setting the atmospheric thermal budget (see Slingo 1990; Feingold et al. 1999;
Peng et al. 2002). Hence collision rates that capture important physics will be crucial in
predicting the short and long term behaviour of our climate. On a smaller environmental
scale, Niu et al. (2016) demonstrated that pollutants near an industrial furnace experience
significant aggregation. Thus, understanding the coagulation process can aid in combating
micro-climate pollution. Analysis of coagulation finds application in industrial settings,
such as carbon black aggregation in aerosol reactors (Buesser & Pratsinis 2012). In all
these cases the flow is turbulent and the collision dynamics is significantly influenced by
gravitational effects or accelerations that drive relative motion of different sized particles.
The particles in these examples interact in gaseous media. Thus, their collision dynamics
will depend critically on non-continuum hydrodynamics.

The first treatment of collision in turbulent conditions was carried out by Saffman &
Turner (1956). They modelled turbulence experienced by sub-Kolmogorov particles as a
quasisteady uniaxial compressional flow with a Gaussian distribution of strain rates and
found the collision rate to be n1n2(8π/15)1/2(a1 + a2)

3Γη, where a1 and a2 are the radii
of two spheres with number densities n1 and n2 respectively, the Kolmogorov shear rate is
Γη = (ε/ν)1/2, ε is the dissipation rate of the turbulent flow field and ν is the kinematic
viscosity. Even when the background flow is allowed to fluctuate, sub-Kolmogorov
particles are expected to experience a local linear flow at any instant. A stochastically
varying linear velocity field with Gaussian statistics was used in the studies of Brunk, Koch
& Lion (1998) and Chun & Koch (2005), but the role of non-Gaussian turbulent velocity
statistics on collision of sub-Kolmogorov particles has not been explored in the literature.
At the other end of the spectrum, Smoluchowski (1918) calculated the collision rate of
settling spheres to be n1n2(a1 + a2)

2Vrel. Here, the relative velocity due to differential
sedimentation in quiescent flow Vrel = 2ρpg(a2

2 − a2
1)/(9μ), g is the acceleration due to

gravity, ρp the density of the particles and μ the dynamic viscosity of the gas. Coupling
differential sedimentation and turbulence, Li et al. (2018) performed direct numerical
simulation (DNS) to study the evolution of the size distribution and collision rate of
particles without hydrodynamic or colloidal interactions. However, they only considered a
few relative strengths of gravity to turbulent flow. They also did not exhaustively span
the Reynolds number based on the Taylor microscale (Reλ ≡ 2k

√
5/(3νε), with k the

turbulent kinetic energy), only considering values up to 158, whereas a wide range is
possible, going as high as Reλ = O(104) in clouds. We will explore this parameter along
with the coupling of turbulence and differential sedimentation to determine the collision
rate.

Collision dynamics in many systems is predominantly governed by two-body
interactions due to low particle volume fractions φv of O(10−6) (see Balthasar et al.
(2002) and Grabowski & Wang (2013) for carbon black reactor and droplets in clouds
respectively). Hence, three and higher body interactions are neglected in this study.
During the two-body collisions only hard sphere interactions are considered and this is
accurate even for water droplets in the ‘size gap’ due to the small size and high viscosity
ratio.
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Collision of settling spheres in turbulent gas flow

Interparticle interactions and in particular hydrodynamic interactions play a dominant
role in the motion of particles in a medium when particle separation is comparable
to their sizes. However, continuum lubrication forces do not allow collision to occur
in a finite time. This has led some researchers to artificially attenuate the short range
hydrodynamic force to allow collision in finite time (see Ayala, Grabowski & Wang 2007).
However, this does not give collision rates representative of real particles as it does not
account for the physics that modifies the continuum, lubrication dominated behaviour.
In liquid media, van der Waals forces allow collision in a finite time and have been
extensively studied in the literature (see Batchelor & Green 1972b; Batchelor 1982; Davis
1984; Wang, Zinchenko & Davis 1994). In gaseous media, the breakdown of continuum
dominates over deformation, interfacial mobility, or the colloidal force for droplet radii
of 15 μm and larger (Sundararajakumar & Koch 1996) while non-continuum interactions
and van der Waals attractions compete for drop radii of 1 to 15 μm. Nonetheless, only
a limited number of collision studies have included non-continuum hydrodynamics. The
‘finite-gap’ approach suggested by Rosa et al. (2011) for cloud droplets, which assumes
coalescence to occur when the surface to surface separation becomes 0.001a1 for a1 ≥ a2,
was developed with a focus on van der Waals interactions and it does not capture
the qualitative and quantitative variations of the hydrodynamic forces strongly shaping
the dynamics at separations comparable to and smaller than the mean-free path. Davis
(1984) used the Maxwell slip approximation, which is only valid when surface to surface
particle separation is much greater than the mean-free path to study collisions driven by
differential sedimentation. Chun & Koch (2005) used the uniformly valid non-continuum
resistance force calculated by Sundararajakumar & Koch (1996) but only considered equal
sized particles with collisions driven by turbulent shear and Brownian motion. To obtain
collision rates pertinent to a dilute polydisperse suspension encountered in aerosols we
study unequal particles colliding under the coupled effects of turbulence and differential
sedimentation and influenced by hydrodynamic interactions that include the breakdown of
continuum.

We neglect the effects of inertia on the collision dynamics. Fluid inertia is weak on
sub-Kolmogorov scales. The Kolmogorov length scale of clouds (1 mm) and aerosol
reactors (300 μm) is much larger than their constituent particles. Particle inertia is
expected to be weak for drop collisions at the lower end of the ‘size gap’ corresponding to
radii smaller than approximately 25 μm. Condensation, which governs droplet growth for
radii smaller than approximately 15 μm, favours a nearly monodisperse size distribution,
leading to small relative velocities. This factor, along with the small size of the drops,
makes particle inertia weak, as discussed below. For larger radii and droplet pairs with
significant polydispersity within the ‘size gap’, particle inertia will play an important
role in particle collisions. However, since to date there are no theoretical predictions of
droplet collision rates with coupled turbulence, differential sedimentation and interparticle
interactions, our non-inertial calculation will provide an initial calculation against which
to compare future analyses with inertial effects.

Particle inertia responding to turbulent shear and acceleration causes clustering of
particles, which can be described by an enhanced pair probability density, and can
potentially alter the relative velocity of a pair of particles during collision. The DNS
study by Ireland, Bragg & Collins (2016a) found that the particle relative velocity
is influenced by inertia for St greater than 0.2. Here, the Stokes number St = τpΓη,
with τp = 2ρpa2

1/(9μ). Conversely, Chun & Koch (2005) showed that the enhanced
pair distribution function dominates the increase in the collision rate when St is
smaller than approximately 0.2. These estimates are based on DNS from modest
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a1(μm) St κ: Stg = 1.9 Q: Stg = 1.9

15 0.07 0.90 14.92
20 0.13 0.96 7.80
25 0.20 0.98 4.87

Table 1. Droplet pairs at the lower end of the ‘size gap’ whose collisions are weakly influenced by particle
inertia. The radius a1 and Stokes number St for turbulent shear are listed for the larger drop. For St < 0.2 the
effect of the inertial response to turbulence on the collision rate can be captured by multiplying an inertialess
local collision rate by an enhanced pair distribution function obtained from studies of inertial clustering. The
critical size ratio κ above which the gravitational Stokes number Stg < 1.9, corresponding to a deviation of
less than 10 % from the inertialess case, and the corresponding Q values are also shown. All these values
justify a local collision rate calculation performed without inertia and gravitational sampling. Consistent with
conditions typical in a cloud we take ε = 10−2 m2 s−3.

(47; Chun & Koch 2005) to moderately high (597; Ireland et al. 2016a) Reλ. Particle inertia
could play an important role in intermittent, high dissipation events whose frequency
increases with increasing Reλ, but the aforementioned estimates are still expected to be
applicable to the majority of drop–drop encounters, even at the very high Reλ of cloud
turbulence. Thus, the collision rates derived in the present study could be used for St < 0.2
if they are multiplied by a pair-probability density determined from a study of inertial
clustering. Small St is typical for aerosols in industrial reactors and most of the droplets
in the ‘size gap’ in clouds (see Ayala et al. 2008). The turbulent dissipation rate in clouds
ranges from ε = 10−3 m2 s−3 in a low turbulence cloud to ε = 10−1 m2 s−3 in the most
highly turbulent clouds. Setting an upper limit on St of 0.2, particles with radii smaller
than 40 μm are in the low St regime for ε = 10−3 m2 s−3. In the most turbulent clouds,
ε = 10−1 m2 s−3, the smallest sizes within the ‘size gap’ still satisfy the small St criterion.
For an intermediate case, of ε = 10−2 m2 s−3, we have listed in table 1 St values of droplets
at the lower end of the ‘size gap’ and it is clear that droplet inertia is weak. In aerosol
reactors the particle sizes are much smaller, the largest radii being approximately a micron,
and so typical St values are expected to be much smaller. Hence, for these cases, inertia
does not significantly affect the relative velocity and is accurately captured by clustering.
Inertial-clustering-driven pair enhancement finds extensive treatment in the literature (see
Sundaram & Collins 1997; Reade & Collins 2000; Ireland et al. 2016a; Dhariwal & Bragg
2018) and these studies provide an estimate of the pair distribution function enhancing the
collision rate as noted above.

