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Brownian coagulation of like-charged aerosol particles
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In this paper, we study the coagulation rate of like-charged Brownian spherical particles
dispersed in a gaseous medium. Most previous calculations of the Brownian-induced
coagulation rate have considered that the particle pairs interact through continuum hy-
drodynamics, and at a close approach, van der Waals attraction forces allow the collision
and subsequent coagulation. However, the continuum approximation of the hydrodynamic
interactions is no longer valid when the gap thickness between the surface is less than
the mean free path of the surrounding fluid medium and the noncontinuum lubrication
interactions lead to surface-to-surface contact in a finite time. We report the Brownian
coagulation rate in the presence of noncontinuum lubrication resistances for a range of
pair size ratios. At small separations, like-charged conducting particles almost always
attract each other. Thus we also incorporate the attractive electrostatic interactions between
like-charged conducting spheres in our calculation and report the effects of van der Waals
and electrostatic forces on the coagulation rate of conducting spheres interacting with each
other through noncontinuum hydrodynamics for a range of size and charge ratios.

DOI: 10.1103/PhysRevFluids.7.064308

I. INTRODUCTION

The coagulation of aerosol particles induced by Brownian motion and modulated by hydrody-
namic interactions and interparticle forces plays a vital role in many industrial and environmental
processes. Brownian motion is the primary driving force for collisions between smaller particles
(radii 1 μm or lesser). In contrast, background turbulence and gravity predominantly drive the col-
lision mechanisms for larger particles [1]. Colloidal suspensions, carbon black in aerosol reactors,
soot particles formed by combustion, dust particles in space, and volcanic ash are a few examples
of situations where charged particles coagulate due to Brownian diffusion [2]. When air humidity
reaches above a deliquesce humidity, aerosol particles grow due to the condensation of water
vapor on their surfaces and transform into haze droplets with dissolved ions. At low water vapor
pressure, these ions lead to stabilizing the haze droplets to a small size, and then the condensational
growth becomes negligible. Thus, in the initial stage of rain formation in warm cumulus clouds,
haze droplets grow due to Brownian coalescence [3]. We will focus on dilute systems because
particle volume fractions are low [about O(10−6)] in many natural and industrial systems such
as atmospheric clouds [4], and aerosol reactors [5]. For dilute dispersions, the interactions and
collisions between more than two particles are highly unlikely, and thus we restrict our analysis
to binary interactions as shown in Fig. 1. We assume only hard-sphere interactions between the
particles during collisions, and this assumption is also valid for tiny water droplets due to their high
drop-to-medium viscosity ratio.

The collision rate between the particles significantly affects the evolution of the particle size
distribution. When only two species are present, the rate equation for the particle number density
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FIG. 1. The schematic representation of binary interactions. “1” indicates the sphere with radius a1 and
surface charge q1; “2” indicates the sphere with radius a2 and surface charge q2. The sphere marked “3” is the
collision sphere of radius a1 + a2. In Sec. II, we will use êr as the unit vector in the radial direction.

can be written as

−dn1

dt
= −dn2

dt
= K12, (1)

where K12 is the rate at which two species of particles with radii a1 and a2 and respective number
densities n1 and n2 coagulate to form a new species. The theoretical prediction for the coagulation
rate is challenging, especially when one accounts for the roles of hydrodynamic interactions and/or
interparticle forces. Smoluchowski [6] determined the ideal coagulation rate (K0

12) of noninteracting
spheres due to Brownian diffusion and found that K0

12 = 4πn1n2D0(a1 + a2). Here, the relative
diffusivity of two noninteracting spheres, D0 = kBT (a1 + a2)/(6πμ f a1a2), where kB = 1.381 ×
10−23 J K−1 is the Boltzmann’s constant, T is the absolute temperature of the dispersion, and μ f

is the dynamic viscosity of the fluid medium. The coagulation between particles depends on the
driving forces and the interparticle interactions that significantly alter the relative velocity between
the particles at close separations. We will quantify the effects of interparticle interactions on the
collision rate through the collision efficiency E12 = K12/K0

12, which is the ratio of the collision
rate in the presence of interactions to that obtained ignoring interactions (the ideal collision rate).
Spielman [7] presented a theoretical model to estimate the coagulation rate of two equal-sized
rigid spheres subject to Brownian diffusion with continuum hydrodynamic interactions, van der
Waals, and electrical double-layer potentials. Valioulis and List [8] and Kim and Zukoski [9]
analyzed similar problems for polydisperse rigid spheres. In these studies, the authors calculated
the coagulation rate by solving the steady-state diffusion equation describing the relative Brownian
motion between particle pairs.

We assume that both the fluid and particle inertia are negligible, and thus the effects of inertia
on the collision dynamics are insignificant. Though gravitational settling is negligible for submi-
cron aerosols, both Brownian diffusion and gravitational settling are important for micron-sized
particles. The nondimensional quantity Pe, the Peclet number, that defines the relative importance
of gravitational sedimentation to Brownian diffusion, is given by [10] Pe = 2π (ρp − ρ f )a4

1κ (1 −
κ2)g/(3kBT ), where κ = a2/a1 � 1 is the size ratio, and g is the acceleration due to gravity. For
Brownian-dominated coagulations Pe � 1 and gravity-dominated coagulations Pe � 1. In this
study, we assume Pe � 1 (i.e., gravitational sedimentation is negligible). To validate this assump-
tion, let us compute the quantity Pe for a water droplet in air with a1 = 0.5 μm (droplet radius),
ρp ≈ 103 kg m−3 (density of water droplet), ρ f ≈ 1 kg m−3 (density of air), μ f ≈ 1.8 × 10−5 Pa s
(dynamic viscosity of air), and T = 298 K. We found Pe ≈ 0.08 for κ = 0.3 and Pe ≈ 0.006 for
κ = 0.99. So, the above typical values of Pe justify our assumption.

