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ABSTRACT

This work aims to implement the asymptotic homogenization method (AHM) to predict the effective thermal/electrical conductivity for
suspensions with aligned inclusions. Exploiting the substantial separation of length scales between the macroscopic and microscopic
structures, multiscale modeling using the AHM capitalizes on the perturbations of the potential field caused due to the presence of an
inclusion under a macroscopic loading used to predict the effective property. The analytical formulation for the thermal/electrical
conductivity problem is derived, and subsequently, the finite element formulation required to solve the unit cell problem is described. The
results obtained for a cylindrical inclusion are validated against known analytical solutions for both the dilute [Mori–Tanaka (MT)] and
concentrated volume fractions (/) of the inclusion. This study revealed that MT estimate and AHM agree well at / less than 0.4. However,
in near-maximum packing fractions, the AHM results fared significantly better than MT when compared with known asymptotic forms [J.
Keller, “Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders,” J.
Appl. Phys. 34, 991 (1963)]. The proposed AHM method is then implemented in structures with aligned spheroidal inclusions of various
aspect ratios and conductivity ratios, thus providing a more generalized approach to predict the effective thermal/electrical conductivity. The
results obtained are systematically benchmarked and validated against known analytical expressions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091451

I. INTRODUCTION

In an era of heterogeneous materials, suspensions with aniso-
tropic inclusions are used in various engineering applications ranging
from polymer technology, paper pulp production, and pharmaceuti-
cals to biomedical sectors. In addition to the above-mentioned applica-
tions, fibrous composites are integral to manufacturing components
required for the automobile and aerospace industries. Though the con-
cerned fields are plenty, a fundamental question needs to be addressed:
does the material’s property suit the intended application? Computing
and predicting the effective behavior of such materials have been a
challenge in facilitating these applications.

As noted by Einstein,1 suspensions with solid spherical particles
enhance the viscosity of the base fluid. The effect of the dispersed
phase on the transport coefficients of the suspension becomes more
pronounced when their shape is now characterized by a large aspect

ratio.2–4 The enhancement of the effective property due to the pres-
ence of these particles is not restricted to the viscosity of a fluid alone
but also to other transport properties, such as diffusivity,5,6 thermal
conductivity,7,8 and permeability.9 Interaction among the different
phases of the material occurs at a length scale much smaller than the
characteristic length scale of the heterogeneous media. Multiscale
models that exploit such differences in the length scale are used to
compute the effective properties of the media using homogenization
techniques, which include the widely used Mori–Tanaka (MT),10 self-
consistent,11 and asymptotic homogenizations,12,13 to name a few, that
are widely used for elastic problems to find the effective property at
dilute concentrations (/< 0.1) of the inclusion.

The predominant focus of this work is on the problem of effective
heat/current conducted through a quiescent suspension with aligned
inclusions as a function of their aspect ratio and domain conductivity
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ratios. Unlike the case of predicting the effective viscosity, the predic-
tion of effective conductivity of the suspension is void of any particle
kinematics; thus, the same methodology can be readily extended to
find the effective conductivity for composite structures.

The earliest work on finding the effective conductivity was per-
formed by Maxwell14 where noninteracting spherical inclusions of vol-
ume fraction / and conductivity jinc were embedded in an infinite
matrix space of conductivity jmat . The effective conductivity jeff is
then given as a function of the conductivities and volume fractions.
Extension to Maxwell’s model was provided by Rocha and Acrivos15

for spheroidal particles. These expressions were correct only to Oð/Þ,
thus neglecting any particle–particle interactions. Jeffrey16 extended
Maxwell’s model to Oð/2Þ using probability density functions for
dilute spherical inclusions.

Interestingly, it is possible to make analytical progress in the
near-packing limit, where the nearest-neighbor lubrication interac-
tions govern the interaction physics. In one of the earliest studies,
Keller17 considered interparticle interactions and gave analytical
expressions for the conductivity of circular and spherical inclusions
near the maximum packing fractions. Since the inclusions are perfect
conductors, the effective conductivity is divergent for the limiting case
where the solid spheres are in contact. A subsequent work by
Batchelor and O’Brien18 addressed the subtle double asymptotic
limits—large but finite inclusion conductivity and the small gap
between inclusions near the maximum packing fraction. They calcu-
lated the effective conductivity when the high-conductivity inclusions
are in contact with each other via the dipole strength of the spherical
particles suspended in a quiescent fluid. As an extension of Lord
Rayleigh’s work,19 McPhedran and McKenzie20 devised a method to
calculate the conductivity of a system consisting of inclusion and
matrix arranged in a simple cubic structure. Toward this, they devel-
oped a multipole expansion that predicted the conductivity with high
accuracy even for close-packed spheres. At this close-packing limit,
Sangani and Acrivos21 modified Zuzovsky and Brenner’s22 methodol-
ogy and subsequently solved a set of linear equations to compute the
effective conductivity for spherical inclusions. The results obtained for
the limiting case of maximum packing fraction were compared with
Batchelor and O’Brien and differed only by a constant. Bonnecaze and
Brady8 developed a generalized method using an approach similar to
the “Stokesian dynamics” for predicting effective conductivity. The
technique involved the formulation of a capacitance matrix, which
helped find the far-field and near-field effects with the necessary
boundary conditions. Utilizing this obtained capacitance matrix, the
effective conductivity was found by computing the particle dipoles.

