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ABSTRACT

In this paper, the linear stability characteristics of a two-layered liquid–liquid flow in an inclined channel with slippery walls are investigated.
Previous studies on two-layered inclined channel flows have observed the presence of multiple base state flow profiles, two for countercurrent
flow and up to three base states for co-current flow. The role of wall slip on the multiple base states associated with each holdup solution is
analyzed here. Subsequently, a linear stability analysis, using a combination of a long-wave asymptotic analysis and finite wavenumber
numerical calculation, is carried out with the slip boundary condition. Neutral stability boundaries are presented for each base state, with
comparisons made with the previous results obtained for the no-slip boundary condition. It was found that the wall slip could have both sta-
bilizing and destabilizing effects depending on the flow rates and the value of holdup—the location of an interface.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059217

I. INTRODUCTION

A layered flow occurs as a particular case of stratified flow when
the fluid properties like viscosity and density undergo a jump across
an interface. They find several industrial applications, such as in oil
transportation, polymer reactors, and microfluidic devices. The layered
flows are also common in various geophysical settings from the con-
fluence of river systems Konsoer and Rhoads1 to the long-lived forma-
tion of “staircases” in oceans, homogeneous layers of liquid
undergoing sharp jumps in density (Ponetti et al.2).

A stability analysis of the layered flows is essential in identifying
the operating parameters for transporting immiscible liquids and also
advances the understanding of the physics of mixing and the transition
to turbulence in stratified systems. Multi-layered shear flows (three or
more layers) are prone to inviscid instabilities occurring due to the
interactions of waves riding at the interfaces (Carpenter et al.3). In
contrast, two-layered flows are susceptible to viscous instabilities,
occurring due to the stratification in viscosity (Govindarajan and
Sahu4). Yih,5 in his pioneering study, did a long-wave analysis of two-
layered immiscible Couette flow and showed that instability could
develop in fluids even at a low Reynolds number. He identified this
instability as an interfacial mode, arising due to the difference in the
two fluids’ viscosity. Later, Hooper and Boyd6 attempted a short-wave
analysis of unbounded two-layered co-current Couette flow with the
same fluid density and concluded that the flow is always unstable with

zero surface tension. They remarked that the surface tension always
brings stability to the flow, unlike the density stratification, which
could either stabilize or destabilize a flow. Yiantsios and Higgins7 car-
ried out an extensive asymptotic and numerical stability analysis of a
two-layered horizontal channel flow, considering the role of parame-
ters like thickness ratio, density difference, surface tension, and effect
of gravity as well. They calculated the critical Reynolds number for the
onset of both interfacial and shear modes of instability. Recently,
Kaffel and Riaz8 have done a detailed study of the eigenvalue spectrum
of two-layered horizontal channel flow and evaluated the temporal
growth rate for different parameters for both shears and interfacial
modes. They observed coalescence of both modes in both stable and
unstable parts.

A gravity-driven liquid layer, with a stress-free interface, flowing
down an incline is unstable to long-wave disturbances (Yih9 and
Kalliadasis10). The deformed interface induces a perturbation shear
stress proportional to the base-state velocity profile’s curvature to
enforce the zero stress boundary condition. The competition of the
inertial stresses and the lubrication pressure leads to instability
(Smith11). Smith11 also identified another mechanism of instability
when the free surface has a fixed tangential velocity boundary
condition.

A horizontal two-layered channel flow has left–right symmetry,
and thus, reversing the direction of the pressure gradient does not alter
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the instabilities. Tilley et al.12 pointed out the lack of left–right symme-
try in the inclined problem, where the pressure gradient can act either
with or opposite to gravity. Vempati et al.13 carried out a linear stabil-
ity analysis in two-layered inclined channel flows. They considered the
effect of density and viscosity stratification, surface tension, and incli-
nation angle on instability. Trifonov14 considered the countercurrent
gas–liquid inclined channel flows and demonstrated that unstable sur-
face mode is significantly affected by the gas velocity, inclination angle,
and the width of the channel.

In most of the studies mentioned above in the inclined two-
layered flows, multiple holdup solutions were not considered while
carrying out the stability analysis. Multiple holdups are the characteris-
tics of gravity-driven inclined channel flows where multiple base states
can exist for a fixed inclination and flow rate ratio. Landman,15 and
Barnea and Taitel16 found that multiple solutions exist for air–water
two-layered inclined flows. They showed that the lower holdup solu-
tion, where the liquid’s height is shallower than the gas’s height, is
most stable. Experiments have been performed on liquid–liquid two-
layered flows by Ullmann et al.17 They have shown that two holdup
solutions can exist in countercurrent flows, and three holdup solutions
can exist in co-current flows for a certain range of flow rate ratios.
Further, they showed that TP (two plate) model gives a better predic-
tion of holdup solutions and is in good agreement with their experi-
ments. Also, TF (two-fluid) model needs adjustment of its closure laws
and provides a poor prediction of the holdup. Kushnir et al.,18 carried
out a linear stability analysis in a long-wave limit of a wavenumber k
in a two-layered horizontal and inclined channel flow, considering all
multiple holdup solutions for countercurrent and co-current flow.
Barmak et al.,19,20 extended their study to finite wavelength stability.
They found that long-wave perturbations are the most critical for
liquid–liquid countercurrent flow; however, for air–water countercur-
rent flows, finite and short-wave are the most critical perturbation in
certain flow rates. An interesting feature of the backflow scenarios in
the two-layered co-current flow has been studied by Thibault et al.21

Picchi et al.22 carried out a linear stability analysis in a two-layered
shear thinning fluid in both the horizontal and inclined channels.
They considered multiple base states in a two-layered inclined
channel.

In recent years, many investigations into the slip boundary condi-
tion at the channel walls are being reported due to vital applications in
the studies of the polymer melt, microfluidics, rarefied flows, and bio-
logical flows.23–25 To characterize the effect of slip, the Navier slip
boundary condition26 is often used as a standard model. The modified
boundary condition relates the wall tangential velocity to the shear
rate at the surface, with the constant proportionality being referred to
as the slip length. Miksis and Davis27 studied the effect of surface coat-
ings and roughness of walls on flows and derived a useful slip bound-
ary condition. They stated that the slip coefficient’s magnitude
following the Navier slip boundary condition equals the average
amplitude of roughness at walls for the minimal roughness amplitude.
The experiments have been done on the liquid film flowing over a
hydrophobic wall in nano- and microchannels (Watanabe et al.,28–30

Pit et al.,31 Tretheway and Meinhart,24 Ruckenstein and Rajora32).
They found that modeling a fluid flow with a Navier slip condition
would be more accurate in hydrophobic channel walls. Tretheway and
Meinhart24 measured velocity profile of water on 30 � 300 lmmicro-
channel with a wall coating of 2.3nm thick monolayer of octadecyl

trichlorosilane (OTS). They observed a slip length of 1 lm with 10%
of a velocity slip. Further, the slip length obtained from the experi-
ments are varied as 0:05–0:4 (Tretheway,24 Watanabe et al.,30

Churaev et al.,33 and Ichikawa et al.34). Other experiments reported
even larger values of slip length up to thousand micrometers (Migler
et al.,35 Mhetar and Archer,36 and Lee et al.37). Voronov et al.38 studied
the slip length associated with different rough surfaces and studied the
dependence of contact angle and slip length. Recently, Liu and
Zhang39 carried out the numerical simulations on flat plate boundary
layers with the superhydrophobic wall. They concluded that wall slip
brings delay in the natural transition. Recently, a detailed comprehen-
sive review study on slippery surfaces has been done by Samaha and
Gad-el Hak40.

The Navier slip boundary condition is often used to model flow
past porous surfaces, with the slip length being proportional to the
permeability of the porous medium.41 Pascal42 carried out a long-wave
stability analysis of a gravity-driven flow down a porous inclined sur-
face and showed that increasing the permeability (alternatively slip
length) can destabilize the flow flowing above the porous substrate.
Ghosh and Usha,43 studied the stability of two-layered miscible liquid,
flowing down in an inclined channel with a wall slip. They found sta-
bility at a higher Reynolds number in an overlap region when the
interface is not near the slippery wall. Several studies have been done
in one- and two-layered (miscible) channel flows with both horizontal
and an inclined channel configurations.4,44–51 In most of these studies,
slip plays a dual role in stabilizing and destabilizing a flow. Lauga and
Cossu23 carried out the non-modal analysis and have shown a weak
dependence of slip boundary conditions on transient energy growth.
They further reported a higher value of critical Reynolds number in a
shear mode. Min and Kim52 studied the effects of wall slip in a shear
flow on stability and transition. They showed that stream-wise wall
slip delays the transition to turbulence, and spanwise wall slip is
responsible for early transition in turbulence. Further, Samanta53

has also carried out an investigation into the effect of slip velocity
on the non-modal transient growth. Recently, an absolute or convec-
tive stability analysis in diffusive two-layer flow with wall slips was
carried out.54–56 The stability of such a system depends on the
location of the diffusive layer from the slippery walls. Also, the dynam-
ical studies have been performed to explain the instability in the
Couette–Poiseuille flow.57 The authors have explained the stabilizing
effects on flow by moving the top plate via non-modal analysis.
Further lately, Chakraborty et al.58 have studied the hydrodynamic
instability of non-Newtonian free surface flow down the inclined plane
with the slippery wall and demonstrated that a slip could promote the
onset of the instability in the flow. They have demonstrated that the
long-wave perturbations are the most unstable ones on increasing
the slip parameter. This paper investigates the influence of wall slip in
two layers of immiscible fluids flowing in an inclined channel. We
investigate the role of slip on the multiple holdup solutions and their
subsequent linear stability. We have also carried out a complementary
investigation on the stability of two-layer flow in slippery horizontal
channels in Paper I.59 The results of this work can be found in the
paper of Ramakrishnan et al.59

The paper is organized as follows: First, we discuss the problem
formulation with the governing conservation equations and boundary,
and the geometry of a problem, and the governing equation is given in
Sec. II. Base state calculations with multiple holdup solutions and wall
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slip boundary conditions presented in Sec. III. A linear stability analy-
sis is done using an asymptotic expansion in a long-wave limit in Sec.
IV followed by a finite wavenumber numerical calculation in Sec. V.

