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ABSTRACT

We study the role of wall slip on the stability of a two-layered plane Poiseuille flow. The equations of motion for the base flow state are
derived, and a linear stability analysis is carried out to arrive at the fourth-order Orr–Sommerfeld equations for the fluid layers. An asymp-
totic analysis is conducted for wavenumbers in the long wavelength limit. The Orr–Sommerfeld equations are solved numerically using a
multidomain Chebyshev Collocation Method to arrive at the spectrum of eigenvalues and their associated eigenfunctions. The effect of wall
slip on the stability characteristics of the flow system is examined in greater detail. It is observed that slip brings about a stabilizing, as well as
a destabilizing effect on the flow system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0050256

I. INTRODUCTION

This paper presents a study of the hydrodynamic stability of a
two-layered plane Poiseuille flow, with the channel walls modeled as
slippery surfaces. Two-layered Poiseuille flows are encountered in
many industrial applications—flow of gas and condensate in pipelines,
gas–liquid flows in chemical reactors, polymer processing, microchan-
nel flows, and coating industries, to name a few. Thus, an instability
study of the same and its dependence on different operational parame-
ters are of practical importance.

The stability of two-layered plane Poiseuille flows is a well-
researched area in fluid dynamics, and there have been numerous
works regarding the same. One of the earliest studies in this area was
carried out by Yih,1 when he studied the stability of a viscosity-
stratified channel flow to long wave disturbances. Yih observed that,
even at arbitrary low Reynolds numbers, there exists an instability,
arising as a result of viscosity stratification. Yih termed this mode of
instability as interfacial mode and claimed that this was different from
the Tollmein–Schlichtling (shear) mode of instability, which arises at
significantly larger Reynolds numbers. Later, Charru and Fabre4

observed that this instability caused due to viscosity stratification can
be stabilized by implementing a density stratification in the flow sys-
tem, when they conducted a linear stability analysis of a viscosity-
stratified Couette–Poiseuille flow.

A stability analysis of an unbounded Couette flow of two fluids
having different viscosities and densities, by Hooper and Boyd,2

revealed that the interface may be unstable to short wave perturbations
as well, and that the presence of rigid boundaries does not influence
the interfacial mode of instability. Yiantsios and Higgins3 extended
Yih’s research to short wavelength disturbances and carried out a
numerical analysis, which accounted for effects arising as a result of
density stratification, thickness ratio of fluid layers, and gravity and
interfacial surface tension. They showed that, at given values of thick-
ness ratios, two-layered channel flows are unstable to more than one
mode. The influence of thickness ratios and the mean interfacial height
on the flow system was subsequently studied in greater detail by Tilley
et al.,5 who performed a stability analysis of air–water flow in horizon-
tal and inclined channels.

A detailed study of the spectral characteristics and eigenfunction
structures related to the interfacial and shear modes of instability was
conducted by Kaffel and Riaz.7 The interaction between the two modes
and the effect of mode coalescence was discussed. They also observed
that, for certain parameter combinations, coalescence may occur in
both stable and unstable flow regimes. More recently, Barmak et al.8

conducted a stability study of two-layer plane-parallel flows for
liquid–liquid and gas–liquid systems and observed that there is no cor-
relation between the perturbation wavelength and the type of
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instability. They also studied the effect of channel height on the stabil-
ity of gas–liquid flow and observed that, for a channel height smaller
than its critical value, the sole disturbances are long wave perturba-
tions. Intermediate/short wave perturbations are the critical disturban-
ces when the channel height is greater than its critical value.

All these studies have prescribed the usage of the no-slip condi-
tion at the channel walls, which assumes that the relative velocity at
the solid walls goes to zero. While there is considerable experimental
proof backing the validity of the no-slip condition for a number of
macroscopic flows, some recent experiments conclude that there is a
breakdown in the no-slip condition for microscopic flows driven by
pressure gradients, and shear or electric fields. The concept of a slip
boundary was first proposed by Navier,9 who came up with a general
boundary condition that takes into account the possibility of fluid slip
at a solid surface. Navier’s boundary condition assumes that fluid
velocity u at a solid surface is directly proportional to the shear stress
at the surface

u ¼ Uþ k
l

d� nnð Þ: r:nð Þ; (1)

where U is the velocity of the surface, k is the slip length, l is the vis-
cosity of the fluid, d represents the identity tensor, n is the unit nor-
mal, and r is the total stress tensor. Slip length is defined as the
equivalent local distance below the rigid surface where the no-slip con-
dition can be satisfied if the flow field is extended outside the physical
domain. The no-slip condition is obtained when k ¼ 0. A finite value
of k corresponds to a fluid slip at the wall. In the case of macroscopic
flows, since the length scales involved are significantly larger than the
value of slip length k, it is sufficient to consider the no-slip boundary
condition. However, in the case of microscale flows, k is a finite quan-
tity and plays a significant role in calculation of fluid velocity.

Experimental studies conducted by Watanabe and Mizunuma,10

Tretheway and Meinhart,11 Pit et al.,12 Zhu and Granick,13 and Craig
et al.14 observe that the no-slip condition ceases to be accurate in
micro- and nano-scale flows, and report slip lengths ranging from
20 nm14 to as high as 1 l m.11,13 Molecular dynamics simulations con-
ducted by Thompson and Troian15 and Sun and Ebner16 have also
confirmed the existence of velocity slip at solid–liquid interfaces,
depending on several interfacial parameters.

A number of studies have also confirmed the occurrence of slip
in macro scale flows over hydrophobic surfaces17,18 and report slip
lengths ranging from a few nanometers to a micrometer. Hydrophobic
surfaces can be treated chemically by introducing nanoscale extrusions
on the surface, such that the contact angle between the fluid droplet
and the surface increases beyond 150�. Such surfaces are termed as
superhydrophobic surfaces. Several studies have reported that fluid
flow over superhydrophobic surfaces tends to produce greater slip
lengths, and, thus, aid in drag reduction of the flow. Similar results
were obtained by Ichikawa et al.,19 as they conducted an experimental
study to estimate the drag reduction effect in hydrophobic microchan-
nel flows. This property of superhydrophobic surfaces has led to their
utilization in many industrial applications—self-cleaning surfaces,
deicing, and anti-corrosive coatings to name a few. Voronov and
Papavassiliou’s paper20 provides an excellent literature review of fluid
slip over superhydrophobic surfaces. More recently, Liu and Zhang21

conducted a study on natural transition locations in flat-plate bound-
ary layers on superhydrophobic surfaces. They concluded that

superhydrophobic surfaces bring about a delay in the natural transi-
tion and that this delay effect becomes stronger with increase in slip
length.

The phenomenon of velocity slip is also prevalent in flows over
permeable surfaces and porous media. Beavers and Joseph22 con-
ducted a macroscopic modeling of transport phenomena at the inter-
face between a fluid and a porous region. They assumed flow in the
fluid and porous layers to be governed by the Navier–Stokes equation
and the Darcy equation, respectively, and proposed a new slip flow
boundary condition at the interface, which was consistent with experi-
mental results.