Collision rates between particle pairs depend on the detailed interparticle interactions, both
hydrodynamic and colloidal. The continuum assumption of hydrodynamic interactions fails at close
separations, and the near-field noncontinuum interactions become the dominant mechanism for
collisions in media with long mean free paths [11,12]. The Knudsen number Kn = λ0/a∗, where λ0

is the mean free path of the medium and a∗ = (a1 + a2)/2 is the average radius of the two interacting
spheres, measures the strength of noncontinuum effects. The gas pressure pg is related to the mean
free path λ0 by λ0 = kBT/(

√
2πd2 pg), where d is the molecular diameter of the gas molecule. We
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consider d = 3.7 × 10−10 m for air at 298 K. Thus, we can express Kn in terms of particle size, size
ratio, and gas pressure as Kn = 0.0135/[a1(1 + κ )pg]. For a1 = 0.5 μm and κ = 1, the Knudsen
number Kn decreases from 1.34 to 0.0134 when pg increases from 0.1 to 10 atm. In this study, we
will present our results for Kn spanning from 10−1 to 10−4. The purpose behind calculating the
collision efficiency for the smallest values of Kn is to establish that even minor noncontinuum
hydrodynamics effects can significantly alter the underlying dynamics associated with the pure
continuum interaction. However, in an experimental situation, Kn = O(10−3) and smaller would not
be accessible in a low-pressure gas medium without increasing the particle size or, in other words,
without considering the sedimentation effects. When Kn = O(1) or higher, the particles undergo
a persistent Brownian motion (i.e., without changing their directions, particles move a distance
that is comparable to interparticle separation) because they experience lesser drag forces. Several
theoretical and experimental studies for the Kn � O(1) scenario are available in the literature
[13–18]. The analysis by Sitarski and Seinfeld [14] deserves special mention since it provides a
theoretical result for the Brownian coagulation rate over a wide range of particle sizes and thus Kn,
connecting Smoluchowski’s continuum result with the rate constant known in the free molecular
regime. We consider Kn � 1 in the current analysis. In the Kn � 1 limit, the persistence distance
is much smaller than the interparticle separation, and thus the pair diffusion equation describing the
standard Brownian coagulation theory [19] will still be applicable. Noncontinuum effects become
significant when ξ � O(Kn), where ξ is the nondimensional surface-to-surface distance. Initially,
Hocking [20] tried to quantify the noncontinuum effects by applying Maxwell slip boundary condi-
tions for continuum equations in the lubrication gap. Later, Davis [21] estimated the noncontinuum
effects for differentially settling spheres using Hocking’s results. However, these calculations are
valid only for Kn � ξ � 1 and thus do not accurately capture the noncontinuum hydrodynamics.
For ξ � O(Kn), Sundararajakumar and Koch [22] derived the noncontinuum lubrication force by
solving the linearized Boltzmann equation for the noncontinuum flow in a channel (a local geometry
of the lubrication gap). Utilizing the work of Sundararajakumar and Koch, recently, Dhanasekaran
et al. [23] calculated the modification of axisymmetric mobilities due to noncontinuum lubrication
interactions. This study uses the uniformly valid axisymmetric mobility function developed by
them. We will briefly discuss their work in Sec. II B. Previously, Chun and Koch [12] derived an
analytical expression for the coagulation rate of two equal-sized Brownian particles as a function of
Kn both with and without van der Waals forces. They demonstrated the importance of noncontinuum
hydrodynamics interactions by comparing their predicted collision efficiency with experimental
measurements of Devir [24,25] who used a modified Sinclair-LaMer generator to produce dioctyl
phthalate drops of average radii 0.5–0.8 μm and a Derjaguin counter to determine the time evolution
of the number density of aerosols. In the current work, we extend the noncontinuum lubrication
analysis for arbitrary-sized particle pairs. Also, our analysis includes an improved treatment for the
retarded van der Waals and the addition of electrostatic interaction forces.

The perfect conductor assumption for charged aerosol particles would not hold well because their
dielectric constants are finite. The deviation from the perfect conductor behavior is much less for
tiny metal particles than for haze droplets. Furthermore, the ions dissolved inside haze drops may
alter their dielectric constants. Gavish and Promislow [26] theoretically studied the dependence of
the dielectric constant of water in aqueous electrolyte solutions upon the salt concentration and
temperature. If applied to representative ion concentrations in cloud droplets [1], their analysis
shows that the change in the dielectric constant would be negligible. To reduce the complexity
of our current analysis, we assume that the behavior of interacting particles is akin to perfect
conductors. We also assume that the concentration of free ions in the surrounding fluid medium is
low. Therefore, the potential of electric double-layer repulsion is insignificant and does not influence
the Brownian coagulation or coalescence. The calculation of the electrostatic interaction force
between two charged conducting spheres has a long history [27]. The method of image charges,
the multipole expansion techniques, and the solutions using the bispherical coordinate system are
the three popular approaches for calculating the electrostatic interaction force [28]. Among these
three approaches, the bispherical coordinates solution offers higher accuracy when the gap between
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the conductor is small [29]. Russell [30], and later Lekner [31,32], derived an analytical expression
for the electrostatic forces in the lubrication region of two conducting spheres using capacitance
coefficients [33,34]. They found that two charged conducting spheres always attract each other
at short distances (even when their nature of charges is the same) except for those charge ratio
values that the spheres would attain by bringing them into contact. Interestingly, Lekner showed
that the attractive force has a O(ξ−1[log ξ ]−2) singularity, which grows indefinitely as the separation
approaches zero (see also Khair [35] and Banerjee et al. [36]). The relation between the size ratio
κ = a2/a1 and the charge ratio β = q2/q1 for which the electrostatic interaction force will always
be repulsive is [32,37]

β = q2

q1
= γ + ψ

( a1
a1+a2

)
γ + ψ

( a2
a1+a2

) = γ + ψ
(

1
1+κ

)
γ + ψ

(
κ

1+κ

) , (2)

where γ = 0.577 215 664 9 . . . is the Euler constant and ψ is the digamma function. In the present
study, we need the expression for the electrostatic potential energy as a function of separation.
We will utilize Lekner’s work [31] to obtain the coagulation rate of hydrodynamically interacting
aerosols in the presence of electrostatic forces. Khachatourian and Wistrom [38] estimated the en-
hancement in the coagulation rate due to electrostatic interactions of polydisperse aerosol particles.
However, they did not consider the hydrodynamic and van der Waals interactions. Huang et al. [39]
obtained an enhancement of the Brownian coagulation rate between a charged and an uncharged
particle, accounting for an attractive image potential and unretarded van der Waals interaction,
across a range of Kn. The study neglected the hydrodynamic interaction between the particles and
considered a far-field expansion of the attractive image potential, truncated to the first four terms.
Thus when both particles are charged, the leading order Coulombic interaction dominates over the
image potential. In our current study, we show that the complete form of the electrostatic field
will significantly deviate from a pure Coulombic interaction in the near field, thus considerably
altering the collision physics. The effect of the combined electric fields of neighboring charged
particles on the collision rate is not straightforward to determine. Even though, as hydrodynamic
interactions, electrostatic interactions are also long range and many body in nature, the pair
interaction assumption is reasonable to consider for the dilute suspensions [40]. On the other hand,
for suspensions with high volume fractions, one must incorporate the influence of all other particles
by summing up all the pairwise interactions while solving the particle-phase equations. Recently,
Yao and Capecelatro [41] implemented an efficient numerical scheme in an Eulerian-Lagrangian
framework for accurately capturing the effects of Coulomb forces of charged inertial particles in a
Taylor-Green vortex and an isotropic turbulent flow as a function of the nondimensional parameter
called electric settling velocity.