The differential sedimentation of two interacting particles has inertial effects when the

Stokes number, Stg = 2Vrel(4ρpπ/3)

√
a3

1a3
2/μ(a1 + a2)

2 (see Davis 1984), becomes order
one. This Stokes number is very sensitive to the size of the particles and the difference
of particle sizes which controls the relative velocity. Even for the largest aerosols in
reactors of O(1 μm) radius, Stg is very small and the impact on the collision dynamics
will not be significant. Droplets in clouds, even at the lower end of the ‘size gap’, are
significantly larger, in the low tens of microns, and so a pair with size ratio κ = a2/a1 =
0.9 and a1 = 15 μm will have Stg = 1.9. A deviation of 10 % from the Stg = 0 case is
computed using the finite inertia results published by Davis (1984) and an equivalent
inertialess calculation. If we consider a deviation of less than 10 % sufficient to consider
the inertialess calculation a reasonable approximation, then the nearly equal drop pairs
indicated in table 1 would be governed by the inertialess theory because Stg is proportional
to 1 − κ for 1 − κ � 1. Nearly equal drops are common in the lower range of the ‘size
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Collision of settling spheres in turbulent gas flow

gap’ because condensation favours a nearly monodisperse size distribution. In addition, it
is nearly equal size drops for which turbulence competes most effectively with differential
sedimentation in driving collisions. A measure of the relative importance of turbulence
and sedimentation in driving collisions is Q = (4ρpg(a2

2 − a2
1)/[9μ])/(Γη(a1 + a2)) and

table 1 lists the values of Q at the transition to the low inertia regime. It can be seen that
the low inertia regime includes a large range of moderate Q values while inertia is most
important in sedimentation dominated collisions.

In the absence of gravity, a sub-Kolmogorov droplet follows a Lagrangian trajectory
and an interacting droplet pair experiences a turbulent velocity gradient in a Lagrangian
frame. However, gravitational settling can influence the drop’s sampling of the flow when
the settling parameter Sv = τpg/uη, with uη the Kolmogorov velocity, becomes finite. The
importance of gravity can also be characterized by the Froude number Fr = St/Sv =
Γ 2

η η/g, which is independent of the particle size. While one might expect to require
Fr � 1 in order to neglect gravitational sampling, evidence from DNS studies suggest
that relatively modest Froude values have negligible gravity. For example, Dhariwal
& Bragg (2018) showed that Fr = 0.3, corresponding to a high turbulence cloud with
ε = 10−1 m2 s−3, leads to results for inertial clustering that are significantly influenced
by turbulence and strongly resemble those without gravity, Fr = ∞. To judge the
importance of gravitational settling at the intermediate turbulence level ε = 10−2 m2 s−3,
corresponding to Fr = 0.052, we can draw on two previous DNS studies. Rani, Dhariwal
& Koch (2019) found that the exponent characterizing inertial clustering for St < 0.2
changed by approximately 25 % relative to that without gravity obtained by Chun et al.
(2005). On the other hand, Ireland, Bragg & Collins (2016b) found that gravity has a
negligible effect on the relative velocity of colliding pairs for St < 0.3 at this Froude
number. This corresponds to Sv < 5.76 and all the drop sizes listed in table 1 satisfy
this criterion. Inertial clustering accumulates over an extended period of time as the
drop pair separation r evolves over a large range a1 + a2 < r < η and collisions occur
at r = a1 + a2. Since the hydrodynamic interactions that control the collision rate of
interacting particles occur for an intermediate range of separations r = O(a1 + a2), we
might expect the gravitational effects on the collision efficiency to be small but not
completely negligible for ε = 10−2 m2 s−3 and Fr = 0.052. Finally, in low turbulence
clouds with ε = 6 × 10−4 m2 s−3 and Fr = 0.006, Rani et al. (2019) found that inertial
clustering could be described by an asymptotic theory based on sampling of the turbulence
by rapid sedimentation. In this case, gravitational sampling would also be expected to
play a major role in the collision efficiency. Thus, the present analysis, which neglects
the particle inertia and turbulent field sampling due to gravitational settling, would be
most accurate for cloud droplets with a < 25 μm in a cloud with moderate turbulence, as
illustrated in table 1, and for a more restricted range of drop sizes in a highly turbulent
cloud.

The choice of a background homogeneous isotropic turbulent flow field is important for
the fidelity of the collision rate calculation. It is numerically too expensive to carry out
DNSs of turbulence with the present capabilities at the high Taylor microscale Reynolds
number typical in many aerosol systems. Hence, we will use a velocity-gradient model to
resolve the flow experienced by the sub-Kolmogorov particles. Saffman & Turner (1956)
assumed a frozen uniaxial compressional flow with a Gaussian distribution of the strain
rate. Stochastically fluctuating velocity-gradient models were used by Brunk et al. (1998)
and Chun & Koch (2005). However, these did not capture the non-Gaussian nature of
the turbulent velocity gradient observed in DNS. The non-Gaussian behaviour has been
incorporated into the Lagrangian velocity-gradient model developed by Girimaji & Pope
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(1990) through a log-normal behaviour of the pseudo-dissipation rate (the sum of squares
of the velocity-gradient components) and evolution of velocity-gradient components that
captures the influence of the nonlinear inertial terms in the momentum equation. Important
features of the local linear flow are captured, namely the correlation time of the straining
flow and the orientation of the vorticity relative to the strain axes. We incorporate the
dependence on Reλ of the pseudo-dissipation rate standard deviation as well as the
separation of time scales of dissipation to integral processes in the model using results
suggested by Koch & Pope (2002). Taylor microscale Reynolds number is varied over
a wide range to examine the role of the non-Gaussian nature of the velocity-gradient
statistics on the collision rate. The relative velocity of an interacting particle pair is given
by a simple vector sum of the turbulent, computed using the Lagrangian velocity gradient,
and the differential-sedimentation velocities. A simple sum is possible due to the linearity
of Stokes flow and the absence of particle inertia.

We will assume that the probability of finding a pair of interacting particles at large
particle separations is unaffected by the coalescence process itself. This assumption is
reasonable if the time scale over which turbulence mixes the particle number density
field is much smaller than the time over which the number density evolves due to
coalescence. Mixing is characterized by the Eulerian integral scale, which is O(Reλ/Γη).
The characteristic evolution time in a second-order reaction, typical in the dilute limit,
is 1/(φvΓη). Thus, mixing maintains a spatially uniform particle distribution during the
coalescence process if φv � Re−1

λ . This limit is typically easily achieved in clouds and in
industrial aerosol applications.

The collision rate of pairs of spheres is given by the integral of the product of the
pair-probability density and the inward relative velocity at contact. The pair probability, a
measure of the local particle concentration relative to the bulk, and the inward velocity are
altered by hydrodynamic interactions. The relative velocity at separations larger than 2a∗
determines the trajectory of sphere pairs that must approach from initially large separations
and it is driven by the turbulent shear and differential sedimentation. Even without
hydrodynamic interactions, Brunk et al. (1998) found trajectories in which pairs on the
collision sphere separate and collide again. These closed trajectories should be excluded
from the collision rate calculation as only trajectories that begin at large separation are
populated by pairs of spheres. Hence, we will perform trajectory analysis, for all cases,
to determine the sphere pairs that collide. For numerical efficiency a time reversed
flow is considered and sphere pairs start together and move apart, with the trajectory
analysis detecting and rejecting those that come back together. We perform a Monte Carlo
integration over all possible starting positions in the time-reversed flow and ensemble
average over the various realizations of turbulence to obtain the collision rate.

The collision rate is calculated over a large parameter space. We report the ideal collision
rate and the collision efficiency, which describes the retardation of collision rate due
to hydrodynamic interactions. The former depends on Reλ and the relative strength of
differential sedimentation and turbulence. The latter additionally varies with the ratio
of the mean-free path λ to mean sphere radius (the Knudsen number Kn = λ/a∗) and
relative size of the interacting spheres. We present results for select parameter values
to provide qualitative insight. However, to capture the large amount of data resulting
from our simulations we provide a fit for the ideal collision rate and make an analytical
approximation to the collision efficiency. This analytical result will be constructed based
on an analysis of the pair probability evolution for a special configuration of the sphere
pair in the continuum lubrication regime. The collision rate can then be expressed in
terms of an integral of the mobilities over radial separation. By cutting off this integral
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at the approximate separation where continuum breaks down, we will obtain a function
that captures important features of the collision efficiency as a function of the various
parameters. By adapting this result and fitting the free parameters with the generated
collision efficiency data we will obtain a concise and accurate expression for the collision
efficiency.

We extend the resulting theory to include the effects of van der Waals interactions
in an approximate way by replacing the mean-free path in the original theory with a
composite continuum lubrication cutoff separation that incorporates the effects of both
non-continuum gas flow and van der Waals forces. The validity of this approximation
is tested by comparison with numerical calculations for the pure sedimentation problem
from Davis (1984) that incorporates both van der Waals and non-continuum hydrodynamic
interactions. This extension makes the theory applicable to particle sizes of the order of
1 to 10 μm. The extended theory is then compared with Duru, Koch & Cohen’s (2007)
experimental measurements of the rate of growth by coalescence of drops falling in an
oscillating grid generated turbulent flow. An application of this extended theory is to model
the collision process that is critical to filtering pollutants in a spray tower scrubber (see
Byeon, Lee & Mohan 2012).

We will obtain the collision rate for spheres settling in turbulent flow. In § 2, we will
present the pertinent formulations and outline the procedure to calculate the collision rate.
Results for the ideal collision rate with no interparticle interaction will be presented in § 3.
We will carry out the calculations with a uniformly valid hydrodynamics, that includes
non-continuum lubrication and far-field continuum interactions, in § 4 and present the
collision efficiency. The collision efficiency data spanning a large parameter space will
be reported with an analytical approximation that will be derived in § 5. Then, in § 6, we
will discuss important results from our study and apply the insights to a sample case.