II. FORMULATION OF PROBLEM

In this paper, an immiscible and incompressible two-layered fluid
in an inclined channel is considered, as shown in Fig. 1 (0 � h � p

2).
The bottom and upper layers of fluid are labeled as j¼ 1, 2, respec-
tively. The flow is assumed to be two-dimensional, driven by the com-
bined effects of gravity and pressure gradient in the x-direction. Using
the depth of top layer h2 as the length scale and the interfacial velocity
UI as the velocity scale, the following non-dimensional governing
equations are derived as

r:uj ¼ 0; (1)

@uj
@t
þ uj:ruj ¼ �

q1

rqj
rpj þ

1
Re2

tj
t2
r2uj þ

ĝ
Fr2

; (2)

where (uj, vj) is the fluid velocity of the layer jð¼ 1; 2Þ and
ĝ ¼ ðsin h;�cos hÞ. The lower and upper flows are bounded by
�n < y < 0 and 0 < y < 1 region, respectively, n ¼ h1=h2 being
the depth ratio. The relevant non-dimensional parameters are the
Reynolds number and Froude number, defined for layer 2 as
Re2 ¼ q2UIh2

l2
and Fr2 ¼ U2

I
gh2
.

Here, lj, tj, and qj are the dynamic viscosity, kinematic viscosity,
and density of layer j, respectively (Table I).

The Navier26 slip boundary condition has been used to model
the slippery walls. The Navier slip boundary condition assumes that
flow velocity u at solid walls is directly proportional to the shear stress
at the surface

u ¼ Uw þ kðd� nnÞ:ðE:nÞ;
where d is the rank 2 identity tensor, E is the strain rate tensor, n is the
unit normal vector from the surface to fluid, k is the slip length, and
Uw is the velocity at walls. If b is the non-dimensional slip length
defined as b ¼ k

h2
, then the slip boundary conditions become

(Uw ¼ 0), at the bottom wall y ¼ �n

u1 ¼ b
@u1
@y

; (3)

and at the top wall y¼ 1

u2 ¼ �b
@u2
@y

: (4)

Many experiments have been done in the past to determine the rel-
evant slip lengths to be considered. Lumma et al.60 had conducted an

experiment based on the double-focused fluorescence cross correlation
and determined the slip length obtained. They revealed a slip length of
1lm in the 100lm channel height, corresponding to a non-
dimensional slip of b ¼ 0:1. Boehnke et al.61 had conducted the sedi-
mentation experiments, and by using a scanning force microscope
(SFM) for a force measurement revealed a slip length of Oð0:1Þ. Lauga
et al.62 presented a detailed review of slip boundary conditions and mea-
sured a slip length in the slippery walls. This allows us to consider higher
non-dimensional slip length up to Oð0:1Þ. The experiments that have
been done on the boundary layer flow over a porous flat plate reveal that
wall slip depends on the characteristic b (non-dimensionalized by dis-
placement thickness) that can cross the value of 0.1 and a porosity.63,64

Lu et al.65 showed that an effective smooth surface could replace fibrous
porous by using tensorial Navier-slip boundary condition. Through
numerical simulation, slip lengths (b > 0:1) are characterized as a func-
tion of porosity, channel height, and volume fraction. In this paper, we
explore different stability properties of fluid with b ¼ 0:05 and 0.1.

At the liquid–liquid interface y ¼ gðx; tÞ, flow velocities of both
layers and tangential stresses are continuous across the interface.
Surface tension provides a jump to the normal stresses at the interface.
The boundary conditions at the interface are

u1 ¼ u2; (5a)

vj ¼
@g
@t
þ uj

@g
@x
; (5b)

t � T � n½ � ¼ ml
l1

@u
@y
þ @v
@x

� �
1� @g

@x

� �2
 !

� 4
@u
@x
@g
@x

 !( )
¼ 0;

(5c)

n � T � n½ � ¼ pþml
l1

Re�12

1� @g=@xð Þ2

 !
@u
@x

1� @g
@x

� �2
 !2

4

þ @u
@y
þ @v
@x

� �
@g
@x

3
5 ¼ We�12 @2g=@x2

� �
1þ @g=@xð Þ2
� �3=2 ; (5d)

where [�] denotes jump of quantity across the interface. T denotes the
stress tensor, n is the normal unit vector from bottom fluid to top
fluid, and t is the unit tangent vector to the interface. The non-

dimensional Weber number is defined asWe2 ¼ q2h2U
2
I

c .
FIG. 1. Schematic diagram for a two-layered inclined channel flow (perturbation
amplitudes are not to scale).

TABLE I. Parameters used in this paper.

Parameters Definitions

l1, l2 Dynamic viscosity of fluid 1 and 2, respectively
q1, q2 Density of fluid 1 and 2, respectively
q1, q2 Flow rates of fluid 1 and 2, respectively
m ¼ l1=l2 Viscosity ratio
n ¼ h1=h2 Depth ratio
r ¼ q1=q2 Density ratio
b Non-dimensional slip coefficient
qj Flow rate of jth layer
ui Interfacial velocity
c Interfacial surface tension co-efficient
k Dimensional slip length
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III. THE BASE FLOW
A. Multiple holdup solution

The base state is considered as a fully developed, unidirectional
parallel flow uj ¼ ujðyÞx̂ in each layer. On solving the governing
momentum equations and applying the boundary conditions, the base
state velocity profiles in both layers are obtained as

uj ¼ 1þ ajy þ bjy
2: (6)

The coefficients from above velocity profile are as follows:

a2 ¼ ma1; (7a)

a1 ¼
ðmþ 2bðm� nÞ � n2 þ ð1þ 2bÞðnþ 2bÞ�Y Þ
ðmððnþ bÞ2 þ bð1þ bÞð2nþ 1Þ þ nðnbþ 1ÞÞÞ

; (7b)

b1 ¼ �
nððnþ bÞ þmð1þ bÞÞ � ðnþ bÞð1þ 2bÞ�Y

nmððnþ bÞ2 þ bð1þ bÞð2nþ 1Þ þ nðnbþ 1ÞÞ
; (7c)

b2 ¼ �
mð1þ bÞ þ nþ bþ ð1þ bÞðnþ 2bÞ�Y
ðnþ bÞ2 þ bð1þ bÞð2nþ 1Þ þ nðnbþ 1Þ

: (7d)

The non-dimensional inclination parameter is given as

�Y ¼ nð1� rÞRe2 sin h
2Fr2

: (7e)

Taitel and Dukler66 have shown that the heavy phase layer thickness is
a function of two non-dimensional parameters—the Lockhart
Martinelli parameter and the inclination parameter Y. The Lockhart
Martinelli parameter is defined as

X2 ¼ ð�dP=dxÞ1Sð�dP=dxÞ2S
¼ m:q; (8)

where q ¼ q1=q2 is the flow rate ratio. The positive flow rate ratio q is
obtained in the co-current flow. Hence, the co-current flow regime sat-
isfies X2 > 0. Similarly, in countercurrent flows, the flow rates are
opposite and satisfy X2 < 0. The inclination parameter is defined as

Y ¼ ðq1 � q2Þg sin h
ð�dP=dxÞ2s

; (9)

where the superficial pressure drop can be written as
ð�dP=dxÞjs ¼ 12ljqj=H

3. H ¼ h1 þ h2 is the total height of the chan-
nel. For density ratio r> 1, Y can determine the top layer’s flow direc-
tion. When Y< 0, then the top layer is flowing in the upward direction
(against gravity); similarly when Y> 0, then the top layer is flowing in a
downward direction. Holdup h is an important parameter in the multi-
phase flow, used for determining a base state. It can be defined as a por-
tion of a certain fluid occupied in a channel, h ¼ h1=H ¼ n=ðnþ 1Þ.
The superficial velocity is defined asUjs ¼ qj=H.