The experiments performed by Devir [25] reported that the average particle charges encountered
in their investigation were small (1e–3e per particle with e = 1.602 × 10−19 C being the elementary
charge) and that these charges had a negligible effect on the coagulation rate within the accuracy of
the measurements. The quantity of electric charge and the maximum amount of charge an aerosol
particle of a given size can acquire varies depending on the charging mechanisms. A few of these
mechanisms are flame charging, static electrification, diffusion charging, and field charging (see
Chap. 15 of Hinds [42] for details). The experimental study of Kousaka et al. [43] found that the
magnitude of particle charge significantly depends on aerosol materials and generation methods,
such as evaporation-condensation, chemical reaction, atomization, and mechanical dispersion. Tsai
et al. [44] used an aerosol charge analyzer to measure the absolute average charge on atomized NaCl
particles. For different initial aqueous concentrations, their experiments found that the absolute
quantity of charges on particles with diameters ranging from 0.2 to 1 μm is about 1e-10e. The
experimental investigation of Ghosh et al. [45] showed that the aerosol particle size versus average
absolute charge [measured by an electrical low-pressure impactor (ELPI)] plot approximately
follows the Boltzmann equilibrium charge distribution. The number of elementary charges on soot
particles depends on the charging mechanisms, ion concentration (Ni), time duration of charging
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(t), and the electric field (E ) in the case of field charging. For a particle of radius 0.5 μm, q1 = 42e
(diffusion charging) and q1 = 162e (field charging with E = 500 kV/m) when Nit = 1013 s/m3

(see Hinds [42]). The charges in metal particles or particles produced in flames are typically much
less than the Rayleigh, electron, and ion limit charges [42]. Experimental studies also confirm that
submicron-sized soot particles carry only a few elementary charges (see Onischuk et al. [46] and
Maricq [47]). In atmospheric clouds, tiny aerosol particles of radii 0.1–1.0 μm typically carry a
few elementary charges ranging from less than 1e up to a maximum of 42e (see Tinsley et al. [48]).
Several numerical and experimental studies have investigated the effect of charge on the coagulation
rate and the time evolution of the aerosol particles’ size distribution [49–52]. However, while solving
the number density equation numerically, none of these studies have considered the coagulation rate
that accounts for noncontinuum lubrication interactions and appropriate electrostatic and van der
Waals potentials between the charged conducting aerosol particles.

We will analyze the collision rate of Brownian spheres interacting through noncontinuum
hydrodynamics, van der Waals, and electrostatic forces. In Sec. II A, we will go through the formal
derivation of the collision efficiency for Brownian particles [12,53]. The collision efficiency is
directly related to the hydrodynamic mobility function and interparticle potential. Subsequently in
Sec. II B, we will briefly review the procedure for the noncontinuum corrections of axisymmetric hy-
drodynamic mobility functions [23]. We will quantify the effects of noncontinuum hydrodynamics,
van der Waals, and electrostatic interactions individually and various combinations of these three
driving forces in Sec. III. Finally, in Sec. IV, we will summarize our results and discuss possible
future works.

II. FORMULATION

A. The expression for the particle collision efficiency

We consider a dilute dispersion with a spectrum of particle sizes and seek to estimate the rate at
which particles of radii a1 and a2 with number densities n1 and n2 collide with each other per unit
volume. Mathematically, the collision rate K12 is equal to the flux of pairs into the collision sphere
of radius r = a1 + a2 and can be expressed in terms of the pair-distribution function P(r) and the
relative velocity V [21],

K12 = −n1n2

∫
(r=a1+a2 ) and (V ·n<0)

(V · n)P dA, (3)

where n is the outward unit normal at the spherical contact surface. The radial component of the
relative velocity must be inward at contact for two colliding spheres, or, in other words, V · n < 0
at r = a1 + a2. For a dilute dispersion, the pair-distribution function P satisfies the quasisteady
Fokker-Planck equation

∇ · (PV ) = 0. (4)

We assume colliding aerosols coagulate when they come into contact and so P = 0 at r = a1 + a2.
The absence of far-field correlations sets the upstream boundary condition: P → 1 as r → ∞.

For submicron aerosols, gravitational sedimentation is negligible, and thus the gravity-induced
coagulation is not significant. In this case, the Brownian diffusion and interparticle forces drive the
relative motion between the particles. The relative velocity between two particles is given by [53]

V = − D0

kBT
G

(
dΦ

dr
+ KBT

d ln P

dr

)
êr, (5)

where G is the axisymmetric mobility function that captures the effects of hydrodynamic interac-
tions (we will discuss this in detail in Sec. II B), and Φ is the interparticle potential. For the present
problem, we can write

Φ = ΦvdW + Φel, (6)
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where ΦvdW and Φel are the van der Waals and electrostatic potential energy, respectively (see
Appendixes A and B for details). Inserting the expression of V from (5) into (4) and then integrating
twice we have

P = exp (−Φ/kBT )

∫ r
a1+a2

exp (Φ/kBT )/r2G dr∫ ∞
a1+a2

exp (Φ/kBT )/r2G dr
. (7)

In deriving the expression of P, we apply the condition that both the van der Waals and electrostatic
potential energy approach zero at large separation (i.e., ΦvdW, Φel → 0 as r → ∞). Using the
expression of the pair-distribution function and the relative velocity, we perform the integral in
(3) to obtain the collision rate per unit volume. Thus the expression for the collision rate becomes

K12 = 4πn1n2D0

[∫ ∞

a1+a2

exp (Φ/kBT )

r2G
dr

]−1

. (8)

From the above expression, we can recover Smoluchowski’s result for the ideal coagulation rate
(K0

12) due to Brownian motion by setting the interparticle potential Φ = 0 and the hydrodynamic
mobility G = 1. To simplify the analysis, we scale the interparticle separation r by the average
radius a∗ = (a1 + a2)/2. Hereafter, r represents the dimensionless center-to-center distance and can
range from 2 (the collision sphere) to ∞ (negligible interactions between the particles). Therefore,
the final expression for the collision efficiency is

E12 =
[

2
∫ ∞

2

exp [(ΦvdW + Φel )/kBT ]

r2G
dr

]−1

=
[

2
∫ ∞

2

exp(NvΦ̂vdW + NeΦ̂el )

r2G
dr

]−1

, (9)

where Φ̂vdW = ΦvdW/AH and Φ̂el = Φel/[q2
1/(4πε0a1)]. Here, AH is the Hamaker constant for the

materials composing the two spheres and ε0 = 8.85 × 10−12 F m−1 is the permittivity of vacuum.
The dimensionless parameter Nv = AH/kBT is called the Hamaker group that measures the relative
strength of van der Waals interactions to Brownian diffusion and Ne = q2

1/(4πε0a1kBT ) measures
the relative importance of electrostatic forces to Brownian motions.