2. Formulation

In a dilute system, the collision of two spheres sets the collision rate K12, given as,

K12 = −dn1

dt
= C12n1n2. (2.1)

Here, ni is the number density of species i in the bulk. Shown in (2.1) is the rate of change
for ‘1’ assuming collisions with only ‘2’. No ‘1’ species are being formed or lost by other
forms of collisions. The two species rate constant C12 can be expressed by an area integral
as,

K12 = −
∫

(r′=a1+a2)&(v′·n<0)

(v′ · n)P′ dA′. (2.2)

Here, species i has radius ai moving with relative velocity of v′ when separated by a
centre to centre distance of r′. In this paper, we will denote dimensional quantities with
a prime and their non-dimensional equivalents without it. At radial separation r′, the pair
probability, P′, captures the local species concentration relative to the bulk and it takes
non-trivial values due to inter-particle interaction. Contributions to the collision rate come
only from the radially inward motion when spheres come into contact with each other. This
is captured through v′ · n < 0, with n being the outward normal at the surface on contact.

The equations in our study are scaled with a characteristic length a∗ = (a1 + a2)/2 and
a characteristic velocity Γηa∗, where Γη = (ε/ν)1/2 is the Kolmogorov shear rate, ε is the
turbulent dissipation rate and ν the kinematic viscosity. Thus, the non-dimensional centre
to centre distance r ranges from 2 (referred to as the collision sphere) to ∞ (where one
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sphere does not influence the other). The strength of gravity is parametrized through Q,
the ratio of characteristic differential-sedimentation velocity to the relative velocity due to
turbulent shear. This ratio is defined as Q = (2ρpg(a2

2 − a2
1)/[9μ])/(Γηa∗), where g is the

acceleration due to gravity, ρp is the density of the spheres, μ is the dynamic viscosity
experienced by the spheres in the medium. The geometrical parameter, the size ratio given
as κ = a2/a1, captures the polydispersity of the system and has a range of κ ∈ (0, 1]. Thus
the collision rate can be scaled with n1n2Γη(2a∗)3 and expressed through an integral over
the collision sphere as,

K12

n1n2Γη(2a∗)3 = −
∫

(r=2)&(v·n<0)

(v · n)P dA. (2.3)

It should be noted that this formulation and scaling is valid in the absence of particle
and fluid inertia, corresponding to sub-Kolmogorov particles with a low particle response
time relative to Γ −1

η . In this inertialess system, the particle relative velocity v can be
expressed as a linear superposition of terms proportional to the current velocity gradient
and gravitational force as,

vi = Γijrj −
[
A(r)

rirj

r2 + B(r)
(
δij − rirj

r2

)]
Γjkrk

−
[
L(r)

rirj

r2 + M(r)
(
δij − rirj

r2

)]
Qδj3. (2.4)

The mobility functions A(r), L(r), B(r) and M(r), which are obtained from solutions of
the non-continuum gas flow between the particles, describe the relative particle velocity
for a specified driving force. Here, A(r), L(r) are radial mobilities and B(r), M(r) are
tangential mobilities for a linear flow and differential sedimentation, respectively. These
mobilities take trivial values in the ideal case, i.e. in the absence of particle interactions
they are 1 − A(r) = 1 − B(r) = L(r) = M(r) = 1. With hydrodynamic interactions these
quantities take values between 0 and 1. Gravity is directed along the negative 3-direction.
The velocity gradient of the local and instantaneous linear flow experienced by the
sub-Kolmogorov spheres in homogeneous isotropic turbulence is denoted as Γ . It has
been non-dimensionalized by the Kolmogorov shear rate. It is obtained from the model
developed by Girimaji & Pope (1990) that consists of a set of stochastic differential
equations to describe the evolution of the fluid velocity gradient in a Lagrangian
reference frame. The model describes the evolution over the integral time scale of the
pseudo-dissipation rate (sum of squares of the velocity-gradient components) which has
a log-normal distribution. The velocity-gradient tensor normalized by the square root
of the pseudo-dissipation evolves in a manner that captures the effects of the nonlinear
inertial terms in the equations of motion on the relative orientation of the vorticity and
straining axes. The model also captures the autocorrelation time of the strain rate observed
in DNS of homogeneous, isotropic turbulence. Girimaji & Pope (1990) applied this
model to moderate values of Reλ for which the necessary parameters were available from
DNS studies. We use the velocity gradient model at higher Taylor microscale Reynolds
number by using appropriate values for two of the critical components, the variance of
the pseudo-dissipation rate and the ratio of the integral time scale to the Kolmogorov
time scale. The variation of these two scalar quantities with Reλ has been studied in DNS
(Yeung & Pope 1989) as well as experiments (Sreenivasan & Kailasnath 1993). These
results have been compiled and a concise expression given in the appendix of Koch &
Pope (2002).
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Collision of settling spheres in turbulent gas flow

To evaluate the collision rate from (2.3) we also need information on P. This can be
obtained from the governing equation,

∂P
∂t

+ ∇ · (vP) = 0, (2.5)

with the boundary condition P → 1 as r → ∞ corresponding to uncorrelated particles
at large separations. Trajectories that start and end on the collision sphere and thus do
not extend to r → ∞ are set to P = 0. A non-trivial evolution of the pair probability is
possible only for a non-solenoidal relative velocity. The solenoidal nature is broken by the
hydrodynamic interactions between particles, reflected by non-integer mobilities, leading
to P /= 1 when r = O(1).

The initial state of the sphere pairs constituting equation (2.3) is a large separation from
each other. However, it is numerically very expensive to evaluate trajectories of satellite
spheres evolving from large separations to r = 2 since most of them will miss the test
sphere placed at the origin. Hence, exploiting Stokes flow reversibility, a time-reversed
calculation is performed. In this time-reversed flow the satellite spheres begin at r = 2
and those that reach the outer boundary, set as r∞, without returning to r = 2 will make
non-zero contributions towards the integral in (2.3).

In the time-reversed flow the calculations begin by first seeding satellite spheres
on the collision sphere. To span the initial angular positions we use a Monte Carlo
integration scheme. From randomly chosen initial points on the collision sphere the
satellite spheres are evolved using ‘ODE45’, an in-built adaptive time-stepping routine
available in MATLAB, which takes as input the relative velocity given in (2.4). This
stochastic flow field is updated every 0.1/Γη using the velocity-gradient model. The
starting times of the satellite spheres are staggered by 1/Γη to extensively sample each
realization of the turbulent flow field. The satellite spheres only interact with the test sphere
and are allowed to evolve for a long time up to 150/Γη. By this time more than 99 % of the
satellite spheres have either reached r = 2 or r = r∞, with r∞ representing the separation
at which sphere pairs no longer influence each other. We find convergent result for the pair
probability at contact when r∞ = 7 and so the collision rate can be accurately calculated.
The results depend on the specific realization of turbulence in which the satellite spheres
evolved. To ensemble average we obtain a different realization of the turbulent flow by
changing the starting time by 400/Γη. In this way, each of the Nr realizations are separated
by at least two integral time scales even when Reλ is as high as 2500. The separation is
also much larger than the correlation times for both straining and rotational components
of the linear flow, which are 2.3/Γη and 7.2/Γη, respectively. In addition to the ensemble
averaged collision rate we also estimate the error, through the standard deviation σe over
the various realizations, and report error bars throughout this paper at the 90 % confidence
level.

3. Ideal collision rate

In the absence of hydrodynamic interactions, A(r) = 0, L(r) = 1, B(r) = 0, M(r) = 1 and
P is either 1 or 0. Using this information as input into (2.4), we follow the procedure
outlined in § 2 to calculate the collision rate with Nr = 200. For each realization we
perform Monte Carlo integration by evaluating 150 trajectories. These satellite spheres, in
the time-reversed flow, are assigned P = 1 if they reach r∞ within the allotted simulation
without going to r = 2 and 0 otherwise.

The ideal collision rate K0
12 is presented as I in figure 1 in the absence of gravity, i.e.

Q = 0, as a function of Taylor microscale Reynolds number. It is immediately evident that
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Figure 1. Case ‘I’ is the ideal collision rate K0
12 given as a function of Reλ for Q = 0, i.e. no gravitational

effects. The variation of the inward velocity on the collision sphere with Taylor microscale Reynolds
number is given by ‘II’. Calculations performed with a frozen velocity gradient during any given satellite
sphere evolution are denoted by ‘III’. Case ‘IV’ is the model of Saffman & Turner (1956), which is
independent of Reλ. A portion of the decreased inward velocity can be attributed to changes in 〈Φ1/2〉 as
the log normal pseudo-dissipation distribution becomes broader with increasing Taylor microscale Reynolds
number. This quantity is continuously decreasing with Reλ and is given as ‘V’ after multiplying with∫
(r=2)&(niΓijnj<0)

dAniΓijnj/Φ
1/2 ≈ 1.4. The predictions of the ideal collision rate fit, given in (3.2), are plotted

as ‘VI’.

a non-trivial behaviour is observed, in contrast to the constant collision rate predicted by
Saffman & Turner (1956). In their analysis a pseudo-steady extensional flow with Gaussian
statistics for the strain rate was used. Our result is expected to be more accurate as we use
a stochastic flow with statistics of the velocity more closely aligned with the non-Gaussian
velocity gradient expected based on the Navier–Stokes equations and observed in DNS.