Several studies of the effect of wall slip on the stability of one-
and two-layered channel flows have been previously carried
out.23–29,31–35 Gersting23 conducted a linear stability analysis of a flow
between two parallel plane porous plates with velocity slip boundary
condition implemented at the plates, and observed that an increase in
slip results in stabilization of the flow, by increasing the value of critical
Reynolds numbers of instability. This result was also confirmed by
Lauga and Cossu,24 who conducted a stability analysis on a pressure
driven slippery channel flow, where slip was imparted both symmetri-
cally (on both channel walls) and anti-symmetrically (different values
of slip length at both walls). Min and Kim25 conducted a similar study
to observe the effect of slip on the stability and transition in wall-
bounded shear flows. They observed that the critical Reynolds number
increases with streamwise slip, thus delaying the transition to turbu-
lence. However, the introduction of spanwise slip induces an earlier
transition. Ling et al.26 further touched upon the study proposed by
Lauga and Cossu24 and Min and Kim,25 by considering different val-
ues of slip at the channel walls (asymmetric slip). They observed that
the introduction of slip results in a stabilizing as well as a destabilizing
effect, depending on the value of slip length chosen. Chai and Song27

revisited this study and explored a broader range of slip lengths. They
observed that streamwise slip leads to a suppression in the nonmodal
transient growth of the system, whereas spanwise slip leads to a subse-
quent increase in nonmodal transient growth. A further investigation
of the effect of slip velocity on the nonmodal transient growth was also
conducted by Samanta.28 Pascal34 carried out a linear stability analysis
of a thin film flow down an inclined porous surface, in the long wave-
length limit. The flow through porous media is governed by Darcy’s
law, and his results showed that increasing the permeability of the
inclined porous surface had a destabilizing effect on the flow system.
Samanta et al.31 conducted a linear stability analysis of a falling film
down a slippery plane and were able to arrive at a similar result as
depicted in Pascal’s work34 that the introduction of slip brings about a
destabilizing effect on the flow system at the onset of instability.
However, they also observed that, at high Reynolds numbers, the
implementation of the Navier’s slip boundary condition had a stabiliz-
ing effect on the flow system. A similar destabilizing effect of velocity
slip on long wavelength disturbances was observed by Chakraborty
et al.,35 in their stability analysis of a power-law fluid moving down a
slippery inclined plane. However, the presence of a slippery substrate
brought about a stabilizing effect at moderate to large wavenumbers.

More recently, Chattopadhyay and Usha29 conducted an instabil-
ity study of two-phase plane Poiseuille flow in a hydrophobic channel
and observed that slip results in increasing the stability of the system
for appropriate viscosity, density, and thickness ratios. They consid-
ered values of dimensionless slip number to be 0.05.
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The current study focuses on stability of a two-layered, horizon-
tal, slippery channel flow by solving the Orr–Sommerfeld system of
equations, which are derived from the Navier–Stokes equations, when
subjected to infinitesimal perturbations. It aims to extend the investi-
gations carried out by Yiantsios and Higgins3 on the linear stability of
a pressure driven, two-layered channel flow with channel walls mod-
eled to be slippery surfaces, while considering arbitrary wavenumber
disturbances and factoring arbitrary values of wall slip. We have also
carried out a complementary investigation on the stability of two-layer
flow in slippery inclined channels in Paper II. The results of this work
can be found in the paper of Mishra et al.

The paper is structured as follows: The governing equations
and the geometry are given in Sec. II. The equations for the base
flow state are provided in Sec. III. The linear stability analysis and
the linearized governing equations are given in Sec. IV, and the
asymptotic analysis for long wavelength disturbances is provided in
Sec. V. The numerical method is presented in Sec. VII, and the sta-
bility results are discussed in Sec. VIII.

II. GOVERNING EQUATIONS

We consider the flow of two-dimensional incompressible,
immiscible fluids in a horizontal channel, as shown in Fig. 1. The
flow is assumed to be isothermal and is driven by an imposed pres-
sure gradient. The governing equations for this flow configuration
are the dimensionless continuity and momentum equations as
given below:

@uj

@x
þ
@vj

@y
¼ 0; (2)

@uj

@t
þ uj

@uj

@x
þ vj

@uj

@y
¼ � q1

rqj

@pj

@x
þ 1

Re2

tj

t2

@2uj

@x2
þ @

2uj

@y2

 !
; (3)

@vj

@t
þuj

@vj

@x
þ vj

@vj

@y
¼� q1

rqj

@pj

@y
þ 1

Re2

tj

t2

@2vj

@x2
þ@

2vj

@y2

 !
� 1

Fr2
: (4)

Here, ðuj; vjÞ are the x and y components of velocity, tj the kinematic
viscosity, and pj the pressure in the fluid layer j. The equations are
non-dimensionalized taking h2—the height of the upper layer and
UI—interfacial velocity, as the scales of length and velocity, respec-
tively. Time is scaled by h2

UI
, and pressure is scaled by q2U2

I . A list of the

dimensionless parameters used in the paper, along with their defini-
tions is given in Table I

A. Boundary conditions

At the channel walls, these equations are subject to the following
boundary conditions:

u1 ¼ b
@u1

@y
at y ¼ �n; (5)

u2 ¼ �b
@u2

@y
at y ¼ 1: (6)

Here, b ¼ k
h2

is the non-dimensionalized slip length, as per Navier slip
Condition. A significant number of experimental studies have been
conducted to determine an appropriate value of slip length to be con-
sidered. Lumma et al.37 had conducted an experimental approach
using double-focus fluorescence cross-correlation to determine the
value of slip length at the solid interface. They had observed a slip
length of 1 lm in a 100 lm channel. This corresponds to a slip length
of b ¼ 0:01. Also, Boehnke et al.38 measured the slip length by calcu-
lating the sedimentation speed of spherical particles under the influ-
ence of gravity. The slip length in this case was observed to be of
Oð10�1Þ. The research paper of Lauga et al.39 provides a comprehen-
sive review of the slip boundary condition and measurement of slip
length. Consequently, we have considered a variety of slip lengths
ranging from b ¼ 0:01 to b ¼ 0:1 in our study. Earlier, we mentioned
that flow over corrugated porous surfaces could be modeled with an
effective slip boundary condition. Experiments on boundary layer flow
over porous flat plates have shown that the wall slip depends on the
porosity, and a characteristic b (non-dimensionalized by displacement
thickness) can be >0.1.40,41 Characterization of slip length via detailed
numerical simulations for flows over porous media also correspond to
b > 0:1, varying with volume fraction and permeability.42 The range
of b explored in this study is intended to address a diverse spectrum of
problems where slip boundary conditions act as a good model, from

TABLE I. Definitions for the dimensionless parameters.

Definition Dimensionless parameter

m¼l1

l2

The viscosity ratio of fluid 1 with respect to fluid 2

n¼ h1

h2

The ratio of height of fluid layer 1 with respect
to height of fluid layer 2

r ¼ q1

q2

The ratio of density of fluid 1 with respect to fluid 2

Re2 ¼
q2UIh2

l2

Reynolds number of fluid layer 2

Fr2 ¼
U2

I

gh2

Froude number of fluid layer 2

We2 ¼
q2h2U2

I

c

Weber number of fluid layer 2

c Interfacial surface tension coefficient

b ¼ k
h2

Slip length

FIG. 1. Schematic of flow configuration. The lower layer is labeled as fluid 1, and
the upper layer fluid 2. The two fluids are separated by an interface (located at
y ¼ 0Þ. The interface is assumed to be flat in the base flow case. The total height
of the channel is denoted by H, and h1 and h2 are the holdups of fluid layers 1 and
2, respectively. qj; lj and qj are the fluid density, dynamic viscosity, and fluid flow
rate of fluid layer j, where j ¼ ð1; 2Þ.
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breakdown of continuum approximation to flow past hydrophobic
surfaces and adjacent to porous media.

At the interface (y ¼ 0), the fluid velocities are equal and tangen-
tial stress across the interface is continuous. There is a jump in the
normal stress across the interface due to the effect of surface tension.
The normal velocity components at the interface satisfy the kinematic
boundary condition as given in the following equations:

u1 ¼ u2; (7)

vj ¼
@g
@t
þ uj

@g
@x
; (8)

t �T �n½ � ¼ ml
l1

@u
@y
þ@v
@x

� �
1� @g

@x

� �2
 !