B. Noncontinuum correction for the mobility function G

The hydrodynamic forces acting along the line of centers of two particles moving in a quiescent
fluid are given by [10,54]

F1 = −6πμ f a1[Λ11(V1 − V2) + Λ12V2], (10)

F2 = −6πμ f a2[Λ21(V2 − V1) + Λ22V2], (11)

where Vi and Fi denote the velocity and forces on particles i, and Λi j is the dimensionless resistance
coefficients representing the force on particle i because of the translational motion of particle j.
From this the radial mobility function due to a central potential force or the Brownian diffusion can
be expressed in terms of Λi j to be

G = 1

1 + κ

Λ12 + κΛ22

Λ11Λ22 + Λ21Λ12
. (12)

Wang et al. [54] determined these resistance functions Λi j (r, κ ) by solving the Stokes equations for
two spherical drops in bispherical coordinates (see Appendix A of Wang et al. [54] for details). To
obtain the interactions between hard spheres, which is relevant to our study, we consider the case
when the drop-to-medium viscosity ratio is infinite.

The first few terms in the series obtained from the bispherical coordinates solution accurately
capture far-field continuum interactions. At close separations, using more terms in the series
solution enhances accuracy. The series solutions with enough terms will emulate the continuum
lubrication behavior of G. Batchelor [55] showed that G ∼ (1 + κ )2ξ/(2κ ) for ξ → 0 (here,
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ξ = r − 2) which can be deduced from the fact that the resistance coefficients Λ11 and Λ21

diverge as 1/ξ in the lubrication region. Thus we can infer that making contact between two
spheres with continuum hydrodynamics would take infinite time. Sundararajakumar and Koch [22]
calculated the noncontinuum lubrication resistance and showed that it has a weaker divergence of
O(ln[ln(Kn/ξ )]). Thus, noncontinuum lubrication interactions allow for contact in finite time. The
noncontinuum lubrication resistance f nc given in terms of rescaled radial separation, δ0 = ξ/Kn
and t0 = ln(1/δ0) + 0.4513, is [22,23]

f nc =

⎧⎪⎨⎪⎩
π
6

(
ln t0 − t−1

0 − t−2
0 − 2t−3

0

) + 2.587δ2
0 + 1.419δ0 + 0.3847 (δ0 < 0.26),

5.607×10−4δ4
0 −9.275×10−3δ3

0 +6.067 × 10−2δ2
0 −0.2082δ0+0.4654+0.054 88δ−1

0 (0.26 < δ0 < 5.08),
−1.182 × 10−4δ3

0 + 3.929 × 10−3δ2
0 − 5.017 × 10−2δ0 + 0.3102 (5.08 < δ0 < 10.55),

0.0452
[
(6.649 + δ0 ) ln

(
1 + 6.649δ−1

0

) − 6.649
]

(10.55 < δ0 ).

(13)

It is evident from (13) that for δ0 � 1, f nc goes as 1/ξ (i.e., the continuum lubrication behavior).
Also, the series solution for ξ � 1 approaches the continuum lubrication resistance. Thus the
matched resistances Λ11 and Λ21 can be derived to be valid at all ξ and written as

Λ11 = Λbi
11 − Λc

11 + Λnc
11, (14)

Λ21 = Λbi
21 − Λc

21 + Λnc
21, (15)

where Λbi
11 and Λbi

21 are the series solution in bispherical coordinates performed by Wang et al. [54],
Λc

11 and Λc
21 are continuum lubrication resistances, and Λnc

11 and Λnc
21 are noncontinuum lubrication

resistances. These lubrication results are given as

Λc
11 = 2κ2

(1 + κ )3

1

ξ
+ c0, (16)

Λc
21 = Λc

11 − Λ12

κ
, (17)

Λnc
11 = 2κ2

(1 + κ )3

f nc

Kn
+ c0, (18)

Λnc
21 = Λnc

11 − Λ12

κ
, (19)

where c0 is a constant that is utilized to match the various regimes in order to get a smooth and
uniformly valid resistance. We choose ξ = 10−3 as a changeover separation distance between
far-field and continuum lubrication. We evaluate c0 such that Λ11 = Λc

11 at this transition point.
Figure 2 shows how the mobility function G varies with the separation ξ when two spheres interact
through noncontinuum hydrodynamics. To illustrate the difference, we plot the variation of G
for full continuum hydrodynamic interactions. Recently, we have used uniformly valid forms of
the axisymmetric hydrodynamic mobilities to study collisions of bidisperse spheres settling in an
uniaxial compressional flow [23] and homogeneous isotropic turbulent flow [56].

III. RESULTS AND DISCUSSIONS

A. Collision efficiency without van der Waals and electrostatic forces (Nv = 0 and Ne = 0)

We determine the collision efficiency of aerosol particles that interact hydrodynamically but
ignore the role of any interparticle potential (i.e., Φ = 0). Of course, van der Waals and electrostatic
interactions do exist between the aerosol particles. However, this calculation will demonstrate the
effect of the breakdown of the continuum lubrication interactions on the collision dynamics of two
Brownian particles. Without an interparticle potential, the expression for the collision efficiency
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FIG. 2. The mobility functions G as a function of ξ when κ = 0.3, 1.0. The continuous lines are for con-
tinuum hydrodynamic interactions (i.e., Kn = 0) and the dashed-dotted lines are for noncontinuum lubrication
interactions with Kn = 10−1. The inset shows how G varies in the lubrication region due to continuum and
noncontinuum hydrodynamic interactions when κ = 1.0.

becomes

E12 =
(

2
∫ ∞

0

1

(ξ + 2)2G
dξ

)−1

. (20)

For rigid particles, the continuum lubrication interactions predict that G = O(ξ ) as ξ → 0. Thus,
the integral in (20) has a singularity for rigid spheres resulting in zero collision efficiency. However,
the continuum assumption is no longer valid when the gap thickness between the surfaces of the
two spheres is less than the mean free path of the medium. As discussed earlier, noncontinuum
lubrication interactions lead to G = O(1/ ln[ln(Kn/ξ )]), which decays slowly than its continuum
counterpart so that the integral converges. This weaker noncontinuum lubrication force is valid
for ξ � O(Kn) and is responsible for a finite collision rate even without colloidal forces. For
drops, Davis et al. [57] showed that G = O(