Mass conservation equations are given asð0
�h

û1

U1s
d�y ¼ 1; (10a)

ð1�h
0

û2

U2s
d�y ¼ 1; (10b)

where �y ¼ y=H. Then inclination parameter can be obtained as a
function of holdup h,m, X2, and slip coefficient b,

Y ¼ h3ð�4hbþhþ 4bÞ
4ðh�1Þ3h2ððh�1Þð4bþ1Þmn1�hð3bþ1Þn2Þ

þðh� 1Þhm 12ðh�1Þb2þ2ðhð4h�3Þ�3Þb�hðhþ3Þ
� �

4ðh�1Þ3h2ððh�1Þð4bþ1Þmn1�hð3bþ 1Þn2Þ

�ðh� 1Þ2X2 h2n3�2hðbð6bþ 4m� 5Þþm�2Þþ4bn4þm
� �

4ðh�1Þ3h2ððh� 1Þð4bþ 1Þmn1�hð3bþ1Þn2Þ
;

(11)

where n1 ¼ ð3ðh� 1Þb� hÞ; n2 ¼ ð4ðh� 1Þb� hÞ; n3 ¼ ð4bðm
�2Þ þm� 1Þ, and n4 ¼ ð3bþmþ 1Þ.

The non-dimensional pressure drop is

�P ¼ hð4ðh� 1Þðbþ 1Þmn1þhð�4hbþhþ 4bÞÞ
4ðh� 1Þ3hððh� 1Þð4bþ 1Þmn1� hð3bþ 1Þð4ðh� 1Þb�hÞÞ

þ 3ðh� 1Þ2ð2bþ 1ÞX2ð2ðh� 1Þb�hÞ
4ðh� 1Þ3hððh� 1Þð4bþ 1Þmn1� hð3bþ 1Þð4ðh� 1Þb�hÞÞ

:

(12)

At the interface y ¼ gðx; tÞ, the interfacial velocities, which are
used to scale the eigenvalues and finding superficial Reynolds number
Rejs as a function of Rej, are given as

UI

U1s
¼�6ðh� 1Þðhðbþ 1ÞYð2ðh� 1Þb� hÞ � �Pðhþ bÞn5Þ

qððh� 1Þðbþ 1Þmþ hb� h� bÞ ; (13a)

UI

U2s
¼�6ðh� 1Þðhðbþ 1ÞYð2ðh� 1Þb� hÞ� �PðhþbÞn5Þ

ðh� 1Þðbþ 1Þmþ hb�h�b
: (13b)

In the above equations, n5 ¼ ð2ðh� 1Þb� 1Þ. Note that �P and
ui are expressed in terms of four non-dimensional parameters. From
the above expressions, Y and �Y can be related as

�Y ¼ �6Y U2s

UI

� �
n

ðnþ 1Þ2
� �

: (14)

After solving, we get �Y in terms of h,m, b, and Y as

�Y ¼ �ðh� 1Þ2hY h2ð4bðm� 2Þ þm� 1Þ � 2hðbn6 þm� 2Þ þ 4bð3bþmþ 1Þ þm
� �

�2h2b� 2hb2 þ hðh� 1Þ3ð4bþ 1ÞYð2ðh� 1Þb� hÞ þ 2hbþ hþ 2b2 þ b
; (15)

where n6 ¼ ð6bþ 4m� 5Þ.
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Multiple holdup solutions are the characteristic property of the
inclined two-layered channel flows. Earlier, it was reported that two
holdup solutions are associated with countercurrent inclined flow, and
three holdup solutions can be obtained in co-current flow regime.17

Multiple base states can be obtained at different ranges of flow rate
ratios by fixing viscosity ratiom and inclination parameter Y from Eq.
(11) (see Fig. 2). When Y¼ 0, the flow is driven by the pressure gradi-
ent only. Non-zero Y corresponds to a situation where gravity effects,
along with a pressure gradient, are responsible for flow in a channel.
The triple solutions are obtained at a higher X2 in downward co-current
flows. Similarly, in upward co-current flow, the triple solutions region is
obtained at a lower range of X2, which is shown in Fig. 2(b).

Equation (11) plays a significant role in determining multiple
base states at a fixed flow rate ratio in both countercurrent and co-
current flows. No solution is obtained in countercurrent flow with slip,
where the top layer flows in a downward direction (X2 < 0, Y> 0).
Since holdup h depends on q, moving a location of an interface from
the bottom to the top wall, the direction of flow can be changed, as
shown in Fig. 2. The countercurrent region converts to a co-current
region at higher holdups. Similarly, the upward co-current flow con-
verts into a countercurrent regime for a small range of flow rate ratios
q. The variations of flow rate ratio q with holdups at different inclina-
tion parameters and non-dimensional wall slip coefficient b ¼ 0:1 are
shown in red curves (see Fig. 2). The holdup in an entire curve is
divided into lower holdups (where all holdup values in a solution lie
below the local maxima) and higher holdups solutions in a counter-
current flow regime. The flooding is a higher limit in terms of flow
rates until the base state of the two-layer configuration can be
obtained. The flooding point is located where the lower and higher sol-
utions merge and occupy each base state curve’s local maxima.
Beyond the flooding point, no holdup solutions for any Y will be
obtained in countercurrent flows.

With wall slip b ¼ 0:1, base states are obtained at a higher range
of flow rate ratio in the lower holdup region of the curve. However,
the location of a liquid interface is almost the same. It can be inter-
preted in two ways: either the bottom layer flow rate increases or the
top layer flow rate decreases. At the higher holdup region of the curve,
the base state is obtained at almost the same flow rate ratio as the no-
slip condition but at a higher holdup value (the interface obtained is
closer to the top wall). However, the effect of the wall slip on the base
state at higher holdup is minimal. Moreover, when the flow is driven
by pressure gradient (Y � 0), the wall slip only influences the base
state at higher holdups. At lower holdups, the difference between the
flow rate ratio obtained with and without slip seems to increase at the
higher values of Y in both countercurrent and co-current flows.

Interestingly, the transition from single- to triple-solution region
is expected to be obtained at the relatively low values of Y with wall
slip boundary conditions. The velocity profiles have been shown in
countercurrent region and upward co-current flow (see Fig. 2). At
Y 6¼ 0, wall slips help gravity span multiple base states to a higher
range of q in both countercurrent and co-current flows.

In Fig. 3, the surface plot of the holdup as a function of X2 and Y
with m¼ 1.52 and b ¼ 0:1 is shown. Gray patches correspond to the

FIG. 2. Multiple holdup solutions as a function of X2 when m¼ 1.52. In (a), single,
double, and triple holdup solutions with different Y are shown; in (b), triple holdup
solution in upward co-current flow is shown when Y¼�8. The solid black line cor-
responds to the no-slip condition, and the red dashed line corresponds to the wall
slip condition when b ¼ 0:1.

FIG. 3. 3D holdup surface plot as a function of X2 and Y with m¼ 1.52 and
b ¼ 0:1.
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FIG. 4. Velocity profiles with different holdup h [for marked points see Fig. 6(b)], (a)
h¼ 0.27, marked with point A, (b) h¼ 0.19, marked with point B and (c) h¼ 0.04,
marked with point C. Also, Y ¼ �4:5 and b ¼ 0:1.

FIG. 5. Velocity profiles with different holdup h [for marked points see Fig. 6(b)], (a)
h¼ 0.25, marked with point D, (b) h¼ 0.52, marked with point E and (c) h¼ 0.91,
marked with point F. Also, Y¼ 500 and b ¼ 0:1.
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no solution region. Two such patches are shown at lower holdup for
all X2 except close to zero. Another gray patch is shown at higher hold-
ups where the holdup solution is getting closer to unity (when Y is
constant in Fig. 2). Moreover, the interface obtained closer to the top
wall in co-current flow comparatively. The countercurrent (X2 < 0)
and co-current (X2 > 0) regions are distinguishable, where the surfa-
ces are curved upward (or downward) at X2 ¼ 0. The triple solution is
visible at a higher h, and positive X2 pointed outward.

This paper’s main objective is to study the linear stability in a
two-layered inclined channel flow considering multiple holdup solu-
tions with wall slip. However, a local backflow is linked with the multi-
ple holdup solutions depending on the flow direction in the co-current
regime.

A local backflow is a phenomenon when a few layers of the flow
near the wall reverse their direction. However, the net flow rate
obtained in the flow still has the same sign. Recently, a detailed analy-
sis has been done by Thibault et al.21 using catastrophe theory and the
principle of minimization of dissipation approach. In downward
co-current flows (Y> 0), higher and intermediate holdups are charac-
terized by the local backflow situation, and lower holdups are charac-
terized by the local backflow in the upward co-current flow (Y< 0).
The velocity profiles for both upward and downward co-current flows
with backflow are shown in Figs. 4 and 5. Holdup curves for both
countercurrent and co-current flows at logarithmic scale are shown in
Fig. 6. The selection of holdups is considered for the velocity-profiles
as mentioned above, taken from a Fig. 6(b).

IV. LINEAR STABILITY ANALYSIS

In this section, we study the evolution of two-dimensional infin-
itesimal perturbations in a two-layered inclined channel. Hesla
et al.67 demonstrated that two-dimensional disturbances are the
most unstable ones, and Squire’s theorem holds at least for horizon-
tal stratified flows. Barmak et al.68 demonstrated that Squire’s trans-
formation for a two-layered inclined channel requires additional
constraints to inclination angle and flow rates of both the layers.
However, they have demonstrated that the 2D perturbations are still

the most critical ones than the 3D perturbations in the inclined chan-
nel flows. The parameters like velocities and pressure field are split
into two parts, the base state and the perturbed quantity, which are
given by uj ¼ Uj þ u0j; vj ¼ v0j ; pj ¼ Pj þ p0j, and g ¼ g0.

