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ABSTRACT

In this paper, we study the role of electrostatic forces on pair trajectories of two uncharged conducting spheres subject to an external electric
field. We consider the hydrodynamic interactions between the spheres as they move relative to one another. Previous studies have shown
that electric-field-induced forces on a two-sphere system are always attractive, except for the configuration when the line joining the centers
is perpendicular to the external electric field. In the current study, we derive the asymptotic form of the interparticle force induced by the
electric field in the lubrication limit for arbitrary size ratios. The attractive electric force diverges as the separation approaches zero. Thus,
our calculation shows that the electric-field-induced forces can overcome the continuum lubrication resistance and allow finite time contact
between the surfaces of two spherical conductors. We calculate the asymptotic variation of interparticle separation using the near-field
asymptotic expressions for the electric-field-induced forces, exploring the role of hydrodynamic interactions in interparticle motion parallel
and perpendicular to the electric field.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0142014

I. INTRODUCTION

The behavior of conducting particles in an external electric field
is crucial to many industrial applications such as phase separations,1

electrowetting,2 emulsification,3 and lab-on-a-chip manipulations. In
oil industries, the electrocoalescence of a water-in-oil emulsion is cru-
cial to the efficient and quick dehydration of crude oil.4–6 The electric-
field-enhanced coagulation (of rigid particles) or coalescence (of liquid
droplets) also has applications in atmospheric processes. The rapid
coalescence due to high electric field strength is a dominant growth
mechanism for droplets in strongly electrified clouds, particularly
before lightning.7 The electric field intensity inside natural clouds is
Oð103 Vm�1Þ, whereas the same inside thunderclouds is Oð105
Vm�1Þ (see Ref. 7 who presented a summary of several field observa-
tions on electric field strength in different types of clouds). The electric
field applied to a suspension of uncharged spherical conducting par-
ticles helps to flocculate the suspension. Thus, particle–particle interac-
tions in an external electric field are a growing field of interest. In this
study, we restrict our focus to dilute suspensions, where only pairwise
interactions are significant. Here, we explore the near-field dynamics
of two uncharged conducting spheres interacting hydrodynamically in
an imposed electric field.

An external electric field acting on a drop suspended in a fluid
medium of different permittivities and conductivities creates electrical
stresses, which shear the fluid interfaces into motion8 (i.e., results in
electrohydrodynamic flows). The complicated interaction between the
electric-field-induced and viscous fluid stresses causes either oblate or
prolate drop deformation in a weak field. To predict the drop shape of
a weakly conducting drop, Taylor9 developed the leaky dielectric
model (LDM) in the small deformation limit. When the applied elec-
tric field is strong, the drop exhibits different complex dynamics such
as breakup10,11 streaming either from the drop poles12–14 or equa-
tor15–18 and electrorotation.19–22 For an initial spherical drop of radius
a subject to an electric field of magnitude E0, the characteristic electric
stress is eE2

0, where e is the permittivity of the suspending fluid. The
ratio of the stresses due to the electric field and surface tension defines
the electric capillary number Ca ¼ eE2

0a=c, where c is the interfacial
tension. It is an important non-dimensional quantity that decides the
shape of the drop in electrohydrodynamic flows. For Ca� 1, the
drop shape will remain spherical. In this study, we assume Ca� 1.
To justify this assumption, let us consider a water droplet of radius
10lm suspended in air with E0 ¼ 105 V m�1, e ¼ e0 ¼ 8:85� 10�12

F m�1, and c ¼ 72� 10�3 N m�1. We find that Ca � 0:0012 is
sufficiently small for neglecting drop deformation. Drop exhibits
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interesting deformation dynamics for Ca� 1, and to know more
about this topic, we would refer the reader to the recent review paper
by Vlahovska.16 A background flow23–26 or drop inertia27 can also
deform the drop in the absence of an electric field. We assume that
these driving forces for the drop deformation are not present in this
study. The current study analyzes the relative motion of two spherical
particles due to an external electric field. For two drops in Stokes flow,
deformability becomes significant when the lubrication pressure
between the two drops becomes comparable to the Laplace pressure.
Gopinath and Koch28 showed that the gap thickness (in lm) for which
deformation becomes important is approximately 6:74� 10�5a�2,
where a� is the average radius (in lm) of the interacting spheres. We
ignore the surface deformations induced by the lubrication pressure, a
reasonable assumption for smaller droplets where additional physics,
such as van der Waals attraction and non-continuum effects, will
occur before deformation.29

