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Inertio–elastic instability of a vortex column
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We analyse the instability of a vortex column in a dilute polymer solution at large Re
and De with El = De/Re, the elasticity number, being finite. Here, Re = Ω0a2/ν and
De = Ω0τ are, respectively, the Reynolds and Deborah numbers based on the core angular
velocity (Ω0), the radius of the column (a), the total (solvent plus polymer) kinematic
viscosity (ν = (μs + μp)/ρ with μs and μp being the solvent and polymer contributions
to the viscosity) and the polymeric relaxation time (τ ). The stability of small-amplitude
perturbations in this distinguished limit is governed by the elastic Rayleigh equation
whose spectrum is parameterized by E = El(1 − β), β being the ratio of the solvent
to the solution viscosity. The neglect of the relaxation terms, in the said limit, implies
that the polymer solution supports undamped elastic shear waves propagating relative to
the base-state flow. Unlike the neutrally stable inviscid case, an instability of the vortex
column arises for finite E due to a pair of elastic shear waves being driven into a resonant
interaction under the differential convection by the irrotational shearing flow outside the
core. An asymptotic analysis for the Rankine profile shows the absence of an elastic
threshold for this instability. The growth rate is O(Ω0) for order unity E, although it
becomes transcendentally small for E � 1, being O(Ω0E2e−1/E1/2

). An accompanying
numerical investigation shows that the instability persists for smooth monotonically
decreasing vorticity profiles, provided the radial extent of the transition region (from the
rotational core to the irrotational exterior) is less than a certain E-dependent threshold.

Key words: waves in rotating fluids, vortex instability

1. Introduction

The distinguishing trait of viscoelastic fluids is an underlying microstructure that often
relaxes on macroscopic time scales. For dilute polymer solutions this microstructure
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consists of non-interacting macromolecules, the elasticity being endowed by the prolonged
relaxation of these molecules on times scales which may range from milliseconds to
seconds, and even longer, depending primarily on the polymer molecular weight and
solvent viscosity. This elasticity has several striking consequences including rod climbing,
die swell and the tubeless siphon effect which are well documented in textbooks (Bird,
Armstrong & Hassager 1987).

The role of elasticity in either suppressing or triggering instabilities in various flows has
also been of immense interest due to implications for the polymer and food processing
industries. Approximately three decades back, the study of instabilities in polymer
solutions received an impetus with the discovery of purely elastic instabilities in flows with
curved streamlines, a scenario that includes the canonical viscometric flow geometries
(Larson, Shaqfeh & Muller 1990; Larson 1992; Shaqfeh 1996). Such instabilities are driven
by base-state hoop stresses, and the instability sets in above a threshold Deborah number
(De), a dimensionless parameter denoting the ratio of the elastic to the flow time scales,
even in the absence of inertia. For large curvature ratios, a statistically stationary disorderly
flow results for De values above the threshold, termed elastic turbulence (Groisman &
Steinberg 2000).

Elasticity also plays an important role in flows of polymer solutions where inertia is
significant; a canonical and important example being the widely studied phenomenon of
turbulent drag reduction (Lumley 1969; Virk 1975; White & Mungal 2008). Simulations
of polymers in turbulent channel flow show suppression of the coherent structures
characteristic of the buffer layer, such as counter-rotating vortices and streaks aligned with
the streamwise direction, in turn leading to a reduced wall shear stress (Sureshkumar, Beris
& Handler 1997; Dubief et al. 2004; White & Mungal 2008). Turbulent drag reduction
corresponds mostly to the high Re and moderate De regimes. More recently, a novel
spatiotemporally chaotic state, dubbed elasto-inertial turbulence, has been shown to arise
directly from the laminar state for moderate Re and high De, and may be closely linked
to the asymptotic regime of maximum drag reduction (Samanta et al. 2013; Choueiri,
Lopez & Hof 2018; Garg et al. 2018; Chandra, Shankar & Das 2018; Shekar et al. 2019;
Chaudhary et al. 2021). These observations call for a deeper mechanistic understanding of
the inertial flows of polymeric solutions. The general question of hydrodynamic stability
in the (Re, De) plane is thus an important one, and novel behaviour is expected at large Re
and De (Graham 2014; Chaudhary et al. 2019). Towards this goal, in this paper, we study
the linear stability of a vortex column in an elastic liquid (a dilute polymer solution) at
large De and Re with the ratio De/Re, known as the elasticity number (El), being finite.
We demonstrate that the vortex column is susceptible to a novel inertio–elastic instability
in this limit.

The early numerical investigations of curvilinear flows in the large Re, De regime
concern the effects of elasticity on flow stability in the Taylor–Couette (Thomas & Walters
1964, 1966; Beard, Davies & Walters 1966) and Dean geometries (Thomas & Walters
1965) for the inertially dominant case. Apart from analysing the destabilizing effect of
elasticity on the centrifugal mode, these early studies led to the identification, for finite El,
of the so-called inertio–elastic mode in Taylor–Couette flow (Avgousti & Beris 1993) that,
unlike the centrifugal mode, had an oscillatory character at the onset. More recently, it
has been shown that the inertio–elastic mode exists for all Taylor–Couette configurations
with a monotonically decreasing angular velocity profile (Ogilvie & Potter 2008).
There have been additional investigations of the stability of free shear flows in the
inertio–elastic regime. Yarin (1997) studied the effect of polymer additives on the
dynamics of a vortex filament in an ambient shear flow, and showed that vortex stretching
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associated with the bending mode gets arrested by high longitudinal elastic stresses
generated due to stretching of the deformed filament. Azaiez & Homsy (1994a) analysed
the instability of a shear layer, characterized by a hyperbolic tangent velocity profile,
in a dilute polymer solution. The fluid rheology was modelled using both quasilinear
(Oldroyd-B, corotational Jeffreys) and nonlinear (Giesekus) constitutive relations. The
authors were the first to consider the aforementioned distinguished limit, De, Re → ∞
with El finite for the Oldroyd-B case, and derived the elastic Rayleigh equation that
governs the stability of small-amplitude perturbations to a general parallel shearing
flow in this limit. A numerical solution of this equation showed that, for finite El,
elasticity stabilized the original inertial (Kelvin–Helmholtz) instability of the shear layer
by truncating the unstable range of wavenumbers. As argued by Hinch (appendix of Azaiez
& Homsy (1994a)), the stabilizing action of elasticity for long wavelength perturbations is
akin to the action of surface tension in damping out transverse modulations of a stretched
membrane, the tension being on account of the stretched polymers in the region of high
shear (the ‘membrane’). Later, motivated by the stability of vortical structures that result
from the roll up of an elastic shear layer, Azaiez & Homsy (1994b) and Haj-Hariri &
Homsy (1997) studied the role of elasticity on the stability of an unbounded linear flow
with elliptical streamlines. Earlier investigations of high-Re flows of Newtonian fluids with
elliptical streamlines (Kerswell 2002) show that the instability of such flows is related to
the so-called elliptic instability where a vortex column, subject to an ambient straining
flow, is destabilized due to a resonant interaction between pairs of Kelvin modes (Moore
& Saffman 1975). These resonances correspond to points of intersection of the Kelvin
dispersion curves, and can only occur in three dimensions (a finite axial wavenumber). In
the elastic case, however, Haj-Hariri & Homsy (1997) found the instability to exist even in
two dimensions.

The study most closely related to the current one is that of Rallison & Hinch (1995)
who examined the stability of submerged planar and axisymmetric elastic jets. In addition
to the expected elasticity-induced modification of the inertial instabilities known for these
flow configurations, the authors identified an instability that owes its origin to an interplay
of elasticity and inertia. Elastic stresses allow for the propagation of transverse shear
waves along the otherwise unperturbed streamlines, and the differential convection by the
base-state shear leads to the resonant interaction of a shear-wave pair, in turn leading to
exponential growth. The inertio–elastic instability of the vortex column studied here has a
similar underlying physical mechanism. An important advantage of the vortex column
configuration is that it is inertially stable; as shown recently, the Rankine vortex only
supports neutrally stable discrete and continuous spectrum (CS) modes, a combination
of which may at best lead to algebraic growth for short times (Roy & Subramanian
2014b; Roy 2013); analogous results hold for smooth monotonically decaying vorticity
profiles. Hence, unlike all earlier efforts (Azaiez & Homsy 1994a; Rallison & Hinch
1995; Haj-Hariri & Homsy 1997) where the flow configurations are also susceptible to
purely inertial instabilities, the novel inertio–elastic instability in the vortex case exists in
isolation. Further, for both the jet and vortex cases, the inertio–elastic instability appears
to require a sharp spatial transition from a region that strongly stretches the polymer
molecules to a relatively quiescent region where the polymer molecules are close to their
equilibrium coil configurations.