These perturbed velocities defined in terms of their correspond-
ing stream function as

u0 ¼ @w
@y

; v0 ¼ � @w
@x

:

These perturbed quantities are substituted in governing equations
and boundary conditions to get the perturbed momentum equations
for both layers and boundary conditions. We express all perturbation
quantities in terms of normal modes

w ¼ /ðyÞeikðx�ctÞ;
p0 ¼ P̂ðyÞeikðx�ctÞ;
g ¼ Hgeikðx�ctÞ;

where /; P̂ , and Hg are the perturbation amplitudes in stream-
function, pressure, and at interface, respectively.

In this paper, we focused on the temporal growth of perturbation
in the long-wave regime. The non-dimensional wavenumber is repre-
sented by k (k ¼ 2ph2

lw
, where lw is a wavelength) whereas c is the non-

dimensional complex wave speed (c ¼ cr þ ici). cr is the phase speed
of the perturbation and kci is a growth rate of perturbation. The system
is neutrally stable when ci¼ 0.

We have used the interfacial velocity UI for velocity and time
scales. Since UI can attain negative values, ci > 0 can denote an insta-
bility when UI> 0 and stability when UI< 0.

Substituting the above-mentioned normal mode form in per-
turbed momentum equations, we get Orr–Sommerfeld equations for
layer 1

/iv
1 � 2k2/001 þ k4/1 ¼ ikRe2rm

�1 ðU1 � cÞð/001 � k2/1Þ � /1U
00
1

� �
;

(16)

and for layer 2

FIG. 6. Plot of h vs X2 for m¼ 1.52 in (a) countercurrent regime and in (b) co-current regime. Dashed lines represent the slip boundary condition b ¼ 0:1, whereas the solid lines are
indicating the no slip boundary condition with the same Y.
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/iv
2 � 2k2/002 þ k4/2 ¼ ikRe2 ðU2 � cÞð/002 � k2/2Þ � /2U

00
2

� �
:

(17)

The boundary condition in terms of the normal modes are given by
(a) Slip boundary condition at y ¼ �n is

/01 ¼ b/001 ; (18a)

and at y¼ 1 is

/02 ¼ �b/002 : (18b)

(b) No-penetration boundary condition at y ¼ �n is

/1 ¼ 0; (19a)

and at y¼ 1 is

/2 ¼ 0: (19b)
(c) Continuity of the stream function at the interface y¼ 0

/1 ¼ /2: (20)

(d) Kinematic boundary condition at the interface y¼ 0

/01 þ
/1

ðc� 1ÞU
0
1 ¼ /02 þ

/2

ðc� 1ÞU
0
2: (21)

(e) Tangential stress boundary condition at the interface y¼ 0

/002 þ k2/2 þ U 002
/2

ðc� 1Þ ¼ m /001 þ k2/1 þ U 001
/1

ðc� 1Þ

� �
: (22)

(f) Normal stress boundary condition at the interface y¼ 0

mð/0001 � 3k2/01Þ � ð/0002 � 3k2/02Þ
þ ikRe2 rððc� 1Þ/01þU 01/1Þ � ððc� 1Þ/02 þ U 02/2Þ

� �
¼ ikRe2 ðr � 1ÞFr�12 cos hþk2We�12

� � /2

c� 1
: (23)

Here, the prime (0) in a governing equation and boundary condi-
tion denotes differentiation with respect to y.

A. Long-wave asymptotic solution (k � 1)

Viscosity and density stratification can cause instability in the
parallel flows.69 Yih5 studied the interfacial instability by using the
long-wave analysis. In the long-wave asymptotics, the wavelength is
assumed to be large compared to a channel height ðk� 1Þ.
Eigenfunctions and eigenvalues are usually represented as a regular
perturbation series given by

/j ¼ /j;0 þ k/j;1 þ k2/j;2 þ k3/j;3 þ � � � ; (24a)

c ¼ c0 þ kc1 þ k2c2 þ k3c3 þ � � � : (24b)

The expansions from Eqs. (24a) and (24b) are substituted in the
Orr–Sommerfeld equations and the boundary conditions. We began
by substituting the zeroth-order expressions (/j;0 and c0) in the above
governing equations and boundary conditions. All terms which are
coupled with k and its higher-order are neglected. The resulting equa-
tions thus obtained are termed as the zeroth-order Orr–Sommerfeld
equations and boundary conditions. This procedure will be followed
by substituting nth order terms (/j;n and cn) in the governing equa-
tions to obtain the subsequent nth order Orr–Sommerfeld equations
with the nth order boundary conditions. By solving these equations,
eigenvalues expressions are sequentially determined at each order. We
followed Higgins7 and Kushnir et al.18 and carried out a long-wave
analysis in a two-layered flow inclined channel.

For zeroth-order approximation, ignoring all terms coupled with
k in Orr–Sommerfeld equations and boundary conditions, we get

/iv
j;0 ¼ 0;

where j ¼ 1; 2.
Zeroth-order boundary conditions are

/01;0 ¼ b/001;0 at y ¼ �n;
/02;0 ¼ �b/002;0 at y ¼ 1;

/1;0 ¼ 0 at y ¼ �n;
/2;0 ¼ 0 at y ¼ 1:

Zeroth-order interfacial boundary conditions at y¼ 0 are given as

/01;0 þ
/1;0

ðc0 � 1ÞU
0
1 ¼ /02;0 þ

/2;0

ðc0 � 1ÞU
0
2; (25)

/002;0 þ U 002
/2;0

ðc0 � 1Þ ¼ m /001;0 þ U 001
/1;0

ðc0 � 1Þ

 !
; (26)

m/0001;0 � /0002;0 ¼ 0: (27)

Solutions of the zeroth-order governing equations, for fluid 1 is

/1;0 ¼ c0 � 1þ A1
1;0y þ A2

1;0y
2 þ A3

1;0y
3; (28)

and for fluid 2 is

/2;0 ¼ c0 � 1þ A1
2;0y þ A2

2;0y
2 þ A3

2;0y
3: (29)

In the above solutions, the superscripts in coefficients An
j;0 repre-

sent a numbering notation and should not be confused with an expo-
nent. With assistance from boundary conditions, c0 is obtained to be

c0 ¼
8b4ðnþ 1Þ 2mð3n� 1Þ�Y þ 3mðnþ 1Þ2 þ 2ðn� 3Þn�Y

� �
ð2bþ nþ 1Þðbnþ bþ nÞ 12b2mðnþ 1Þ2 þ 4bn7 þm2 þ 2mðnð2nþ 3Þ þ 2Þnþ n4

� �

þ
4b3 ðnþ 1Þ m2ð6nþ 2Þ þmðnþ 1Þðnð5nþ 16Þ þ 5Þ þ 2n2ðnþ 3Þ

� �
þ �Y mðnð10nðnþ 2Þ � 1Þ � 3Þ þ n n 3n2 þ n� 20ð Þ � 10ð Þ

� �� 	
ð2bþ nþ 1Þðbnþ bþ nÞ 12b2mðnþ 1Þ2 þ 4bn7 þm2 þ 2mðnð2nþ 3Þ þ 2Þnþ n4

� �
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þ 2b2 ðnþ 1Þ m2ð4nðnþ 4Þ þ 3Þ þ 2mðnðnðnðnþ 9Þ þ 25Þ þ 9Þ þ 1Þ þ n2n11
� �

þ �Y ðmn10 þ nðnðnðnðnþ 7Þ � 12Þ � 24Þ � 4ÞÞ
� �

ð2bþ nþ 1Þðbnþ bþ nÞ 12b2mðnþ 1Þ2 þ 4bn7 þm2 þ 2mðnð2nþ 3Þ þ 2Þnþ n4
� �

þ nðnþ 1Þ m2ð2nþ 1Þ þmnð2nðnþ �Y þ 3Þ � �Y þ 2Þ þ n2ðnðnþ �Y þ 2Þ � 2�Y Þ
� �

ð2bþ nþ 1Þðbnþ bþ nÞ 12b2mðnþ 1Þ2 þ 4bn7 þm2 þ 2mðnð2nþ 3Þ þ 2Þnþ n4
� �

þb m2ðnðnð8nþ 21Þ þ 12Þ þ 1Þ þmnðnðnð2nn8 þ 15�Y þ 64Þ � 2�Y þ 34Þ � 3�Y þ 4Þ þ n2ðnðnðnn9 þ 2�Y þ 21Þ � 15�Y þ 8Þ � 8�Y Þ
� �

ð2bþ nþ 1Þðbnþ bþ nÞ 12b2mðnþ 1Þ2 þ 4bn7 þm2 þ 2mðnð2nþ 3Þ þ 2Þnþ n4
� � :

(30)

Here, n7 ¼ m2 þmðnþ 1Þðnðnþ 5Þ þ 1Þ þ n3; n8 ¼ 2nþ 4�Y
þ17; n9 ¼ nþ 3�Y þ 12; n10 ¼ ðnð4nðnðnþ 6Þ þ 3Þ � 7Þ � 1Þ, and
n11 ¼ nð3nþ 16Þ þ 4.

c0 obtained is a real eigenvalue and is a function of n, m, and b.
In the above equation, adding slip parameter significantly alters the
expression of c0. However, the real part of the wave speed cannot
determine the instability. Note that b¼ 0 will result in the same
expression as obtained by Kushnir et al.18