Even though the classical problem of a single drop in a uniform
electric field has received extensive treatment, studying the dynamics
of interacting drops due to induced dipoles and electrohydrodynamic
flows is a domain of active interest. Recent studies have investigated
the electrohydrodynamic interactions between two drops experimen-
tally and numerically when the drop pair is aligned with the external
field.30–32 For small drop deformations, Vlahovska and coauthors33–36

analyzed the three-dimensional electrohydrodynamic interactions of a
drop pair using the boundary integral method and an asymptotic the-
ory for large separations. They elucidated complex drop trajectories by
linking them with non-reciprocal interactions caused by the electrohy-
drodynamic flows. Kach et al.37 investigated a similar problem for
pairwise interactions between three or more drops. In this study, we
neglect the electrohydrodynamic interactions between drop pairs and
consider that drops interact via electric-field-induced forces that arise
due to electric polarization. Previous studies analyzed the effects of
electric-field-induced forces on relative trajectories for two uncharged
conducting rigid spherical particles in a simple shear flow38 and two
uncharged conducting non-deformable viscous drops settling under
gravity.39 However, they have not considered appropriate lubrication
forms for the electric-field-induced forces. Here, we derive the asymp-
totic expressions for the field-induced forces to analyze the near-field
interactions between two uncharged conducting spheres of arbitrary
size ratios. We show that the divergent nature of the electric-field-
induced force in the lubrication region can lead to surface-to-surface
contact between the spheres in a finite time, even without any other
nonhydrodynamic attractive forces. Thus, our study has important
implications in the context of electrocoagulation or electrocoalescence.

An external electric field induces electrical charges of the opposite
sign on the nearest surfaces of the two uncharged conducting spheres.
The electrostatic attraction between induced charges drives the relative
motion between the particles. As the two spheres come closer to each
other, the strength of the electric field in the region of nearby points of
the two spheres becomes much higher than the imposed field.40 Most
importantly, this enhancement increases without limit as the separa-
tion tends to zero.41 However, the electric-field-induced forces become
negligible for large interparticle separations. Thus, the electric-field-
induced forces alone cannot bring two widely separated particles into
contact unless the drop pairs come close enough due to an imposed
flow or gravity. Gravitational and Brownian motion-induced forces,
among others, can drive the relative motion between a pair of widely

separated drops dispersed in a quiescent fluid. We assume that the
effect of gravity is negligible due to a small particle size, but at the
same time, the particles are large enough so that the Brownian diffu-
sion is negligible. Here, we analyze the role of electric-field-induced
forces on pair trajectories of two uncharged conducting drops in close
approach.

The effects of an external electric field on the electrostatic interac-
tions between two uncharged or charged conducting spheres have
been studied extensively. Davis40 solved the Laplace equation for the
electric potential field using the separation of variables in bispherical
coordinates to determine the variation of the disturbed electric field in
the regions excluding the two spheres and the induced surface charges
on the spheres. Love42 derived the analytical expressions for the dipole
moment of two equal-sized uncharged dielectric spheres in an external
electric field. O’Meara, Jr. and Saville43 solved the boundary value
problem for the electrostatic interactions between two touching con-
ducting spheres in an external electric field and derived the capaci-
tance, induced charge, and force on each sphere. Stoy44,45 solved the
potential field (inside and outside of the two spheres) for different sizes
and different permittivities in an imposed electric field directed along
and normal to the line joining the centers. The solution procedure
mentioned in these studies yields series expressions for the electrostatic
force between two uncharged spherical conductors. When the gap
thickness between the two spheres tends to zero, the convergence of
these series becomes computationally expensive as these series require
many terms. One needs the equivalent analytical expressions of these
series in close separations to overcome this convergence issue. Friesen
and Levine46 calculated the electric-field-induced forces of a system of
two uncharged spheres by finding the electrostatic energy of the sys-
tem due to an imposed uniform electric field. They noted that only
dipole moment components along and normal to the line joining cen-
ters contribute to the system energy. Later, Lekner47 extended the for-
mulation of Friesen and Levine46 to a system of uncharged spherical
conductors by generalizing Landau and Lifshitz’s48 theorem for a sin-
gle uncharged spherical conductor. Lekner47 expressed the system
energy in terms of the polarizability tensor. For calculating the electro-
static energy and forces in the case of a two-sphere system, only longi-
tudinal and transverse components of the polarizability tensor are
sufficient.47 To calculate the electric-field-induced forces at a small
interparticle distance, we utilize the work of Lekner,49 who derived the
exact analytical expressions for the longitudinal and transverse polariz-
abilities in close separations of the two spheres of arbitrary size ratio.
The forces acting along the line joining the centers of the two spheres
are equal and opposite and related to the derivatives of the polarizabil-
ities with respect to the separation. The force normal to the line of cen-
ters produces torque on the two-sphere system, which is proportional
to the difference between the longitudinal and transverse polarizabil-
ities. This torque always acts to align the line of centers with the direc-
tion of the external electric field.