In this paper, we examine the aforementioned inertio–elastic instability, analytically for
a Rankine vortex, and numerically for other smooth monotonically decreasing vorticity
profiles, for two-dimensional disturbances with zero axial wavenumber. The examination
of smooth vorticity profiles allows one to verify the requirement of a sharp transition
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region which, for a vortex column, would be from a central region of solid-body rotation
to an irrotational point-vortex exterior. The paper is organized as follows. In § 2, starting
from the equations of motion and the Oldroyd-B constitutive relation, we derive the
governing linearized equations for small-amplitude perturbations at finite De and Re. Next,
we obtain the elastic Rayleigh equation in plane polar coordinates that governs the stability
of a base-state vortical flow to infinitesimal perturbations in the limit Re, De → ∞ with
El finite. The dimensionless parameter governing stability in this distinguished limit is
E = El(1 − β). In § 3, we examine the exponential instability that arises for an elastic
vortex column via a shear wave resonance; this involves numerically investigating the
smooth vorticity profiles above for finite E (§ 3.1), and an analytical-cum-numerical
investigation of the Rankine profile for small E (§ 3.2). The discrete unstable mode for the
Rankine profile is closely related to the elastic CS for small E. In this limit, it propagates
with an angular speed slower than that of the core by an amount of O(E1/2) and with a
transcendentally small growth rate of O(E2e−E−1/2

), in units of the core angular velocity,
both determined using a matched asymptotics expansion approach; the predictions are in
good agreement with numerical results, obtained using a shooting method, for sufficiently
high resolution. The transcendental scaling above leads to a precipitous drop in the growth
rate for small E in the numerics, similar to that observed earlier, but not analysed, for
the submerged elastic jet (Rallison & Hinch 1995). Numerical results for more general
vorticity profiles, where the discontinuity in the base-state vorticity of the Rankine vortex
is smoothened into a transition layer of width d, show that the instability persists for
non-Rankine profiles, and that the growth rate is of the order of the core angular velocity
for finite E. Finally, in § 4, we summarize the main results with a discussion of future
lines of research that emerge from this effort. The vortex stability problem analysed here
also has astrophysical ramifications owing to the direct analogy between the governing
equations of polymer dynamics for large De and those of magnetohydrodynamics (MHD)
at large magnetic Reynolds numbers (Rem); and these are also discussed in § 4.

2. Problem formulation: the elastic Rayleigh equation

The equations of motion and continuity for a polymer solution of density ρ are given by

ρ
Dv

Dt
= −∇p∗ + ∇ · σ d, (2.1)

∇ · v = 0, (2.2)

where σ d, the deviatoric stress, is assumed to satisfy the Oldroyd-B constitutive equation
and the rescaled pressure, p∗, accounts for the additional (osmotic) pressure induced
by polymer molecules. The Oldroyd-B relation is one of the simplest constitutive
relations that offers a semiquantitative description of nearly constant viscosity dilute
polymer solutions known as Boger fluids (James 2009), and corresponds to a microscopic
description where the polymer molecules are modelled as non-interacting Hookean
dumbbells (Bird et al. 1987; Larson 1988). For simple shear flow, the Oldroyd-B relation
predicts a constant shear viscosity and first normal stress difference coefficient, and a zero
second normal stress difference. It is convenient to write σ d in (2.1) as the sum of solvent
and polymer contributions, σ d = 2μsE + GA. Here, E = ∇v + (∇v)† is the rate of strain
tensor with μs being the solvent viscosity. The polymer stress contribution is proportional
to the shear modulus G with the conformation tensor A ∝ 〈RR〉, R being the dumbbell
end-to-end vector. Since the dumbbells respond affinely to an imposed velocity field in the
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absence of relaxation, A is governed by

�
A = −1

τ
(A − I), (2.3)

where τ is the relaxation time and ‘�’ denotes the upper-convected derivative defined by

�
X ≡ DX

Dt
− (∇v)† · X − X · (∇v), (2.4)

with D/Dt being the material derivative. One may now rewrite the governing set of
equations as

ρ
Dv

Dt
= −∇p∗ + μs∇2v + G∇ · A, (2.5)

∇ · v = 0, (2.6)

DA
Dt

− (∇v)† · A − A · (∇v) = −1
τ
(A − I). (2.7)

To examine the linearized evolution of two-dimensional disturbances in the swirling
flow of an Oldroyd-B fluid, we write v = ū + u, A = Ā + a for the velocity and polymer
stress fields with the overbar quantities denoting the unperturbed base state. In the
regime of interest in this paper (Re, De → ∞), any general axisymmetric swirling flow
ū = (0, Ω(r)r, 0), with Ω(r) the angular velocity, is an exact solution of the equations of
motion. The associated base-state stresses are given by

Ā =
[

1 rΩ ′τ
rΩ ′τ 1 + 2(rΩ ′τ)2

]
(2.8)

in a cylindrical coordinate system where ′ denotes a radial derivative. The base-state hoop
stress component (Aθθ ), on account of the quadratic scaling with the shear rate, becomes
dominant for large shear rates (rΩ ′τ � 1) except when Ω ′ = 0 which corresponds to
the trivial case of solid-body rotation. In what follows, we analyse the linear stability of
the Rankine vortex profile for which Ω(r) = Ω0 for r < a (the rigidly rotating core) and
Ω(r) = Ω0(a/r)2 for r ≥ a (the irrotational exterior). We also examine the linear stability
of more general vorticity profiles numerically.

The governing equation for the perturbation velocity field is

∂u
∂t

+ Ω
∂u
∂θ

+ u · ∇ū = − 1
ρ

∇p + νs∇2u + G
ρ

∇ · a. (2.9)

For the two-dimensional perturbations under consideration, u ≡ (ur, uθ ), and the
formulation is more convenient in terms of the axial vorticity, wz, which satisfies the
following equation:(

∂

∂t
+ Ω

∂

∂θ

)
wz + urDZ = νs∇2wz + G

ρ
{∇ ∧ (∇ · a)}z

= νs∇2wz + G
ρ

[
1
r2

∂2

∂r∂θ
(rN1) + 1

r
∂

∂r

(
1
r

∂

∂r
(r2arθ )

)
− 1

r2
∂2

∂θ2 arθ

]
. (2.10)

Here, DZ = rΩ ′′ + 3Ω ′ is the base-state vorticity gradient and N1 = aθθ − arr is
the perturbation to the first normal stress difference. For the Rankine vortex, the
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base-state vorticity (Z) and vorticity gradient (DZ) are Z(r) = 2Ω0H(a − r) and DZ(r) =
−2Ω0δ(r − a), with H(z) and δ(z) being the Heaviside and Dirac delta functions,
respectively.