Subsequently, the development of expressions to predict the
effective conductivity for suspensions with anisotropic inclusions
became a topic of interest. Formulation of the analytical expressions
was deemed challenging due to the loss of symmetry in the shape of
the inclusion. Chen and Acrivos23 incorporated the results of Rocha
and Acrivos15 and Jeffrey16 and developed expressions to predict the
conductivity of a dilute system with highly conducting aligned sphe-
roidal inclusions. Using the theory of slender body, Chen and Acrivos
were able to predict the conductivity up to Oð/2Þ. In another work,
Lu and Kim24 carried out a study to predict the effective conductivity
of composites containing perfectly conducting aligned spheroidal
inclusions. A virial expansion for jeff was obtained as a function of the
inclusion volume fraction / up to Oð/2Þ. A contemporary work by

Torquato and Lado25 predicted the effective conductivity by using the
perturbation expansion based on an n-point probability function. The
results obtained were valid for dilute dispersion of ellipsoids.

Further investigations were carried out to predict the effective
property of microstructures with spheroidal inclusions over the entire
spectrum of inclusion volume fractions. Lu and Lin26 extended Lu and
Kim’s methodology to the more general case of finite inclusion con-
ductivity and thus provided analytical expressions to compute the
effective conductivity for aligned spheroidal inclusions considering the
interactions between a pair of inclusions. A two-particle boundary-
value problem was solved by using the boundary collocation method
to capture the near-field interactions and hence the thermal dipole
moments. The pair distribution function, which depends on the
microstructure of the system under consideration, is computed by
adopting a well-stirred model. The results obtained by the numerical
simulation and the pair distribution function were then subsequently
used to derive the expressions for jeff . Even though there are a consid-
erable amount of contributions by various authors over the years, the
absence of a more generalized method or lack thereof, which predicts
the effective conductivity, irrespective of the shape and size of the
inclusion, motivates us to explore the feasibility of asymptotic homog-
enization to predict the effective conductivity.

The asymptotic homogenization method (AHM)12,27,28 exploits
the sharp separation between the microscale and macroscale to decou-
ple spatial variations and employs asymptotic expansions of the fields.
This approach, under the assumption of periodicity in the microstruc-
ture, yields a set of effective governing equations, which describe the
macroscale mechanics of the heterogeneous material. A detailed
review of the AHM can be found in these articles.29,30 Many authors
have employed the AHM to predict the effective property for multi-
functional layered composite materials31–33 and were validated against
existing analytical expressions for the same. The AHM is also used to
predict effective transport properties such as the effective fluid perme-
ability34–36 and diffusion coefficient37,38 for systems with periodic
structures. Rubinstein and Torquato34 computed the effective fluid
permeability through a porous media using the AHM, while Auriault
and Lewandowska38 used the AHM to predict the effective diffusion
coefficient for a periodic porous media. A more recent work39 com-
pared the accuracy of the results predicted by the AHM and the repre-
sentative volume element method in thermal composites, thus proving
the efficacy and robustness of the AHM. Though the derivations
required to find the effective property expression are mathematically
extensive, the use of the finite element (FE) method helps simplify the
solving procedure. Such solving schemes have been adopted,40–42 and
the accuracy of the results obtained has been verified. A brief overview
of the literature survey is shown in Table I.

As shown in Mori–Tanaka, Maxwell’s, and subsequent studies,
the models predict the effective property very well for dilute packing
limits while failing to capture the interparticle interactions at semidi-
lute and maximum packing fractions. Though the work by Lu and
Lin26 predicted the effective property very well for aligned spheroidal
inclusions over the entire spectrum of packing fractions, the available
expressions are an implicit function of both the conductivity ratio and
the aspect ratio of the inclusion. Thus, deriving a closed-form solution
for an entirely new combination of aspect ratio and conductivity
involves a lot of mathematical rigor. Taking into account the abovesaid
limitations, and with an aim to provide a more generalized method to
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predict the effective conductivity for the complete range of packing
fractions and to capture the interparticle interactions, which occur
close to maximum packing fractions, we propose this method, which
uses the robustness of the AHM with the efficacy of the FE solutions
to predict the effective conductivity.