For small to moderate separations, two spheres disturb the veloc-
ity fields around each other. These disturbances increase the hydrody-
namic resistance on each sphere. Thus, apart from electrostatic
interactions, spheres interact with each other through hydrodynamic
interactions (HI). The effects of hydrodynamics interactions on the
relative motion between a pair of spheres in Stokes flow conditions are
well studied.50 The hydrodynamic resistance significantly reduces the
relative velocity in close separations, and it depends on the two-sphere
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relative geometry (i.e., center-to-center distance and size ratio). The
separation between two spheres is r � a1 � a2, where r is the center-
to-center distance, and a1 and a2 are the radius of spheres 1 and 2,
respectively. We denote n as the dimensionless [non-dimensionalized
by a� ¼ ða1 þ a2Þ=2, the average radius of the two spheres] separa-
tion. Thus, n ¼ ðr=a�Þ � 2, where r=a� is the non-dimensional cen-
ter-to-center distance. The hydrodynamic resistance in the lubrication
region is Oð1=f ðnÞÞ. The function f ðnÞ ¼ n for two rigid spheres with
continuum hydrodynamic interactions51 and f ðnÞ ¼

ffiffiffi
n
p

for two
spherical viscous drops interacting via continuum hydrodynamics.52

For spheres interacting in a gaseous medium, the continuum lubrica-
tion approximation is no longer valid, and one needs to consider non-
continuum lubrication resistance with f ðnÞ ¼ ln ðln ðKn=nÞÞ=Kn.29,53
Here, Kn, the Knudsen number that captures the significance of non-
continuum interactions, is defined as the ratio of the mean free path of
the medium to the mean radius of the interacting spheres. In the pre-
sent problem, we determine the relative trajectories of two spheres in a
vertical electric field, while the spheres interact through continuum
hydrodynamics.

This study analyzes the near-field interaction of two arbitrary-
sized uncharged spherical conductors subject to an external electric
field. We also take into account the hydrodynamic interactions
between the conductors. In Sec. II, we derive the pair trajectory equa-
tion of uncharged conducting spheres in an electric field. We discuss
the relation between electric-field-induced forces and polarizabilities
for small and large separations in Sec. III and show typical pair trajec-
tories in Sec. IVA. In Secs. IVB and IVC, we analyze the trajectory of
two uncharged spheres when the electric field acts along and normal
to the line of centers. Finally, in Sec. V, we summarize our results and
discuss their implications.

II. PAIR TRAJECTORY EQUATION

We consider a dilute dispersion of uncharged conducting spheres
subject to a vertically downward electric field. We assume that the fluid
surrounding the particles is quiescent, i.e., there is no background
flow. The terminal speed of a particle settling under gravity in a still
fluid is proportional to the square of the particle radius, and particle
inertia based on the settling timescale varies with the cube of the parti-
cle radius. In the current analysis, we assume that particles are small
enough for gravitational settling and particle inertia to be negligible
but large enough to ignore the Brownian diffusion. Effectively, we are
considering a scenario where an external electric field drives the
motion of the particles (i.e., the dispersed phase). For dilute disper-
sions, the interactions between three or more particles are unlike, and
thus, we carry out the analysis for binary interactions, as shown in
Fig. 1. Finally, we assume that the disturbance flow field generated by
the movements of the particles is sufficiently slow, and thus, Stokes
equations can appropriately describe the flow field.

Let F1 and F2 be the external forces acting on spheres 1 and 2,
respectively, including hydrodynamic interactions, the instantaneous
velocities of the two spheres can be written as54

U1 ¼ M11 � F1 þM12 � F2; (1)

U2 ¼ M21 � F1 þM22 � F2; (2)

where U1 and U2 are the velocities of spheres 1 and 2, respectively,
Mab (a;b ¼ 1; 2) are the hydrodynamic mobility tensors. Since the

two-sphere system is symmetric about the line joining the centers, we
can write Mab as

Mab ¼
1

3plf aa þ abð Þ
Aab

rr
r2
þ Bab I � rr

r2

� �� �
; (3)

where r is the vector from the center of particle 1 to the center of parti-
cle 2, r ¼ jrj, I is a rank two identity tensor, lf is the dynamic viscosity
of the surrounding fluid, and Aab and Bab are the mobility functions
that depend on the geometry of the two-sphere configuration. The
electric-field-induced forces on the two spheres are equal and opposite,
i.e., F1 ¼ �F2 ¼ F. Thus, the relative velocity V12 ¼ U2 � U1

between the particle pair can be written as

V12 ¼ M11 þM22 �M12 �M21ð Þ � F: (4)

After substituting the expression for the mobility tensors in Eq. (4), we
have

V12 ¼
1

6plf

1
a1
þ 1
a2

� �
G

rr
r2
þ H I � rr

r2

� �� �
� F; (5)

where G and H can be expressed in terms of Aab and Bab. Here, F is a
function of both r and h, and thus, we need to consider both axisym-
metric and asymmetric relative motions. Furthermore, G and H are
axisymmetric mobility (responsible for the relative motion along the
line of centers) and asymmetric mobility (responsible for the relative
motion normal to the line of centers) functions, respectively. These
mobility functions depend on the size ratio j ¼ a2=a1 and dimension-
less center-to-center distance r=a�. These scalar mobility functions
(G, H) do not depend on the surrounding fluid properties for suspen-
sions of rigid spherical particles. For suspensions of viscous drops, G
and H additionally depend on the drop-to-medium viscosity ratio.
Different techniques for determining these mobility functions include