The first-order equations are derived by ignoring all Oðk2Þ
terms and collecting the O(k) terms. These terms are then
substituted in the governing equations and boundary conditions
and solved together to obtain the first-order eigenvalue. The first-
order stability equations are

/iv
j;1 ¼ iRe2

�2
�j
ðUj � c0Þ/00j;0 � /j;0U

00
j

h i
: (31)

Here, the boundary conditions at the wall are the same as men-
tioned for zeroth-order equations. The interfacial boundary conditions
(y¼ 0) evaluated until the first order of k are

c1ð/01;0 � /02;0Þ þ ðc0 � 1Þð/01;1 � /02;1Þ þ /1;1U
0
1 � /2;1U

0
2 ¼ 0;

(32a)

c1ð/002;0 �m/001;0Þ þ ðc0 � 1Þð/002;1 �m/001;1Þ ¼ 0; (32b)

m/0001;1 � /0002;1 þ iRe2ðrðc0 � 1Þ/02;0 þ U 02/2;0Þ

�ððc0 � 1Þ/01;0 þ U 01/1;0Þ

�iRe2
ðr � 1Þ cos h

Fr2

� �
ð/2;0=ðc0 � 1ÞÞ ¼ 0: (32c)

The solutions of the first-order Orr–Sommerfeld equations are
obtained as

/j;1 ¼ iRe2ðA1
j;1 þ A2

j;1y
2 þ A3

j;1y
3 þ fjðyÞÞ; (33)

where fj is a particular integral. c1 is an imaginary quantity and can be
represented as a function of several parameters, c1 ¼ f ðm; n; �Y ;
b; h;Re2; Fr2;We2; k; rÞ. See attached supplementary material with
this paper to get an expression for eigenvalues, and particular integral
and other coefficients. The expression for c1 is given as

c1 ¼
iðA2

2;1Re2ð1� c0Þ þ A2
1;1mRe2ðc0 � 1ÞÞ

A2
2;0 � A2

1;0m
: (34)

The first-order eigenvalue c1 is used to find the neutral stability
plots shown in Sec. V.

B. Numerical results

For arbitrary wavenumbers, the eigenvalue problem is solved
numerically by using the Chebyshev collocation method. It discretizes
Orr–Sommerfeld equations and gives the entire spectrum of eigenvalues
and eigenfunctions for a given wavenumber. Previous studies on the sta-
bility of multiphase flows have focused on various applications like mis-
cible fluids, non-Newtonian fluids, and flow in porous medium.43,48,49

The Orr–Sommerfeld equations are expanded in terms of
Chebyshev polynomials. The Chebyshev polynomials are defined in a
domain [�1,1] unlike the natural domain of flow [�n, 1]. To convert
into Chebyshev domain, we define, at�n < y < 0

z ¼ 2y þ n
n

; (35)

and at 0 < y < 1

z ¼ 2y � 1: (36)

The eigenfunctions are expressed as expansions of Chebyshev
basis functions70

/ðiÞ1 ðzÞ ¼
XN1

k¼0
akT

ðiÞ
k ðyÞ; (37)

/ðiÞ2 ðzÞ ¼
XN2

k¼0
bkT

ðiÞ
k ðyÞ; (38)

where i denotes the ith derivative with respect to y. Tk denotes the
Chebyshev polynomials. ak and bk are unknowns and are discrete
Chebyshev expansion coefficients. These expansions are put into gov-
erning equations and boundary conditions to obtain generalized eigen-
values problem in the form of

Ax ¼ cBx:

The distribution of the number of grid points is non-uniform in
spectral methods. The arrangement of grid points in a Chebyshev
domain is defined as

zj ¼ cos ðpj=NÞ: (39)

More grid points are allocated near both the walls and interface.
The variation of variables like velocity and vorticity are high and
require fine grid structures to capture accurate solutions. The eigen-
value problem is solved by using MATLABVR , using a QZ algorithm.

V. RESULTS AND DISCUSSIONS

The instabilities in the shear flow of immiscible fluids can be
divided into two modes. The shear flow instability is often observed at
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high Reynolds numbers for wall-bounded shear flows and could be
responsible for the transition to turbulence. On the other hand, inter-
facial instabilities often develop at low Reynolds numbers. The long-
wave analysis captures the interfacial mode of instabilities. The shear
mode of instabilities is usually associated with a finite wavenumber
analysis.7

The interface in a stratified flow can become unstable in several
ways, viscosity and density stratification being possible causes. Barmak
et al.20 reported neutral stability plots in the long-wave and finite wave
regime. They showed that the perturbations obtained in a long-wave
limit are the most critical in liquid–liquid countercurrent flow stability.
However, with air–water configuration, short-wave instabilities are
more critical in a specific range of flow rates. We compared our analyt-
ical and numerical results with the results obtained by Kushnir et al.18

(asymptotic results) and Tilley et al.12 (numerical results) for an
inclined channel flow with no-slip boundary condition. Eigenvalues
are shown in Tables II and III. ðcR; cIÞ are scaled by the characteristic
velocity l1=q1H.

Neutral stability curves have been shown for the two-layered
inclined channel in the long-wave limit (k� 1), following Kushnir
et al.,18 with a wall slip boundary condition. Liquid properties are con-
sidered the same as mentioned in their work. It is known that the base
state can be obtained when the flow rates lie in the region bounded by
the flooding curve. However, the base states obtained in these regions
can be unstable in both holdup solutions. Therefore, it is more conve-
nient to show the neutral stability plots in terms of superficial veloci-
ties (or flow rates) to obtain the system’s operational range in terms of
flow rates. Wall slip can affect the stability at different ranges of flow
rates. The range of these critical flow rates further depends on holdup
solutions. With the slip boundary condition, we required at least four
parameters to define a base state (Y, b, m and q). The instability in
two-layered inclined channel flows with a multiple holdup solution
can be determined by the seven non-dimensional parameters (Y, b m,
X2, r, h, Rejs, or Frjs). The superficial Reynolds number and Froude
number can be defined as Rejs ¼ qjUjsH=lj and Frjs ¼ U2

js=gH,
respectively. In two-layered inclined flows, the density ratio is respon-
sible for jump in a velocity curvature U 00j resulting in extra component

in the tangential stress boundary condition [see Eq. (22)] unlike in
horizontal flows (U 002 ¼ mU 001 in horizontal flows). Fluid properties
have been kept constant in both countercurrent and co-current flow to
maintain consistency throughout the work. The viscosity ratio,
m¼ 1.52, and density ratio, r¼ 1.0335, are used in this work, which
depicts the oil–water system. Previous studies have shown to obtain a
larger slip length (of the order of hundreds of micrometer) in a mini-
channel flows.35,37 Chai and Song71 demonstrated the effects of a
higher slip length on stability in a horizontal channel. Larger slip
lengths obtained in the experiments allow us to set higher non-
dimensional slip coefficient b to study the onset of linear stability in
channel flows. The symmetric slip boundary conditions have been
used at both walls. The symmetric slip conditions are more relevant at
low viscosity ratios. The asymmetric slip boundary condition can be
the extension of this work and can be used with higher viscosity ratios.

A. Countercurrent flow

The non-uniqueness of the holdup solutions in an inclined two-
layered channel is well identified with the no-slip boundary conditions.
Studies on the linear stability analysis of multiple holdup solutions
with no-slip boundary conditions have been considered in both the
long-wave18 (k� 1) and finite wave regimes.19,20 In this section, we
present the long-wave neutral stability plots for countercurrent flows
past slippery channel walls. The flow properties and configurations are
identical to those adopted in experiments performed by Ullmann
et al.17 to demonstrate the multiple holdup solutions in an inclined
channel. Subsequently, the neutral stability curves are shown for differ-
ent inclination angles and channel heights. Two holdup solutions are
obtained in a countercurrent flow configuration are identified as LPD
mode (light phase dominated) and the HPDmode (heavy phase domi-
nated). In Fig. 7, fluid parameters are set as, q2 ¼ 916:6 kg/m3,
l2 ¼ 2:4� 10�3 Pa s, H ¼ 1:44� 10�2 m, and h ¼ 10	. It is shown
that with no-slip boundary conditions (shown by thin black lines), a
stable region of LPD mode extends to higher values of top layer flow
rates, and a stable region for HPD mode extended to higher bottom
layer flow rates.18,20 With wall slip b ¼ 0:05, a stable LPD mode

TABLE II. Comparison between the present long-wave asymptotic results with the asymptotic results of Kushnir et al.,18 with m¼ 100, r¼ 2, h¼ 1(rad),

We2 ¼
ð1þnÞRe22
25000 ; k ¼ 0:001

ð1þnÞ.

n Re2 Fr2 Kushnir et al.18 Present asymptotic ðcR; cIÞ

0.5 5.0742 0.034 759 (0.296 938 43, 0.000 123 640 63) (0.296 938 124 6, 0.000 123 641)
0.5 11.8 0.018 797 (0.691 813 25, 0.000 056 307 73) (0.691 824 344 7, 0.000 056 305 99)
3 26.69 18.236 (6.118 395, 0.001 739 557 4) (6.118 458 3, 0.001 739 585 5)
3 31.098 2.475 73 (5.215 411, 0.000 966 384) (5.215 408 388, 0.000 966 389)