√
ξ ) for ξ � 1, which too decays slower than its rigid

counterpart and thus results in finite collision times [53,58].
We perform the integral in (20) numerically using Gauss-Kronrod quadrature (the “quadgk”

subroutine in MATLAB) with the ξ limit ranging from 10−10 to ∞. Figure 3 shows how E12

varies with Kn for κ = 0.3, 0.4, 0.5, 1.0. The results will remain the same with κ being replaced
by κ−1 since G(ξ, κ ) = G(ξ, κ−1). With decreasing Kn, E12 decreases because the reduction in
non-continuum effects results in a higher lubrication resistance at small separations. For Kn → 0
(corresponds to the full continuum hydrodynamic interactions), E12 will slowly approach zero. It is
evident from Fig. 2 that the mobility function G deviates more from its continuum behavior when κ

10-4 10-3 10-2 10-1
0.2

0.3

0.4

0.5

0.6

0.7

FIG. 3. The collision efficiency of Brownian particles as a function of the Knudsen number for different
size ratios without interparticle potentials. The dashed lines are from the analytical expression (21), which are
in good agreement with the numerical results.
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is lower. Also, for lesser κ , the contribution of smaller particles to the relative Brownian diffusivity
D0 is more. Due to these two factors E12 is more for smaller κ as shown in Fig. 3. Inspired by
Chun and Koch’s [12] method for calculating the collision efficiency of two equal-sized particles,
we can segregate the integral in Eq. (20) into contributions from the continuum, noncontinuum, and
matching parts. This allows us to obtain the following analytical estimate for the collision efficiency
for bidisperse spheres undergoing Brownian motion,

E12 ∼
(

c(κ ) + κ

(1 + κ )2
ln

[
1

Kn

])−1

, (21)

where c(κ ) is a size-ratio dependent constant that must be obtained numerically. We can observe the
favorable comparisons of the analytical expression with the numerically evaluated integral in Fig. 3.
A useful fitting form for the constant is c(κ ) = (−0.7557κ2 + 2.781κ + 1.716)/(κ + 1.861).

B. Collision efficiency with van der Waals forces, no electrostatic forces (Nv �= 0 and Ne = 0)

While the relevance of electrostatic forces depends on the material of the aerosol particles and the
charging mechanism, van der Waals forces caused by induced-dipole/induced-dipole interactions
between the molecules constituting the particles will always be there. In this section, we will analyze
the role of van der Waals interactions. The expression for the retarded van der Waals potential
(ΦvdW) is given in Appendix A. As we have noted in the previous section, the integral in (20) has
a singularity for ξ → 0 when particles interact through continuum hydrodynamics. However, the
exponential term in the numerator of the integrand in Eq. (9) vanishes since the van der Waals
potential approaches −∞ as ξ → 0, yielding a convergent result for the collision efficiency. Thus,
one can get a finite result for the collision efficiency in the presence of van der Waals forces even
if the continuum lubrication interactions dominate near contact. The coagulation between colloidal
particles induced by Brownian motions and modulated by continuum hydrodynamic interactions
and van der Waals attractions has been studied extensively [19]. From the discussion so far, we can
conclude that either attractive interparticle forces (such as van der Waals forces) or noncontinuum
lubrication effects are two mechanisms for overcoming the continuum lubrication forces at close
separations. In actual cases, the relative importance of noncontinuum effects and van der Waals
forces depends on various factors such as fluid pressures, sizes of particles, and aerosol materials.
For example, noncontinuum effects predominantly drive the collision dynamics for aerosol particles
in a low-pressure gas medium, and van der Waals interactions act as a dominant collision mechanism
of colloidal particles in a liquid medium. In the current study, we evaluate the collision efficiency
when both the factors are in play as they usually do for atmospheric aerosols.

In addition to Kn and κ , the collision efficiency with van der Waals interactions depends on
the parameter Nv = AH/kBT . To estimate the typical values of Nv , we need the information of AH .
The values of AH for several common materials are available in the literature (see Table 7.1 on
p. 198 of Friendlander [2]). The dissolved ions inside can modify their Hamaker constant for haze
drops even when the surrounding medium has no free ions. Mahanty and Ninham [59] quantified the
modification of the Hamaker constant between two ionic drops in air. Dissolved ions inside the drops
will decrease the nondispersive component of the Hamaker constant even when the intervening
medium is air. However, there will be no screening effect on the interaction, unlike the van der
Waals interaction of dielectric particles in an aqueous electrolyte medium. Yao and Capecelatro
[60] mentioned that depending on the aerosol materials, the value of AH can vary between 4 × 10−21

and 3 × 10−18 J. Therefore, Nv can approximately vary in the range 1–729 when T = 298 K. The
typical values of Nv for water droplets, polystyrene, and metal particles are approximately 10, 20,
and 100, respectively [12]. We calculate the collision efficiency for Nv values ranging from 10−2 to
102. Though our theory can predict the collision efficiency for any value of Nv ∈ [0,∞), Nv values
less than 1 are perhaps not achievable in actual experiments. The purpose of showing our results
up to this small Nv is to demonstrate how pure noncontinuum hydrodynamics works. Recently,
there have been studies that have illustrated that AH can get reduced considerably for porous
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FIG. 4. The collision efficiency as a function of the parameter Nv for Brownian particles with different Kn
and size ratios (a) κ = 0.3, (b) κ = 0.5, and (c) κ = 1.0. In these calculations, we assume NL = 102. The color
legend for (b) and (c) is the same as for (a). The black dashed-dotted lines in each of the three plots represent
the collision efficiency due to continuum hydrodynamics (i.e., Kn = 0) in the presence of retarded van der
Waals forces.

particles [61] and hollow particles [62], thus allowing for a possibility of accessing small values
of Nv . Figure 4 quantitatively shows how van der Waals forces influence the collision dynamics
of Brownian particles. For a given Kn and κ , the collision efficiency increases monotonically with
increasing Nv . The van der Waals interactions play a dominant role for small Kn. In particular,
when Kn � 10−4, noncontinuum effects are less significant, and then van der Waals attractions
solely drive the dynamics. Figure 4 proves this argument since Kn = 0 lines almost coincide with
the Kn = 10−4 lines. Physically, if Kn is small and Nv is large, van der Waals forces rapidly
pull the particles into contact as they come close to each other. On the other hand, when Kn is
relatively large, and Nv � 1 (i.e., weak van der Waals forces), E12 asymptotes to pure Brownian
collision efficiency. However, it is important to note that the collision efficiency for continuum
hydrodynamic interactions will asymptote to zero as Nv → 0. As the previous case, the collisions
are more efficient for particles with lesser κ . Figure 5 gives the variation of collision efficiency with
Kn for Nv = 0, 1, 10, and 102 as the solid, dashed, dashed-dotted, and dotted lines, respectively.
For Kn < 10−2, the collision efficiencies for nonzero Nv are approximately independent of Kn.
We expect that noncontinuum effects will dominate the collision dynamics when Kn � O(1). For
intermediate values of Kn, both noncontinuum lubrication flow and van der Waals forces influence
the collision efficiency.