FIG. 1. Geometric representation of two spheres’ interactions in spherical coordi-
nates. Here, “1” represents the sphere with radius a1, and “2” represents the sphere
with radius a2.
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twin-multipole expansions55 boundary-multipole collocation50 and
Stokes equation solution in bispherical coordinates.56,57 This study
uses twin-multipole expansions to obtain the asymmetric mobility H
functions and solutions in bispherical coordinates to obtain the axi-
symmetric mobility G. These mobility functions for continuum hydro-
dynamic interactions have analytical expressions in far field and near
field.54,58 For n! 0, expressions for G andH are given by

G 	 ð1þ jÞ2

2j
n; (6)

H 	 Hðn ¼ 0Þ þ const:

ln n�1
: (7)

Similarly, the asymptotic expressions for G and H for large separation
are

G ¼ 1� 6j

ð1þ jÞ2
1
r
þ Oðr�3Þ; (8)

H ¼ 1� 3j

ð1þ jÞ2
1
r
þ Oðr�3Þ: (9)

Here, r is the non-dimensional (scaled by a�) center-to-center distance
between the spheres.

To determine the relative trajectories, we choose a spherical coor-
dinate system ðr; h;/Þ with origin at the center of sphere 1 and then
track the center of sphere 2. We use the mean radius of the two
spheres as the characteristic length scale. Therefore, the non-
dimensional radial separation between the centers of the two spheres
can lie in the range of 2 to1. Now onward, we will denote r as the
non-dimensional center-to-center distance. The size ratio j, which
can vary in the range ð0; 1
, captures the geometry of the two-sphere
system. One must note here that Maxwell59 in his original work mea-
sured the relative sphere size by defining b ¼ a2=ða1 þ a2Þ, which lies
in the range of 0 to 1. As the problem is axisymmetric, with the z�
axis being the axis of symmetry, the azimuthal component of the rela-
tive velocity must be zero. After simplifying Eq. (5), the relative veloc-
ity in the radial and polar directions can be written as

Vr ¼
dr
dt
¼ 1

6plf

1
a1
þ 1
a2

� �
GFr; (10)

Vh ¼ r
dh
dt
¼ 1

6plf

1
a1
þ 1
a2

� �
HFh; (11)

where Fr and Fh are the electric-field-induced forces along the r and h
directions, respectively. From Eqs. (10) and (11), we have the following
equation for the relative trajectory:

dr
dh
¼ rVr

Vh
¼ r

GFr
HFh

: (12)

The above equation for the relative trajectory represents a two-
dimensional dynamical system. In Sec. IV, we will show that the
two fixed points of the system lie on the contact sphere (r¼ 2) with
h ¼ p=2 and 3p=2.

III. ELECTRIC-FIELD-INDUCED FORCES

In this section, we will discuss the electric-field-induced forces on
two uncharged conducting spherical particles. Davis40 derived the

electrostatic forces between two charged conducting spheres in an
impressed electric field by solving the Laplace equation for the electri-
cal potential in a bispherical coordinate system. The force expressions
given in Davis40 involve ten force coefficients, namely, F1; F2;…; F10.
For interactions between charged spheres in the absence of an electric
field, only F5, F6, and F7 are required, and in that case, the electrostatic
attraction goes to infinity as the separation goes to zero.60–62 In the
present analysis, the coefficients F1, F2, and F8 can capture the electric-
field-induced forces between two uncharged spherical conductors. By
dropping the terms involving the surface charges in the force expres-
sions given by Davis,40 we get the following expressions for the elec-
tric-field-induced forces along and normal to the line-of-centers of the
two spheres:

Fr ¼ �4pea22E
2
0ðF1 cos2hþ F2 sin

2hÞ; (13)

Fh ¼ 4pea22E
2
0ðF8 sin 2hÞ; (14)

where E0 is the magnitude of the electric field, e is the permittivity of
the medium, and F1, F2, and F8 are the force coefficients that depend
on the non-dimensional separation and size ratio of the interacting
pairs. These force coefficients are non-trivial series expressions that
need to be solved numerically. The numerical convergences of these
coefficients are extremely slow in close separations, and these series
require many terms to achieve converged results.