TABLE III. Comparison between the present numerical results with the those of Tilley et al.,12 with m¼ 100, r¼ 2, h¼ 1 (rad), We2 ¼
ð1þnÞRe22
25000 ; k ¼ 0:001

ð1þnÞ.

n Re2 Fr2 Tilley et al.12 Present numerics ðcR; cIÞ

0.5 5.0742 0.0347 59 (0.296 938 46, 0.000 123 640 57) (0.296 932 03, 0.000 123 441 586 3)
0.5 11.8 0.0187 97 (0.691 813 21, 0.000 056 307 71) (0.691 824 344 7, 0.000 056 002 97)
3 26.69 18.236 (6.118 392, 0.001 739 551 8) (6.118 418 2, 0.001 738 352 47)
3 31.098 2.475 73 (5.215 409, 0.000 966 382) (5.214 76, 0.000 967 34)
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shrinks to a lower flow rate range. In this case, it is to be noted that the
depth of the top layer h2 is about 65 times more compared to the depth
of the heavy layer. Wall slip induced higher momentum to the bottom
and top layers. Therefore, it is expected that the top layer flowing
upward is expected to keep a smooth interface only for a limited range
of flow rates. Interestingly when b ¼ 0:1, a small stable region, which
belongs to a lower holdup solution, obtained at a relatively higher criti-
cal holdup, h¼ 0.535 (shown by a solid red line). The smooth interface
is obtained near the center of the channel, unlike when b ¼ 0:05. The
two lower critical holdup solutions bound the stability boundaries.
These two critical solutions will meet, and thereby, a stable (and unsta-
ble) region is formed for a minimal range of heavy layer flow rates.
The upper curve of a lower critical solution is very close to the flooding
curve. Though this tiny difference is not visible in a figure, flow in
both lower and higher solutions is unstable in the gap between the
flooding and upper curves of the critical lower solution. Note that
flooding curves are the results of base state calculations embedded in
neutral stability diagrams. Beyond the flooding point, flow is expected
to change its configuration (to either slug or annular flow) depending
upon the flow rates. The flooding curve is shown in the dotted lines
with slip boundary conditions.

As similar to the LPDmode, the stable region in the HPDmode is
reduced to the lower values of superficial velocities with slippery walls.
Therefore, the system’s operating range, given in terms of flow rates (or
superficial velocities), is decreased with wall slip. It is to be noted that,
since h2 is very low in HPD mode, dimensional slip length in HPD
mode is very less in magnitude when compared with the LPD mode.
The region where both modes can remain stable reduced to lower
values of flow rates when wall slip boundary condition is considered.

Variation of ci for different normalized wavenumber in lower
solution is shown in Fig. 8, in both stable and unstable region with

b ¼ 0:1. A normalized wavenumber is defined as a function of k from
the expression, KH ¼ kðnþ 1Þ. Note that KH depends on H, contrary
to k which is directly proportional to h2. For plotting neutral stability
diagrams, superficial quantities, such as Ujs, are used. Therefore, nor-
malized wavenumber becomes an obvious choice for plotting disper-
sion curves. Two points are selected from a small stable and outside
the unstable regions from lower solution (when b ¼ 0:1) as shown in
Fig. 8, which corresponds to decay (and growth) of the imaginary
phase speed. Further, a comparison between our numerical calculation
of imaginary wave speed (shown by dashed-dotted lines) with our
long-wave analytical results (shown by dot lines) is shown (see inset in
Figs. 8 and 9). We found a good agreement between our numerical
and analytical results in the long-wave region for both lower and
higher (HPD) solutions. Comparisons between numerical and analyti-
cal results for stable (unstable) point placed in a stable (unstable)
region are shown in Figs. 8 and 9.

As mentioned before, velocity and time are scaled byUI. The neg-
ative UI can be obtained in the HPD mode of countercurrent flow and
in upward co-current flow. In HPDmode, imaginary wave speed ci for
different normalized wavenumbers are shown in Fig. 9 in both stable
and unstable regions. The growth of an imaginary wave speed is much
larger when the slip coefficient is b ¼ 0:1, indicating that instabilities
are enhanced more with higher slip coefficient. At higher wall slip, in
stable region, an imaginary wave speed decays more quickly than a
higher slip coefficient b ¼ 0:1.

The variation of amplitudes of critical stream function and its
derivative with channel height y ¼ �n to 1 and b ¼ 0:05, are shown
in Fig. 10. It is be noted that /0 and / are proportional to the trans-
verse and stream-wise velocity perturbations u0 and v0, respectively.
The values of critical stream functions and its derivative are normal-
ized by maximum value of stream function in the given domain.

FIG. 8. Imaginary part of the wave speed ci vs normalized wavenumber plot in lower crit-
ical solution for b ¼ 0:1 in both stable and unstable regions. Stable points represented
by U1s ¼ 0:053, U2s ¼ �2� 10�4 m/s, and h¼ 0.574 are shown by a solid line (—).
Unstable curves represented by U1s ¼ 4� 10�2, U2s ¼ �1� 10�4 m/s, and
h¼ 0.443 are shown by a dashed line (– – –). Inset figure in the stable (unstable) region
corresponds to the negative (positive) numerical and analytical value of ci.

FIG. 7. Long-wave neutral stability plot for countercurrent flow with different slip
coefficient b. SLPD corresponds to the stable region in LPD regime; similarly, U cor-
responds to the unstable region in both solutions. Other parameters are given as
H¼ 0.0144 m, r¼ 1.0335, h ¼ 10	, and m¼ 1.52. Black, blue, and red curves
indicate b¼ 0, 0.05, and 0.1, respectively. (—) corresponds to LPD curves (lower
solution in the case of b ¼ 0:1 case), (– � – �) corresponds to HPD curves, and
(…….) corresponds to flooding curves.
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Values of superficial velocities for this figure are taken from the neutral
stability curve Fig. 7. The interface is located at y¼ 0 and shown by
the dashed line. The magnitude of critical perturbations of the stream
function is maximum at the thick light phase of the flow. This indi-
cates the shear mode of instabilities originated at the thick phase, simi-
lar to as shown by Barmak et al.20 with no-slip case. The magnitude of
critical perturbation of stream function derivative (or stream-wise per-
turbation velocity) is maximum at the interface. However, a secondary
maximum is observed in the light phase. The given results depict the
instabilities are originated at the interface and in the bulk of the less
viscous fluid due to the long-wave analysis.

With b ¼ 0:1 (shown in Fig. 11), the maximum value of j/j is
obtained in the lower heavy phase unlike in the case with b ¼ 0:05.
This is probably expected because both the phases are of approxi-
mately equal depths. Though a secondary maximum of critical j/j
occurs at the top light phase as well. Also, the maximum magnitude of
transverse velocity perturbation is originated near the interface.
Moreover, the maximum value of critical stream-wise velocity
obtained at the interface indicates the dominating interfacial mode of
stability with b ¼ 0:1.

In HPD mode, amplitude of critical perturbation of j/j and j/0j
are shown in Fig. 12. The observations are similar with the b ¼ 0:05
case in HPD mode, hence not shown here. Secondary maximum near
the wall in the cases mentioned above with LPD and HPD may indi-
cate shear instability near the wall. Shear mode of instability is
expected near the wall in the thick layers. The magnitude of stream-
wise critical perturbations is maximum at the interface in the top light
phase. The overall emerging disturbances can be expected at the

interface for the thin phase and near the wall for the thick phase from
the long-wave analysis. These observations with slip parameter b are
similar to the no-slip case made by Barmak et al.20

The instability mechanism for the long-wave analysis is well
explained by Charru and Hinch72 by the “thin-layer effect.” On mov-
ing from stable to unstable region (on higher bottom phase flow rates),
the depth of the lower phase decrease. The same conclusion can be
made when we fixed a point in the stable LPD region when b¼ 0 and
then introduces a slip at that point (becomes unstable due to introduc-
tion of the slip). As the depth ratio is becoming less, interfacial shear
stress can be induced by a thick top phase on the bottom phase.
Hence, the thin bottom phase is dragged along with the thick layer

FIG. 9. Imaginary part of the wave speed ci vs KH plot in HPD solution. UI is nega-
tive in this case. For stable region, shown by (blue solid line) for b ¼ 0:05 and (red
solid line) for b ¼ 0:1, we picked U1s ¼ 10�3, U2s ¼ �10�4 m/s. Holdup
h¼ 0.957 when b ¼ 0:05 and, h¼ 0.959 when b ¼ 0:1. For an unstable region,
shown by (blue dashed line) for b ¼ 0:05 and (red dashed line) for b ¼ 0:1.
U1s ¼ 10�3 and U2s ¼ �2� 10�4 m/s are same for both slip coefficients
b ¼ 0:05 and b ¼ 0:1, with holdup h¼ 0.946 and h¼ 0.948, respectively. Inset
figure in the stable (unstable) region corresponds to the positive (negative) numeri-
cal and analytical values of ci.

FIG. 10. Amplitudes of critical perturbations of (a) stream functions and (b) its deriv-
ative for LPD mode are shown above. Parameters are taken from Fig. 7. Value of
KH ¼ 10�5 and b ¼ 0:05.
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and might be responsible for the growing (or decaying) disturbances.
In HPD mode, we observed the shear mode of instabilities near the
wall and at the interface. It creates the circulation cells of the critical
eigenfunctions as shown by Barmak et al.20 The patterns of critical
stream function on x and y plane are the same with slip boundary
conditions.