The perturbation elastic stress components that appear in (2.10) obey the following
equations: (

∂

∂t
+ Ω

∂

∂θ
+ 1

τ

)
arr − 2

{
Ārr

∂ur

∂r
+ Ārθ

r
∂ur

∂θ

}
= 0, (2.11)

(
∂

∂t
+ Ω

∂

∂θ
+ 1

τ

)
arθ +

{
Ā′

rθur − Ārθ

(
∂ur

∂r
+ ur

r

)
− Āθθ

r
∂ur

∂θ

}

+
{

Ārr

(
uθ

r
− ∂uθ

∂r

)
− Ārθ

r
∂uθ

∂θ

}
− rΩ ′arr = 0, (2.12)

(
∂

∂t
+ Ω

∂

∂θ
+ 1

τ

)
aθθ − 2

{
Ārθ

(
∂uθ

∂r
− uθ

r

)
+ Āθθ

r
∂uθ

∂θ

}

+
(

Ā′
θθ − 2Āθθ

r

)
ur − 2rΩ ′arθ = 0. (2.13)

We use the vortex core radius a as the length scale and the turnover time based on
the core angular frequency Ω−1

0 as a time scale. Next, assume a normal mode form,
h(r, θ) = ĥ(r)ei(mθ−ωt), for the various perturbation fields, where m is the azimuthal
wavenumber and ω is the complex-valued frequency with Im(ω) > 0 corresponding to
an exponentially growing perturbation. Thus, from (2.10) and (2.11)–(2.13), we obtain the
following non-dimensional equations governing the r-dependent perturbation amplitudes:

ΣrL(rûr) + mrDZûr = i
Re

rL2(rûr) − im
Ma2

e

[
−mD∗N̂1 + iDD∗(rârθ ) + im2

r
ârθ

]
,

(2.14)

Σ2ârr = 2i
{

ĀrrD + imĀrθ

r

}
ûr, (2.15)

Σ2ârθ = −rĀrr

m
DD∗ûr −

{m
r

Āθθ + iĀ′
rθ

}
ûr + iârrrΩ ′, (2.16)

Σ2âθθ = −2rĀrθ

m
DD∗ûr − i

{
Ā′

θθ + 2ĀθθD
}

ûr + 2iârθ rΩ ′, (2.17)

where

D = d
dr

, D∗ = d
dr

+ 1
r
, Σ(r) = ω − mΩ(r) and Σ2(r) = ω − mΩ(r) + i

De
,

(2.18a–d)

and the non-dimensional base-state polymeric stresses are given by (2.8) with τ replaced
by De. Here, we have used the relation ŵz = (i/m)L(rûr) between the axial vorticity and
radial velocity perturbations for zero axial wavenumber with L = DD∗ − (m2 − 1)/r2

(Roy & Subramanian 2014b). The non-dimensional parameters in (2.14)–(2.17) are the
Deborah number, De = Ω0τ which is the ratio of the relaxation to the flow time scale, the
Reynolds number, Re = Ω0a2/ν based on the total viscosity μ = μs + μp = μs + Gτ
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and the elastic Mach number, Mae = Ω0a/celas where celas = √
G/ρ is the shear wave

speed in a quiescent elastic medium. (Note that De is used here instead of the Weissenberg
number which is sometimes used in both the drag reduction and elastic instability
literature; the distinction between the two parameters is not relevant in the present context.)
Similar to its counterpart in compressible flows, Mae may be interpreted as the ratio of a
characteristic flow velocity scale to the speed of propagation of infinitesimal amplitude
shear stress (or vorticity) fluctuations in a quiescent incompressible elastic medium. The
elastic Mach number may be written in terms of Re and De as Ma2

e = (1/(1 − β))DeRe,
β = μs/μ being the ratio of the solvent to the total viscosity, and for a fixed β, the
evolution of the perturbations, as governed by (2.14)–(2.17), depends therefore on Re
and De. Here β = 0 corresponds to a upper-convected Maxwell (UCM) fluid while
β = 1 corresponds to a Newtonian fluid; in the latter case, Mae → ∞, and (2.14) with
only the first term on the right-hand side is the Orr–Sommerfeld equation in cylindrical
coordinates.

The above system of equations may be combined into a single fourth-order differential
equation governing ûr, the cylindrical analogue of the viscoelastic Orr–Sommerfeld
equation that has been examined earlier in the context of plane parallel flows (Renardy
& Renardy 1986). Apart from discrete modes, for any finite De and Re, the system
(2.14)–(2.17), similar to the case of parallel shear flows, possesses a pair of continuous
spectra. The latter are given by r ε rc with rc defined by

Σ2(rc) = 0, (2.19)

Σ(rc) + i
βDe

= 0, (2.20)

where Σ2(r) and Σ(r) are as defined above (Renardy & Renardy 1986; Wilson, Renardy &
Renardy 1999; Kupferman 2005). For Re = ∞, there also arises the well known inviscid
CS, given by Σ(rc) = 0, and spanning the base-state range of angular velocities (Roy &
Subramanian 2014a,b). However, with Re finite and for a bounded domain, the continuous
spectra arise solely due to the additional viscoelastic terms (Chaudhary et al. 2019).

The relation (2.19) defines the Gorodtsov–Leonov (GL) CS (Gorodtsov & Leonov 1967),
named after the authors who originally discovered it for inertialess plane Couette flow of
a UCM fluid. Although usually studied in the aforementioned specific context owing to
its analytical tractability (Graham 1998), the GL spectrum continues to exist for finite Re,
and for both parallel shear flows and the azimuthal shearing flows considered here. Its
origin is the assumed local nature of the polymeric stress field in almost all constitutive
equations in polymer rheology (Bird et al. 1987). The evolution of the polymeric stress
field in the absence of centre-of-mass diffusion is, in fact, similar to that of the vorticity
field in the inviscid limit, and both cases, in principle, allow for arbitrarily large gradients
across streamlines (Roy & Subramanian 2014b,a). Based on this analogy, one expects CS
modes with singularities in the polymeric stress fields. The singular GL-eigenfunctions,
in addition to being convected with the flow velocity at r = rc, decay at a rate De−1 due
to relaxation, asymptoting to neutral stability for De → ∞. Further, similar to the plane
parallel case, the GL spectrum in cylindrical coordinates is characterized by the Frobenius
exponents 0, 1, 3 and 4, the streamline curvature being negligible on the length scales
defining the validity of the local Frobenius analysis. An additional CS arises due to a
finite solvent viscosity (Wilson et al. 1999), being pushed off to infinity in the UCM limit
(β → 0). Again, similar to the parallel flow case, this viscous singular CS has Frobenius
exponents – 0, 1, 2 and 3 − 2/β. The final fractional Frobenius exponent indicates the
existence of an algebraic branch point and an associated branch cut (Kupferman 2005).
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The CS eigenfunctions in this case require, therefore, a principal-finite-part interpretation
(Engevik 1971; Gakhov 1990; Roy & Subramanian 2014b).

We now proceed to the regime of interest, Re → ∞ with El = De/Re = ντ/a2 fixed, in
which case (2.14)–(2.17), with the neglect of the O(De−1) terms denoting microstructural
relaxation, yields the following equation governing ur:

Σ3[Σ(r2D2ûr + 3rDûr − (m2 − 1)ûr) + mrDZûr]

= 2m2EΩ ′[Σ2{r2Ω ′D2ûr + r(rΩ ′′ + DZ)Dûr

− (m2 − 1)Ω ′ûr} + mrΩ ′Σ{2rΩ ′Dûr + 3(DZ − 2Ω ′)ûr} + 2m2r2Ω ′3ûr], (2.21)

which is the elastic Rayleigh equation with E = El(1 − β); the terms proportional to
E in (2.21) denote the contributions due to elasticity. Thus, the original fourth-order
ordinary differential equation resulting from (2.14)–(2.17) reduces to a second-order
ordinary differential equation in the limit De → ∞, El, β fixed, implying that the neglect
of relaxation is a singular limit. From what is known for the eigenfunctions of the Rayleigh
and Orr–Sommerfeld equations (see section 5 in Roy & Subramanian (2014a)), one
expects a non-trivial relationship between the spectrum of the elastic Rayleigh equation
and that associated with the full set of equations for large but finite De. The viscosity
ratio β no longer plays a fundamental role as for finite De where a non-zero β leads to an
additional CS; in the above limit, one may interpret a change in β in terms of a rescaled E.