�4
@u
@x
@g
@x

( )" #
¼ 0; (9)

n �T �n½ � ¼ pþml
l1

2Re�1
2

1þ @g
@x

� �2

@u
@x

1� @g
@x

� �2
 ! 2

664

þ @u
@y
þ @v
@x

� �
@g
@x

�37775¼We�1
2

@2g
@x2

1þ @g
@x

� �2
 !3=2

: (10)

III. BASE STATE PROFILE

We assume that fluid velocity UðyÞ is parallel to the channel
walls and varies only with the vertical co-ordinate y. The flow is
assumed to be laminar, steady, and fully developed. The interface is
assumed to be flat (g ¼ 0).

The velocity profiles obtained from the solution of the continuity
and momentum equations are

U1 ¼ 1þ a1y þ b1y2; (11)

U2 ¼ 1þ a2y þ b2y2; (12)

where

a1 ¼
mþ 2bðm� nÞ � n2

m ðnþ bÞ2 þ bð1þ bÞð2nþ 1Þ þ nðnbþ 1Þ
� � ; (13)

b1 ¼ �
ðnþ bÞ þmð1þ bÞ½ �

m ðnþ bÞ2 þ bð1þ bÞð2nþ 1Þ þ nðnbþ 1Þ
� � ; (14)

a2 ¼ ma1; b2 ¼ mb1: (15)

It is convenient to represent the base flow characteristics of the system
in terms of holdup (h) and fluid flow rate (q). We define the following
parameters for this purpose:

X2 ¼ ð�dP=dxÞ1s

ð�dP=dxÞ2s

¼ mq;

q ¼ q1

q2
:

Here, X2 is the Martinelli parameter and ð�dP=dxÞjs ¼ 12ljqj=H3 is
the corresponding superficial pressure drop for a single phase flow in
the channel, where H is the height of the channel, and qj is the feed
flow rate of fluid j.

The velocity profiles of the fluid layers u1 and u2 in a fully devel-
oped, laminar, steady flow in a horizontal channel with a smooth
interface are obtained by integrating the following momentum equa-
tions (as given in Ullmann et al.36):

l1
@2u1

@y2
¼ @P
@x
; �h � y < 0; (16)

l2
@2u2

@y2
¼ @P
@x
; 0 � y < H � h: (17)

Here, h is the height of the bottom layer, and H � h is subsequently
the height of the top layer. On integration of the equations above, we
get the dimensionless velocity profiles

u1 ¼
u1

U1s
¼ 6�P

mq
ð�y2 þ a�y þmbÞ; ��h � �y < 0; (18)

u2 ¼
u2

U2s
¼ 6�Pð�y2 þ a�y þmbÞ; 0 � �y < 1� �h; (19)

where

a ¼
�hð�h þ 2bÞ � ð�h � 1Þmð�h � 2b� 1Þ
ðbmþ bþmÞ � �hðm� 1Þ

; (20)

b ¼ ð2bþ 1Þðð1� �hÞ�h þ bÞ
�hðm� 1Þ � ðbmþ bþmÞ

; (21)

�P ¼ ð�dP=dxÞ
ð�dP=dxÞ2s

; �y ¼ y
H
; �h ¼ h

H
;

U1s ¼
q1

H
; U2s ¼

q2

H
:

Here, �h is the holdup of the bottom layer. As per mass conservation
equations, ð0

��h
u1 d�y ¼ 1;ð1��h

0
u2 d�y ¼ 1:

(22)

Substituting Eqs. (18) and (19) into (22), we obtain an expression for
�P in terms of �h, m and q,

�P ¼ �hð4mð�bþ �h � 1Þð3bþ �hÞ � �hð4bþ �hÞÞ

þ3ð�h � 1Þmqð�2bþ �h � 1Þð2bþ �hÞ=4ð�h � 1Þ2�hðð�h � 1Þm

� ð�4bþ �h � 1Þð3bþ �hÞ � �hð�3bþ �h � 1Þð4bþ �hÞÞ: (23)

The interfacial velocity can be written as

UI

U2s
¼ 6ð2bþ 1Þ�Pðð�h � 1Þ�h � bÞ

bþ �hð�mÞ þ �h þ bmþm
: (24)

Figure 2(a) displays the velocity profile of a slippery channel hori-
zontal flow for a more viscous bottom layer m ¼ 3. As a result of slip,
and differences in fluid viscosities and thicknesses, the slip velocities at
the top and bottom walls are unequal. The dependence of this parame-
ter U1!y¼�n

U2!y¼1 as a function of m and n is observed in Fig. 2(b). The slip

length is taken to be b ¼ 0:05. We observe that, as long as m < 1
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(viscosity of the upper layer is greater than the lower layer), the slip
velocity at the bottom wall is greater than that at the top wall, and vice
versa for m > 1.

IV. LINEAR STABILITY ANALYSIS

A linear stability analysis of the base flow solution is carried out,
with respect to infinitesimal, two-dimensional disturbances. A set of
equations, termed as the linear disturbance equations, are derived by
splitting the velocity and pressure terms into a mean part and a pertur-
bation part, and substituting them in the governing equations. The
perturbed velocities and pressure are denoted as follows:

uj ¼ Uj þ u0ðx; y; tÞ; (25)

vj ¼ v0ðx; y; tÞ; (26)

pj ¼ Pj þ p0ðx; y; tÞ: (27)

Here, Uj and Pj are the steady state velocity in the x-direction and
pressure, respectively.

We then define the disturbance velocities in terms of their corre-
sponding stream functions as

u0 ¼ @w
@y

; (28)

v0 ¼ � @w
@x

; (29)

where

w ¼ /ðyÞeikðx�ctÞ; (30)

p0 ¼ P̂ðyÞeikðx�ctÞ; (31)

g ¼ Hgeikðx�ctÞ: (32)

The relations for pressure and interfacial perturbation terms are given
by Eqs. (31) and (32).

Here, P̂ and Hg are the corresponding amplitudes of the pressure
and interface perturbation terms, k is the dimensionless wavenumber
(k ¼ 2ph2=lw, with lw being the wavelength), and c is the complex
wave speed.

Substituting the relations defined above, into the continuity and
momentum equations, we obtain the fourth-order Orr–Sommerfeld
equations

/iv
j ðyÞ � 2k2/00j ðyÞ þ k4/j

¼ ikRe2
�2

�j
ðUj � cÞð/00j � k2/jÞ �/jU

00
j

h i
; where j¼ 1;2: (33)

The set of boundary conditions to be substituted are as follows:
At the channel walls, due to Navier slip boundary condition

@/1

@y
¼ b

@2/1

@y2
at y ¼ �n; (34)

@/2

@y
¼ �b

@2/2

@y2
at y ¼ 1: (35)

At the channel walls due to no penetration condition

/2 ¼ 0 at y ¼ 1; (36)

/1 ¼ 0 at y ¼ �n: (37)

The interfacial boundary conditions are defined as follows:

v0 ¼ @g
@t
þ @g
@x
@x
@t
¼ Dg

Dt
at y ¼ 0: (38)

Substituting (29)–(31) in the above equation and simplifying further,
we obtain

/1 ¼ Hgðc� U1Þ at y ¼ 0; (39)

/2 ¼ Hgðc� U2Þ at y ¼ 0: (40)

As a result of the perturbations, the interface is displaced by an
amount denoted by g. The fluid velocities at the interface can thus be
approximated using a Taylor series expansion

u1ð0þ gÞ ¼ u1ð0Þ þ
@u1

@y
ðy ¼ 0Þg; (41)

u2ð0þ gÞ ¼ u2ð0Þ þ
@u2

@y
ðy ¼ 0Þg: (42)

FIG. 2. (a) The velocity profile of a two-layered plane Poiseuille flow is shown. The
channel walls are modeled to be slippery surfaces. Flow parameters: m ¼ 3,
n ¼ 0:5, b ¼ 0:05 (b) Contour plot of the ratio of the velocity slip at the two walls
in the plane of viscosity ratio m and thickness ratio n for b ¼ 0:05.
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The fluid velocities are equal at the interface, that is, u1 ¼ u2,