We calculate the collision efficiency as a function of κ under the action of different driving forces
for small hydrocarbon particles with a1 = 0.5 μm and a1 = 1.0 μm (see Fig. 6). Taking the mean
free path for air, λ0 ≈ 0.1 μm, Kn as a function of κ is given by Kn = 0.2/(1 + κ ) for a1 = 0.5
μm and Kn = 0.4/(1 + κ ) for a1 = 1.0 μm. For hydrocarbon particles in air, AH ≈ 5 × 10−20 J
(see Friendlander [2]), μ f ≈ 1.8 × 10−5 Pa s. We consider the air temperature T = 298 K. So, the
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FIG. 5. The collision efficiency is plotted as a function of Kn for Brownian particles with different values
of Nv and size ratios (a) κ = 0.3, (b) κ = 0.5, and (c) κ = 1.0. We assume NL = 125 in these calculations. The
legend for the line types of (b) and (c) is the same as for (a). The continuous lines in each of the three plots
represent the collision efficiency due to pure noncontinuum hydrodynamics (i.e., Nv = 0).
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FIG. 6. The collision efficiency is plotted as a function of size ratio κ for tiny hydrocarbon particles. The
solid lines with diamond markers are for a1 = 0.5 μm, and the dashed lines with circle markers are for a1 = 1.0
μm. The black, pink, and red colors represent the cases when driving mechanisms are only noncontinuum
hydrodynamics (NC), only van der Waals forces (vdW), and combined effects of noncontinuum hydrodynamics
and van der Waals forces (NC + vdW), respectively.

Hamaker group Nv ≈ 12.15 and the dimensionless quantity NL (see Appendix A for the definition
of NL) is given by NL = 10π (1 + κ ) for a1 = 0.5 μm and NL = 20π (1 + κ ) for a1 = 1.0 μm. For
a given κ , the collision efficiency due to noncontinuum lubrication interactions plus van der Waals
attractions is highest and that due to only noncontinuum effects is lowest. The collision efficiency
value due to van der Waals attractions when particles interact through continuum hydrodynamics
lies in between these two cases. In all cases, the collision efficiency decreases monotonically with
increasing κ and it is higher for the a1 = 0.5 μm case compared to the a1 = 1.0 μm case.

C. Collision efficiency with electrostatic forces (Ne �= 0)

Electrostatic interactions between charged aerosol particles significantly impact many naturally
occurring processes, such as droplet growth in the initial stage of rain formation. Let us consider
a1 = 0.5 μm and the aerosol particle carrying electric charge in the range 1e < q1 < 200e. Thus,
the parameter Ne capturing the relative strength of electrostatic force to Brownian motion can vary
between O(10−1) and O(103). As discussed in Sec. I, two conductive spheres carrying charges of
the same nature always attract each other at close separation except for certain combinations of size
and charge ratio values. However, they always repel each other at moderate to large separations.
The relative velocity is inward in the lubrication regime because the interaction force between
the particle pair is always attractive there. As per the definition in (3), the relative velocity must
be inward at all separations. Therefore, two spheres will come into contact if the sum of relative
inward velocities induced by Brownian motions and van der Waals forces is higher than the
relative outward velocity induced by electrostatic repulsion forces when interparticle separations
are moderate to large. We find that the net relative velocity at the far-field is usually outward
for particles with a relatively higher amount of charges on their surfaces, and thus they do not
come into contact. Here, we aim to demonstrate the role of electrostatic interactions on collision
dynamics separately. So, we estimate the collision efficiency for the hypothetical situation in
which like-charged Brownian particles interact via noncontinuum hydrodynamics and electrostatic
forces but experience no van der Waals force. However, towards the end of this section, we will
present some results for physical systems where noncontinuum hydrodynamics, van der Waals, and
electrostatic forces are in play. For collisions to occur without van der Waals forces (i.e., Nv = 0),
Brownian motion-induced relative inward velocity must bring the particles into the attractive regime
by overcoming the far-field repulsive electrostatic forces. We observe that depending on the values
of κ , β, and Ne, the electrostatic interactions can either hinder or promote the collision dynamics of
a pair of like-charged aerosols. Nonetheless, the collision efficiency must asymptotically match with
the results for Ne → 0 (Brownian diffusion dominated regime) and Ne → ∞ (electrostatic forces
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FIG. 7. The collision efficiency as a function of Ne, the relative strength of electrostatic forces to Brownian
motion with different κ , and charge ratios (a) β = 0.1, (b) β = 1, and (c) β = 10 when Kn = 10−2 and Nv = 0.

dominated regime). In the Ne → 0 limit, E12 will approach Brownian collision efficiency due to
noncontinuum hydrodynamics and for Ne → ∞, E12 will approach zero. Similarly, in the presence
of van der Waals interactions, E12 will asymptote to the result corresponding to noncontinuum
hydrodynamics plus van der Waals forces when Ne → 0.

Figure 7 shows the variation of the collision efficiency as a function of Ne for different κ ,
Kn = 10−2, and β = 0.1, 1, 10 when Nv = 0. For smaller β values (for example, β = 0.1), the
magnitude of the electrostatic attraction forces in close approach increases with increasing κ . This
trend reverses gradually with increasing β, and it becomes the opposite when β is sufficiently
high (for example, β = 10). Therefore, in the Ne � 1 limit, the collision efficiency must increase
with increasing κ when β is small. On the other hand, we have reported in Sec. III A that the
collision efficiency is higher for lesser κ when Brownian diffusion and noncontinuum hydrodynamic
interactions drive the collision dynamics (i.e., Ne → 0). Because of these two opposite behaviors
in the two extreme regimes, the curves for different κ intersect with each other in intermediate Ne

values when β = 0.1 [see Fig. 7(a)]. Also, for a given κ , the strength of the attraction forces is
weak for smaller β, and thus the collision efficiency for this case is always smaller than the Ne → 0
asymptotic value. The qualitative behaviors of the results are similar for β becoming ten times
the previous β value. The only notable difference from the β = 0.1 results is that all the curves
do not intersect with each other. For β = 10, the electrostatic attraction forces in the lubrication
regime are so strong that the collision efficiency overshoots the pure noncontinuum result for some
range of values of Ne when κ = 0.3, 0.4, 0.5 [see Fig. 7(c)]. As expected, in this case, the collision
efficiencies are lower for higher κ . Since the electrostatic potential Φ̂el has its maximum at some
separation ξ0 (<∞) (where the force switches from a repulsive character to an attractive one), we
use the Laplace method [63] to obtain the following asymptotic expression for the integral (9) when
Ne � 1 and Nv = 0:

E12 ∼ 1

2

√
Ne|Φ̂ ′′

el(ξ0)|
2π

ξ 2
0 G(ξ0) exp [−NeΦ̂el(ξ0)]. (22)

In the above expression Φ̂ ′′
el(ξ0) is the second-order derivative of Φ̂el(ξ ) with respect to ξ at ξ = ξ0.