In Fig. 7, lower solutions with b ¼ 0:1 occupies a stable region in
an interesting manner. To look if this stable lower solution region is a
trend, followed with different parameters, the neutral stability curve is
shown when channel height is slightly reduced to 0.01 from 0.0144m
(see Fig. 13). All other flow parameters are kept the same as previously
mentioned. Interestingly, the LPD mode is the only stable mode
observed with and without slip. The stable region of LPD mode

extends to higher flow rates when compared to a previous case with
H¼ 0.0144 m. Since no critical HPDmode is observed, it does not vio-
late the non-uniqueness of the holdup solutions in countercurrent
flows. It can be interpreted as no smooth interface (stable region) in a
two-layered configuration is observed. Hence the wavy (unstable)
interface is expected at higher critical holdups. A stable LPD region
with slippery walls, is reduced to lower flow rates. With the no-slip
condition in LPD mode, a smooth interface is obtained at almost all
top layer flow rates until it reaches the flooding point.

It has been shown with an inclination angle h ¼ 26	 and b¼ 0,
the stable region for LPD and HPD modes is confined to higher top
and bottom layer flow rates, respectively18 (see Fig. 14). Moreover, a
common stable region where both modes can remain stable shrinks

FIG. 11. Amplitudes of critical perturbations of (a) stream functions and (b) its deriv-
ative for LPD mode are shown above. Parameters are taken from Fig. 7. Value of
KH ¼ 10�5 and b ¼ 0:1.

FIG. 12. Amplitudes of critical perturbations of (a) stream functions and (b) its deriv-
ative for HPD mode are shown above. Parameters are taken from Fig. 7. Value of
KH ¼ 10�5 and b ¼ 0:1.
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when compared to a h ¼ 10	 case. The flow became unstable with a
slip when the interface is near the bottom wall at all flow rates (LPD
mode). Only the stable region in HPD mode is observed with slippery
walls. Further, HPD stable zone is reduced to the lower values of
superficial velocities when the wall slip boundary condition increases
to 0.1. Similar to when h ¼ 10	 with slip, the effect of wall slip on the
stable region in the HPD mode is minimal. It is to be noted that a
higher slip coefficient gives extra momentum to both layers. With
higher momentum imparted to both layers due to wall slip, the shear
stress at the interface is expected to increase and can be responsible for
instability with slippery walls.

In Fig. 15, variation of ci for different normalized wavenumber is
shown for countercurrent flow with h ¼ 26	 within unstable HPD
region. Indeed, the negative values of ci (UI < 0) are observed.
However, as expected with higher slip coefficient b ¼ 0:1, growth of
values of ci are more in higher wavenumbers. The least unstable ci
are obtained from slip coefficient b ¼ 0:05. This provides a good
validation of higher instability in the HPD mode with slip coefficient
b ¼ 0:1 (see Fig. 14).

To check what happens at larger channel height, the neutral sta-
bility curve with channel height H¼ 0.03 m is shown in Fig. 16. The
result obtained is almost similar to a case when h ¼ 26	. With wall
slip conditions, flow always remains unstable in LPD mode. In HPD
mode, the stable region of flow is reduced to the lesser values of the
superficial velocities. When the slip coefficient is b ¼ 0:1, a stable
region is further diminish, to lower superficial velocities than the
b ¼ 0:05 case. When an interface is near the top wall, a portion of a
channel is largely occupied by a bottom layer. The unstable region is
expected due to the interfacial shear stress able to disturb the flow
when the heavy bottom layer is dominated. With higher momentum
induced by a slip, flow is expected to remain unstable at higher top
layer flow rates than a no-slip case.

It is worth mentioning that physics at the interface plays a cru-
cial role in determining the stability at different interface locations.
The range of stable region (in terms of flow rates/superficial veloci-
ties) mostly depends on the difference between the two fluids’
velocities and the holdup. The slip boundary condition provides
extra momentum to both fluid layers at different regimes (LPD and
HPD). It alters the relative velocity between two-layers, which
changes the interfacial shear stress. In countercurrent flows, we
observed destabilizing effects with wall slip in both LPD and HPD
mode.

FIG. 13. Long-wave neutral stability plot of countercurrent flow when H¼ 0.01 m.
All other parameters are same as specified in Fig. 7. Black, blue, and red curves
indicate b¼ 0, 0.05, and 0.1, respectively. (—) corresponds to LPD curves, (– � – �)
corresponds to HPD curves, and (…….) corresponds to flooding curves.

FIG. 14. Long-wave neutral stability plot of countercurrent flow with h ¼ 26	. All
other parameters are same as specified in Fig. 7. Black, blue, and red curves indi-
cate b¼ 0, 0.05, and 0.1, respectively. (—) corresponds to LPD curves, (– � – �)
corresponds to HPD curves, and (…….) corresponds to flooding curves.

FIG. 15. Imaginary wave speed ci vs normalized wave-number plot for counter-
current flow with inclination angle h ¼ 26	 in a unstable HPD region. UI is nega-
tive in this case. U1s ¼ 10�4 and U2s ¼ �2� 10�5 m/s for slip coefficients
b ¼ 0:05 (blue dashed line) and 0.1 (red dashed line), respectively. Inset figure
in the stable region corresponds to the positive numerical and analytical values
of ci.
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An extension of this problem is the falling film down the inclined
plane with the slippery wall. Such a situation has already been investi-
gated by Pascal42 in a porous inclined plane and Samanta et al.47 in a
slippery inclined plane using long-wave asymptotic methods. Flows in
such cases are mostly unbounded from the topside. Such flow configu-
ration can be attained by keeping the viscosity of top layer zero
(m!1) with LPD mode appreciated. Depending on the scale, dif-
ferent average momentum equations can be added or modified.

B. Co-current flows

Stability analysis for co-current air–water inclined flow is studied
in both long-wave and finite wave regimes at no-slip boundary condi-
tion.18,20 These studies extended to the triple solution region, obtained
at a higher gas flow rate in an upward inclined flow and high water
flow rates in a downward inclined flow. Necessary care should be
taken to get a triple solution region since its complexity in getting mul-
tiple holdup solutions increases with the wall slip conditions. It is
essential to know the magnitude of Y at different flow rates for a triple
solution boundary. Usually, in downward co-current flow (Y> 0), tri-
ple solution boundary is obtained at the higher magnitude of Y and
X2, which is also demonstrated in Fig. 2. However, in upward co-
current flows (when Y< 0), the triple solution boundary is expected at
lower values of Y and X2. The parameters and fluid properties are kept
the same as mentioned for the countercurrent flows.

The neutral stability curves for co-current liquid–liquid flows in
both upward and downward flow configurations are present in a single
solution regime with and without wall slip boundary conditions. Here,
the single solution is associated with the lower holdup solution in both
upward and downward co-current flows.

A neutral stability plot for upward co-current flow, shown in
Fig. 17, is analyzed for a slightly inclined channel, h ¼ 0:1	. Below qcr
is the region where the top layer superficial fluid velocity is higher
than the bottom layer velocity, and above qcr, the bottom layer superfi-
cial fluid velocity is higher comparatively. The stable region above qcr

is not affected by a slip boundary condition. The unstable region is
obtained at higher values of top layer flow rates below qcr. The wall
slip has significant effects on the stability where the relative superficial
velocity between the two layers is large. Also, the magnitude of the bot-
tom layer flow rate can influence stability. At lower values of bottom
layer flow rates, the stable region is limited to the lower top layer flow
rates. This stable region further shrinks to the lower values of top layer
flow rates with increasing slip coefficient b. Hence, the flow mostly
remains unstable in a higher range of top layer flow rates when the
bottom layer flow rate is low. Similarly, when bottom layer flow rates
are high, the stable region is enhanced to a larger range of top layer
flow rates. Moreover, the wall slip stabilizes the flow at moderate flow
rates (at around U2s � �0:15 m/s). Note that the flow rates are
increasing along with holdup h. Therefore, the heavier bottom layer
will occupy a larger portion of the channel at higher flow rates.

In Fig. 18, the variation of ci for different normalized wavenum-
ber is shown for the upward co-current flow. Note that UI is negative
in this case, as previously mentioned. In a stable region (solid lines), ci
is positive at all wavenumbers. Moreover, the decay rate of ci is increas-
ing with the higher wall slip coefficients. However, this might not be
the same with every point in the neutral stability plot shown in Fig. 17,
since the slip coefficient can stabilize and destabilize the flow.

The amplitudes of critical j/j and j/0j for the co-current upward
flow are shown in Fig. 19. The maximum amplitude of critical trans-
verse velocity is obtained in the light thick upper layer and at the inter-
face. At the interface, a sudden increase in the critical j/j may indicate
that instabilities are triggered by interfacial mode as well. The maxi-
mum amplitude for critical stream-wise perturbation velocity is
obtained at the interface.