In Sec. IIA, the multiscale formulation for the effective conduc-
tivity problem is derived, while in Sec. II B, the FE formulation
required to solve for the same is described. In Sec. IIIA, the results
obtained are benchmarked against the known analytical results for a
cylindrical inclusion and then the study is further extended to inclu-
sions of more general shapes in Sec. III B.

II. MULTISCALE MODELING

In this work, we consider composites with a regular structure,
thus making it possible to use periodic homogenization. To this end, a
periodic microstructure is assumed for the composite, made up of
many repetitive unit cells. The length scale associated with the repeti-
tive unit cell is well separated from that of the macrostructure. The
unit cell entails the geometric and material properties at the micro-
scopic level, thus significantly influencing the macroscopic behavior of
the composite.

As shown in Fig. 1, we consider the unit cell to be made up of an
inclusion within a continuous media (matrix/suspension phase). The

interface between an inclusion and a continuous phase is assumed to be
perfect (neglecting any interface effects). Since the unit cells are seen as
the building blocks of the composite, any geometric ormaterial property
associated with the unit cell will repeat over a constant length Y, which
is termed as its periodicity. For a heterogeneous material domain X, the
periodicity of thematerial can bemathematically represented by

/ðx þ YÞ ¼ /ðxÞ 8x and 8ðx þ YÞ 2 X: (1)

Based on these assumptions and the existence of a distinguishable
length scale, the effective properties of the heterogeneous media can be
determined by solving a large but finite number of unit cell problems.

A. Asymptotic homogenization

If we assign a coordinate system x defining the macroscopic
length scale and a coordinate system y to define the microscopic length
scale, then the two sets of coordinates are related through the scale sep-
aration parameter e (e� 1) by

yi ¼
xi
e
: (2)

The x is the slow or global variable, which describes the long-range
interactions, while y is the fast or local variable that describes the
short-range interactions. It is, in a sense, to be understood that the var-
iations that macroscopically occur are being captured by the Oð1Þ
term, that is, the macroscopic variable x, but the variations that occur
at the microscopic length scale are of the OðeÞ and can only be cap-
tured by a finer length scale y, which scales the macroscopic length
scale as 1/e, represented by Eq. (2).

We now consider the problem of thermal/electrical conductivity
in a heterogeneous body with domain X, defined by the following
equations:

1. Constitutive equation

Jei ðxÞ ¼ je
ijðxÞEe

j ðxÞ in X; (3)

2. Balance law

Jei;iðxÞ ¼ 0 in X; (4)

3. Definition of potential gradient

TABLE I. Overview of literature survey.

Domain Literature Remarks

Mean-field methods Maxwell,14 self-consistent,11 Mori–Tanaka10
Single inclusion in infinite

matrix space

Analytical estimates

Keller,17 Jeffrey,16 Batchelor and O’Brien,18 McPhedran and
McKenzie,20 Sangani and Acrivos,21 and Bonnecaze and Brady8 Spherical inclusions

Rocha and Acrivos,15 Chen and Acrivos,23 Lu and Kim,24

Torquato and Lado,25 and Lu and Lin26 Spheroidal inclusions

Asymptotic
homogenization

Rubinstein and Torquato,34,37 Auriault and Lewandowska,38

Takano et al.,35 Song and Youn,36 Andreassen and
Andreasen,40 Fantoni et al.,41 Dutra et al.,42 and Lee and Lee39

Application of the AHM in predicting
effective transport coefficients

FIG. 1. Continuous media and the corresponding unit cell.
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Ee
i ðxÞ ¼ �V e

;iðxÞ in X; (5)

4. Boundary condition and jumps

vJei nib ¼ 0 on the interface; (6)

vV eb ¼ 0 on the interface; (7)

where JiðxÞ; EiðxÞ, and jijðxÞ denote the Cartesian components of
heat flux/electric current density, the temperature gradient/electric
field, and the conductivity (thermal/electrical) tensor, and V is the
temperature/electric potential, while superscript e denotes that the
macroscopic quantities have a dependency on microstructure. ð�Þ;i
denotes the spatial gradient of the field of interest along with the ith
direction. Using relations (5) and (3) in relation (4), we get

�ðje
ijðxÞV;jÞ;i ¼ 0: (8)