/01 þ
/1

c� 1
U 01 ¼ /02 þ

/2

c� 1
U 02 at y ¼ 0: (43)

Tangential stresses across the interface are equal,

/002 þ k2/2 þ U 002 Hg ¼ mð/001 þ k2/1 þ U 001 HgÞ at y ¼ 0: (44)

There is a jump in the normal stress across the interface as a result of
the interfacial surface tension

mð/0001 � 3k2/01Þ � ð/0002 � 3k2/02Þ
þikRe2 rððc� 1Þ/01 þ U 01/1Þ � ððc� 1Þ/02 þ U 02/2Þ

� �
¼ ikRe2ðFþ k2SÞHg; (45)

where F ¼ ðr�1Þ
Fr2

is the ratio of the gravitational force to the inertial
force, and S ¼ 1

We2
is the ratio of the surface tension force to the iner-

tial force.
Using linear stability analysis, we study the growth of infinitesi-

mal disturbances imposed on the hydrodynamic system. The dimen-
sionless wave speed c is taken to be complex, such that c ¼ cR þ ici.
Here, cR is the phase speed of the perturbation, and kci is the perturba-
tion growth rate. We are particularly interested in the most unstable
mode of the disturbance, and for given values of m; n; r;b; F;Re2; S,
we wish to determine the wave speed c and the associated amplitude
of the disturbance /j.These values are our eigenvalues and their corre-
sponding eigenfunctions. Solving for the values of c, we can determine
the reaction of the base state flows depending on the sign of the phase
speed ci. For a positive value of ci, the perturbations grow with time,
and the system is considered to be unstable. Similarly, a negative value
of ci indicates that the system is stable. When ci ¼ 0, the system is
neutrally stable.

V. ASYMPTOTIC ANALYSIS
A. Long wave analysis (k � 1)

A long wave analysis is carried out to study the stability of the
hydrodynamic system to perturbations having significantly large wave-
lengths, in this case, compared to the characteristic length of the prob-
lem (width of upper fluid layer, h2). This can be done by expressing the
eigenvalues and eigenfunctions as a regular perturbation series in k,

/j ¼ /j;0 þ k/j;1 þ k2/j;2 þ k3/j;3 þ � � � ; (46)

c ¼ c0 þ kc1 þ k2c2 þ k3c3 þ � � � : (47)

These expansions are substituted into the Orr–Sommerfeld equations
and the boundary conditions, and the terms of like order in “k” are
grouped together. The resulting equations in zeroth and first orders of
k are solved analytically to obtain expressions for the eigenvalues cM

and the corresponding eigenfunctions /M (M is the order of the
solution).

In the zeroth-order approximation, all terms containing k are
omitted from the system of differential equations. In this case,
/j ¼ /j;0, (j ¼ 1; 2) and c ¼ c0. Accordingly, Eq. (46) can be written
as

/iv
1;0 ¼ 0; /iv

2;0 ¼ 0: (48)

The boundary conditions are written below:

/1;0 ¼ 0 at y ¼ �n; (49)

/2;0 ¼ 0 at y ¼ 1; (50)

/01;0 ¼ b/0 01;0 at y ¼ �n; (51)

/02;0 ¼ �b/0 02;0 at y ¼ 1; (52)

/01;0 þ
/1;0

c0 � 1
U 01 ¼ /02;0 þ

/2;0

c0 � 1
U 02 at y ¼ 0; (53)

/0 02;0 þ U 0 02
/2;0

c0 � 1
¼ m /0 01;0 þ U 0 01

/1;0

c0 � 1

� �
at y ¼ 0; (54)

m/0001;0 � /0002;0 ¼ 0 at y ¼ 0: (55)

The solution of (48) is a third-order polynomial given below:

/j;0 ¼ c0 � 1þ B1
j;0y þ B2

j;0y2 þ B3
j;0y3; j ¼ 1; 2: (56)

The constants B0
1;0 and B0

2;0 are set to c0 � 1 as specified in the analysis
conducted by Kushnir et al.6

An expression for c0 is obtained by solving Eq. (56). The expres-
sions for the other constants B1

j;0;B2
j;0;B3

j;0 are provided in the supple-
mentary material, due to their unwieldy nature:

c0 ¼ bðm2ðnðnð8nþ 21Þ þ 12Þ þ 1Þ þ 2mðnðnþ 1Þðnð2n

þ 15Þ þ 17Þ þ 2Þnþ ðnðnðnþ 12Þ þ 21Þ þ 8Þn3Þ
þ 4b3ðnþ 1Þðm2ð6nþ 2Þ þmðnþ 1Þðnð5nþ 16Þ þ 5Þ
þ 2n2ðnþ 3ÞÞ þ 2b2ðnþ 1Þðm2ð4nðnþ 4Þ þ 3Þ
þ 2mðnðnðnðnþ 9Þ þ 25Þ þ 9Þ þ 1Þ þ n2ðnð3nþ 16Þ þ 4ÞÞ
þ nðnþ 1Þð2mnþmþ n2Þðmþ nðnþ 2ÞÞ
þ 24b4mðnþ 1Þ3=ð2bþ nþ 1Þðbþ bnþ nÞ
� ðð4bþ 1Þm2 þ 2mð6b2ðnþ 1Þ2 þ 2bðnþ 1Þðnðnþ 5Þ þ 1Þ
þ nðnð2nþ 3Þ þ 2ÞÞ þ n3ð4bþ nÞÞ: (57)

In the first-order approximation, terms containing k2 and higher order
of k are ignored. In this case, /j ¼ /j;0 þ k/j;1ðj ¼ 1; 2Þ and
c ¼ c0 þ kc1. Substituting these expressions into Eq. (46), we get

/iv
1;1 ¼ iRe2m�1r ðU1 � c0Þ/001;0 � /1;0U 002

h i
; (58)

/iv
2;1 ¼ iRe2 ðU2 � c0Þ/002;0 � /2;0U 002

h i
: (59)

The boundary conditions are written as follows:

/1;1 ¼ 0 at y ¼ �n; (60)

/2;1 ¼ 0 at y ¼ 1; (61)

/01;1 ¼ b/0 01;1 at y ¼ �n; (62)

/02;1 ¼ �b/0 02;1 at y ¼ 1; (63)

/1;1 ¼ /2;1 at y ¼ 0; (64)

c1/
0
1;0 þ ðc0 � 1Þ/01;1 þ /1;1U 01
¼ c1/

0
2;0 þ ðc0 � 1Þ/02;1 þ /2;1U 02 at y ¼ 0; (65)

c1/
00
2;0 þ ðc0 � 1Þ/002;1 ¼ mðc1/

00
1;0 þ ðc0 � 1Þ/001;1Þ at y ¼ 0; (66)

m/0001;1 � /0002;1 þ iRe2ðr � 1Þððc0 � 1Þ/02;0 þ U 02/2;0Þ (67)

¼ iRe2
r � 1
Fr2
þ k2

We2

� �
/2;0

ðc0 � 1Þ at y ¼ 0: (68)
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Here, in spite of eliminating all terms containing k2 and higher
order, we retain a term of Oðk2Þ in (68) to account for surface tension
effects.

The solution of (68) is a third order polynomial given as

/j;1 ¼ iRe2ðB1
j;1y þ B2

j;1y2 þ B3
j;1y3 þ wjðyÞÞ: (69)

The coefficients (B1
j;1;B2

j;1;B3
j;1 and wj) mentioned in the above equa-

tion are relegated to the supplementary material due to their unwieldy
nature.