In Fig. 20, the neutral stability curve for downward liquid–liquid
flow is shown in a single solution region. When the slip coefficient is
b ¼ 0:05, the flow is unstable at lower flow rates than the no-slip case.
At higher flow rates, a neutral stability curve with b ¼ 0:05 is almost
following the curve with the no-slip case with small enhancement in
the stable region. When a higher slip coefficient b ¼ 0:1 is considered,

FIG. 16. Long-wave neutral stability plot of countercurrent flow with H¼ 0.03 m. All
other parameters are same as specified in Fig. 7. Black, blue, and red curves indi-
cate b¼ 0, 0.05, and 0.1, respectively. (—) corresponds to LPD curves, (– � – �)
corresponds to HPD curves, and (…….) corresponds to flooding curves.

FIG. 17. Long-wave neutral stability curve for upward co-current. h ¼ 0:1	 and
H¼ 0.0144 m. Black, blue, and red curves indicate b¼ 0, 0.05, and 0.1,
respectively.
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unlike in upward co-current flow, the stable region is enhanced for all
flow rates compared to the no-slip boundary condition and b ¼ 0:05.
Unlike in a previous case (upward flow), the wall slip does not signifi-
cantly affect the stability when both layers’ relative velocity is high.
The wall slip also has negligible effects on the stability above the qcr
region.

The variation of ci for different normalized wavenumber is shown
in Fig. 21 for the downward co-current flow. The stable ci in all wave-
numbers KH is obtained, which decays further at higher wavenumbers.
However, in an unstable region, the imaginary wave speed shows a
similar behavior as in previously mentioned cases with slip conditions.

The amplitudes of critical j/j and j/0j for the co-current down-
ward flow are shown in Fig. 22. The maximum amplitude of critical
transverse velocity perturbations is obtained at the interface. The criti-
cal stream-wise velocity perturbations are maximum at the interface at
the bottom phase side. In the co-current downward flow, instabilities
are likely to be of interfacial mode.

The triple solution region in the co-current flow is rather compli-
cated to obtain. It is a bounded region where all three solutions can
exist. It is reported that all three solutions can become stable within
the triple solution boundary region obtained in air–water co-current
inclined channel flows.18,20 In liquid–liquid co-current flows, triple
solution boundaries are acquired at lower top layer flow rates for both
upward and downward flows, unlike in the case of air–water inclined
flow (see Fig. 23). In upward co-current flows, the boundary of a triple
solution is obtained at very less bottom layer superficial velocity (at
around U1s ¼ 10�8 m/s) and a minimal range of top layer superficial
velocities U2s. Therefore, only the triple solution boundary region for
downward co-current inclined flows is demonstrated below. The triple
solution boundary region expands with higher slip coefficients to
higher heavy bottom layer flow rates. Additional critical holdup

solutions are obtained inside triple solution boundaries, which are not
shown in this figure. These additional critical bottom phase superficial
velocities belong to the middle and higher holdups.

VI. CONCLUSION

Multiple holdups in an inclined channel flow are well-established
facts. The stability of these holdup solutions depends on the flow prop-
erties and parameters. One such parameter is the slip boundary condi-
tion. In this paper, we have performed the linear stability analysis in
the countercurrent and co-current flow, considering their multiple
holdup solutions obtained in the slippery inclined channel. We derived
the base state for a two-layered inclined flow and studied non-unique
holdup solutions with a wall slip boundary condition. When the

FIG. 18. Imaginary part of wave speed ci vs normalized wavenumber from upward
co-current plot. UI is negative in this case. Points picked up from Fig. 17 stable
region are U1s ¼ �0:01 and U2s ¼ �0:1 m/s indicated by (—) for b¼ 0, (blue
solid line) for b ¼ 0:05 and (red solid line) for b ¼ 0:1. Points from unstable region
are U1s ¼ �0:01 and U2s ¼ �0:18 m/s indicated by (– – –) for b¼ 0, (blue
dashed line) for b ¼ 0:05 and (red dashed line) for b ¼ 0:1. Inset figure in the sta-
ble (unstable) region corresponds to the positive (negative) numerical and analytical
values of ci.

FIG. 19. Amplitudes of critical perturbations of (a) stream functions and (b) its deriv-
ative for upward co-current flows are shown above. Parameters are taken from
Fig. 17. Value of KH ¼ 10�5 and b ¼ 0:1.
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interface is near the bottom wall (for lower holdup solutions), the base
state is obtained at the high flow rate ratio. When the interface near
the top wall, wall slip barely affects the flow rate ratio. However, the
base states are obtained closer to the top wall (higher holdup value)
than the no-slip boundary condition.

The linear stability analysis is carried out by solving the
Orr–Sommerfeld equations for both layers. The asymptotic analysis
is carried out by taking wavenumber approaching zero (in a
long-wave limit), and eigenvalues are obtained until the first order.

Analytical results are validated numerically by using Chebyshev collo-
cation spectral method in MATLAB.

The results are presented in the form of neutral stability plots
with a larger magnitude of non-dimensional wall slip coefficients
b ¼ 0:05 and 0.1 and then compared with the no-slip case.18 In the
inclined channel flows, we found that the interface’s location and wall
slip played a crucial role in determining the operational range in terms
of superficial velocities (or flow rates) where a smooth interface can be
observed. The multiple base states allow the different locations of an
interface at each solution distinguished as the lower and higher holdup
in countercurrent flows (middle holdup in co-current flow). We found
that LPD mode is sensitive to stability in countercurrent flows when
slip boundary condition is introduced. The interface near the bottom

FIG. 20. Long-wave neutral stability curve for downward co-current. h ¼ 1	 and
H¼ 0.0144 m. Black, blue, and red curves indicate b¼ 0, 0.05, and 0.1,
respectively.

FIG. 21. Imaginary part of wave speed ci vs normalized wavenumber for downward
co-current flow. Interfacial velocity is positive for this case. Points picked up from
Fig. 20 stable region are U1s ¼ 10�2 and U2s ¼ 8� 10�2 m/s indicated by (—)
for b¼ 0, (blue solid line) for b ¼ 0:05 and (red solid line) for b ¼ 0:1. Points
from unstable region are U1s ¼ 10�2 and U2s ¼ 0:15 m/s indicated by (– – –) for
b¼ 0, (blue dashed line) for b ¼ 0:05 and (red dashed line) for b ¼ 0:1. Inset fig-
ure in the stable (unstable) region corresponds to the negative (positive) numerical
and analytical values of ci.

FIG. 22. Amplitudes of critical perturbations of (a) stream functions and (b) its deriv-
ative for downward co-current flows are shown above. Parameters are taken from
Fig. 20. Value of KH ¼ 10�5 and b ¼ 0:1.
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wall is stable for only a limited flow rate with wall slip coefficients
b ¼ 0:05. At higher wall slip coefficients, the stable region is further
reduced to an even lower range of flow rates or completely disap-
peared. Similarly, in HPD mode, the stable regions reduced to lower
flow rates when slip is considered. At a higher inclination angle and
channel height, the interface is stable only if it is placed near a top wall
(with and without wall slip). Amplitudes of the critical stream func-
tions are the maximum at the bulk thick phase in HPD mode. A simi-
lar argument is shown by Barmak et al.20 with the no-slip case. The
instabilities in LPD mode can be of interfacial mode, and the “thin-
layer effect” might be the possible explanation.72 As flow transitions
from stable to unstable region and from no-slip to slip boundary con-
ditions take place, the depth of the lower thin layer decreases. The
thick top phase induces the interfacial shear stress at the lower thin
phase and produces a drag which can be responsible for the growth of
the disturbance. Moreover, the critical eigenfunction is maximum near
the interface, and its derivative is maximum at the interface, indicating
the interfacial mode of instability in LPDmode.

We present the neutral stability plots for liquid–liquid inclined
co-current flows. The wall slip stabilizes and destabilizes the co-
current flow, which depends on the superficial velocities and holdups.
In the co-current upward flows, the wall slip condition destabilizes the
flows to lower layer flow rates at lower holdups. However, at higher
holdups, the stability is obtained at higher flow rates U2s relatively to
no-slip boundary conditions. The effect of wall slip on instability
depends on the bottom layer flow rate (U1s). In downward flows, the
wall slip coefficient b ¼ 0:1 extends the stability boundaries at all criti-
cal holdups. However, the stable region occupies the lower range of
top layer flow rates with wall slip coefficients b ¼ 0:05. Most critical
eigenfunctions perturbations are obtained near the interface, which
indicates the interfacial mode of instabilities that arises in the
co-current flows. Moreover, the instabilities’ mechanism can be under-
stood by the “thin layer effect” similar to the LPD mode in the
countercurrent flows. Moreover, unlike the air–water case, the triple

solution is obtained at lower light layer flow rates in liquid–liquid co-
current flow. With the wall slip boundary conditions, this boundary
region expands to higher flow rates.

It is necessary to know the operating range of flow rates or super-
ficial velocities where a smooth interface is obtained in different
holdup solutions. We expect that LPD mode is more closely depen-
dent on the flow properties along with several flow parameters.
Therefore, one can observe several interesting stable regions to span
over different ranges of low rates considering various fluids with or
without wall slip conditions. A triple solution region in co-current
liquid–liquid flows and the stability of holdup solutions inside it for
different flow rates is still an unexplored area.

SUPPLEMENTARY MATERIAL

See the supplementary material for the coefficients given in Eqs.
(28), (29), and (33) obtained in the zeroth and first order from the
long-wave analysis.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.
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