Owing to the Y-periodicity of the material, the conductivity tensor j

obeys the following property:

je
ijðx þ YÞ ¼ je

ijðxÞ; 8x 2 X: (9)

Thus, the variation of the conductivity tensor depends only on the
microscopic variable y, and hence, it is evident that the solution to the
problem depends on both the macrolength and the microlength scales.
Furthermore, assuming an analogous periodical perturbation on quan-
tities describing the thermal/electrical behavior of the body imposed
upon by the periodicity of the material characteristics, a two-scale
asymptotic expansion of the solution VðxÞ is considered in terms of
the macrovariables and microvariables

V eðxÞ ¼ V0ðx; yÞ þ eV1ðx; yÞ þ e2V2ðx; yÞ…; (10)

where Vi stands for the periodically varying temperature/electrical
potential perturbations due to the microstructure. Likewise, a similar
expansion for electric field and current density vectors can be written
as

Eeðx; yÞ ¼ E0ðx; yÞ þ eE1ðx; yÞ þ e2E2ðx; yÞ þ e3E3ðx; yÞ…; (11)

Jeðx; yÞ ¼ J0ðx; yÞ þ eJ1ðx; yÞ þ e2J2ðx; yÞ þ e3J3ðx; yÞ…: (12)

Given Eq. (10), in order to determine electric field asymptotes in Eq.
(11), the chain rule is exploited as follows:

V;i ¼ V;iðxÞ þ
1
e
V;iðyÞ; (13)

where V;iðxÞ � @V
@xi

and V;jðyÞ � @V
@yj
. Making use of Eqs. (10) and (13),

Eq. (8) is rewritten as

� jijðyÞVo;jðxÞ

� �
;iðxÞ �

1
e

jijðyÞVo;jðxÞ

� �
;iðyÞ �

1
e

jijðyÞVo;jðyÞ

� �
;iðxÞ

� 1
e2

jijðyÞVo;jðyÞ

� �
;iðyÞ � e jijðyÞV1;jðxÞ

� �
;iðxÞ � jijðyÞV1;jðxÞ

� �
;iðyÞ

� jijðyÞV1;jðyÞ

� �
;iðxÞ �

1
e

jijðyÞV1;jðyÞ

� �
;iðyÞ ¼ 0: (14)

Grouping the results inOðeÞ, the leading order terms are given by

� jijðyÞVo;jðyÞ

� �
¼ 0: (15)

For the existence of a solution, Eqs. (15) and (16) must satisfy the solv-
ability condition.12 Equation (15) identically satisfies the solvability
condition, and thus, V0 is only a function of the macroscopic variable
x. Grouping the next order terms in e, we get

� jijðyÞVo;jðxÞ

� �
;iðyÞ � jijðyÞV1;jðyÞ

� �
;iðyÞ ¼ 0: (16)

For Eq. (16) to satisfy the solvability condition, the solution V1 takes
the form

V1ðx; yÞ ¼ vjðyÞVo;jðxÞ ; (17)

where v is the homogenization function and is periodic with a period-
icity of Y. Utilizing the results obtained in Eqs. (16) and (17) in Eq.
(8), we get the governing equation or the cell problem, which needs to
be solved to find v,

� jijðyÞ þ jikðyÞvj;kðyÞðyÞ
� �

;iðyÞ ¼ 0: (18)

The volumetric average of a quantity aðx; yÞ over Y is defined by

aH ¼ 1
jYj

ð
Y
aðx; yÞ dY : (19)

Using the results from Eqs. (3), (11), and (18), one can get the effective
conductivity jH as

jH
ij ¼

1
jY j

ð
Y

jijðyÞ þ jikðyÞvjðyÞ;kðyÞ
� �

dY: (20)

B. Numerical implementation

The cell problem as defined by Eq. (18) can be numerically solved
using FE. To predict the effective conductivity matrix, we consecutively
apply a unit potential in each direction; thus, we have three unique sol-
utions to the homogenization function. The homogenization function
vwithin a given element, thus, can be written inmatrix form as

vðyÞ½ � ¼ vf1 vf2 vf3
� �

1�3; (21)

where vfi is the solution of the cell problem for the applied unit poten-
tial difference along the direction yi. The degree of freedom vector di
containing the nodal potentials corresponding to the applied unit
potential difference along with yi is obtained by the usual Lagrange
interpolation functions. This gives the representation of v as

vðyÞ½ �1�3 ¼ NðyÞ½ �1�nfdgn�3; (22)

where ½N� is the matrix of the standard Lagrange shape functions, and
n is the number of degrees of freedom per element. The variational
form of the governing Eq. (18) is given as