By solving Eq. (69), we get an expression for c1,

c1 ¼
iRe2mðc0 � 1ÞðB1

2;1 � B1
1;1Þð2bþ nþ 1Þðbnþ bþ nÞ

ðm� 1Þð2bm� nð2bþ nÞ þmÞ : (70)

From Eq. (70), we obtain the expression of the complex wave
speed to be cR ¼ c0 and cI ¼ �ikc1. The flow is stable to long wave-
length disturbances when ic1 > 0. In the case of no-slip (b ¼ 0), it is
evident that the denominator goes to zero for m ¼ 1 or m ¼ n2.
However, we also observe that the terms c0 � 1 as well as (B1

2;1 � B1
1;1)

go to zero when m ¼ 1 or m ¼ n2. As a result, Eq. (70) as a whole
goes to zero as m ¼ 1 or m ¼ n2 for the no-slip case, as is confirmed
in the analyses of Yih1 and Yiantsios and Higgins3

In Fig. 3(a), the neutral stability curve is plotted in the plane of
viscosity ratio m and thickness ratio n for different values of slip
length b ¼ 0; 0:05; 0:1. Slip is imparted symmetrically on both walls,
and long wavelength disturbances are considered (k ¼ 0:001). The
system is neutrally stable at m ¼ 1, that is, when the fluids have the
same viscosity, as pointed out by Yih.1 From the analytical expres-
sion for c1 obtained from our long wavelength calculations
[Eq. (70)], it is evident that the flow is neutrally stable for values of
n ¼

ffiffiffiffi
m
p

in the no-slip case (b¼ 0). This was shown by Yiantsios
and Higgins.3 We notice that the introduction of slip has a destabiliz-
ing influence on the flow system, as observed by Samanta et al.35

When the viscosity and thickness of the lower layer are greater than
the upper layer (m > 1; n > 1), the neutral stability curve is shifted
to the right, resulting in an increase in the unstable regions of flow.
Similarly, when the viscosity and thickness ratio of the upper layer
are greater than that of the lower layer (m < 1; n < 1), we observe a
destabilizing effect indicated by the leftward shift of the neutral sta-
bility curve. The destabilizing role of slip can be seen if we perturb
the neutral stability curves for small values of slip. The growth rate in
the vicinity of m ¼ n2 curve is

k cI

Re2
	 ðn� 1Þðm� n2Þ

60n2ðnþ 1Þ þ ðn� 1Þ2

30nðnþ 1Þ b: (71)

Thus, in the neighborhood of the m ¼ n2, curve slip always has a
destabilizing role as can be seen from Fig. 3(a). The above long wave
asymptotic behavior allows us to predict a critical slip that would
destabilize an otherwise stable two-layer channel flow in the no-slip
case (m > n2; n < 1 and m < n2; n > 1),

blong
critical ¼

jm� n2j
2njn� 1j : (72)

As was discussed earlier, m¼ 1 continues to remain a neutral stability
curve in the presence of slip. To probe the stability in the vicinity of

m¼ 1 curve, we consider the following asymptotic expression for the
growth rate:

k cI

Re2
	 ðm� 1Þð1� nÞ

420ð1þ nÞ3
A0 �A1bð Þ; (73)

where

A0 ¼ n4 � 6n3 þ 38n2 � 6nþ 1; (74)

A1 ¼ 4ð2n4 � 23n3 þ 28n2 � 23nþ 2Þ=ðnþ 1Þ: (75)

It can be shown that A0 is always positive, while A1 < 0 for
0:0976 < n < 10:242. Thus, in this range of n, an unstable (stable)
mode will be further destabilized (stabilized) by slip. One could argue
for slip switching the nature of stability for n< 0.0976 or n> 10.242

FIG. 3. (a) Neutral stability curve for long wavelength disturbances plotted in the
plane of viscosity ratio m and thickness ratio n. (b) A closer view of the influence of
slip in regions with small viscosity and thickness ratios. Flow parameters: r ¼ 1,
Re2 ¼ 100, F ¼S ¼ 0 The stable regions are denoted by S, unstable regions
by U (a) (—)b¼ 0; (-�-�-)b ¼ 0:05; (- - -) b ¼ 0:1 (b) (—)b ¼ 0:02; (-�-�-)
b ¼ 0:05; (- - -)b ¼ 0:1.
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when m 	 1. The critical slip parameter for such a scenario would be
b > 0:5 rendering equation (73) invalid and more importantly the
parameter space unphysical. From Fig. 3(b), we also observe that, at
very small values of thickness and viscosity ratios, an unstable region
of instability emerges with introduction of slip and grows bigger with
its subsequent increase. Thus, the present asymptotic analysis should
convince the reader that slip has the capacity to both stabilize and
destabilize a two-layer channel flow unlike the purely stabilizing role it
plays in its single layer counterpart; stemming from the presence of a
new interfacial mode and its modification by the weakened flows near
the slippery walls.

The growth rate of the interfacial mode is plotted with the vis-
cosity ratio m for different values of thickness ratios n in Fig. 4.
Long wavelength disturbances are considered (k ¼ 0:001), and the
fluids have identical densities (r ¼ 1). The other parameters are
Re2¼ 100 and S¼ 0.1. Slip lengths of b¼ 0, 0.05, and 0.1 are
incorporated, and the effect of increasing slip length is observed.
The results for the no-slip case are matched with those obtained by
Yiantsios and Higgins.3 For b¼ 0.05, the results obtained by the
long wave analysis are found to be in agreement with the symmetric
slip case studied by Chattopadhyay and Usha.29 The flow is unsta-
ble to long wavelength perturbations when c1=iRe2 is positive.
When the fluid viscosities are equal, it is observed that the flow
becomes neutrally stable, as predicted by Yih.1 We also observe that
the complex wave speed goes to zero at n ¼

ffiffiffiffi
m
p

, as shown in the
analysis conducted by Yiantsios and Higgins.3 From the graphs, it
is evident that, as the value of slip length b is increased, the stable
region displays a decrease. This highlights the destabilizing role
played by wall slip.

Figure 5 shows plots of stability maps in the plane of superfi-
cial fluid velocities U1s and U2s. Figure 5(a) displays a case wherein
the viscosity of the lower fluid is greater than the viscosity of the
upper fluid (m > 1), with the fluid density being slightly greater
than 1, such that the lower fluid is denser than the upper fluid.
The channel height is taken to be H ¼ 0:02 m. As slip is intro-
duced in the system, we observe that there is an increase in the
stable region of flow with increase in slip. We also notice that the
critical flow rate qcr decreases with increase in slip. The grayed
lines represent lines of constant critical flow rate ratios, which are
independent of the densities of the fluids chosen. We observe that
there is a decrease in the value of qcr with increase in slip, indicat-
ing the stabilizing influence of slip, when the fluid densities are
equal (r ¼ 1).

In the case of a flow configuration with a more viscous upper
layer (m < 1), we observe that slip has a destabilizing effect on the
stability of the flow system, as shown in Fig. 5(b). We also observe
that, as slip is increased upto a value of b ¼ 0:05, the value of qcr

increases, thus indicating an increase in the stable regions of flow
when the fluid densities are equal (r ¼ 1). Increasing slip beyond
this value leads to a decrease in the value of qcr , thus bringing about
a destabilizing effect.

Figure 5(c) displays the effect of slip on a flow configuration with
high density and viscosity ratios (m ¼ 55; r ¼ 1000). We observe an
increase in the stable regions of flow with increase in slip. We also
observe that the value of qcr increases with increase in slip, thus
highlighting the stable influence of slip on a flow configuration with
both fluids having the same densities.