The Taylor microscale Reynolds number, Reλ, influences the non-Gaussian statistics of
the turbulent velocity gradient. This is evident from DNS and experimental studies of the
pseudo-dissipation rate Φ = ΓijΓij (Yeung & Pope 1989; Sreenivasan & Kailasnath 1993).
The collision rate is proportional to niΓijnjH(−niΓijnj) evaluated on the collision sphere,
which is proportional to 〈Φ1/2〉. Here, H is the Heaviside function and the angle brackets
indicate an ensemble average. This moment of pseudo-dissipation can be calculated as,

〈Φ1/2〉 =
∫

PΦΦ1/2 dΦ =

∫
ε1/2Pε dε(∫
εPε dε

)1/2 , (3.1)

where PΦ is the probability density function for the normalized pseudo-dissipation Φ and
Pε is the probability density function for ε, which is available in the literature (see Koch
& Pope 2002). To obtain a result that can be compared with the flux on the collision
sphere we multiply (3.1) by the mean normalized flux,

∫
(r=2)&(niΓijnj<0)

dAniΓijnj/Φ
1/2,

which is approximately 1.4 and independent of Reλ. For a detailed derivation of the
mean normalized flux please refer to appendix A. This result, which is shown as V
in figure 1, decreases with Reλ. Increasing Reλ leads to larger tails of the turbulent
velocity-gradient probability distribution function and so the expected value for a
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Collision of settling spheres in turbulent gas flow

low-order moment decreases. Since niΓijnjH(−niΓijnj) is of lower order than Φ, the
observed decrease of the collision rate with Reλ in figure 1 is expected.

Next, we explicitly calculate the actual flux at the collision sphere by substituting
v′ · n = niΓijnj in (2.3). This is the collision rate that would occur in a persistent flow in the
absence of closed trajectories. This result, which is the closest analogue to the calculation
of Saffman & Turner (1956), is shown as II in figure 1. Unlike the result of Saffman &
Turner (1956), our inward flux varies with Reλ and is lower than the 1.29 prediction of
Saffman & Turner (1956). While surprising at first glance, it is important to note that most
DNS studies validating the Saffman & Turner (1956) result are carried out at low Reλ and
our calculations show that the deviations in this regime are minimal. Wang, Wexler & Zhou
(1998) performed DNS at Reλ = 24 and at this point the curve V in figure 1 agrees very
well with the published result. Ireland et al. (2016a) performed DNS over a large range of
Reλ, from 88 to 597, and found that the inward flux decreased by 10 % with increasing Reλ
but this change was within the statistical uncertainty of the DNS. Thus, the results of our
stochastic simulations yielding a flux that is decreasing with increasing Reλ is consistent
with previous DNS even though the DNS evaluations did not have sufficient statistical
accuracy to prove these trends. The flux from the stochastic simulations , II in figure 1,
decreases more rapidly with Reλ than the estimate based on the mean value 〈Φ1/2〉, V in
figure 1. This difference can be attributed to correlations between the normalized velocity
gradient and the pseudo-dissipation that can be expected based on the coupled evolution
equations in the model (see Girimaji & Pope 1990).

The difference between the mean inward flux, II, and the ideal collision rate, I, can
be attributed to two factors: the unsteadiness of the flow and the presence, even in a
frozen flow, of trajectories that start and end on the collision sphere in the presence
of fluid rotation. To distinguish these effects, we compute as III the collision rate in a
velocity-gradient field frozen during the satellite evolution. The frozen velocity-gradient
result III is much closer to the ideal collision rate I (13 % difference between I and III
at large Reλ) than it is to the mean inward flow II (33 % difference between II and III),
indicating that closed trajectories are a larger factor in reducing the collision rate than
unsteadiness. The decrease in collision rate due to closed trajectories for large Reλ in the
Girimaji & Pope (1990) model is approximately 42 % (i.e. difference between I and II),
which is much larger than the 20 % change observed in a Gaussian random flow field
by Brunk et al. (1998). This suggests that the tendency of the vorticity to align nearly
perpendicular to the primary strain rate eigenvector that would be expected in a turbulent
flow and the Girimaji & Pope (1990) model increases the prevalence of closed trajectories.
Figure 2 shows the ideal collision rate K0

12 as a function of the strength of gravity Q.
With increasing Q, the ideal collision rate increases and converges to a line with a slope
(π/2) and intercept of zero at high Reλ. This asymptote corresponds to the ideal pure
differential-sedimentation collision rate of 2n1n2ρpg(a2

2 − a2
1)(a1 + a2)

2/(9μ) calculated
by Smoluchowski (1918). The convergence to this result with increasing Q, and the
collapse in the dependence of the ideal collision rate on Reλ, is expected as gravity is not a
stochastic process and it washes away all the intricacies, such as re-circulating trajectories,
arising from turbulence. Only Reλ = 90 and 2500 are shown to avoid crowding in the
plot. However, the behaviour described here is valid for a large range of Reλ. To concisely
capture the large amount of data we have calculated across the parameter space in Q and
Reλ we use a fitting function. This is given as,

K0
12

n1n2Γη(2a∗)3 = f1Ref2
λ

1 + fQQ
+ π

2
Q. (3.2)
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Figure 2. The ideal collision rate K0
12 is given as a function of Q at Reλ = 90 and 2500. The symbols

correspond to the numerically calculated collision rate and the solid lines to the fit. The higher Reλ corresponds
to lower collision rate. For reference, the ideal collision rate predicted by Smoluchowski (1918) for spheres
settling in a quiescent fluid is given by the dashed line.

Here, f1, f2 and fQ are fitting parameters. This form captures the asymptotic behaviour in
the large Q limit shown in figure 2 and an Reλ power law to fit the Q = 0 limit shown in
figure 1. We found that f1 = 1.55, f2 = −0.09 and fQ = 2.1 give the best agreement with
these data. From this expression, it is evident that the coupling of gravity with turbulence
leads to a non-trivial result that cannot be captured through a linear combination of the
collision rates due to gravity and turbulence acting independently.

4. Collision rate with hydrodynamic interactions

Hydrodynamic interactions alter the relative velocity and pair probability and retard the
collision rate (KHI

12 ) relative to the ideal flow result. The collision efficiency (β = KHI
12 /K0

12)
will be used to characterize this retardation due to the non-continuum hydrodynamics with
the breakdown of continuum parametrized through the Knudsen number, Kn = λg/a∗,
where λg is the mean-free path of the gas. The mobilities capturing this interaction depend
only on the centre to centre distance and, more significantly, the important features are
sensitive to the surface to surface distance. For this purpose, a new radial coordinate
ξ = r − 2 is used. This coordinate will also be useful to characterize the pair-probability
evolution since it is intricately coupled with the mobilities.

Continuum hydrodynamic interaction mobilities have been calculated for the normal
direction by Wang et al. (1994) by solving for the velocities in a bispherical coordinate
system. In the tangential direction

Jeffrey & Onishi (1984) and Jeffrey (1992) have presented a twin multipole solution to
determine the mobility. Both these series solutions become less accurate as ξ decreases
and so require more terms to compensate. This becomes infeasible in the ξ � 1 limit and,
instead, we use the lubrication results available in the literature (see Batchelor & Green
1972b; Jeffrey & Onishi 1984; Jeffrey 1992). A smooth transition is made between the two
regimes.

As the spheres approach each other the continuum lubrication force diverges at a
rate that does not allow collision to occur in a finite time (Batchelor & Green 1972b).

912 A5-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
13

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1113


Collision of settling spheres in turbulent gas flow

The non-continuum lubrication force has a weaker divergence that allows for finite
time collisions. Non-continuum effects become important when ξ = O(Kn) and the
normal force has been calculated for all separations within the lubrication regime by
Sundararajakumar & Koch (1996). We incorporate this non-continuum lubrication result
into the normal motion mobilities and obtain a uniformly valid result that captures the
breakdown of continuum at ξ ≤ O(Kn), the far-field continuum behaviour when ξ ≥ O(1)

and smoothly transitions through continuum lubrication when Kn � ξ � 1.
In the limit ξ → 0 continuum tangential mobilities approach a finite value. Hence, in

this direction, relative motion is not stalled and the O(Kn) correction to the mobility is
expected to have a small effect on the trajectories. Thus, in our calculation, tangential
mobilities are computed based on the continuum hydrodynamics at all ξ .

The hydrodynamic interactions, both continuum and non-continuum, have an impact on
the pair probability. Its evolution along a trajectory can be obtained from (2.5) rewritten
as,

P = exp
(

−
∫

∇ · v dt
)

. (4.1)

Here, the integrand has the divergence of the relative velocity that is given as,

∂vi

∂ri
= −riΓijrj

r

[
3

A(r) − B(r)
r

+ dA(r)
dr

]

− Qsjδj3

[
2

L(r) − M(r)
r

+ dL(r)
dr

]
. (4.2)

Non-zero contributions to the integral in (4.1) occur when the relative velocity is
non-solenoidal. Since ∇ · v → 0 as r → ∞, the pair probability approaches a constant
value at large separations. Hence, for numerical purposes, we stop tracking the evolution of
P beyond a certain radial separation, which we have denoted as r∞ at the end of § 2. There,
we also discuss the necessity of Monte Carlo integration and ensemble averaging. For the
case with hydrodynamic interactions we set Nr = 100 and integrate over 50 trajectory
evolutions at each realization of the turbulent flow.

As the spheres approach each other the relative velocity decays to zero, even
after including non-continuum gas flow effects, albeit at the very slow rate of
O(1/ ln[ln(Kn/ξ)]) which allows for collision in finite time. Due to this decay, numerical
issues arise in the time-reversed calculation if the satellite spheres begin very close to the
test sphere. Instead, we create an offset collision sphere at r = 2 + ξ0 and seed satellite
spheres on it. A sufficiently small offset value ξ0 is required to accurately evaluate the
collision rate while the value must be large enough to facilitate separation of the pairs in a
reasonable time period. We find that ξ0 = 10−7 satisfies both these constraints.