ð
Y

jijðyÞ þ jikðyÞvj;kðyÞ
� �

�;j dY ¼ 0; (23)

where � is the variation in v. Using the matrix notations, the varia-
tional form can be rewritten as

ð
Y

B½ �T D½ � þ B½ �T D½ � B½ �fdg
� �

dY ¼ 0: (24)

The nodal solution of the homogenization function v is obtained by
solving Eq. (24). The system of linear equations, which is to be solved,
reduces to
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K½ �fdg � fFg ¼ f0g; (25)

where

fFg ¼ �
ð
Y
B½ �T D½ � dY; K½ � ¼

ð
Y
B½ �T D½ � B½ � dY ;

B½ �3�n ¼ L½ �3�1 N½ �1�n:
(26)

½D�3�3 contains the material conductivities, and ½L� denotes the matrix
of differential operators. Having computed ½v� and by consequence V1

from Eq. (17), one can derive the effective material coefficients,
according to

jH
ij ¼

1
jY j

ð
Y
D½ � I½ � þ B½ �fdg
� �

dY: (27)

In-house codes were written in MATLAB
VR to compute the effective con-

ductivity given by Eq. (27). The developed code is initially bench-
marked for a cylindrical inclusion and then further extended to
spheroidal inclusions of varying aspect ratios and conductivity ratios.

III. RESULTS AND DISCUSSION
A. Cylindrical inclusion

In order to validate the proposed model, as an initial study, sus-
pensions with cylindrical inclusions in a simple cubic arrangement are
considered. The simulations can be readily extended to other prevalent
arrangements (BCC and FCC) of the inclusions as well. y3 is consid-
ered to be the axis of symmetry as shown in Fig. 2(a). For the simula-
tions, conductivities of both the inclusion (jinc) and continuous phase
(jmat) are considered isotropic and jinc � jmat . The mesh conver-
gence study was carried out until the component-wise difference
between the computed effective property for the current mesh and the
consecutive finer mesh is less than a specified tolerance value (10�2) as
given in literature.43 From Fig. 2(b), for this set of simulations, 85 000
eight-noded brick elements were deemed sufficient. The simulations
were run for three conductivity ratios jr ¼ ðjinc=jmatÞ, as mentioned
in Table II. Due to very high orders of difference in the magnitudes of

the conductivities of the constituent phases, the results are represented
in a log –log plot for the sake of clarity.

Figures 3(a) and 3(b) compare the results between existing ana-
lytical estimates and the present model. In this plot and all subsequent
plots, the values obtained for conductivity ratios 102, 104, and 106 are
represented by blue, red, and black colors, respectively. In Fig. 3(a), the
ratio of the component of conductivity along the cylindrical axis (jH

33)
to jmat is plotted as a function of the inclusion volume fraction. As
seen from the plot, the results predicted by the present model and the
Mori–Tanaka estimate agree very well over the entire range of volume
fractions. In Fig. 3(b), the results obtained from simulations in the
plane of symmetry, jH

11 (¼jH
22), agree well with the Mori–Tanaka esti-

mate for dilute concentrations of the inclusion (/< 0.1).
As the concentration of the inclusion increases and approaches

the dense packing limit (/> 0.5), the deviation of the results is
observed, which can be explained to be a consequence of the particle–
particle interactions, which play a significant role in the effective prop-
erty of the material. Being a mean-field method, the Mori–Tanaka
estimate fails to capture these interactions and hence underpredicts
the effective conductivity. The presence of an inclusion will cause a
disturbance to the applied potential. The flux field can now be seen as
a superposition of the applied field and the perturbed field caused due
to the presence of the inclusion. The strength of the perturbed field
proportionally varies with the conductivity ratio of the inclusion and
matrix. When the particles are close enough, the perturbations caused
to the field become prominent and subsequently enhance the effective
conductivity. The AHM, which computes the effective property using

FIG. 2. (a) Unit cell with a cylindrical inclusion. (b) Mesh convergence study for a unit cell with cylindrical inclusion for / ¼ p=4 and jr ¼ 106.

TABLE II. Conductivity ratio of systems considered and relevant systems in use.

Conductivity ratio Relevant systems

102 Copper particles in ethanol
104 Graphite particles in aqueous KOH solutions44

106 Carbon nanotubes in epoxy matrix45
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the field perturbations caused due to the presence of an inclusion (18),
can more accurately capture the variations in the field and, hence as a
consequence, predict the enhancement of effective conductivity.