To avoid the convergence issues, we use the work of Lekner,49

who derived the analytical expressions for these forces in the near field
for equal-sized spherical conductors. The external electric field induces
charges on the sphere surface; hence, a net dipole moment develops in
each conductor. These dipole moments can be written in terms of the
polarizability tensor and the electric field vector. The polarizability ten-
sor for a two-sphere system is isotropic and, thus, involves only three
independent non-zero elements. The axisymmetric nature of the two-
sphere geometry further reduces the number of variables to two.
Therefore, only two quantities can appropriately describe the tensor:
longitudinal polarizability (al) and transverse polarizability (at). The
forces on the two-sphere system acting along and normal to the line
joining the two centers depend on these two polarizabilities, the mag-
nitude of the external electric field, and the angle the electric field vec-
tor makes with the line joining the centers. The force on sphere 2 in
terms of the above quantities is given by47

Fr ¼
4peE2

0

2
@at
@r

sin2hþ @al
@r

cos2h

� �
; (15)

Fh ¼ �
4peE2

0 al � atð Þsin h cos h

r
: (16)

Comparing (13) with (15) and (14) with (16), we get

F1 ¼ �
1
2a22

@al
@r

; (17)

F2 ¼ �
1
2a22

@at
@r

; (18)

F8 ¼ �
1
2a22

al � atð Þ
r

: (19)

In Secs. IIIA and III B, we will present the near-field and far-field ana-
lytical expressions of these force coefficients for the arbitrary size ratio,
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extending the results of Lekner47 that were derived for two equal-sized
spheres.

A. Force coefficients for small separations

The polarizabilities of a system of two uncharged conducting
spheres depend on the radii of the spheres and the center-to-center
distance between them. Exact series expressions for the longitudinal
and transverse polarizabilities for the arbitrary size ratio are available
in the literature.47,49 The convergence of the series becomes a prob-
lem for small interparticle separations, particularly when the separa-
tion is less compared to the radii of the spheres. Lekner49 obtained
the close-form expressions for these polarizabilities by converting
the series sums into integrals. The expressions for al and at are given
by

al ¼ a32ð1� kÞ3 4fð3Þ � w00ðkÞ�w00ð1� kÞ þMðn; kÞ
Nðn; kÞ

� �
; (20)

at ¼ a32ð1� kÞ3 Zk þ
n

2kð1� kÞTk

� �
; (21)

where k ¼ j=ð1þ jÞ; fð3Þ ¼ 1:202 056 9…, and w is a digamma
function. The expressions for the other variables involved in Eqs. (20)
and (21) are given by

Mðn; kÞ ¼ 1
2

w0ðkÞ � w0ð1� kÞ
� �2

ln
4kð1� kÞ

n

� �

� p4

36
Fk �

p2

3
Gk � Hk; (22)

Nðn; kÞ ¼ bþ c ln n; (23)

Zk ¼ �2fð3Þ �
1
2
w00ðkÞ � 1

2
w00ð1� kÞ; (24)

Tk ¼ Fk þ ð1� 3kþ 3k2ÞZk þ Qk; (25)

Fk ¼ wðkÞ þ wð1� kÞ þ 2c; (26)

Gk ¼ wðkÞw0ð1� kÞ þ w0ðkÞwð1� kÞ þ c w0ðkÞ þ w0ð1� kÞ
� �

;

(27)

Hk ¼ wðkÞw0ð1� kÞ2 þ 2cw0ðkÞw0ð1� kÞ þ w0ðkÞ2wð1� kÞ;
(28)

Qk ¼
1
6
kð1� kÞð2k� 1Þ w000ðkÞ � w000ð1� kÞ

� �
; (29)

b ¼ 1
2
Fk ln 4kð1� kÞð Þ þ c2 � wðkÞwð1� kÞ; (30)

c ¼ � Fk

2
: (31)

Here, c ¼ 0:577 215 664 9… is the Euler constant. Expressions
(20)–(31) are valid at close approach only, at best up to a separation
equal to the smaller of the two radii. Mathematically, these equations
are useful up to n=2kð1� kÞ � 0:1.49 Now, we will take the partial
derivatives of al and at with respect to r. Note here that the derivative
with respect to r is equivalent to the derivative with respect to n
because r ¼ nþ 2. Thus, we have

@al
@n
¼ � ð1� kÞa22Ck

n bþ c ln nð Þ2
; (32)

@at
@n
¼ a22ð1� kÞ2Tk; (33)

where

Ck ¼ kð1� kÞ2
�

w0ðkÞ � w0ð1� kÞ
� �2

c2�wðkÞwð1� kÞ
	 


þFk

�
p4

36
Fk þ

p2

3
Gk þHk

��
: (34)

Finally, the force coefficients can be expressed as

F1 	
ð1� kÞCk

2n bþ c ln nð Þ2
; (35)

F2 	 �
ð1� kÞ2

2
Tk; (36)

F8 	 �
kð1� kÞ3

nþ 2
Mðn; kÞ
Nðn; kÞ �

n
2kð1� kÞTk þ 8fð3Þ þ zk

� �
: (37)