For typical inertio–elastic flows, El is the governing parameter only for small but finite
De when relaxation effects are dominant and the fluid rheology is describable in terms
of a retarded motion expansion (see, for instance, Dabade, Navaneeth & Subramanian
(2015)). For large De, relaxation is unimportant with the dynamics in the polymeric fluid
at finite Re being governed by elastic shear waves damped due to the solvent viscosity
alone. In this limit, Mae becomes the governing parameter (Joseph 2007). It is thus a
little surprising that in the limit of large De considered here, El rather than Mae turns
out to be relevant for (2.21), suggesting the continued importance of relaxation (El ∝ τ ).
However, El in (2.21) is more appropriately interpreted in terms of a viscoelastic Mach
number where the sonic speed corresponds to shear waves propagating in a prestressed
elastic medium. The base-state stress level is Āθθ ∼ O(De2) as given earlier, and the shear
wave speed relevant to the perturbation dynamics is given by

√
GĀθθ /ρ ∼ De

√
G/ρ. The

relevant Mach number is O(De).O(
√

G/ρ/Ω0a) ∼ (De/Re)1/2 ∼ El1/2. Thus, the rather
paradoxical dependence on El, and thence on the relaxation time, occurs via the shear
wave speed being dependent on the base-state hoop stress. Note that the assumption of the
base-state stresses being dependent on the relaxation time, but the perturbations not being
sensitive to it, is analogous to the usual assumption for Newtonian fluids where the base
state is assumed to be determined by slow viscous diffusion at large Re, but the latter is
nevertheless assumed to play a negligible role in the dynamics of perturbations.

One may rewrite (2.21), in a compact form, in terms of the radial displacement (ξ ≡
iûr/Σ) as

D[r3PDξ ] = r(m2 − 1)Pξ, (2.22)

where P = Σ2 − 2m2EΩ ′2. This form was first identified by (Rallison & Hinch 1995) in
the context of parallel shearing flows. From (2.22), one may easily construct the following
modified version of Howard’s semicircle theorem (Howard 1962) for swirling flows:(

ωr − m(Ωmax + Ωmin)

2

)2

+ ω2
i ≤ m2

(
Ωmax − Ωmin

2

)2

− 2m2E Ω ′
min

2
. (2.23)
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Inertio–elastic instability of a vortex column

The role of elasticity is to shrink the inviscid semicircle of instability, implying a relative
stabilization. The analogue of (2.22) has been used by Rallison & Hinch (1995) in their
study of elastic instabilities in jets. Stability to exponentially growing perturbations results
when the semicircle radius decreases to zero, and this happens at a finite E provided
Ω ′

min is non-zero. A novel mechanism of instability, associated with the elastic Rayleigh
equation, and that may arise even for non-inflectional profiles, is that resulting from
the resonant interaction of elastic shear waves. The shear waves propagate more rapidly
(relative to the flow) with increasing E, and the onset of stability above coincides with
the inability of the base-state shear, beyond a threshold E, to bring a pair of such waves
into resonance. Note that the form (2.22) also implies the existence of a pair of continuous
spectra corresponding to fore- and aft-propagating singular elastic shear waves. The waves
propagate with an angular speed of O(

√
E) relative to the flow, and are obtained by setting

P = Σ2 − 2m2EΩ ′2 = 0. These travelling-wave spectra are in addition to the original
inviscid CS (Case 1960; Roy & Subramanian 2014b) modified by elasticity. Keeping in
mind the significance of the elastic CS in interpreting the discrete unstable mode for
small E (see figure 6 below), a more detailed discussion of the same is included in the
supplementary material available at https://doi.org/10.1017/jfm.2022.122.

3. Shear wave resonance instability of a vortex column

In this section, we show that a vortex in a viscoelastic fluid is susceptible to a
two-dimensional instability. Towards this end, we first numerically examine the spectra of
Rankine-like smooth vorticity profiles as a function of E (§ 3.1). For small E, the unstable
eigenfunction is a regularized version of a travelling wave comprising the elastic CS, the
travelling wave singularities cut off due to a finite growth rate (see the discussion of the
CS in the supplementary material). For the specific case of a Rankine vortex, the elastic
instability is then analysed via a matched asymptotic expansions approach valid for small
E (§ 3.2).

3.1. Numerical calculation of the unstable mode
The Rankine vortex has a compact vorticity profile with a step discontinuity at the core
radius. A smooth vorticity profile, convenient for use in the numerical calculations below,
is given by

Z(r) = Z0

2

{
1 − tanh

[
r − a

d

]}
. (3.1)

Here, d is the length scale over which there is a smooth transition from the core vortical
region to the exterior irrotational one, with d → 0 denoting the limit of a Rankine vortex.

3.1.1. Details of the numerical method
Stability investigations in the limit for large Re and De suffer from numerical issues, largely
due to the presence of the continuous spectra in the elastic Rayleigh equation (Miller
2005). For the problem under consideration, two additional effects make the investigation
of the unstable mode a difficult one for small E. First, the unstable mode asymptotes
to a singular neutral mode (a part of the CS) in the limit E → 0. This is unlike the
classical inviscid problem where the unstable mode approaches a regular neutral mode,
the so-called S-wave, close to the threshold (Drazin & Howard 1966; Drazin & Reid 1981).
The second reason is the emergence of a transcendentally small length scale for small
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ωr

ωi
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N = 1000

N = 1500

N = 2000

Figure 1. Collapse of the ballooned spectrum with increasing number of collocation points (N) for the vorticity
profile defined in (3.1) with d = 0.025, a = 1 for E = 0.1; the domain is r ∈ (0, r∞) with r∞ = 4a. The
converged unstable mode is encircled.

E (identified as part of the analysis in the next section). The inability of the numerics,
for a fixed resolution, to resolve the aforementioned small scale, leads to an inevitable
breakdown below E ≈ 0.02 regardless of the approach used.

For the smooth monotonically decreasing vorticity profile in (3.1), two separate
formulations of the eigenvalue problem in (2.22) are studied. In the first formulation, the
linear eigenvalue problem given by (2.14)–(2.17) (in the limit Re, De → ∞) is solved using
Chebyshev collocation. In the second formulation, a solution of the nonlinear eigenvalue
problem (2.22) for ξ is obtained using a compound matrix method wherein the original
nonlinear eigenvalue problem is written as a higher-dimensional linear one, which is
then solved using standard Chebyshev collocation (Bridges & Morris 1984; Roy 2013).
Both formulations yield consistent results, and here we show results from the second
formulation (Roy 2013). The spectral method obtains the entire eigenspectrum, including
the singular elastic continuous spectra alluded to at the end of § 2. Since the CS modes
are not C∞, the neutral continuous spectra manifest as balloons in the numerical spectrum
and for a modest number of collocation points, the ballooned CS ends up engulfing the
unstable mode (Roy 2013; Chaudhary et al. 2019). As shown in figure 1, it is only for a
sufficiently large number of collocation points (N) that the CS balloon shrinks sufficiently
for the converged discrete mode to be identified.

The Rankine vortex, on account of the singular base-state vorticity profile, cannot be
studied using spectral methods, and a regular shooting method is applied using the inbuilt
bvp4c command in MATLAB. The resolution (Ñ) of the shooting method is controlled
by the number of mesh points used for the spatial discretization for the numerical
integration in MATLAB. Now Ñ = 8000, unless explicitly mentioned otherwise, for the
results obtained below using the shooting method. Here, we only solve (2.22) for r > a,
with appropriate boundary conditions at the core (irrotational) exterior interface (see
(3.6)–(3.7) in § 3.2). Owing to the difficulty arising from the extreme sensitivity of the
eigenvalue found to the initial guess, we use a ‘carpet bombing’ technique to obtain
a reasonably accurate initial guess of the eigenvalue (Miller 2005). Herein, one of the
boundary conditions is allowed to be an unknown, its difference from the true boundary
condition being termed the ‘error’. This error is then minimized on a complex-ω grid to
arrive at the initial guess (see Roy (2013) for details).
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Tanh (r0 = 1, d = 1 × 10–3)

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E

m = 2(b)(a)

Figure 2. Wave speed (a) and growth rate (b) comparisons between a Rankine vortex (shooting method) and
the smooth vortex in (3.1) with a = 1 and d = 10−3 (spectral method), for m = 2. Note that the numerical
method does not provide reliable results below E ≈ 0.02, and the suggestion of an elastic threshold in (b) is
misleading; the perturbation analysis in § 3.2 shows that the instability persists for any non-zero E (also see the
higher resolution results, in figure 8, in this regard).