The ratio of jH
11 to jmat is plotted as a function of the deviation of

the inclusion packing fraction from the maximum packing fraction is
shown in Fig. 4. By using Keller’s expression, which is valid for volume
fractions close to the maximum packing limit and infinitely conducting
inclusions, the influence of the particle–particle interactions on the effec-
tive conductivity is ascertained. As noted by Keller, close to the maxi-
mumpacking fraction, jeff solely depends on the interparticle distance

jeff =jmat ¼ p
3
2=2ðp=4� /Þ

1
2 þ � � � ; p=4� /� 1: (28)

From the figure, it can be seen that the AHM results obtained for vari-
ous conductivity ratios approach Keller’s result for a conductivity ratio
of 104 [Eq. (28)]. Hence, the agreement of the present model with the
existing analytical estimates establishes the feasibility of the proposed
approach.

B. Spheroidal inclusion

In this section, heterogeneous media with aligned spheroidal
inclusions, mathematically described using the general ellipsoidal
equation given by

y21
a2
þ y22
b2
þ y23

c2
þ ¼ 1; (29)

are considered. a, b, and c are the three semiaxes of a general ellipsoid.
Setting a¼ b> c reduces the ellipsoid to an oblate spheroid, while
setting a¼ b< c reduces it to a prolate spheroid. As shown in
Figs. 5(a)–5(c), y3 is taken as the axis of symmetry.

The simulations are carried out for the special case of spherical
inclusion for all the conductivity ratios specified in Table II, where
a¼ b ¼ c as shown in Fig. 5(c). Four-noded tetrahedral elements were
used for meshing, and, as seen from the convergence plot in Fig. 6, 105

elements were deemed sufficient for a system having a conductivity
ratio of 106.

The plot of the ratio of jH
11 to jmat as a function of / is shown in

Fig. 7 for a conductivity ratio of 102. The obtained results are com-
pared with the values predicted by Bonnecaze and Brady8 using an
approach similar to Stokesian dynamics, and it is clearly evident that
the results agree very well. In our previous discussion on cylindrical
inclusions, we observed that AHM could accurately capture the
asymptotic behavior of effective conductivity in the maximum packing
limit. We further investigate this ability of the AHM for spherical

FIG. 3. Ratio of (a) jH
33 to jmat and (b) jH

11 to jinc as a function of volume fraction / of cylindrical inclusions in a simple cubic arrangement. The dashed lines represent the
Mori–Tanaka estimate, and dash–dot represents Keller’s (1963)17 expression, while the results from present model are plotted using the circle symbol for the different conduc-
tivity ratios. The values obtained for conductivity ratios 102, 104, and 106 are represented by blue, red, and black colors, respectively.

FIG. 4. Ratio of jH
11 to jmat as a function of deviation from the maximum packing

fraction p=4 (simple cubic arrangement of cylindrical inclusions). The dashed-dot
line represents Keller’s (1963)17 results, while the results from present model are
plotted using the circle symbol for the different conductivity ratios. The color
scheme is the same as mentioned in Fig. 3. FIG. 5. Unit cell with (a) oblate, (b) prolate, and (c) spherical inclusions.
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inclusions. A plot of the ratio of jH
11 to jinc as a function log of the

inverse of the deviation of / from the maximum packing fraction p=6
is shown in Fig. 8(a) for the conductivity ratios mentioned in Table II.
It is interesting to note that the results predicted by the AHM agree
well with the Torquato and Lado25 up to dilute packing fractions
(/< 0.1). At semidilute and concentrated packing regimes (/> 0.3),
the AHM predictions deviate from the Torquato and Lado curves due
to the interparticle effect, which is not taken into consideration by the
former.

The scenario of / asymptotically approaching the maximum
packing limit, as noted by various authors, is intriguing, especially for
systems with highly conducting inclusions. This condition involves the
limit of the gap between any two inclusions asymptotically reaching 0
while the conductivity ratio, jr , is � 1. The plot in Fig. 8(b), which
shows the ratio jH

11 to jmat as a function of the deviation of / from
maximum packing fraction p=6, is used to compare the results pre-
dicted by the present model for this intriguing case

jeff =jmat ¼ �p=2� log ðp=6� /Þ þ � � � ; p=6� /� 1: (30)

Batchelor and O’Brien18 extended Keller’s17 [Eq. (30)] analysis to
spherical inclusions of large but finite conductivity. They pointed out
that due to the dual asymptotic limits, the largeness of the conductivity
ratio, and the smallness of the interstitial gap, it is not an obvious con-
clusion whether the effective conductivity would approach jmat or
jinc. Realizing that near-maximum packing fraction interactions are
lubrication-dominated, they obtained an integral equation that needed
to be solved to evaluate the heat flux. They managed to get an expres-
sion for the effective conductivity in the limit of touching spheres that
varied as the logarithm of the conductivity ratio. The expression given
by Batchelor and O’Brien18 and the subsequent expression given by
Sangani and Acrivos21 differ by anOð1Þ constant

jeff =jmat 	 p� log ðjrÞ � 5:91: (31)

The above expression is used as an asymptotic check for the effective
conductivity obtained from the AHM in the scenario of dense suspen-
sion. In order to capture the dual asymptotic limits, for a given

FIG. 6. Mesh convergence study for a unit cell with a spherical inclusion for / ¼ 0.5
and jr ¼ 106.