The above analytical results for the Ne � 1 are in good agreement with the numerically obtained
collision efficiencies, particularly when Φ̂el have a pronounced peak. The above expression also
suggests that the collision efficiency vanishes exponentially fast for large Ne.

To illustrate how collision efficiencies depend on the strength of noncontinuum hydrodynamics,
we plot E12 as a function of Ne for different Kn when κ = 0.5, β = 1, and Nv = 0 (see Fig. 8). With
decreasing Ne, E12 increases monotonically and asymptotes to the Brownian collision efficiency
in the presence of noncontinuum hydrodynamics. As expected, the collision efficiency is higher
for higher Kn. Unlike the van der Waals potentials, the electrostatic potential remains bounded at
contact [see Eq. (B8)]. The O(ξ−1) singularity of the integrand in (9) will remain when particles
interact through continuum hydrodynamics in the presence of only electrostatic force. Therefore,
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FIG. 8. The collision efficiency as a function of Ne for different Kn when κ = 0.5, β = 1, and Nv = 0.

the collisions between the particle pairs are not possible due to continuum hydrodynamics plus
electrostatic interactions.

Figures 9(a) and 9(b) show contour plots for collision efficiencies of like-charged Brownian
particles in the a1-q1 parameter space when both noncontinuum hydrodynamics and electrostatic

FIG. 9. The contour plot of collision efficiencies in the a1-q1 parameter space. In (a) and (b) noncontinuum
lubrication interactions plus electrostatic forces are considered. The van der Waals interactions are also
incorporated in (c) and (d).
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interactions are in play. In these plots, particle radii are in microns and particle charges (scaled by the
elementary charge e) are in coulombs. We take λ0 = 0.1 μm for calculating the Knudsen number.
So, we have Kn = 2/(15a1) when β = 0.5 and Kn = 1/(10a1) when β = 1.0. The required nondi-
mensional parameter Ne does not depend on κ , β. For T = 298 K, Ne is given by Ne = 0.0561q2

1/a1.
Qualitatively both the plots are quite similar. For a given a1, the collision efficiency decreases with
increasing q1 and beyond a certain value of q1 it becomes negligible. We find that these limiting
values of q1 are higher for larger a1. Collision efficiencies are negligible for larger q1 because the
electrostatic repulsion forces dominate the Brownian diffusion. Comparing between Figs. 9(a) and
9(b), we can say that collisions are more efficient for the κ = β = 0.5 case than for the κ = β = 1.0
case. We perform the above two calculations again after incorporating van der Waals forces [see
Figs. 9(c) and 9(d)]. For calculations with van der Waals interactions, we take Nv = 12.15 (the
same as stated in Sec. III B). The dimensionless parameter NL is given by NL = 30πa1 for κ = 0.5
and NL = 40πa1 for κ = 1.0. As expected, collision efficiencies are higher in the presence of van
der Waals forces. However, the qualitative trends of the collision efficiencies are quite similar.

IV. CONCLUSIONS

We have studied the coagulation rate of a pair of spherical particles experiencing Brownian
diffusion, both with and without interparticle forces. The present analysis considers noncontinuum
hydrodynamics that plays a crucial role in particle collisions in gaseous media. The noncontinuum
lubrication interactions result in finite collision rates even without attractive nonhydrodynamic
forces. This finding contrasts the well-known prediction that continuum lubrication forces do not
allow surface-to-surface contact between rigid spheres. We have used the uniformly valid solution of
the axisymmetric mobility function (G) that captures the noncontinuum lubrication at near-field and
continuum hydrodynamic interactions for moderate to large separations. We find that the collision
efficiencies increase monotonically with increasing the noncontinuum effects (i.e., increasing Kn).

We have also performed the collision efficiency calculations in the presence of retarded van
der Waals potentials and electrostatic forces. The van der Waals forces are always attractive and
thus enhance the collision efficiency. In Sec. III B, we have presented how collision efficiency
varies with the size ratio, the Knudsen number, and the relative strength of van der Waals forces
to Brownian diffusion. Depending on the size ratio, charge ratio, and dimensionless center-to-center
distance values, the electrostatic interaction force between two like-charged conducting spheres can
be attractive, zero, or repulsive. Unlike the van der Waals forces, electrostatic interaction forces
can either diminish or enhance the collision efficiency. We have shown how collision efficiencies
vary in the size ratio–charge ratio parameter space when noncontinuum effects, van der Waals, and
electrostatic interactions are in play. One can utilize the present study to predict how the particle
size distribution evolves with time and then compare it with experiments. To solve this evolution
equation, one requires accurate estimation for the collision rate constant.