0 0.01 0.02 0.03 0.04
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

d

E

Figure 3. The region of instability for the smooth vortex (3.1) for varying E and the smoothness parameter d,
with a = 1 and m = 2; the domain is r ∈ (0, r∞) with r∞ = 4a. The (blue) circles denote the parameters for
which a converged unstable mode was obtained, and the (orange) squares denote the parameters for which such
a mode could not be found for N up to 3000. For d = 0 (the Rankine vortex), the symbols correspond to results
obtained using the shooting method.

3.1.2. Numerical results for the inertio–elastic instability
Figure 2(a,b) shows both results from the spectral code (red symbols), for the smooth
vortex defined by (3.1) for d = 10−3, and that obtained from the shooting method for the
Rankine profile. The close comparison of the growth rate and the wave speed shows that
an inertio–elastic instability exists for both a Rankine vortex and Rankine-like smooth
vorticity profiles. For a smooth profile, one expects the transition width (d), the region
over which the flow transitions from a rigid-body rotation to an irrotational straining one,
to determine the existence of the instability. Expectedly, figure 3 shows that instability
exists for a narrower range of E with increasing d.
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Figure 4. Dependence of the wave speed (a) and growth rate (b) on E for various values of m. In (c) the phase
speed is compared with the leading-order asymptotic solution, ωr = m(1 − √

8E) (§ 3.2), while (d) shows the
collapse of the ωi curves when plotted as a function of m

√
E. Note that the numerical method does not provide

reliable results for ωi below E ≈ 0.02. However, the perturbation analysis in § 3.2 shows that the instability
persists for any non-zero E.

From here on, we focus on the Rankine vortex, and thus all the results presented are
computed using the shooting method. Figure 4(a,b) shows the dependence of the wave
speed and growth rate of the unstable mode on E for different m. Figure 4(c) shows
the convergence of the wave speeds for different m to a common asymptote, given by
1 − √

8E, in the limit E → 0. Figure 4(d) highlights the dependence of the growth rate
on the rescaled azimuthal wavenumber m

√
E. Note that the collapse occurs for m

√
E ∼

O(1) and m sufficiently large, and accordingly, the curves for the lowest m (m = 2 and
3) deviate from the scaled form. Figure 4(d) also shows a rather precipitous drop in
growth rate for small E, leading to an eventual breakdown of the numerics (for the
chosen resolution) below E ≈ 0.02. As argued in the next section, the steep drop and
the associated breakdown arise from a transcendental scaling of the eigenvalue for small
E.

The eigenfunctions for both the radial displacement and velocity fields are shown in
figure 5. The twin peaks in the eigenfunction profiles correspond to the fore- (larger
r) and aft- (smaller r) shear wave locations; these peaks become singular in the limit
E → 0, as the eigenfunction asymptotes to a singular travelling wave eigenfunction in
the elastic CS. Figure 6 quantifies this approach by plotting the real parts of the radial
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Figure 5. Real and imaginary parts of the radial displacement (a,b) and velocity eigenfunctions (c,d) for the
unstable mode for E = 0.017, m = 2.

displacement eigenfunctions, for a sequence of E tending to zero, and a CS eigenfunction
for sufficiently small E. This resemblance, along with the conformance of the wave speed
of the unstable mode to the elastic shear wave scaling (ωr ∼ 1 − √

8E, see figure 4c),
points to the inertio–elastic instability resulting from a resonant interaction between the
elastic shear waves, which, for small E, propagate at nearly the same speed near the
vortex core (Rallison & Hinch 1995; Miller 2005). The shear wave resonance argument
also explains why the instability continues to exist for smooth Rankine-like profiles as is
seen from figure 3.

3.2. A matched asymptotic analysis for the inertio–elastic instability of a
Rankine vortex: E � 1

In this subsection, we analyse the elastic Rayleigh equation, (2.22), for the Rankine profile.
This profile exhibits a complete separation of the rotational and straining regions. The
polymer molecules in the vortex core are unaffected by solid-body rotation, and retain
their equilibrium distribution of conformations. Thus, the polymer stress is homogeneous
and isotropic and the solution for r < 1 is identical to the inviscid case, with ur ∝ rm−1. In
order to obtain a normalized radial displacement, the constant of proportionality is chosen
to be Σ0 = ω − m; as a result, ξ = rm−1 and dξ/dr|r=1− = m − 1.

The radial displacement in the core, derived above, may now be used as part of a
boundary condition for that in the exterior, governed by (2.22) written in an expanded
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Figure 6. Real part of the radial displacement eigenfunction for the unstable mode for varying E; a neutral
mode from the CS for E = 0.02, and with the same wave speed, is shown for comparison.

form as

D[r3{(ω − mΩ)2 − 2m2EΩ ′2}Dξ ] = r(m2 − 1){(ω − mΩ)2 − 2m2EΩ ′2}ξ. (3.2)

Noting that the radial displacement is continuous, that is, ξ |r=1+ = ξ |r=1− = 1 and
integrating (2.22) across r = 1, one obtains

[
r3P

dξ

dr

]r=1+

r=1−
= 0, (3.3)

⇒ {Σ2
0 − 8E(mΩ0)

2} dξ

dr

∣∣∣∣
r=1+

− Σ2
0

dξ

dr

∣∣∣∣
r=1−

= 0, (3.4)

⇒ dξ

dr

∣∣∣∣
r=1+

= (m − 1)(ω − m)2

(ω − m)2 − 8m2E
, (3.5)

where the expression for the radial displacement gradient in the core is used in the last
step. The above condition is combined with the usual requirement of decay in the far field.
To summarize the problem statement, the radial displacement in the irrotational exterior
satisfies (3.2), and is subject to the following boundary conditions:

ξ |r=1 = 1, (3.6)

dξ

dr

∣∣∣∣
r=1+

= (m − 1)(ω − m)2

(ω − m)2 − 8m2E
, (3.7)

ξ → 0, as r → ∞. (3.8)

The collapse of the growth rate curves for various m, in figure 4(d), suggests m
√

E as the
parameter relevant to the asymptotics of the unstable mode for small E. This can also be
seen in (3.2), where the term (ω − mΩ)2 − 2m2EΩ ′2 involves the interplay of inertia and
elasticity, with a balance implying (ω − mΩ) ∼ ±m

√
2EΩ ′. For a near-neutral mode, this

balance occurs near the vortex core edge, r ≈ 1, implying (ω − m) ∼ ±m
√

8E since Ω ′ =
−2 at r = 1. Thus, the elastic stresses for this mode are localized about the critical radius,
rc ∼ 1 + O(

√
E). This suggests the introduction of a rescaled boundary layer coordinate
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x = (r − 1)/
√

E with ω = m(1 − a1
√

E), where a1 is the unknown eigenvalue. In the
limit E → 0 with m

√
E fixed, this leads to the following simplified equation:

d
dx

[
{(a1 − 2x)2 − 8}dξ

dx

]
= m2E{(a1 − 2x)2 − 8}ξ, (3.9)

subject to the boundary conditions

ξ |x=0 = 1, (3.10)

dξ

dx

∣∣∣∣
x=0

=
√

E
(m − 1)(ω − m)2

(ω − m)2 − 8m2E
= m

√
E

a2
1

a2
1 − 8

, (3.11)

ξ → 0, as x → ∞, (3.12)

which contain only the parameter m
√

E, as anticipated. The above equation is of the
confluent Heun form, although recognition of this fact is not helpful from the perspective
of obtaining closed form analytic solutions for m

√
E ∼ O(1) (Rallison & Hinch 1995;

Renardy 2008).
Thus, to make analytical progress we consider the alternate limit E � 1 for m ∼ O(1).