We find (also reported in Table I of Davis40) that the numerical values
of F1 are positive and those of F2 and F8 are negative. We also find that
the force along the line of centers is attractive (i.e., Fr < 0) in close
approach except for the situation when the angle between the electric
field and the line joining the centers is close to p=2. On the other hand,
the tangential force Fh is always repulsive, and thus, the torque acting
on the system always tries to align the line of centers with the electric
field. From the near-field analytical forms of F1 and F2, we can conclude
that the attractive force (except for h 	 p=2) Fr ¼ Oðn�1½ln n
�2Þ for
n! 0, which means that the attractive force increases without bound
as the spheres approach each other. The crossover angle between attrac-
tion and repulsion between the spheres depends on n and k.
Mathematically, the crossover angle is the value of h when Fr¼ 0. For
small separations, the crossover angle is given by

tan2h ¼ Ck

Tkð1� kÞn bþ c ln nð Þ2
: (38)

Figure 2 shows the variation of F1, F2, and F8 with n when j ¼ 0:5.
The dashed lines in the figure indicate the behavior of the force

FIG. 2. The magnitudes of the force coefficients F1, F2, and F8 are plotted as a
function of separation n ¼ r � 2 when the size ratio j ¼ 0:5. The continuous lines
indicate numerically obtained solutions for F1, F2, and F8 (see Davis

40 for details),
while the corresponding dashed lines are analytical solutions in the lubrication
regime.
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coefficients in small separations. In Fig. 3, we show the normalized Fr
and Fh (normalized by 4pea22E

2
0) in j� h parameter space when the

spheres are almost in contact (n ¼ 10�6). It is evident from this plot
that the magnitudes of forces both along and normal to the line joining
the centers are maximum for spheres with equal sizes. The physical
reason behind this is that equal-sized spheres experience the largest
effects of mutual polarization. Figure 3(a) indicates that the strength of
Fr is maximum when the line joining the sphere centers aligns with
the electric field (i.e., h¼ 0), and it reduces monotonically as h
approaches p=2. Most importantly, for h values around p=2, Fr is
repulsive (i.e., Fr > 0). As expected, Fh is zero when h ¼ 0;p=2 and
maximum when h ¼ p=4 [see Fig. 3(b)]. This behavior of both Fr and
Fh in the j� h plane is qualitatively similar for all separations.

B. Force coefficients for large separations

The longitudinal and transverse polarizabilities for large interpar-
ticle separations are given by (see Ref. 47):

al ¼ a31 þ a32 þ
4a31a

3
2

r3
þ 4a31a

3
2ða31 þ a32Þ
r6

þ Oðr�8Þ; (39)

at ¼ a31 þ a32 �
2a31a

3
2

r3
þ a31a

3
2ða31 þ a32Þ
r6

þ Oðr�8Þ: (40)

Using Eqs. (39) and (40), we get the following far-field expressions for
the force coefficients:

F1 ¼
96kð1� kÞ3

r4
þ Oðr�7Þ; (41)

F2 ¼ �
48kð1� kÞ3

r4
þ Oðr�7Þ; (42)

F8 ¼ �
48kð1� kÞ3

r4
þ Oðr�7Þ: (43)

The above three forms of the force coefficients suggest that both Fr
and Fh decay as Oðr�4Þ for r !1. The crossover angle h between
attraction and repulsion between the spheres for large separations is
given by

h ¼ cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F2

F1 � F2

r !
¼ cos�1

1ffiffiffi
3
p
� �

� 55�: (44)

IV. RESULTS AND DISCUSSION
A. Typical pair trajectories

Here, we discuss the relative trajectories of two uncharged spheri-
cal conductors in the presence of hydrodynamic interactions and elec-
tric-field-induced forces. Contact forces between the spheres arise after
they make surface-to-surface contact (i.e., when n¼ 0) (see Lekner63

for the derivations of contact forces). However, we are interested in
the pre-collision dynamics, and thus, we focus our attention on the rel-
ative trajectories in close approach (i.e., n! 0). Therefore, we will not
consider contact forces in our analysis. As the relative motion of the
two spheres does not depend on the azimuthal coordinate / [see Eq.
(12)], without any loss of generality, we can carry out the analysis in a
plane that is orthogonal to the x–y plane and contains z-axis.
Therefore, we present the phase portrait in a generic r sin h-r cos h
plane. The close-form analytical solution of Eq. (12) is not possible
except for the cases where the initial angle between the external electric
field and the line of centers is either 0 or p=2. We integrate Eq. (12)
numerically using a fourth-order Runge–Kutta method for various
initial h on the surface of the excluded volume sphere of non-
dimensional radius 2. Figure 4 shows the typical pair trajectories for a
pair of equal-sized spheres interacting through continuum hydrody-
namics and electric-field-induced forces. Except for initial
h ¼ 0;p=2; p; and 3p=2, the sphere centers follow the trajectories
either in the first and third or second and fourth quadrants. The
sphere centers move along the axis of the external field when the initial
h ¼ 0;p and perpendicular to the field direction when h ¼ p=2;
3p=2. In Secs. IVB and IVC, we will present the analytical solutions
of the trajectory equation for these special cases. We find that all the
trajectories in the positive side of r sin h start from r¼ 2, h � p=2 and
hit the excluded surface at different h locations. The trajectories in the
negative side of r sin h originate from r¼ 2, h � 3p=2. It is important
to note here that the trajectories on either side of r sin h are topologi-
cally similar. The sphere centers move with different velocities along
their trajectories. For a given r, h, these velocities can be calculated
using Eqs. (10) and (11).