B. Short wave analysis (k 
 1)

A short wave expansion can be carried out by considering the
limit k
 1. We have carried out a short wave analysis in a two-layer
channel flow past slippery surfaces. The analysis follows Hooper and

FIG. 4. Dependence of the imaginary part of the wave speed c1=iRe2 on m for
(a) n ¼ 0:5; ðbÞ n ¼ 1; ðcÞ n ¼ 2. Flow parameters: Re2 ¼ 100; r ¼ 1;
k ¼ 0:001;S ¼ 0:1 (—)b¼ 0; (-�-�-)b ¼ 0:05; (- - -) b ¼ 0:1.
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Boyd2 and Yiantsios and Higgins3 closely. We define a scaled vertical
coordinate

Y ¼ ky (76)

and pose an asymptotic expansion of the form

/j ¼ /�j;0ðYÞ þ k�1/�j;1ðYÞ þ k�2/�j;2ðYÞ þ k�3/�j;3ðYÞ þ � � � ; (77)

c ¼ c�0 þ k�1c�1 þ k�2c�2 þ k�3c�3 ¼ � � � : (78)

If we ignore the effects of gravity and surface tension, we arrive at the
following simple expression for the complex wave speed:

c ¼ 1þ iRe2a2
1
ðm� 1Þðm2 � rÞ

2ð1þmÞ2
k�3 þ Oðk�4Þ: (79)

The above expression is identical in form to that derived by Yiantsios
and Higgins with the effect of slip appearing implicitly via the base
state parameter a1. This is not surprising as in the asymptotic limit
of k!1, the slippery wall boundary conditions are now applied
at 61. Equation (79) shows that short waves are unstable if
m > 1 and m >

ffiffi
r
p

or m < 1 and m <
ffiffi
r
p

. We have another neutral
stability boundary corresponding to a1 ¼ 0 implying from Eq. (13),

m ¼ nðnþ 2bÞ
1þ 2b

: (80)

Thus, similar to our long wave calculations, slip destabilizes the short
wave instability by shrinking (expanding) the stable (unstable region).
We can once again obtain a prediction for the critical slip parameter, a
value of b that would destabilize a short wave mode,

bshort
critical ¼

jm� n2j
4njn� 1j : (81)

VI. NUMERICAL ANALYSIS

It is necessary to solve the eigenvalue problem governed by the
Orr–Sommerfeld equations numerically to understand the response of
the system to arbitrary wave number disturbances. We use the
Chebyshev Collocation method to discretize and solve the
Orr–Sommerfeld system of equations. The Chebyshev Collocation
method is suitable for problems with non-periodic, bounded domains
and has been used extensively in previous research6–8 for the same
purpose.

In order to convert the Orr–Sommerfeld system of equations,
defined in the interval [�n; 1] to the Chebyshev Polynomials, defined
in the interval [�1; 1], we use an appropriate linear transformation

z ¼ 2y þ n
n

; �n < y < 0; (82)

z ¼ 2y � 1; 0 < y < 1: (83)

The eigenfunctions /jðxÞ are given by the following expansion of
the Chebyshev polynomials:

/ðiÞ1 ðzÞ ¼
XN1

k¼0

akTðiÞk ðzÞ; (84)

/ðiÞ2 ðzÞ ¼
XN2

k¼0

bkTðiÞk ðzÞ: (85)

Here, i denotes the ith derivative with respect to z, TkðzÞ represents
the Chebyshev polynomials, and ak and bk are the discrete Chebyshev
expansion coefficients.30

The Chebyshev polynomials are interpolated over a set of
unevenly spaced grid points, given by

FIG. 5. Long wave neutral stability curves when (a) m¼ 2, r ¼ 1.25, H¼ 0.02m
(b) m¼ 0.5, r ¼ 1.25, H¼ 0.02m (c) m¼ 55, r ¼ 1000, H¼ 0.02m (——)b¼ 0;
(- - - -)b ¼ 0:05; (-�-�-�)b ¼ 0:1. Gray lines represent constant values of qcr .
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zj ¼ cos
pj
N

� �
: (86)

The usage of these points avoid certain errors like the Runge’s
phenomenon, wherein the errors increase exponentially as N !1.

Equations (84) and (85) can be differentiated to obtain the deriv-
atives, which in turn can be substituted into the Orr–Sommerfeld sys-
tem of equations and boundary conditions to obtain a generalized
eigenvalue problem of the form

Ax ¼ cBx: (87)

This eigenvalue problem was solved in MATLABVR , using the QZ algo-
rithm. By substituting the boundary conditions in rows A and B, we
obtain an eigenvalue column vector of dimensions N1 þ N2 þ 3. Due
to the presence of empty rows in matrix B, some values in the eigen-
value matrix are singular.

VII. RESULTS AND DISCUSSION

In this section, we present the stability behavior of two-layered
flows in a horizontal channel. Before carrying out study, we first vali-
dated the results obtained from our numerical calculations with the
symptotic calculations of Kushnir et al.,6 as well as the numerical
results of Yiantsios and Higgins,3 and the comparisons are presented
in Tables II and III. The numerical values of the complex wave speed
of the least stable modes in the no-slip case predicted by our numerical
code are very much in agreement with those predicted by Yiantsios
and Higgins.3 In Fig. 6, the imaginary part of the eigenvalue is scaled
by the value of ci obtained from the long wavelength analysis
[Eq. (70)] and is plotted against kRe2 for different values of slip length
b. We notice that, for small values of kRe2, there is a good correlation
between the values obtained analytically, and the numerical results.

Figure 7 shows a portion of discrete eigenvalues for a non-zero
wavenumber (k¼ 1), in the (cr; ci) plane. In the absence of viscosity

effects (m¼ 1), we obtain the classical Y-shaped eigenspectrum. Three
distinct branches of eigenvalues are obtained. The set of eigenvalues
toward the left of the spectrum, with the values of cr going close to
zero, is the shear modes of instability. The set of eigenvalues, whose
values of cr tend toward one, are identified as the interfacial modes of
instability. A more detailed analysis of the various structures associated
with the two modes of instability is presented in the work of Kaffel
and Riaz.7 The eigenspectrum is plotted by taking different values of
slip into account (b ¼ 0; 0:05; 0:1). It is evident that the most unstable
shear mode, which takes the value of c ¼ 0:2345þ 0:003 397i in the
no-slip case, becomes stable upon the introduction of slip. As the value
of slip length increases, the imaginary part of the eigenvalue decreases.
For b ¼ 0:1, the most unstable shear mode is c ¼ 0:3351� 0:016 01i.
This confirms that slip has a stabilizing effect on high Reynolds

TABLE II. Comparison between the present asymptotic and numerical solutions, and Kushnir et al.6 asymptotic results, for m ¼ 100; r ¼ 2;S ¼ 25 000
ð1þnÞRe22

; k ¼ 0:001
ð1þnÞ.

n Re2 Fr2 Asymptotic solution (Kushnir et al.)6 Analytical results [Eq. (70)] Numerical results (present work)

1/2 4.3269 0.025 275 0.253 063 45þ 0.000 126 022 92i 0.253 063 65þ 0.000 126 023 14i 0.253 063 45þ 0.000 126 567 79i
1/2 4.3269 0.002 527 0.253 063 45þ 0.000 072 337 34i 0.253 063 63þ 0.000 072 326 22i 0.253 063 63þ 0.000 072 959 63i
3 26.2 17.5727 6.218 727þ 0.001 810 625i 6.218 746þ 0.001 810 636i 6.218 751þ 0.001 810 644i
3 26.2 1.757 27 6.218 727þ 0.001 573 444i 6.218 746þ 0.001 573 453i 6.218 751þ 0.001 573 463i

TABLE III. Comparison of the complex wave speed with Yiantsios and Higgins’ analysis3 (m¼ 5, n¼ 1, r¼ 1).

k Re2 kS Numerical results-Yiantsios and Higgins3 Numerical results (present work)

10 1 1 0.999 98–0.008 199i 0.999 982–0.008 199i
10 5 1 0.999 56–0.041 184i 0.999 561–0.041 184i
10 1 2 0.999 96–0.016 537i 0.999 964–0.016 537i
10 5 2 0.999 07–0.083 491i 0.999 073–0.083 491i
20 1 1 0.999 997–0.004 145i 0.999 997–0.004 145i
20 5 1 0.999 929–0.020 75i 0.999 929–0.020 75i
20 1 2 0.999 994–0.008 312i 0.999 994–0.008 312i
20 5 2 0.999 855–0.041 664i 0.999 855–0.041 664i

FIG. 6. A plot of imaginary part of the wave speed ci scaled by c1 obtained from
the long wavelength analysis, as a function of kRe2 Flow parameters: m¼ 30,
r ¼ 100, n¼ 0.1, Re2¼ 5000, S¼ 0.0125, F¼ 0.0763; (——)b¼ 0; (- - - - -)
b ¼ 0:05; (-�-�-�-�-)b ¼ 0:1.
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number flows in the absence of viscosity differences between the
phases, gravity effects, and surface tension.