This also helps clarify the absence of a threshold E for the instability – an aspect that,
as already seen, is not resolved by the numerics (as is evident in figure 4d). However, in
this limit, apart from the obvious length scale of O(

√
E), a transcendentally small (in E)

length scale emerges from consideration of the boundary conditions. To see this, consider
the boundary layer equation (3.9) which takes the form

d
dx

[
{(a1 − 2x)2 − 8}dξ

dx

]
= 0. (3.13)

The right-hand side of (3.9) has been discarded, being asymptotically small for m ∼ O(1).
Equation (3.13) has solutions of the form

ξ = c1 + c2 log

[
2x − a1 − √

8

2x − a1 + √
8

]
, (3.14)

with the boundary conditions,

ξ |x=0 = 1, (3.15)

dξ

dx

∣∣∣∣
x=0

=
√

E
(m − 1)(ω − m)2

(ω − m)2 − 8m2E
=

√
E

(m − 1)a2
1

a2
1 − 8

, (3.16)

ξ → 0, as x → ∞. (3.17)

The far-field decay required by (3.17) implies that c1 = 0 in (3.14). Applying the gradient
boundary condition, (3.16), we have c2 = (m − 1)a2

1

√
E/(8

√
2) . Next, considering (3.15),
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one obtains

ξ |x=0 = (m − 1)a2
1

√
E

8
√

2
log

[
a1 + √

8

a1 − √
8

]
= 1. (3.18)

Since a1 ∼ O(1) the above relation can only be satisfied if

a1 =
√

8 + 2
√

8 exp

(
− 1

m − 1

√
2
E

)
a2, (3.19)

where a2 is an O(1) constant. Although we have added a seemingly exponentially
small quantity to the expected O(1) estimate, this addition is crucial in the normal
displacement boundary condition. With the transcendentally small addition, the normal
displacement gradient, given by (3.16), is found to be exponentially large. This obviously
contradicts the algebraic scaling assumed in (3.16), and highlights the subtle nature of
the small E limit. Physically, the locations x = a1 + √

8 and x = a1 − √
8 correspond,

in rescaled form, to the fore- and aft-moving shear wave singularities. Since a1 −√
8 ∼ exp(−(1/(m − 1))(

√
2/E)), the implication is that the aft-travelling shear wave

is separated from the edge of the core only by a transcendentally small amount. Note
that the above contradiction is not an artefact of the order in which we choose to satisfy
the boundary conditions above. The underlying transcendental scaling also explains the
precipitous drop in the growth rate (similar to that in figure 4d) of the elastic instability in
a submerged jet observed by Rallison & Hinch (1995) – see figure 7 therein.

Thus, we see a crucial difference between the eigenfunction structure in the two limits
analysed above. For E → 0 with m

√
E fixed, both the forward- and backward-travelling

shear waves lie within a boundary layer with a thickness of
√

E, next to the vortex core,
this being the only length scale of relevance. However, in the limit E � 1 for m ∼ O(1),
the above arguments show that while the forward-travelling shear wave is still localized in
an O(

√
E) boundary layer, the backward-travelling wave is only separated from the edge of

the core by a transcendentally small distance of O(exp(−(1/(m − 1))(
√

2/E))). Thus, the
perturbation analysis in this latter case needs to recognize two different length scales, one
of them exponentially smaller than the other. The asymptotic framework must accordingly
include an additional inner boundary layer with r − 1 ∼ O(g

√
E) satisfying the boundary

conditions at r = 1 (g will turn out to be transcendentally small). The outer O(
√

E)

boundary layer is therefore no longer constrained to satisfy the boundary conditions at
r = 1, resolving the contradiction in the naive approach above. Instead, it matches onto
both the inner boundary layer and the outer regions in the appropriate limits. Figure 7
shows the different asymptotic regions for a numerically evaluated radial displacement
eigenfunction. We thus have the following double expansion, for the eigenvalue, in the
limit g � 1, E � 1:

ω

m
= 1 −

√
E[

√
8 + g{c0 + c1

√
E + c2E + c3E3/2 + . . .} + O(g2)]. (3.20)

Note that, in neglecting the contributions at O(g2) and higher, we anticipate the
transcendental smallness of g in (3.20), owing to which terms of O(g) are, in principle,
smaller than any algebraic order in E; that g ∼ exp(−(1/(m − 1))(

√
2/E)) emerges

from the detailed analysis given below, and the expansion in (3.20) conforms to the
exponential asymptotics formalism (Boyd 1999). Note that the O(g) contribution is crucial
despite its transcendental smallness, since it contributes to the leading-order growth rate.
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ξF(r) = EξF

0(r)
+ E3/2ξF
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0(x) + Eξo

1(x)

O(E1/2)

ξi(y) = ξi
0(y) + E1/2ξi

1(y)

O(gE1/2)

Figure 7. Numerically evaluated radial displacement eigenfunction illustrating the nested boundary layer
structure that characterizes the small-E asymptotic analysis discussed in the text: r < 1, the vortex core; r > 1
with r − 1 ∼ O(g

√
E), the inner boundary layer; r > 1 with r − 1 ∼ O(

√
E), the outer boundary layer; r > 1

with r − 1 ∼ O(1), the outer region.

It is shown below that the growth rate is O(E2e−1/
√

E) for small E, and, therefore, also
transcendentally small. Importantly, however, this establishes the absence of a threshold
for the elastic instability in contrast to what is suggested by the numerical results above
(figure 4d).

The matched asymptotic expansions approach used here may be validated by
consideration of an exactly soluble subproblem – that governed solely by the left-hand
side of (3.2) – termed the left-hand side problem herein. The agreement of the asymptotic
approach with the small-E expansion of the exact solution serves as a useful validation
both of the exponential asymptotics formalism, and the additional subtle feature of phase
jumps across the shear-wave singularities; the analysis of the left-hand side problem is
detailed in the supplementary material. In what follows, we present a brief synopsis
of the analogous analysis, of the full equation (2.22) for small E, recognizing the
different asymptotic regions mentioned above. The detailed analysis is again given in the
supplementary material following the analysis of the left-hand side problem.

3.2.1. Outer region: r − 1 ∼ O(1)

To begin with, we study the solution in the region where r − 1 ∼ O(1). Expanding P in
the elastic Rayleigh equation (2.22) for small E, one obtains

P
m2 = S0 +

√
ES1 + ES2 + O(g

√
E), (3.21)

where

S0 =
(

1 − 1
r2

)2

, S1 = −2
√

8
(

1 − 1
r2

)
and S2 = 8

(
1 − 1

r6

)
. (3.22a–c)
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The expansion of P has terms which scale algebraically with
√

E as well as terms that
are transcendentally small (of O(g)). At leading order, we only need to consider the
finite number (three) of terms in (3.21) that scale algebraically. The unknown eigenvalue
constants (the ci) in (3.20) lead to transcendentally small contributions, and, hence, do
not enter the expansion for P and the outer region analysis at leading order. Denoting the
displacement by ξF(r), the above points to the following expansion:

ξF(r) = E ξF
0 (r) + E3/2 ξF

1 (r) + O(E2) + O(g
√

E), (3.23)

where we again neglect the transcendentally smaller contributions. While the O(E) scaling
of the leading-order term is evident from the matching considerations below (see § 3.2.4),
it may nevertheless be anticipated based on the discussion above. The aft-shear-wave
is located in an exponentially small neighbourhood of the edge of the core, and the
(logarithmic) displacement due to this wave decreases by O(

√
E) in the outer boundary

layer which is exponentially distant when measured in units of the inner boundary layer
thickness of O(g

√
E). Further, the near cancellation between the O(

√
E) displacements

associated with the fore- and aft-shear-waves for r − 1 ∼ O(1) leads to an asymptotically
smaller ξF of O(E) in this outer region (see figure 7), as assumed in the expansion above.
The solution in the outer region, to O(E3/2), is as follows:

ξF(r) = E
B0

rm−1(r2 − 1)
+ E3/2

{
2
√

2B0

rm−1(r2 − 1)2 + B1

rm−1(r2 − 1)

}
+ O(E2). (3.24)

As already mentioned, the details of the aforementioned solution are given in the
supplementary material. In the outer region solution (ξF), there are no signatures of
the travelling shear-wave singularities. Note that we do not consider the O(E2) and
higher-order contributions to ξF since they are not required to determine the growth rate at
leading order, an insight that is obtained from the solution of the left-hand side problem.