The dynamics of pair trajectories in the close approach of inter-
acting spheres have significant implications in the context of electro-
coagulation/electrocoalescence of uncharged particles in a suspension
subject to an external electric field. As expected, the trajectory analysis
demonstrates that an external field always acts to orient a pair of adja-
cent spherical particles along the direction of the impressed electric

FIG. 3. Contour plots of (a) normalized Fr and (b) normalized Fh in the j� h
parameter space when the separation between the spheres n ¼ 10�4.
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field. Most importantly, two spherical conductors can come into con-
tact in a finite time and form a doublet. The mathematical justification
for finite time contact is that the force coefficient F1 has a
Oðn�1½ln n
�2Þ singularity near contact, which means that the attrac-
tion force between the spheres increases without bound as they come
close. Thus, the external field causes flocculation of the suspension.
The behavior of the interaction forces near contact dictates the colli-
sion dynamics of particles suspended in a liquid or gaseous medium.
The electric-field-induced forces always promote the collision process
and thus significantly enhance the flow-induced or gravity-induced
collision rates.

B. Trajectory analysis for h 5 0;p

In this subsection, we attempt to solve the trajectory equation for
a specific case where the line of centers of the two spheres initially
aligns with the external electric field. Substituting the expressions for
Fr and Fh from Eqs. (13) and (14) in the relative velocity Eqs. (10) and
(11) and setting h¼ 0 or p, we have the following dimensionless trajec-
tory equation:

dr
dt
¼ � 4k

3ð1� kÞGF1; (45)

where t is the dimensionless time scaled with lf =eE
2
0. The spheres

have no relative motion in the tangential direction because the two-
sphere system does not experience any torque when h ¼ 0;p.
Equation (45) suggests that the spheres will approach each other
because of the attractive forces induced by the electric field. As we
have stated earlier, the mathematical form of the relative velocity near
contact decides whether the particle surfaces will touch each other in a
finite time. Thus, we focus on the pair trajectories for small surface-to-

surface distances. Without hydrodynamic interactions (i.e., G¼ 1), the
dimensionless trajectory equation in close approach becomes

dn
dt
	 � a

n bþ c ln nð Þ2
; (46)

where n ¼ r � 2 and a ¼ 2kCk=3. We obtained (46) after substituting
the near-field asymptotic form of F1 in (45). Using the initial condition
n ¼ n0 at t¼ 0, we get the following expression for t by analytically
solving (46)

t ¼ tc �
ðbþ c ln n� c=2Þ2 þ ðc=2Þ2
	 


n2

2a
; (47)

where tc ¼ ððbþ c ln n0 � ðc=2ÞÞ2 þ ðc=2Þ2Þn20=2a is the time taken
by two spheres initially separated by a small distance n0 to come into
contact. So, for a given n0, we can calculate tc numerically. Though the
analytical integration of Eq. (46) yields an implicit solution for n, we
can express nðtÞ explicitly in terms of t asymptotically. For
ðtc � tÞ � 1, our asymptotic analysis gives

n 	 tc � tð Þ1=2
1ffiffiffiffi
z1
p 1þ c ln z1

2
ffiffiffiffiffiffiffiffiffi
2az1
p

� �
; (48)

where z1 ¼ ððbþ ðc=2Þ ln ðtc � tÞ � ðc=2ÞÞ2 þ ðc=2Þ2Þ=2a.
In the presence of hydrodynamic interactions, the mobility G

	 OðnÞ as n approaches zero. After substituting the small separation
asymptotic expressions for G and F1 in (45), the near-field form of the
trajectory equation with hydrodynamic interactions becomes

dn
dt
	 � m

bþ c ln nð Þ2
; (49)

where m ¼ Ck=3ð1� kÞ. Using the same initial condition as before,
we get the following solution for Eq. (49):

t ¼ tc �
ðbþ c ln n� cÞ2 þ c2
	 


n
m

: (50)

Here, tc ¼ ððbþ c ln n0 � cÞ2 þ c2Þn0=m. Similar to the case without
hydrodynamic interactions, we perform the asymptotic analysis in the
ðtc � tÞ � 1 limit and obtain the following explicit expression for n in
the presence of hydrodynamic interactions:

n 	 tc � tð Þ
1
z2

1þ 2c ln z2ffiffiffiffiffiffiffiffi
mz2
p

� �
; (51)

where z2 ¼ ððbþ c ln ðtc � tÞ � cÞ2 þ c2Þ=m.
Figure 5 shows how the separation between the spheres decreases

with time, both in the absence and presence of hydrodynamic interac-
tions. We present these results for two size ratios, 0.1 (significant dif-
ference in sizes) and 1.0 (equal in size). We choose n0 ¼ 10�1 as the
initial condition while integrating the trajectory equation. It is evident
from the figure that the attraction force between the spheres increases
rapidly as they approach each other, and it can lead to contact between
the surfaces in a finite time tc. For a given n0, we determine tc numeri-
cally. If we follow a curve in Fig. 5, we can see that the separation starts
to decrease rapidly after a critical time. Numerically, we identify this
time as the collision time tc. This collision time is different for different
initial separations n0 and size ratio j and for without and with hydro-
dynamic interactions. We use tc as inputs in Eqs. (47) and (50) to plot