Figure 3 shows that the collision efficiency β decreases monotonically with decreasing
Kn at κ = 0.7 and Reλ = 2500 for Q = 0 (figure 3a) and Q → ∞ (figure 3b). A similar
trend is observed for intermediate values of Q. This behaviour results from the increasing
range of radial separations for which the continuum lubrication resistance acts as the
mean-free path is reduced relative to the sphere radius. Comparing the two panels it is also
evident that collisions driven by differential sedimentation have a lower collision efficiency
that depends more strongly on Kn than those driven by turbulence alone. These qualitative
behaviours have been observed at all values of κ .

Figure 4 shows the collision efficiency as a function of the size ratio κ at Kn = 10−3 and
Reλ = 2500. As mentioned previously, the result for turbulence dominated flow (Q = 0,
figure 4a) has higher efficiency than the gravity dominated regime (Q → ∞, figure 4b).
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Figure 3. The decrease of the collision efficiency β with decreasing Kn is shown for κ = 0.7 and
Reλ = 2500. Panel (a) is in the pure turbulence limit (Q = 0) and (b) is for the differential-sedimentation limit
(Q → ∞).

In both cases, β decreases with decreasing size ratio κ and this behaviour is observed
across the entire parameter space of Kn and Q.The probability distribution of the
magnitude of the strain rate varies with Reλ and it impacts the collision rate, as noted in the
discussion in § 3 on the ideal collision rates. We show its effect on the collision efficiency
in figure 5, calculated at Kn = 10−2 and κ = 0.9. We plot results for cases in which
turbulence dominates (figure 5a), turbulence competes with gravity (figure 5b) and gravity
dominates (figure 5c). Only the case in which turbulence and gravity compete shows
a statistically significant variation with Reλ. Of course, when gravity is strong Q = 10
we expect that the effects of turbulence and Reλ will be washed away. In the turbulence
dominated regime, the linearity of the Stokes flow particle interactions implies that the
collision efficiency depends only on the mobility functions and not on the distribution
of strain rate magnitudes. At intermediate Q, changes in the strain rate distribution can
alter the relative importance of the linear flow and differential sedimentation mobilities
in determining the collision efficiency. At higher Reλ, the mean inward velocity due to
turbulence is smaller for a given value of 〈ε〉1/2. This makes the collision efficiency more
sensitive to sedimentation mobilities, so that β decreases with increasing Reλ.

Figure 6 shows the variation of β with the strength of gravity Q at Kn = 10−3, κ = 0.5
and Reλ = 2500. A decrease in collision efficiency with Q is observed at all values of
Kn, κ and Reλ we have considered and can be attributed to the difference in the strength
of the hydrodynamic interactions.

Differential-sedimentation hydrodynamic interactions are stronger than those for any
linear flow and not just the stochastic linear flow observed by sub-Kolmogorov spheres
in turbulence. To demonstrate this β is calculated for a comparable frozen linear flow
field. We use a steady compressional flow, the most common realization of the local
velocity gradient in turbulent flow (see Ashurst et al. 1987). We choose to consider a
uniaxial compressional flow whose axis of compression is aligned with the direction of
gravity. To determine the compression rate (γ̇ ) in terms of Kolmogorov quantities we
equate the ideal collision rate in static uniaxial compressional flow, calculated by Zeichner
& Schowalter (1977) and given as [4π/(3

√
3)]n1n2γ̇ [2a∗]3, with the equivalent turbulent

result, evaluated by Saffman & Turner (1956) and given as (8π/15)1/2(2a∗)3n1n2(ε/ν)1/2.
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Figure 4. The collision efficiency is shown as a function of κ for Kn = 10−3 and Reλ = 2500. Panel (a) is in
the absence of gravitational effects (Q = 0) and (b) is in a purely gravity driven flow (Q → ∞).
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Figure 5. The dependence of β on Reλ is shown for Kn = 10−2, κ = 0.9 at (a) Q = 0, (b) Q ≈ 1 and
(c) Q ≈ 10. The collision efficiency varies with Reλ for moderate Q.

Thus, we get γ̇ = (18/[5π])1/2(ε/ν)1/2. By following a non-dimensionalization consistent
with that outlined in § 2 we evaluate β and Q for the static flow field and plot it along with
the stochastic result in figure 6. The two calculations generally exhibit similar collision
efficiencies across the parameter space in Q. Around Q ≈ 5, however, the frozen flow field
result shows non-monotonic behaviour with Q. These intricate features in the collision
efficiency arise due to satellite spheres moving in circuitous trajectories. They are washed
away by the angular variation and time dependence of the strain fields in turbulence. A
statistically significant difference in β between the stochastic and deterministic results is
observed for small Q. This can be attributed to the difference in collision efficiency of
the realizations of the linear flow that are not uniaxial compression. This difference is
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Figure 6. The variation of the collision efficiency with Q is shown for Kn = 10−3 and κ = 0.5. The
symbols correspond to the stochastic linear flow field with Reλ = 2500. The solid line is the frozen uniaxial
compressional flow calculation, with the compression axis aligned with gravity.

reasonably small suggesting that uniaxial compressional flow does make the dominant
contribution.

5. Analytical approximation for the collision efficiency

In § 4, we have presented the collision efficiency β for some typical values of Taylor
microscale Reynolds number, size ratio of the spheres, relative strength of gravity to the
turbulent flow and strength of non-continuum hydrodynamic interactions. We showed
some of the important qualitative features of the variation of the collision efficiency
with these parameters but it is not feasible to present data on β that exhaustively span
the parameter space. Hence, in this section, we obtain an analytical approximation to
the collision efficiency. The analytically derived expression is based on the pertinent
parameters of the collision dynamics: Kn, Q and κ . Undetermined constants will be
obtained by fitting the available data on β. We have not included Reλ in this analysis
as there is no fully theoretical understanding of the velocity-gradient statistics. Instead, we
will consider the very high Taylor microscale Reynolds number regime and carry out the
analysis at Reλ = 2500. It is to be noted that the variation of β with Reλ, while statistically
significant, occurs over a limited portion of the parameter space and even within this range
Reλ is weaker than the variation with the other parameters. Hence, a good approximation
of the collision rate at various Reλ may be obtained by multiplying the Reλ-dependent ideal
collision rate presented in § 3 with the collision efficiency computed for Reλ = 2500.

Batchelor & Green (1972a) obtained an expression for the evolution of the pair
probability in an extensional flow and an equivalent analysis for differential sedimentation
was performed by Batchelor (1982). These analyses involved evaluating an integral
that combined the radial and tangential mobilities over radial separation. Continuum
lubrication approximations to the mobilities were employed under the assumption that
the decrease in the pair probability attenuating the collision rate was dominated by the
continuum lubrication regime. Chun & Koch (2005) used this idea to obtain a closed
form expression for the collision efficiency in a linear flow with interactions governed by
non-continuum hydrodynamic lubrication. Non-continuum interactions are much weaker
than the continuum forces and so it is possible to cut off the collision efficiency integral
at ξ = O(Kn). By retaining only the leading-order term in the tangential mobility, they
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obtained a power law in Kn. To determine the power law pre factor they fitted their
expression to the collision efficiency data computed for a monodisperse suspension in
a turbulent flow. This result does not account for the difference in size of the interacting
spheres or the coupling of turbulence with differential sedimentation. Hence, we derive a
more general expression and retain an additional term in the tangential mobility to increase
the accuracy of the approximation for β.

The critical components in computing the collision efficiency are the relative velocity
and pair probability. The evolution of the latter is given by (2.5), where it is coupled
with the former. To evaluate these components and obtain a closed form expression for
β, we consider trajectories driven by differential sedimentation and a frozen uniaxial
compressional flow, the most common linear flow in a turbulent velocity field (see Ashurst
et al. 1987), whose compressional axis is aligned with gravity. For the sake of convenience,
in this frozen flow calculation, we will use spherical coordinates (r, θ, φ), where θ is the
polar angle measured from the direction of gravity and φ is the azimuthal angle measured
in the plane normal to gravity. This plane contains both the extensional axes of the uniaxial
compressional flow. Without loss of generality, we consider motion only in the φ = 0 plane
and, thus, (2.5) can be written as,

vr
∂P
∂r

+ vθ

1
r

∂P
∂θ

= −P∇ · v. (5.1)

Here, vr and vθ represent the velocity components in the r and θ directions, respectively.
Using the method of characteristics and simplifying we get,

ln P =
∫ ∞

r∗
−∇ · v

vr
dr, (5.2)

where r∗ denotes the lower bound of the integral. This integral is to be computed along a
trajectory for which (r sin θ) dθ/dr = vθ/vr. Expanding ∇ · v and simplifying we get,

∫ ∞

r∗

∇ · v

vr
dr =

∫ ∞

r∗
d(ln vr) +

∫ ∞

r∗

(
2
r

+ 1
vr

1
r sin θ

∂(vθ sin θ)

∂θ

)
dr. (5.3)

The relative velocity in spherical coordinates can be given as,

vr = r[1 − A(r)](1 − 3 cos2 θ) − L(r)Q cos θ,

vθ = 3r[1 − B(r)] cos θ sin θ + M(r)Q sin θ.

}
(5.4)

Incorporating this result into (5.3) and subsequently into (2.3), the collision rate is
determined to be,

K12

n1n2Γη(2a∗)3 = vr,∞ exp
(∫ ∞

r∗
dr

[
2
r

+ 3[1 − B(r)](3 cos2 θ − 1) + 2M(r)Q cos θ/r
r[1 − A(r)](1 − 3 cos2 θ) − L(r)Q cos θ

])
.