3.2.2. Outer boundary layer: r − 1 ∼ O(
√

E)

Having found the solution in the outer region, we now consider the outer boundary layer
using the boundary layer coordinate x = (r − 1)/

√
E already introduced at the beginning

of this section. Denoting the boundary layer displacement as ξ(r) = ξo(x), one obtains the
rescaled elastic Rayleigh equation as

d
dx

[
Qdξo

dx

]
= EQ(m2 − 1)

(1 + √
Ex)2

ξo, (3.25)

where Q = (1 +
√

Ex)3P/m2E, and is further expanded as

Q = Q0 +
√

EQ1 + EQ2 + E3/2Q3 + O(E2) + O(g
√

E), (3.26)

with Q0 = 4x(x − 2
√

2), Q1 = −12
√

2x(x − 2
√

2), Q2 = x2(x2 − 4
√

2x − 24) and
Q3 = x3(88 − x2). Similar to the expansion of P discussed earlier in § 3.2.1, the
transcendentally small terms are again neglected in (3.26). The displacement (ξo) may
thus be expanded as

ξo(x) =
√

E ξo
0 (x) + E ξo

1 (x) + E3/2 ξo
2 (x) + E2 ξo

3 (x) + O(E5/2) + O(g
√

E). (3.27)

where the leading O(
√

E) scaling is consistent with the aforementioned physical
arguments. Substituting the above expansion into (3.25), one obtains the following
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equation at O(
√

E) for the leading-order boundary layer displacement:

d
dx

[
Q0

dξo
0

dx

]
= 0 (3.28)

⇒ ξo
0 (x) = G10 + G11 log

(
x − 2

√
2

x

)
. (3.29)

In the expression above, the forward and backward travelling wave singularities correspond
to x = 2

√
2 and x = 0, respectively; the latter location is the edge of the core, since

transcendentally small terms are now neglected. The details of the solutions at higher
orders are given in the supplementary material.

The constant G10 in (3.29) is determined via matching, the details of which are again
given in the supplementary material. We only note here that in deriving the limiting
forms of the above solutions for x → 0, required for matching, one has to account for
the multivaluedness of the logarithm in the displacement field (ξo

0 (x)) in (3.29). Recall
that x = 2

√
2 marks the location (singularity) of the neutrally stable forward-travelling

shear wave. The neutral stability arises because the (imaginary) growth rate appears at
a higher (and transcendentally small) order in the perturbation expansion. This leads to
an ambiguity in the phase jump associated with the logarithm, that is well known in
inviscid hydrodynamic stability (Drazin & Reid 1981). The resolution involves displacing
the aforementioned shear-wave singularity off the real axis to x = 2

√
2 − iε, with ε > 0

representative of the small but finite growth rate. As a result, one has

log(x − 2
√

2 + iε) = log |x − 2
√

2| x > 2
√

2,

= log |x − 2
√

2| + iπ x < 2
√

2. (3.30)

The above relation may now be used in obtaining the limiting forms of the outer boundary
layer solutions.

3.2.3. Inner boundary layer: r − 1 ∼ O(g
√

E)

Finally, we introduce an inner boundary layer in an exponentially small neighbourhood of
the core, corresponding to O(1) values of the boundary layer coordinate y = (r − 1)/g

√
E

with g, E � 1. Denoting the inner boundary layer displacement as ξ(r) = ξ i( y), we have
from (3.2)–(3.7) that

d
dy

[
Rdξ i

dy

]
= g2ER(m2 − 1)

(1 + g
√

Ey)2
ξ i, (3.31)

with R = (1 + g
√

Ey)3P/(m2gE), which is further expanded as

R = R0 +
√

ER1 + O(E), (3.32)

where R0 = 4
√

2(c0 − 2y) and R1 = 4
√

2(c1 + 6
√

2y). Note that this is the first instance
where the unknown eigenvalue constants (the ci) enter the expansion. In anticipation of the
transcendental smallness of g, we assume gE−α → 0 as E → 0, ∀ α > 0, which allows
the neglect of the right-hand side term in (3.2) at all orders. The boundary conditions at
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the core-exterior interface, (3.6) and (3.7), take the form

ξ i( y = 0) = 1, (3.33)

dξ i

dy
( y = 0) = (m − 1)

√
E

{√
2

c0
−

√
2c1

√
E

c2
0

+ . . .

}
. (3.34)

Guided by the above expansions the boundary layer variable, ξ i( y), is expanded as follows:

ξ i( y) = ξ i
0( y) +

√
E ξ i

1( y) + E ξ i
2( y) + O(E3/2) + O(g

√
E), (3.35)

where we note that the radial displacement is now O(1), as dictated by the boundary
condition (3.33). Plugging the above expansion in (3.31) and using the boundary
conditions (3.33) and (3.34), we have the following equations (and boundary conditions)
and solutions at successive orders.

At O(1) we obtain

d
dy

[
R0

dξ i
0

dy

]
= 0, (3.36)

with ξ i
0( y = 0) = 1 and (dξ i

0/dy)( y = 0) = 0, which gives

ξ i
0( y) = 1. (3.37)

At O(E1/2) we obtain

d
dy

[
R0

dξ i
1

dy

]
= 0, (3.38)

with ξ i
1( y = 0) = 0 and (dξ i

1/dy)( y = 0) = √
2(m − 1)/c0, which gives

ξ i
1( y) = −(m − 1)√

2
log

(
c0 − 2y

c0

)
. (3.39)

From the expression for ξ i
1( y) and the solutions at higher orders below, we see that

the singularity associated with the backward-travelling shear wave is now resolved, and
corresponds to y = c0/2 (x = gc0/2), where c0 still needs to be determined.

At O(E) we obtain

d
dy

[
R0

dξ i
2

dy

]
= − d

dy

[
R1

dξ i
1

dy

]
, (3.40)

with ξ i
2 = 0 and dξ i

2/dy = −(
√

2(m − 1)c1/c2
0), which gives

ξ i
2( y) = −3(m − 1) log

(
c0 − 2y

c0

)
− (m − 1)

2
(
√

2c1 + 6c0)

{
1

c0 − 2y
− 1

c0

}
. (3.41)

The expansion (3.35) with the solutions given by (3.37)–(3.41), satisfies the boundary
conditions at the vortex core (y = 0), and, further, needs to be matched to the solution
in the outer boundary layer, which will yield the values of the constants c0, c1, . . . in the
eigenvalue expansion. In the matching region (y � 1), one again needs to account for the
phase jump associated with the logarithm. This is done along the lines of the discussion
above, in the context of the outer boundary layer, by noting that the singularity of the
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Figure 8. (a) Comparison of the numerical growth rate (Ñ = 8000) and the analytical predictions for the full
problem (see (3.43)) for m = 2. (b) The breakdown of the numerical results at progressively smaller E with
increasing resolution (Ñ) of the shooting method; here, Ñ refers to the number of mesh points used for the
spatial discretization for the numerical integration in the shooting method.

unstable mode, associated with the backward-travelling shear wave, lies off the real axis
at y = c0/2 − iε′ (ε′ > 0), and one therefore has the relations

log(c0 − 2y − 2iε′) = log |c0 − 2y|, y <
c0

2
,

= log |c0 − 2y| − iπ, y >
c0

2
. (3.42)

3.2.4. Matching
With the inner, outer boundary layer and far-field solutions in place, the necessary
constants may be determined via matching appropriate limiting forms of the solutions
to each other. The details of the intermediate steps of the calculation and the exact
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expressions are given in the supplementary material. The growth rate from the matching
exercise arises at O(gE2), with g = exp(−(1/(m − 1))(

√
2/E)), and is given by the

following expression:

c3i = −4
√

2πe6/(m−1)

(
32

√
2 + 4

3
(m2 − 1)(2m − 1) + 8

√
2

3
(m2 − 1)

)
. (3.43)

The negative sign in (3.43) corresponds to an unstable mode. Figure 8(a) shows a
comparison between the asymptotic expression in (3.43) and the numerical results in
an appropriate scaled form. Although, as shown in figure 8(a), the numerical results do
not extend until an E small enough for a near-quantitative agreement with the analytical
prediction, the numerical curve nevertheless turns around at E ≈ 0.02, with there being a
clear indication of an eventual convergence to the analytical asymptote.