Almost all previous studies, including the present one, have treated charged aerosol particles as
perfect conductors. The actual collision rate might differ from the present one due to this assumption
since dielectric constants for aerosol materials are finite. The deviation from the actual collision rate
will be even more for haze droplets whose dielectric constant is approximately 80 at STP. Most
importantly, the difference in electrostatic forces between dielectric and perfect conducting spheres
becomes more prominent at close separations where noncontinuum hydrodynamics becomes dom-
inant. Therefore, in the lubrication regime, the collision dynamics of dielectric spherical pairs are
expected to be significantly different from that of a perfect conductor case. We plan to address this
issue in a forthcoming study. Two like-charged dielectric spheres, analogous to perfect conductors,
can also attract each other in close separations. The combinations of charge ratio and size ratio
values for which two dielectric spheres repel each other near contact form a bandlike region in the
β-κ parameter space (see Bichoutskaia et al. [64] and Khachatourian et al. [65]), whereas in the
case of a pair of perfect conducting spheres, this region becomes a single curve [Eq. (2)]. Thus a
future extension of our study needs to consider an additional parameter, the dielectric constant for
aerosol particles, for calculating the collision efficiency.
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The current study ignores the role of sedimentation in the collision of aerosol particles.
Dhanasekaran et al. [23] studied the gravity-induced coagulation rate due to noncontinuum lubri-
cation interactions, ignoring Brownian motion. Many previous studies have investigated the role of
electrostatic forces on collisions between like-charged conducting spheres settling due to gravity
in a quiescent environment [48,66]. In reality, both Brownian diffusion and gravitational settling
would act in tandem during collisions of micron-sized particles. With the inclusion of gravitational
effects, the problem loses its isotropic nature, and thus we need to solve the advection-diffusion
equation for the pair probability for arbitrary Pe. In the continuum limit, when van der Waals forces
and/or interfacial mobility induce collisions, Zinchenko and Davis [10] considered the arbitrary Pe
problem. Similarly, we can extend the current analytical approach of finding the Pe = 0 collision
rate to include the effects of sedimentation. The numerical solution of the advection-diffusion
equation would need special attention in such a scenario to account for the presence of the diffusive
boundary layer near the collision sphere [67] at large Pe.
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APPENDIX A: THE POTENTIAL FOR RETARDED VAN DER WAALS INTERACTION
BETWEEN TWO SPHERES

Most collision rate calculations use the unretarded form of the van der Waals potential derived
by Hamaker [68] using a pairwise additivity theory. Hamaker’s calculation does not consider
the retardation due to the finite propagation speed of electromagnetic waves. For interparticle
separations comparable to or greater than the London wavelength λL (≈0.1 μm), the effects of
retardation must be taken into account [19]. We have utilized the work of Zinchenko and Davis [10]
who obtained the retarded van der Waals potential (ΦvdW) by analytically integrating the dispersion
energy between two molecules. The retarded van der Waals potential is given by

ΦvdW = − AH

3ξ

κ

(1 + κ )2

1

1 + 1.769p0
H(0.5 − p0)

− AH

60

[
2.45Ψ J7 − 2.17

12
Ψ 2J8 + 0.59

168
Ψ 3J9

]
H(p0 − 0.5), (A1)

where p0 = 0.5NLξ and Ψ = 4/(rNL ) with NL being the radius of the two particles scaled by the
London wavelength λL [i.e., NL = 2π (a1 + a2)/λL = 2πa1(1 + κ )/λL]. The H is the Heaviside
step function. The expressions for the coefficients Jn are given by [10]

Jn = (n − 6)!

[
1

(1 − α1 − α2)n−5 + 1

(1+α1+α2)n−5 + 1

(1+ α1 − α2)n−5 + 1

(1 − α1+ α2)n−5

]
α1α2

+(n − 7)!

[
α1 − α2

(1 − α1+α2)n−6 + α2 − α1

(1+α1 − α2)n−6 + α1+α2

(1+α1+α2)n−6 − α1+α2

(1 − α1 − α2)n−6

]
+ fn(α1 + α2) + fn(−α1 − α2) − fn(α2 − α1) − fn(α1 − α2), (A2)

where α1 = 2/(1 + κ ), α2 = 2κ/(1 + κ ), and

fn(x) = − ln(1 + x) for n = 7, (A3)

fn(x) = (n − 8)!

(1 + x)n−7 for n � 8. (A4)
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The above van der Waals interaction energy switches between the two well-known limits, the Lon-
don interaction in the near-field and the Casimir-Polder interaction in the far-field, and Hamaker’s
additive approach is implemented. An exact approach to calculating the interaction energy would
require the solution of Maxwell’s equations in the two-sphere geometry, accounting for the material
properties. Pailthorpe and Russel [69] had addressed this by revisiting the multipole expansion
approach of Langbein [70], improving the convergence issues. The expressions thus obtained are
typically cumbersome to implement in numerical calculations. Vanni and Baldi [71] have shown that
for a nonconducting medium, the difference between the rigorous result and the modified Hamaker
approach is negligible; differences become substantial for an electrolyte medium. There have been
recent attempts at computing the van der Waals/Casimir forces between objects by solving the
electrodynamic equations using scattering theory [72,73].

APPENDIX B: THE ELECTROSTATIC INTERACTION POTENTIAL

The interaction potential of two charged conducting spheres can be written as

Φel = q2
1

4πε0a1
Φ̂el, (B1)

where Φ̂el is the nondimensional interaction potential. We define the Φ̂el in such a way that it
becomes zero when the separation distance between the spheres is infinite. Therefore, we have

Φ̂el = Ŵ − Ŵ∞, (B2)

where Ŵ and Ŵ∞ are respectively the electrostatic potential energy of two spherical conductors
for arbitrary and infinite separation. The expression of Ŵ for two spheres having constant surface
charges is given by [31]

Ŵ = β2S11 − 2βS12 + S22

2
(
S11S22 − S2

12

) , (B3)

where S11, S12, and S22 are the dimensionless (nondimensionalized by 4πε0a1) capacitance coeffi-
cients. The explicit expressions for these coefficients are [31,74]

S11 = κ sinh η

∞∑
n=1

[κ sinh nη + sinh(n − 1)η]−1, (B4)

S22 = κ sinh η

∞∑
n=1

[sinh nη + κ sinh(n − 1)η]−1, (B5)

S12 = − 2κ

r(1 + κ )
sinh η

∞∑
n=1

[sinh nη]−1. (B6)

The dimensionless parameter η in terms of nondimensional separation and size ratio is given by

η = cosh−1

[
(1 + κ )2r2 − 4 − 4κ2

8κ

]
. (B7)

Lekner [31] also derived the analytical expression for the potential energy in the lubrication regime
(i.e., ξ → 0) by expanding the capacitance coefficients. The near-field form of Ŵ at O(ξ ) is given
by

Ŵ ∼ −
(

1 + κ

2κ

)
× (1 + β )2 ln {4κ/[(1 + κ )2ξ ]} + 4βγ − 2β2ψ[κ/(1 + κ )] − 2ψ[1/(1 + κ )]

{2γ +ψ[κ/(1+κ )]+ψ[1/(1+κ )]} ln {4κ/[(1+κ )2ξ ]}+2γ 2−2ψ[κ/(1+κ )]ψ[1/(1+κ )]
.

(B8)
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We can neglect the electrostatic interaction when the separation distance between the spheres is
large. Thus the potential energy in the ξ → ∞ limit becomes

W∞ = 1

4πε0

(
q2

1

2a1
+ q2

2

2a2

)
= q2

1

4πε0a1

1

2

(
β2

κ
+ 1

)
. (B9)

So, the expression of Ŵ∞ is

Ŵ∞ = 1

2

(
β2

κ
+ 1

)
. (B10)
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