(5.5)

Here, vr,∞ is the radial velocity at large separations. From this equation, an expression
for the ideal collision rate can be obtained and used to determine β. In the ξ∗ � 1 limit,
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we obtain

β = exp
(∫ ∞

ξ∗
dξ

[
3[1 − B(ξ)](3 cos2 θ − 1) + M(ξ)Q cos θ

2[1 − A(ξ)](1 − 3 cos2 θ) − L(ξ)Q cos θ

− 3(3 cos2 θ − 1) + Q cos θ

2(1 − 3 cos2 θ) − Q cos θ

])
. (5.6)

This integral will give β = 0 when evaluated with ξ∗ = 0 using continuum mobilities.
Instead, we use the asymptotic continuum lubrication mobilities in (5.6) and cut the
integral off at separations comparable to the mean-free path. From the work of Batchelor
& Green (1972b) and Batchelor (1982), it is known that 1 − A(ξ) ≈ A1ξ, L(ξ) ≈ L1ξ . For
tangential mobilities, Jeffrey & Onishi (1984) and Jeffrey (1992) showed that 1 − B(ξ) ≈
B0 + B1/ ln(ξ−1), M(ξ) ≈ M0 + M1/ ln(ξ−1). While B0, B1, M0, M1, A1, L1 only depend
on κ we have (r sin θ) dθ/ dr = vθ/vr and so only numerical solutions are possible for
(5.6). To obtain a closed form expression, we assume θ is not a function of r, which is
applicable to trajectories starting with θ = 0 or π. We hypothesize that the Kn dependence
of the collision efficiency derived under this approximation will be similar to the exact
result for pairs whose orientation evolves with radial separation. Using this approximation
and continuum lubrication mobilities we evaluate (5.6). In this way we obtain,

β = p1
Knq1(

p2 + ln
1

Kn

)q2
. (5.7)

The exponents are given as,

q1 = 3B0(3 cos2 θ ′ − 1) + M0Q cos θ ′

2A1(3 cos2 θ ′ − 1) + L1Q cos θ ′ ,

q2 = 3B1(3 cos2 θ ′ − 1) + M1Q cos θ ′

2A1(3 cos2 θ ′ − 1) + L1Q cos θ ′ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.8)

The exponent q1 is associated with the ratio of the leading-order term for the tangential
lubrication to the radial lubrication mobility, while q2 depends on the next term in
the tangential lubrication mobility. These exponents depend on the coefficients of the
asymptotic forms of the continuum mobilities, which are given in table 2. The impact
of the orientation dynamics of the trajectories evolving under the competition between
gravity and turbulence is estimated through θ ′. This will be used, along with p1 and p2
which are related to the upper and lower limits of the integral, as free parameters in our
calculation.

Figures 7(a) and 7(b) show β as a function of Kn with κ = 0.4 for Q = 0 and
Q → ∞, respectively. The symbols are the computed results and the line is the analytical
approximation, presented in (5.7), with free parameters determined to give best agreement
with the data. Note that there is a larger relative change in β for differential sedimentation
than turbulent flow over the range of Kn. To account for this considerable difference
between the two extremes we take p1, p2 to be p1,ε, p2,ε and p1,g, p2,g for the pure turbulent
flow and pure differential-sedimentation cases, respectively. These parameters have been
determined by fitting with the computed collision efficiency in the Q = 0 and Q → ∞
asymptotes and are presented in table 3 for κ from 0.3 to 0.99. It should be noted that, in
these limits, the analytical approximation is independent of θ ′. Thus, the fitting parameter
θ ′ will come into play only at finite values of Q.
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κ A1 B0 B1 L1 M0 M1

0.3 2.53 0.20 2.77 0.45 0.07 1.16
0.4 3.03 0.32 2.46 0.56 0.11 1.16
0.5 3.41 0.42 2.00 0.64 0.15 1.08
0.6 3.69 0.49 1.59 0.70 0.18 0.98
0.7 3.88 0.54 1.28 0.74 0.20 0.89
0.8 4.00 0.57 1.09 0.76 0.21 0.84
0.9 4.06 0.59 0.98 0.78 0.22 0.81
0.99 4.06 0.59 0.95 0.78 0.22 0.80

Table 2. Values of the coefficients in the asymptotic forms of the continuum mobilities: B0, B1, M0, M1, A,L1
at various values of κ . These have been obtained from the work of Jeffrey & Onishi (1984), Jeffrey (1992) and
Wang et al. (1994).

0

0.2

0.4

0.6

10–4 10–3 10–2 10–1

10–4 10–3 10–2 10–1

Kn

0

0.02

0.04

0.06

0.08

(a)

(b)

β

β

Figure 7. The collision efficiency is plotted as a function of Kn for κ = 0.4. Panel (a) is in the pure turbulence
limit (Q = 0) and (b) is for pure differential sedimentation (Q → ∞). The symbols represent the results of the
numerical calculation. The solid lines are the analytical approximation, given in (5.7), which provides a good
prediction of the numerical results.

κ p1,ε p2,ε p1,g p2,g

0.3 12.6 5.04 13.68 5.95
0.4 7.70 5.23 7.99 6.40
0.5 4.43 4.84 4.40 6.71
0.6 3.09 4.52 2.74 6.73
0.7 2.42 4.03 1.97 6.73
0.8 2.11 3.70 1.62 6.73
0.9 1.97 3.55 1.46 6.73
0.99 1.97 3.65 1.42 6.72

Table 3. Values of the fitting parameters p1,ε , p2,ε , p1,g and p2,g at various values of κ .
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Figure 8. The value of β is shown as a function of κ at Kn = 10−2. Panel (a) is in the absence of gravitational
effects (Q = 0) and (b) is in a purely gravity-driven flow (Q → ∞). The symbols represent the results of the
numerical calculation with errors bars of ±σe/Nr. The solid line is from (5.7) and agrees well with the data for
κ ≥ 0.3.

The dependence of the collision efficiency β on the size ratio κ is shown in figure 8
for Kn = 10−2, along with the predictions of (5.7). Figure 8(a) shows results at Q = 0
and figure 8(b) is for the Q → ∞ limit. To smoothly span size ratios, the parameters
p1,ε, p2,ε, p1,g and p2,g are fitted with a polynomial in κ . The resulting output of (5.7) lies
well within the error bounds of the computed numerical data for κ ≥ 0.3.

For intermediate Q values, the fitting parameters, p1 and p2, in (5.7) are expected to take
values between those in the pure turbulent and pure differential-sedimentation regimes.
Hence, we take p1 = p1(Q) and p2 = p2(Q), with their functional forms chosen as,

p1(Q) = exp(−l1Q)p1,ε + [1 − exp(−l1Q)]p1,g,

p2(Q) = exp(−l2Q)p2,ε + [1 − exp(−l2Q)]p2,g.

}
(5.9)

The best agreement with computed data is found for,

θ ′ = 53◦,
l1 = 1,

l2 = 1

κKn log
(

1
Kn

) .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.10)

Figure 9 shows the numerical solutions (symbols) for the collision efficiency β as a
function of Q for κ = 0.6 at Kn = 10−1. The line is the result obtained using (5.7) with
the form of the free parameters given in (5.9) and values in table 3. The complexity
of the fitting function used reflects the underlying complexity of the coupling of the
turbulent shear and gravitational settling driving forces in the presence of non-continuum
hydrodynamics.

In the analysis above, we have considered non-continuum modifications of the
viscous resistance as the sole factor allowing coalescence events and so the results are
accurate for radii 15 μm or larger. Smaller particles are influenced by van der Waals
interactions. To incorporate this colloidal attraction, we determine the gap between the
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10–2 100

Q
102 104

10–1

100

β

Figure 9. The collision efficiency β is plotted as a function of Q for Kn = 10−1 and κ = 0.6. The symbols
represent the results of the numerical calculation. The solid line is from (5.7), with the fitting parameter forms
given in (5.9) and values in table 3. The agreement is good across the parameter space.

drops h∗
vdW at which the relative radial velocity is doubled relative to the prediction for

pure continuum–hydrodynamic interactions. The modified (5.4) that includes the radial
mobility for colloidal interactions G(r), and the central potential Φ12,vdW is given as,

vr = −(1 − A(r))r(3 cos2 θ − 1) − G(r)
NF

dΦ12,vdW

dr
− QL(r) cos θ. (5.11)

Here, NF = 3πγ̇ a3
1κ(1 + κ)μ/(2Â) is the relative strength of viscous shear to van der

Waals forces, Â is the Hamaker constant and γ̇ = (18/[5π])1/2(ε/ν)1/2 derived in § 4 is
used. In the lubrication regime (5.11) becomes,

vr ∼ −2A1ξ(3 cos2 θ − 1) − ξ

NF

(1 + κ)2

2κ

κ

3(1 + κ)2
1
ξ2 − QL1ξ cos θ. (5.12)

From (5.12) h∗
vdW is determined as the value of ξ at which the van der Waals contribution

balances the maximum of the sum of the other two terms, preventing particle separation.
The van der Waals velocity component is always inward in this regime but the continuum
lubrication velocity can take either sign, depending on the values of Q2 and θ . The
maximum positive value of the continuum velocity occurs when cos θ is −Q2/6 for
Q2 < 6 and 1 for Q2 > 6. Here, Q2 = QL1/2A1. From this we get,

h∗
vdW√

Â/(18πμa3κ(1 + κ)γ̇ )

=
√

12
Q2

2 + 12
Q2 < 6

= 1√
Q2 − 2

Q2 > 6. (5.13)

In the Q = 0 limit (5.13) reduces to h∗
vdW,ε given as a∗

√
Â/(18πμa3κ(1 + κ)γ̇ ). In the

pure differential regime it is h∗
vdW,g expressed as [(1 + κ)/(2a∗)]

√
Â/(4πL1ρpκ(1 − κ2)g).