As already mentioned, the emergence of the transcendentally small length scale (and
the similarly small scaling for the growth rate) implies that the numerics breaks down at a
slightly smaller E (≈0.016) for the resolution used in figure 8(a) (Ñ = 8000). Continuing
the numerical curve down to smaller E would require an exponential increase in resolution;
some evidence of the modest increase in the range of validity of the numerics, even with
substantial increase in resolution, is provided in figure 8(b).

4. Conclusions

In this paper, we have described a novel inertio–elastic instability of a vortex column
in a dilute polymer solution. The regime analysed pertains to large Reynolds (Re) and
Deborah (De) numbers, involving a balance of inertia and elasticity at leading order, and
the instability is governed by the elastic equivalent of the Rayleigh equation for swirling
flows; momentum diffusion and relaxation of the disturbance polymeric stresses being
neglected. The instability arises due to the resonant interaction of elastic shear waves made
possible by the background shear in the irrotational exterior of the vortex column. The
dimensionless parameter that appears in the elastic Rayleigh equation, and that governs
the growth rate of the unstable mode, is the elasticity number E = De(1 − β)/Re.

The existence of the inertio–elastic instability is first demonstrated numerically for
the Rankine vortex, for finite E, as a function of the azimuthal wavenumber m.
A matched asymptotic expansions approach, valid for small E, helps extend the numerical
results down to E = 0, and thereby shows the absence of an elasticity threshold for
instability. That is to say, the Rankine vortex is unstable for any finite E in the limit
De, Re → ∞, although the (dimensional) growth rate is transcendentally small, scaling
as O(Ω0E2e−1/E1/2

) for E → 0. Importantly, the finite-E growth rate is not small, with
a maximum of O(0.1Ω0) (figure 4d). The numerical investigation further shows that the
instability persists for smooth monotonically decreasing vorticity profiles – at least the
‘intense’ Rankine-like profiles which exhibit a rapid variation from the central rigidly
rotating core to the irrotational exterior. This finding is in contrast to previous work in this
regard for parallel shear flows. For instance, although the growth rate associated with the
analogous inertio–elastic instability for submerged jets also appears to be transcendentally
small for small E (see figure 7 of Rallison & Hinch (1995)), the authors believed the
instability to be essentially dependent on the discontinuity in the first normal stress
difference profile that arises from the assumed abrupt transition of the base state jet
profile to a quiescent ambient at either end (where the jet velocity equals zero – see Miller
(2005)). Thus, the instability was speculated to be absent for smoothed versions of such
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jet profiles. However, the present results suggest that a slightly smoothed version of the
original parabolic jet will also be subject to an analogous inertio–elastic instability. We
have verified the same by analysing a smoothed version of the parabolic jet profile using a
spectral calculation (not shown); an analytical approach is not possible in this case, owing
to the insolubility of the inviscid (E = 0) Rayleigh equation for the plane Poiseuille profile.

An estimate of the region in the De–Re plane where one expects the shear-wave
instability above to be largely unmodified may be obtained by requiring that the thickness
of the viscous critical layer (assumed to be of O(Re−1/3) similar to the classical Newtonian
case; see Drazin & Reid (1981)) be much smaller than the O(

√
E) inviscid elastic

boundary layer. This translates to the requirement De � Re1/3 � 1; this requirement
is also consistent with the relaxation boundary layer of O(De−1) being asymptotically
thinner than the elastic one. The elastic Rayleigh limit (De/Re fixed, De, Re � 1) is
entirely consistent with this estimate. Note, however, that a large but finite Re or De will
lead to the emergence of a weak elasticity threshold for the onset of the instability.

There is an exact analogy between the viscoelastic flows studied here, in the limit De →
∞, and MHD flows in the limit of infinite magnetic Reynolds number (Rem) (Ogilvie &
Proctor 2003; Ogilvie & Potter 2008; Vieu & Mutabazi 2019); here Rem = μs/(ρλm)Re for
a conducting fluid of density ρ, viscosity μs and magnetic diffusivity λm. Thus, the elastic
shear waves examined here are the analogue of Alfvén waves in the MHD context. An
analogue of the instability discussed in this paper thus likely exists in the astrophysical
setting of accretion discs. In particular, accretion discs with a rapid transition in the
azimuthal magnetic field would be susceptible to a Alfvén-wave resonance instability,
similar to the shear-wave resonance instability described herein (Balbus & Hawley 1991).
Further, the matched asymptotic expansions approach involving multiple boundary layers,
presented here, may be extended to gain insight into the classical non-axisymmetric
magnetorotational instability (Ogilvie & Pringle 1996; Khalzov et al. 2006) as well as
MHD instabilities in parallel shear flows (Stern 1963; Heifetz et al. 2015). Although a
detailed comparison must await an analysis of three-dimensional perturbations, there are
features associated with earlier numerical spectral calculations in the former case that bear
the hallmark of a transcendentally small length scale (Ogilvie & Pringle 1996).

In the Newtonian limit, the Rankine vortex is centrifugally stable (according to the
Rayleigh criterion), and this, together with the absence of a vorticity maximum at a finite
radius, implies stability to both two- and three-dimensional disturbances (Drazin & Reid
1981). As pointed out above, the two-dimensional inertio–elastic instability of the Rankine
vortex analysed here is expected to have an MHD analogue. Further, monotonically
decreasing quasi-Keplerian angular velocity profiles characterizing accretion disks are
known to be susceptible to the magnetorotational instability (Ogilvie & Pringle 1996). The
MHD analogy thus implies that the Rankine vortex, and smooth Rankine-like profiles,
will be susceptible to an additional inertio–elastic instability when three-dimensional
perturbations, with a finite axial wavenumber, are taken into account. One expects novel
features to emerge, both with regard to the CS and in terms of a denumerable infinity of
discrete modes. Earlier efforts in this regard, both computations (Ogilvie & Potter 2008)
and experiments (Groisman & Steinberg 1996; Boldyrev, Huynh & Pariev 2009; Dutcher
& Muller 2011, 2013; Bai, Crumeyrolle & Mutabazi 2015) have only explored the domain
of existence for moderate Re and De, and for the Taylor–Couette geometry. Extending
these efforts to the case of large but finite Re and De would help precisely delineate the
domain of existence of the inertio–elastic instability.

The present inertio–elastic instability also shares similarities with the widely studied
stratorotational instability, which is also postulated as a mechanism for (outward) angular

937 A27-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.122


A. Roy, P. Garg, J.S. Reddy and G. Subramanian

momentum transport in cold weakly ionized accretion disks (Dubrulle et al. 2005). The
latter arises from a resonance between Kelvin waves and/or inertia-gravity waves and also
exhibits a transcendentally small scaling for small Rossby number (Yavneh, McWilliams &
Molemaker 2001; Vanneste & Yavneh 2007). Nevertheless, there are important differences
between the two cases. Most importantly, the stratorotational instability only occurs for
three-dimensional perturbations. Further, the locations of the Kelvin waves are fixed in
the neighbourhood of the two walls and hence the spacing between the resonating modes
is fixed by the gap width; this, along with the exponential trapping of the individual
waves, explains the transcendental scaling above. On the other hand, for the inertio–elastic
instability, the spacing is fixed by the region where inertial and elastic stresses are of
comparable magnitude (the elastic boundary layer). Finally, the eigenmode of the usual
stratorotational instability does not become singular in the limit of zero growth rate
(Yavneh et al. 2001; Vanneste & Yavneh 2007). The present scenario thus more closely
resembles the recently studied case where the stratorotational instability results from a
resonant interaction between a Kelvin/inertia-gravity wave with a baroclinic critical level
(Wang & Balmforth 2018).

Finally, the inertio–elastic instability examined here may be important to the general
dynamics of polymeric flows at large Re. Simplistically speaking, the vortex column
analysed in this paper may be likened to an eddy in the turbulent cascade scenario where
the time scale is short enough for elastic stresses to become comparable to inertial stresses,
while at the same time being much more important than viscosity. The interaction between
vortices and polymers has been shown to play a crucial role in the buffer layer structure
of wall-bounded turbulent flows of dilute polymer solutions (Roy et al. 2006; Kim et al.
2007; White & Mungal 2008; Tabor & de Gennes 1986). The instability studied in this
paper can be a starting point to form a deeper mechanistic understanding of the same.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.122.
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