FIG. 7. Ratio of jH
11 to jmat , for a simple cubic arrangement of spherical inclusions,

as a function of / for a conductivity ratio of 102 comparing the present model to the
results of Bonnecaze and Brady (1990)8 and that of predictions from the
Mori–Tanaka theory. The inset shows ratio of jH

11 to jmat for /> 0.25.

FIG. 8. Ratio of (a) jH
11 to jinc and (b) jH

11 to jmat as a function of deviation from maximum packing fraction p=6. The solid lines represent the effective conductivity predicted
by Sangani and Acrivos (1983) at maximum packing limit, and dash–dot represents Keller’s (1963)17 expression, while the results from present model are plotted using the cir-
cle symbol for the different conductivity ratios. The color scheme is same as mentioned in Fig. 3.
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conductivity ratio, the gap between the two spheres is reduced. For the
maximum volume fraction under consideration, the gap between the
neighboring spheres is of Oð10�3Þ. From the plot, we could see that
for a conductivity ratio of 102 and almost touching spheres, the results
predicted by the AHM approach the asymptotic estimate provided by
Sangani and Acrivos. On the other hand, for a conductivity ratio of
104, there is a slight deviation of the predicted result from Keller’s
curve toward the Sangani and Acrivos estimate. The significant differ-
ence between the two results, AHM and Sangani and Acrivos, could

be due to the limitations of the numerical model to obtain an even
smaller separation between the two neighboring inclusions.

It is interesting to note that, though the analytical formulation
can be easily extended to higher powers in e, from the aforementioned
discussions for the spherical and cylindrical inclusions, it is clearly
seen that the algebra, which is based on the first-order theory in e,
deems sufficient to predict the effective properties, thus justifying the
truncation of the formulation.

The work is now extended to anisotropic inclusions, exploring
spheroidal particles of aspect ratios as mentioned in Table III. A para-
metric study is carried out for all the combinations of the aspect ratios
mentioned in Table III and conductivity ratios specified in Table II.
For this study, four-noded tetrahedral elements were used for mesh-
ing. The convergence plot for the inclusion aspect ratios of 0.1 and 10
and a conductivity ratio of 106 is shown in Figs. 9(a) and 9(b). It is
concluded that 9� 104 and 1:3� 105 elements are required for run-
ning the respective simulations.

For all the subsequent computations, we consider /< 0.1 as a
dilute packing regime while /> 0.3 is considered as the dense packing
regimes. Figures 10–12 show plots of the effective conductivity along
with the characteristic dimension of the spheroid (along the y1 axis for

TABLE III. Considered spheroidal shapes and their respective aspect ratios.

S. No Spheroidal shape Aspect ratio

1 0.1
2 Oblate 0.2
3 0.5
4 2.0
5 Prolate 5.0
6 10.0

FIG. 9. Mesh convergence study for a unit cell with a spheroidal inclusion with aspect ratios of (a) 0.1 and (b) 10.

FIG. 10. Plot of (jH
11-1) scaled with jinc as function of volume fraction for spheroidal inclusions having aspect ratios of (a) 0.1 and (b) 0.2 in a simple cubic arrangement. The

solid line represents the Torquato and Lado (1991)25 predictions, and dashed lines represent Lu and Lin’s (1996)26 expression, while the results from present model are plotted
using the circle symbol for the different conductivity ratios. The color scheme is same as mentioned in Fig. 3. The inset shows the plot of (jH

11-1) scaled with jinc for /> 0.2.
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oblate and the y3 axis for prolate). The results obtained from the pre-
sent model for spheroidal inclusions are compared with the estimates
provided by Lu and Lin26 for the well-stirred models, in which the par-
ticles are assumed to take nonoverlapping positions with equal proba-
bility, and the interactions between only two inclusions are considered.
From the Figs. 10–12, it is clearly seen that the results predicted by the
present model agree very well with analytical results for dilute volume
fractions. As expected, at higher packing fractions, the effective con-
ductivity is not a linear function of the volume fraction of inclusion
but a quadratic one. This trend is again captured very well by the pre-
sent model.