In Figs. 8(a) and 8(b), we plot the neutral stability curve for the
interfacial and the shear mode, respectively, in the plane of Reynolds
number Re2 and wavenumber k. We choose to neglect the effect of
gravity and interfacial surface tension (F ¼S ¼ 0Þ, and the fluid
layers are of equal densities (r ¼ 1). We observe a stabilizing influence
of slip on both the interfacial and shear modes. In Fig. 8(a), it is
observed that the interfacial mode is unstable to disturbances of all
wavelengths, beyond a particular value of critical Reynolds number.
Here, we notice that the value of critical Reynolds number increases
from Recr ¼ 21 in the no-slip case, to Recr ¼ 24, when a slip length
b ¼ 0:1 is introduced. With increase in b, the region of stability dis-
plays a growth. In Fig. 8(b), we obtain the well-known neutral stability
curve for plane Poiseuille flow. Upon introduction of slip, it is
observed that neutral stability curve gets shifted toward larger values
of Reynolds number, thus indicating a decrease in the unstable region
of flow. Here, the critical Reynolds number Recr increases from 2800
in the no-slip case to 4000, when a slip length b ¼ 0:02 is introduced.
The relation between slip length b and critical Reynolds number is bet-
ter exemplified in Fig. 9. Our results are in agreement with the analysis
of Lauga and Cossu,24 who carried out a stability analysis of a plane
Poiseuille flow in a slippery channel.

Figures 9(a) and 9(b) display a plot of the critical Reynolds num-
ber with slip length, for the interfacial and shear mode, respectively, in
the absence of gravity and surface tension effects. We notice that, for
both interfacial and shear nodes, the critical value of Reynolds number
increases with increase in slip length. Here, slip brings about a stabiliz-
ing effect in the system, by delaying the transition to instability.

When the viscosity and thickness ratios are taken such that the
point (m; n) is located close to the neutral stability curve, as shown in
Fig. 3(a), we observe that the introduction of slip has a completely
reversible effect on the stability of the fluid system, as shown in Figs.
10(a)–10(d). Here, the most unstable mode of the system ci decreases
in magnitude with increase in slip, upto a critical value of slip length

(b ¼ 0:02). This is illustrated in Figs. 10(a) and 10(b). When the value
of slip length is increased beyond this value, the regions of stability are
reversed—the fluid region which was previously stable, becomes
unstable, and vice versa. We also notice that a subsequent increase in
the slip length beyond this critical value increases the magnitude of the
most unstable mode ci, that is, it destabilizes the flow in the unstable
region and brings about a stabilization of the flow in the stable region.
This phenomenon is illustrated more clearly in Figs. 10(c) and 10(d).

A similar investigation is made, now considering a slightly differ-
ent value of viscosity ratio m ¼ 2:3, such that the chosen parameters
lie on the left of the neutral stability curve for the no-slip case, shown
in Fig. 3. All the other parameters are the same as in Fig. 10(a). The
slip length varies from b¼ 0 to b¼ 0.1, and the contour plots of the
results obtained are shown in Figs. 11(a)–11(d). We notice that the
magnitude of the most unstable mode of the system ci increases with
increase in slip length. Thus, slip brings about a stabilization in the

FIG. 7. Eigenspectrum for plane Poiseuille flow. Flow parameters: n¼ 1, m¼ 1,
F¼S¼ 0, r ¼ 1, Re2¼ 10 000 (�)—b¼ 0; (þ)—b¼ 0.05; (�)—b¼ 0.1.

FIG. 8. Neutral stability diagram in the plane of Reynolds number Re and wave-
number k for (a) interfacial mode (—-) b¼ 0; (- - -) b ¼ 0:05; (-�-�-�) b ¼ 0:1 (b)
shear mode (—-) b¼ 0; (- - -) b ¼ 0:01; (-�-�-�) b ¼ 0:02. Flow parameters:
m¼ 0.75, n¼ 2, F¼S¼ 0, r ¼ 1 Stable regions are denoted by “S,” unstable
regions by “U.”
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stable regions of flow and a subsequent destabilization in the unstable
regions of flow. However, there is no change in the regions of stability
upon introduction of slip, for the chosen values of b. We also note
that, for our chosen value of viscosity ratio, there is no reversal in the
regions of stability, which was previously observed in Fig. 10(a).

In Fig. 12, the neutral stability diagram is plotted in the plane of
wavenumber k and thickness ratio n for the interfacial mode. The two
layers are chosen to have the same densities (r ¼ 1), and the effects of
gravity and interfacial surface tension are ignored (F ¼S ¼ 0). The
lower layer is taken to be very viscous when compared to the upper
layer (m ¼ 20). The curve plotted by the solid lines is presented in the
analysis conducted by Yiantsios and Higgins.3 They highlighted the
existence of a straight line at a constant thickness ratio, occurring at
n ¼

ffiffiffiffi
m
p

. The flow is neutrally stable along this line for all values of k.
Upon introduction of slip (b¼ 0.1), we observed that the straight line
corresponding to neutral stability is shifted to the right, resulting in a
stabilizing effect for values of (k > 0:7), and a destabilizing effect for
values below that.

When the fluid densities are unequal, gravity effects come into
play. Yiantsios and Higgins3 showed that, in the case of a stabilizing

density stratification (F > 0; r > 1), an increase in the Froude number
results in the increase in growth of stable regions of flow, at the
expense of the unstable regions. The introduction of slip has a stabiliz-
ing, as well as a destabilizing effect on a density stratified flow system.
Figure 13 shows a neutral stability diagram with density ratio r¼ 1.5,
and F¼ 0.1, with the value of slip length taken to be b ¼ 0:1. The
curve plotted by the solid lines was depicted in the analysis of
Yiantsios and Higgins.3 The other parameters are the same as those
used in Fig. 12. We observe that, as the slip length b is increased, the
unstable region of instability at high values of density ratio n decreases.
However, the unstable regions of instability for disturbances of wave-
numbers k < 1 increase slightly with increase in b. This is shown by a
shift in the neutral stability curve toward the right.

When slip is introduced to a destabilizing density stratified
flow (F < 0; r < 1), it results in further destabilization of the flow
system. This is displayed in Fig. 14, where a neutral stability curve
is plotted with values F ¼ �0:01; r ¼ 0:5, and the other parame-
ters are the same as in Fig. 12. We observe that the stable region of
flow at high thickness ratios is reduced upon introduction of slip
(b ¼ 0:1).