Equation (5.13) can be used to find a composite Knudsen number
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Figure 10. The collision efficiency β for differential-sedimentation-driven collisions with a1 = 10 μm. The
analytical model results for van der Waals attractions and non-continuum hydrodynamic interactions (model:
vdW + NC), non-continuum hydrodynamic interactions without van der Waals forces (model: NC) and van der
Waals attractions in a continuum gas (model: vdW) are plotted as a function of the size ratio and compared
to results of Davis’s (1984) trajectory analysis with vdW + NC and particle inertia. The composite model
(model: vdW + NC) is in good agreement with the computational result. Our own trajectory analysis with
vdW + NC and without particle inertia is very close to the results of Davis (1984), indicating that particle
inertia is negligible for this drop size.

Kncomp = (λg + h∗
vdW)/a∗ which, in turn, can be used to obtain the collision efficiency

using the procedure outlined earlier in this section.
The analytical model developed here is tested against data available in literature. The

computational result for the efficiency of differential-sedimentation-driven collisions from
Davis (1984) can be compared with our results in the Q → ∞ limit. An experimental
study by Duru et al. (2007) on coalescence-driven droplet growth in grid generated
turbulence has coupled turbulence and differential-sedimentation-driven collisions that
test our results for Q = O(1). Van der Waals forces and non-continuum interaction play
important roles in both comparisons.

Davis (1984) computed the collision efficiency for a sedimenting droplet pair with finite
particle inertia interacting via non-continuum hydrodynamic interactions modelled using
a Maxwell slip approximation and van der Waals forces. We repeated these calculations for
the case where a1 = 10 μm but neglecting particle inertia. The comparison of these results
in figure 10 indicates that particle inertia, for all size ratios considered, plays a negligible
role when the larger drop is of the chosen size. Next, we apply the analytical model using
the composite effective Knudsen number, Kncomp, with the van der Waals length scale
obtained from (5.13). In the Q → ∞ limit this length scale reduces to h∗

vdW,g.The model
agrees very well with the full calculation, confirming the accuracy of the method used
to approximate the coupled effects of van der Waals and non-continuum hydrodynamic
interactions. That the coalescence events in the present case have substantial contributions
from both mechanisms is also evident from the model. Applying the model for a
non-continuum gas in the absence of van der Waals attractions, i.e. replacing Kncomp with
Kn, and considering van der Waals attractions in a continuum gas, i.e. replacing Kncomp
with h∗

vdW,g/a∗, yields comparable values of the collision efficiency.
Duru et al. (2007) measured the size distribution of oil droplets with mean radii in the

range 1–2.5 μm settling in an oscillating grid generated turbulent flow of a nitrogen gas
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Figure 11. Experimentally evaluated b/ni from Duru et al. (2007) is plotted against the initial mean particle
size reported in experiments and compared against the theoretical predictions obtained using our K12. In (a)
we show results for a Kolmogorov shear rate of 88 s−1. The ‘×’ are the experimental results, the filled circles
are b/ni computed using the ideal result and the open circles are b/ni evaluated with KNC+vdW

12 . In (b) we show
results for the Kolmogorov shear rate of 88 s−1 in green, 59 s−1 in red and 25 s−1 in blue. The ideal result is
not shown here for the sake of conciseness.

at various turbulence intensities. The initial polydispersity of the drops was approximately
10 % and the effects of differential sedimentation and turbulent shear judged from the
ideal collision rates were comparable. For an initial mean size of a0 they find the short
time linear growth of the mean droplet radius 〈a〉 and report b = (1/a0) d〈a〉/dt. This
result divided by the number density can be related to integrals of the rate constant over
the drop size distribution. Thus, a theoretical prediction of b/ni can be obtained from (17)
of Duru et al. (2007) that takes K12 as an input. We make theoretical predictions of b/ni
using our collision rate constant and compare them against experimental data in figure 11.
We excluded from this comparison a few of the experimental results for the smallest a0
values which were influenced by Brownian motion.

Figure 11(a) shows a comparison of the model with experimental measurements of the
droplet growth rate for the largest Kolmogorov shear rate of 88 s−1 and a range of initial
mean drop sizes a0. The measured droplet growth (× symbols) increases with a0 as a
result of the increasing influence of differential sedimentation. The variability of the rate of
increase may be attributed in part to variations in the breadth of the drop size distribution.
The initial standard deviation of the drop size distribution was also measured and is used
in the model calculations. The model calculation yields the open circles which are very
similar in magnitude to the experimental measurements and grow at a comparable rate
with increasing a0. It is notable that the droplet growth rate using the ideal collision rate
(filled circles) is much larger than both the experimental measurements and the full model
predictions highlighting the importance of interparticle interactions in modulating the
coalescence rate. To probe the influence of the turbulence intensity, figure 11(b) provides
a comparison of experimental measurements for Kolmogorov shear rates of 25, 59 and
88 s−1 with the full model predictions. The theory and experiments show an increase
in droplet growth rate with increasing turbulent shear rate. The dependence on shear
rate is less obvious and systematic at the larger sizes where the sedimentation driving
force for collisions may play a larger role. Thus, the theoretical model provides a good
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representation of experimentally measured droplet coalescence rates in a regime with
mixed sedimentation and turbulent shear-driven collisions and mixed van der Waals and
non-continuum viscous resistance mechanisms allowing droplet contact.

6. Discussion and summary

We have studied the collision rate of inertialess drops or particles due to the coupled effects
of differential sedimentation and turbulent shear flow. The hydrodynamic interactions
of the drops include non-continuum lubrication forces allowing particle contact in the
absence of non-hydrodynamic attractive forces. In the absence of gravity, we discovered
that the ideal collision efficiency decreases with increasing Reλ, as discussed in § 3,
as a result of the non-Gaussian nature of the turbulent velocity-gradient field. The
inclusion of gravity led to an ideal collision rate that differs significantly from a linear
superposition of the collision rate due to turbulent shear and differential sedimentation
acting independently. The consideration of non-continuum hydrodynamic interactions in
§ 4 leads to a collision efficiency that depends strongly on the Knudsen number Kn, the
relative strengths of gravity and turbulence Q and the particle size ratio κ . To concisely
report data across the large parameter space we develop, in § 5, an analytical approximation
for the collision efficiency.

While the well-known prediction of the ideal collision rate in turbulence at Q = 0
based on a Gaussian approximation to the velocity gradient by Saffman & Turner (1956)
is independent of Reλ, our simulations using the Lagrangian velocity-gradient model
developed by Girimaji & Pope (1990) indicate that the ideal collision rate decreases by
nearly 28 % as the Reynolds number is increased from 90 to 2500. Increasing Taylor
microscale Reynolds number leads to larger tails in the probability distribution of turbulent
velocity gradients for a given dissipation rate. The dissipation rate is a measure of the
mean-square strain rate, while the collision rate depends on the mean inward straining
motion at a given location and is thus a lower-order moment. The broader distribution
naturally gives rise to a smaller value of this low-order moment and a lower collision
rate. While it would be interesting to see how the ideal collision rate depends on the
choice of Lagrangian velocity gradient model, we believe that the recent developments
in such models (Pereira, Moriconi & Chevillard 2018) that improve the predictions of
high-order moments may not have a great influence on the low-order moment that controls
the collision rate.

The inclusion of gravity increases the non-dimensional collision rate. However, with
increasing Q, the stochastic fluctuations in the relative velocity driven by the turbulent
velocity field become less important and the collision rate dependence on Reλ vanishes in
the differential-sedimentation dominated regime.

Hydrodynamic interactions significantly retard the collision rate and introduce strong
dependence on Kn and κ . The collision efficiency β, unlike the ideal collision rate,
decreases with increasing Q. At moderate Q the complex coupling between the two driving
mechanisms and hydrodynamic interactions leads to a statistically significant dependence
of β on Reλ. This illustrates the nonlinear change of the collision rate with Q and the
non-trivial interplay between sedimentation- and turbulence-driven particle motions in the
presence of non-continuum hydrodynamic interactions.

Since the collision efficiency depends on multiple parameters, each of which are
extensively spanned, it is not possible to report results across the full parameter space
concisely. Instead, we develop an analytical approximation to β. This has been derived
based on an approximate treatment of the evolution of the pair probability along
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trajectories in the continuum lubrication regime. The separations at which continuum
lubrication is considered to begin and end, the angle of the colliding particles and two
parameters governing the transition from turbulent shear to gravity dominated collisions
provide free parameters used to fit the approximate solution to a wide range of numerical
results.

The analytical result for the collision efficiency also provides an intuitive understanding
of its dependence on the Knudsen number and the size ratio. The power law dependence
of the collision efficiency on the Knudsen number is associated with the power law
variation of the pair probability with radial position in the lubrication regime resulting
from the functional form of the mobilities. The power law decrease in β with decreasing
Kn predicted in (5.7) is seen in figures 3 and 7.

With decreasing κ we find, from table 2, that the ratios of the tangent to normal
mobilities, M0/L1 for differential-sedimentation-driven collisions and B0/A1 for turbulent
collisions, decrease. This suggests that smaller spheres will have less ability to move
tangent to one another to an angular position at which they may separate before the normal
motion brings them together. As a result, smaller size ratio pairs have a lower collision
efficiency. The ratio of the differential-sedimentation mobilities is more sensitive to κ

than that of the turbulent shear mobilities and as a result the decrease in β with decreasing
κ is stronger for differential sedimentation.