As seen from Figs. 10(a), 12(a), and 12(b), the deviation seen in
the predicted results can be due to the fact that only the first correction
term to the scalar potential field is considered. For a prolate or an
oblate spheroid, the interparticle interactions are now a function of the
aspect ratio and the characteristic length of the inclusion.7 Though the
perturbation of the potential field produced by the close proximity of
the inclusions is captured by the first corrections, finer perturbations

to the field, which occur at a length scale much smaller than the length
scale of the microstructure, are neglected. Considering these finer per-
turbations could improve the predicted effective property. The addi-
tion of the higher-order term to predict the effective property is
proposed to be carried out as future research work.

It is to be noted that the estimates provided by Lu and Lin,
which considered only the interactions between a pair of inclusions,
were only up to Oð/2Þ term. Deviations from the results predicted
near the maximum packing fraction could be due to the limitation
of Lu and Lin’s formulation, which does not consider the contribu-
tion of multibody interactions. From the data obtained from the
simulations, a correlation function in volume fraction / and con-
ductivity ratio jr is given in Tables IV and V. The obtained func-
tion provides a Oð/4Þ correction to the effective conductivity for
any arbitrary conductivity ratio jr . Interested readers are requested
to use Torquato and Lado’s25 or Lu and Lin’s26 formulations for up
to a / of 0.05, and for / > 0:05, readers can use the provided corre-
lation functions.

FIG. 11. (a) Plot of (jH
11-1) scaled with jinc as function of volume fraction for spheroidal inclusions of aspect ratio of 0.5 and (b) plot of (jH

33-1) scaled with jinc as function of
volume fraction for spheroidal inclusions of aspect ratio of 2 in a simple cubic arrangement. The solid line represents the Torquato and Lado (1991)25 predictions, and dashed
lines represent the Lu and Lin’s (1996)26 expression, while the results from present model are plotted using the circle symbol for the different conductivity ratios. The color
scheme is same as mentioned in Fig. 3. The inset in (a) shows the plot of (jH

11-1) scaled with jinc and in (b) the plot of (jH
33-1) scaled with jinc for /> 0.2.

FIG. 12. Plot of (jH
33-1) scaled with jinc as function of volume fraction for spheroidal inclusions having aspect ratios of (a) 5 and (b) 10 in a simple cubic arrangement. The solid

line represents the Torquato and Lado (1991) predictions, and dashed lines represent Lu and Lin’s (1996)25 expression, while the results from present model are plotted using
the circle symbol for the different conductivity ratios. The color scheme is same as mentioned in Fig. 3. The inset shows the plot of (jH

33-1) scaled with jinc for /> 0.2.
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IV. CONCLUSIONS

In this work, for composites having a periodic structure or sus-
pensions with periodically aligned inclusions, the AHM was used to
predict the effective conductivity of a heterogeneous media. For the
validation of the proposed model, the results of a cylindrical inclusion
are compared with Mori–Tanaka and Keller’s expressions for close-
packed cylinders and were found to agree well with the expressions at
the respective packing limits. This study was further extended to
include more general shapes and was compared with the existing
expressions for various conductivity ratios given in the literature.26 As
observed earlier, the deviations of the predicted result from the existing
analytical expressions could be addressed by taking into account the
higher-order terms for defining the scalar potential field, which is seen
as a scope of future work.

As mentioned earlier, simulations were performed for spheroidal
inclusions with moderate aspect ratios and, as an immediate extension
of the current work, to implement the AHM to predict the effective
conductivity of inclusions that have very high aspect ratios and to
systematically compare them with the analytical and experimental
results.4,7,46–48 As noted by Mackaplow et al.47 for highly conduct-
ing inclusions near the semidilute regimes, the screening length as
described by the author is independent of the orientation and dis-
tribution at these concentration limits. Thus, comparing the results
obtained by the proposed model would further demonstrate the
ability of the same to predict the effective property for very thin
fibers as well, which are predominantly present in many metal-
filled composites.

These validations and comparisons of the obtained results using
the AHM confirm that this multiscale analysis can be systematically
used to predict other conductivity-like transport coefficients, such as
dielectric constant and magnetic permeability, to name a few. Thus,
the AHM coupled with FE is a potential candidate to predict the effec-
tive properties of multiphysics problems, such as predicting the effec-
tive magnetoelastic properties for a magnetostrictive inclusion in a soft
elastic matrix, viscoelastic properties of hydrogels, and rheological
properties of complex fluids.
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