Figure 15(a) shows a plot of the neutral stability curve in the
plane of wavenumber k and thickness ratio n, for a flow system with
equal densities (r ¼ 1) and a more viscous upper layer (m ¼ 0:05).
The Reynolds number is taken to be 1 (Re2¼ 1), and the effects of
gravity and interfacial surface tension are ignored (F ¼ 0;S ¼ 0). It
is observed that slip brings about a destabilizing effect in the flow sys-
tem. An increase in the value of slip length b leads to an overall
decrease in the stable regions of flow, to the right of the neutral stabil-
ity line given by n ¼

ffiffiffiffi
m
p

. We also observe that this line of neutral sta-
bility gets shifted to the left as b increases. As the Reynolds number is
increased, there is a drop in the region of stability, as was observed by
Yiantsios and Higgins.3 Figure 15(b) shows the effect of slip on the
flow system, taking Reynolds number Re2 to be 10. Similar to the pre-
vious case, we observe a decrease in the stable regions of flow.

When the effect of interfacial surface tension is introduced to the
flow system characterized by the set of parameters used in Fig. 12, it
brings about a stabilizing effect. The solid curves in Figs. 16(a) and
16(b) represent the neutral stability curves for values of surface tension
parameter S ¼ 0:01 and S ¼ 10. It is observed that there is a break
in the straight line given by n ¼

ffiffiffiffi
m
p

, and a marked increase in regions
of stability is seen as the surface tension effect is increased. This was
reported in the analysis of Yiantsios and Higgins.3 The dashed curve
indicates the neutral stability curve generated at b ¼ 0:1. Wall slip
plays a destabilizing role in the flow system, as indicated by a right-
ward shift of the neutral stability curves, thus increasing the unstable
region of flow at the expense of the stable regions. However, for large
values of thickness ratios, there is a decrease in the unstable regions of
flow at high wavenumbers, signifying a stabilizing effect of slip for
these parameter ranges.

It is interesting to observe the effect of wall slip on a stabilizing
gravity-stratified flow system (F > 0; r > 1), when the viscosity of
the upper layer is significantly higher than the lower layer (m ¼ 0:05).
This is displayed in Figs. 17(a)–17(d). A similar series of plots were
shown in Yiantsios and Higgins’ paper3 for the no-slip case. The plots
shown are for different values of Froude number F, ranging from
F¼ 0.5 to F¼ 2. The dotted lines represent the neutral stability
curves for b¼ 0.1.

FIG. 9. A plot of critical Reynolds number for linear stability as a function of slip
length b for (a) interfacial mode and (b) shear mode Flow parameters are same as
in Fig. 8.
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It is observed that the introduction of slip has a stabilizing as well
as destabilizing effect on the flow system, depending on the set of
parameters used. We observe that the introduction of slip stabilizes
certain unstable regions of flow, as observed when the unstable region
of flow at low wavenumbers and thickness ratios in figure (c), and the
regions of flow at high wavenumbers and thickness ratios in (b), (c),
and (d) are reduced. Slip also brings about a destabilizing effect at high
thickness ratios. It is known that increasing the value of F brings
about a stabilizing influence in the system. Incorporating wall slip in
the case destabilizes almost the entirety of the system, with the excep-
tion being at large wavenumbers.

VIII. SUMMARY AND CONCLUSIONS

In this study, the stability characteristics of a plane Poiseuille flow
with slippery channel walls are studied. The equations of motion for
the base flow state are derived, and a linear stability analysis is carried
out to arrive at the 4th-order Orr–Sommerfeld equations for the fluid
layers. An asymptotic analysis is conducted for wavenumbers in the

long wavelength limit. The Orr–Sommerfeld equations are solved
numerically using a multi-domain Chebyshev Collocation spectral
method. The solutions obtained from numerical simulations are vali-
dated with the asymptotic results in the long wavelength limit.

We observe that the introduction of slip plays a dual role in the
stability of a flow system—it brings about both stabilizing and desta-
bilizing effects, depending on the flow parameters chosen and the
value of slip length b taken. When the lower layer is more viscous
than the upper layer (m > 1), an introduction of slip leads to a
destabilization of the flow system, as a result of an increase in the
unstable regions of flow at the expense of the stable regions. When
the upper layer is the more viscous of the two (m < 1), we observe
the emergence of new stable regions of flow upon introduction of
slip. We also observe the emergence of an unstable region of flow,
when the lower layer is significantly smaller than the upper layer
(n < 0:01).

It is also observed that the critical value of Reynolds number for
instability (Recr) increases with increase in slip length for both the

FIG. 10. Contour plot of the most unstable mode ci in the plane of Reynolds number Re2 and wavenumber k for the interfacial mode Flow parameters: m¼ 2.25, n¼ 1.51,
F¼S¼ 0, r ¼ 1 (a) b¼ 0, (b) b¼ 0.01, (c) b¼ 0.025, (d) b¼ 0.1. The color bar represents the value of ci—the most unstable mode of the system.
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FIG. 11. Contour plot of the most unstable mode ci in the plane of Reynolds number Re2 and wavenumber k for the interfacial mode Flow parameters: m¼ 2.3, n¼ 1.51,
F¼S¼ 0, r ¼ 1 (a) b¼ 0, (b) b¼ 0.01, (c) b¼ 0.025, (d) b¼ 0.1.

FIG. 12. Neutral stability diagram plotted in the plane of wave number k and thick-
ness ratio n for the interfacial mode. Flow parameters: Re2¼ 10, m¼ 20, r ¼ 1,
F¼ 0, S¼ 0. Stable regions are denoted by S, unstable regions by U (—)b¼ 0;
(- - -)b ¼ 0:1.

FIG. 13. Neutral stability diagram for the interfacial mode. Flow parameters:
Re2¼ 10, m¼ 20, r ¼ 1.5, F¼ 0.1, S ¼ 0 Stable regions are denoted by S,
unstable regions by U (—)b¼ 0; (- - -)b ¼ 0:1.
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shear and interfacial modes of instability, in the absence of gravity and
surface tension effects. This highlights the stabilizing influence of slip
on the flow system.

In the case of a flow system with an extremely viscous bottom
layer when compared to the top layer (m ¼ 20), we observe a destabi-
lizing effect of slip for small wavenumber disturbances (k < 0:8), even
in the presence of stabilizing interfacial surface tension (S > 0) and
gravity effects (r > 1;F > 0). However, for relatively large wavenum-
ber disturbances [k ¼ Oð1Þ], the introduction of slip acts as a stabiliz-
ing influence on the system, which is observed in the form of a
decrease in the unstable regions of flow. When gravity effects are
destabilizing (r < 1;F < 0), there is a destabilizing effect on the sys-
tem upon the introduction of slip.

When the viscosity of the top layer is substantially higher than
the bottom layer (m ¼ 0:05), we notice that an increase in the slip
length b acts as a destabilizing influence on the flow system, as
observed by the increase in the unstable regions of flow at the excep-
tion of the stable regions. When stabilizing gravity effects are

FIG. 14. Effect of slip on a destabilizing density two-layered flow. Flow parameters:
Re2 ¼ 10, m¼ 20, r ¼ 0.5, F¼�0.01, S¼ 0. Stable regions are denoted by S,
unstable regions by U (—)b¼ 0; (- - -)b ¼ 0:1.

FIG. 15. Neutral stability diagram for the interfacial mode for (a) Re2¼ 1 (b)
Re2 ¼ 10. Flow parameters: F ¼ 0, m¼ 0.05, r ¼ 1, S ¼ 0. Stable regions are
denoted by S, unstable regions by U (—)b¼ 0; (- - -)b ¼ 0:01; (-�-�-)b ¼ 0:02.

FIG. 16. Neutral stability diagram for the interfacial mode for (a) S¼ 0.01 (b)
S¼ 10. Flow parameters: Re2¼ 10, m¼ 20, r ¼ 1. Stable regions are denoted
by S, unstable regions by U (—)b¼ 0; (- - -)b ¼ 0:1.
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considered (r > 1;F > 0), the introduction of slip has a predomi-
nantly destabilizing effect on the flow system.

SUPPLEMENTARY MATERIAL

See the supplementary material for coefficients given in Eqs. (56)
and (69) obtained in zeroth and first order solutions of long-wave
analysis.
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