The dependence of the collision efficiency on size ratio can be understood by
considering the relative motion of a pair in which one particle is substantially smaller
than the other. In this case, the resistance to the centre of mass motion of the pair is
dominated by the resistance of the larger particle and the centre of mass velocity becomes
close to the terminal velocity of the large particle. The small particle’s motion relative to
the larger particle is then driven by the fluid flow around the large particle. The tangential
fluid velocity around the large sphere is a simple shear flow at small separations. Thus, the
fluid velocity that drives the tangent motion of a small sphere is proportional to κ when
the small particle is in a lubrication interaction with the large one. The tangent mobility is
finite as ξ → 0 and the sphere rolls at an O(κ) speed. The normal fluid velocity pushing
the small sphere toward the surface is a quadratic function of the separation of the centre of
the small sphere from the large particle surface so the small particle experiences a normal
force F′ = κ2. The normal velocity of the lubricating particle due to this force is F′ξ/κ2

(or in dimensional form F′h′/(μa2
2), where h′ is the dimensional surface to surface radial

separation and a2 < a1). Thus the normal velocity is ξ , independent of κ for small κ and
A1 or L1 is O(1). We see then that a small particle rolls around the large particle at a
slower O(κ) speed but retains an O(ξ) normal velocity. Hence, the exponent in (5.7) and
thus the collision efficiency become smaller at smaller κ . The ability of tangential motion
to facilitate motion away from the region of inward velocity before normal motion leads to
contact is attenuated as the small particle’s radius decreases.

If the size ratio becomes small enough, there is a range of separations where h′ � a1,
for a2 < a1, so that the hydrodynamic interactions are strong and alter the pair distribution
function significantly but h′ ≤ O(a2) so that the particles are not yet in a lubrication
interaction. As a result, there would be a significant change of P that is not captured by
applying (5.7), which is based on lubrication scalings and would explain the rapid change
in p1 shown in table 3. Thus, the discussion in the previous paragraph should be taken as
a physical interpretation for moderately small κ rather than a guide to β for κ � 1.

To understand why the collision efficiency for differential sedimentation is smaller and
has a stronger Kn dependence than that for turbulent shear flow, we analyse the fluid flow
around a large particle that drives the motion of a smaller particle. For turbulent flow,
we consider the most common local flow, a uniaxial compressional flow (see Ashurst
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et al. 1987). The compressional flow has stagnation points at 0, 90 and 180 degree angles
relative to the compressional axis, while the flow past a sedimenting particle has stagnation
points at 0 and 180 degrees relative to the direction of gravity. Based on mass conservation,
we expect the radial velocity of the fluid near the large particle that drives the small
particle’s normal motion will be larger relative to the tangential velocity when the angular
velocity varies more rapidly with angular position. Thus, the particle pair in turbulent shear
flow experiences a stronger normal motion driving collision than the pair experiencing
differential sedimentation. A weaker normal motion for differential sedimentation leads to
a small collision efficiency and the form of the power law exponent in (5.7) indicates that
β will also have a stronger Kn dependence in this case.

The fit of the analytical result has been carried out using data on β at Reλ = 2500 over
Kn from 0.2 to 10−4, κ from 0.3 to 0.99 and Q ranging from 0 to 105. Hence, the analytical
result is expected to be very accurate and the collision efficiency at intermediate values of
the parameters can be obtained through interpolation. This is supported by the trends of
β across κ, Q and Kn being smooth. This is true of the β data not shown here and so the
analytical approximation is expected to perform well when spanning the parameter space.
Additionally the smooth behaviour of the continuum near-field mobility coefficients and
the fitting parameters, with respect to κ , gives further credence to the idea that the same
qualitative behaviour will be observed across the parameter space and an interpolation of
the fitting function will be able to capture β accurately.

Non-continuum hydrodynamics accurately described droplet interaction for droplet radii
of 15 μm or larger. To extend our model to smaller sizes we have incorporated van der
Waals interactions. While a full analysis of droplet trajectories incorporating both van der
Waals and non-continuum hydrodynamic interactions is beyond the scope of this study, we
proposed an approximate theory near the end of § 5. This theory is based on a compound
effective Knudsen number that depends on the characteristic interdroplet gap at which
van der Waals interactions modify the trajectories as well as the mean-free path. The
validity of this approximation is confirmed by comparing with full trajectory calculations
of the collision efficiency for differential sedimentation performed by Davis (1984). To
test the theory for mixed turbulence- and sedimentation-driven collisions in the presence
of both non-continuum hydrodynamic and van der Waals interactions, we predict the
rate of growth of droplets settling in grid generated turbulence observed by Duru et al.
(2007). The magnitude of the predicted growth rate and its dependence on turbulent shear
rate and droplet mean radius are in good agreement with the experimental measurements
confirming the applicability of our results.

The results of our study can be used to model the collision-coalescence growth of
droplets in clouds. Of particular interest is the ‘size gap’ from 15 to 40 μm radius, where
droplets are large enough that condensational growth is ineffective but still too small to
experience rapid gravitational collision. One of the unanswered questions about the ‘size
gap’ relates to the time taken for rain formation in warm clouds. Experimental studies
suggest that drops grow faster than expected from purely gravity-driven collision (see
Langmuir 1948; Kolmogorov 1962; Beard & Ochs III 1993; Blyth et al. 2003; Siebert
et al. 2003). Aerosol nuclei grow into drops with sizes up to approximately 15 μm radius
by condensation. Condensation leads to faster growth of smaller drops and so it leads to
a nearly monodisperse drop size distribution, enhancing the importance of turbulent shear
relative to gravity-driven coalescence. For example, a droplet pair with a1 = 20 μm and
κ = 0.99 in a turbulent environment with an instantaneous ε value of 0.1 m2 s−3 will
have a ratio of gravity- to shear-driven coalescence of Q ≈ 0.6. Thus models that rely on
differential-sedimentation-driven collision and do not properly account for coupling with
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turbulence will predict unrealistically large characteristic times for collision events and
crossing the ‘size gap’. While simple inclusion of the coupled effects of turbulence and
gravity in an ideal collision rate would help to resolve this unrealistically large coalescence
growth time prediction, hydrodynamic interactions also play a crucial role in making a
more physically accurate estimate. The time to cross the ‘size gap’ is expected to be lower
still as particle inertia, through preferential concentration and alteration of the collision
dynamics, leads to higher rates (Davis 1984; Ireland et al. 2016a).

For the droplets of interest in clouds the breakdown of continuum upon close approach
plays a critical role (Sundararajakumar & Koch 1996) and has not received extensive
treatment in the previous literature. These issues can be resolved through the use of
the collision rate presented in this study that properly accounts for non-continuum
lubrication, far-field hydrodynamic interactions and the coupled effects of gravity and
turbulent flow. Since our study spans a large parameter space in Q, Kn and κ it
will be adept at resolving some of the important features of the evolution of the
droplet spectra in the ‘size-gap’ regime where both gravity and turbulence are expected
to be important and many values of the mean radius and radius ratio need to be
considered.

Our collision rate results indicate a significant growth rate of droplets through the ‘size
gap’. The collision efficiency is larger for turbulence dominated than gravity dominated
collisions and larger for nearly equal size spheres than for those with a small size ratio.
Both these factors tend to decrease the variability of the overall collision rate and facilitate
collisions between nearly equal size 15 μm radius drops that must coalesce for the drops
to grow and the size distribution to become more polydisperse following the condensation
growth.

Our study, in addition to rates and efficiency, provides a route to subgrid modelling in
clouds. The large scale dynamics can be simulated with DNS, a large eddy simulation
or other established techniques. The finer details of collision on the particle scale, many
orders of magnitude smaller than the integral scales of turbulence, can be solved using
the collision rates obtained here. Since the present study neglects particle inertia, it is
most applicable to drops in the lower portion of the ‘size gap’ (15 to 25 μm radii)
in moderately turbulent clouds, as indicated in table 1, where condensation leads to a
relatively monodisperse distribution. A study of larger drops with greater polydispersity
whose collisions are driven by differential sedimentation and influenced by particle inertia
(Davis 1984) would complement the present model. The two results together might then
span the full ‘size-gap’ range. It would also be of interest to contrast the present analysis
of droplet coalescence in a Lagrangian reference frame with a future study of the collision
rate of rapidly settling droplets in a low turbulence cloud to highlight the effect of the
Froude number on the coalescence rate.
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Appendix A. Mean normalized flux of particle pairs at the collision surface

The mean flux of particle pairs on the collision surface,
∫

nivi<0 dA|nivi|, consists of the
root-mean-square pseudo-dissipation, Φ1/2, which depends on Reλ and a prefactor, m,
which is independent of Reλ for the ideal collision rate at Q = 0. In this section1 we will
calculate this prefactor. Dividing the mean flux by Φ1/2 gives the mean normalized flux
m = 〈Cijhij〉. Here, h = Γ /Φ1/2 is the normalized velocity gradient and Cij is defined as,

Cij =
∫

nihijnj<0
dAninj. (A1)

The normalized velocity gradient, h, is a sum of straining s and rotational r components,
i.e. h = s + r. In conjunction with incompressibility, the constraints on h at the collision
sphere are,

〈hij〉 = 0, (A2)

〈hijhij〉 = 1. (A3)

Similarly, the constraints on the straining component for isotropic turbulence are,

〈sij〉 = 0, (A4)

〈sijsij〉 = 0.5. (A5)

A tensorial expression for Cij based on the symmetry of the sphere can be given as,

Cij = λ1sij + λ2rij + λ3δij. (A6)

We have λ2 = 0 since rotation is anti-symmetric while C is symmetric. To evaluate λ1 we
multiply Cij by sij and from 〈sijsij〉 = 〈rijrij〉 = 0.5〈hijhij〉 we get λ1 = 2

∫
nisijnj<0 dAnisijnj.

Approximating the local strain as uniaxial compression and using the constraints in
(A5), an expression for s can be obtained. This is given as,

s =
√

3
2

⎡
⎢⎣

−1
3 0 0

0 −1
3 0

0 0 2
3

⎤
⎥⎦. (A7)

Using this we get λ1 = 8π/9. Similarly, we obtain λ3 = 4π/3
√

3. Thus C = 8πs/9 +
4π/3

√
3δ and so m = 4π/9 ≈ 1.4.
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