FIG. 4. Typical pair trajectories of two equal-sized uncharged conducting spheres
subject to a vertical electric field. The sphere at the center is the reference sphere,
and the red colored circle represents the excluded volume sphere in the plane. The
arrows indicate the directions of the trajectories. We have considered the continuum
hydrodynamic interactions between the spheres as they move around. Relative tra-
jectories without hydrodynamic interactions are qualitatively similar to those with
interactions.
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n as a function of t, and we can see a good agreement between our
numerical results (continuous lines in Fig. 5) and the analytical results
(dashed lines in Fig. 5). Hydrodynamic interactions retard the dynam-
ics. Thus, particles (of a given size ratio) interacting through contin-
uum hydrodynamics take longer to come into contact compared to
those without hydrodynamic interactions. We also observe that the
rate of approach is faster for particle pairs with large size differences.
To validate our asymptotic expressions without and with hydrody-
namic interactions, we plot n as a function of ðtc � tÞ in Fig. 6. Our
asymptotic results (dotted lines in Fig. 6) are in good agreement with
the numerical results (continuous lines in Fig. 6).

C. Trajectory analysis for h 5 p=2;3p=2

Here, we analyze the time evolution of the pair trajectories when
the line joining the centers of the two spheres is perpendicular to the
direction of the external electric field. Like the previous case, the rela-
tive velocity between the spheres in the tangential direction is zero. In
this case, the trajectory equation is given by

dr
dt
¼ � 4k

3ð1� kÞGF2: (52)

The electric-field-induced forces are repulsive in this configuration. As
we have mentioned earlier, the numerical values of F2 are negative,
and thus, the radial relative velocity is positive (i.e., the spheres will
move apart from each other). Substituting the expression of F2 from
Eq. (35) in Eq. (52), we get the trajectory equation in the lubrication
regime as

dn
dt
	 2kð1� kÞTk

3
G: (53)

With the same initial condition as the previous case, the near-field
analytical solutions for n without and with hydrodynamic interactions
are, respectively,

n ¼ n0 þ
2kð1� kÞTk

3
t; (54)

and

n ¼ n0 exp
Tk

3
t

� �
: (55)

Similar to the near-field solution, the far-field solution for (52) is given
by

rðtÞ 	 r50 þ 320k2ð1� kÞ2t
� �1=5

; (56)

where the initial separation r0 is much larger than one.
Figure 7 shows the time evolution of n without and with hydro-

dynamic interactions for j ¼ 0:1; 1:0 when the electric field is perpen-
dicular to the line joining the centers. We take the initial separation
n0 ¼ 10�6. In this case, the relative separation increases with time
because of the repulsion force induced by the external electric field.
Without hydrodynamic interactions, n increases linearly with t in the
near field. In the near field, even though the separation increases expo-
nentially with time in the presence of hydrodynamic interactions, the
rate of this increment is low compared to that without hydrodynamic
interactions cases. We report that the rate of increase in the relative
separation is higher for particle pairs with higher j. For a given size
ratio, the curves without and with hydrodynamic interactions merge
with each other at large time. Our far-field analytical solution shows

FIG. 6. Comparison of the numerical solution of the trajectory equation with the
asymptotic expressions given in Eqs. (48) and (51). The legend for the continuous
lines is the same as in Fig. 5. The dotted lines corresponding to each continuous
curves represent asymptotic solutions.

FIG. 7. Time evolution of interparticle separation of two spheres of size ratio
j ¼ 0:1; 1 both without and with hydrodynamic interactions (HI) when the electric
field is perpendicular to the line joining the centers. The dashed lines corresponding
to each continuous curve represent the analytical solutions.

FIG. 5. Time evolution of interparticle separation in close approach of two spheres
of size ratio j ¼ 0:1; 1 both without and with hydrodynamic interactions (HI) when
the electric field aligns with the line joining the centers. The dashed lines corre-
sponding to each continuous curves represent the analytical solutions.
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that r(t) goes as t1=5. The dashed lines in Fig. 7 are the analytical
results, and these are in good agreement with the numerical results.

V. CONCLUSIONS

We have analyzed the effects of electrostatic forces on a pair of
uncharged conducting spheres subject to an external electric field. We
have also included the hydrodynamic interactions between the particle
pair. Our present analysis borrows from classical and more recent
studies on the electric-field-induced force and torque of a two-sphere
system. It is well established that electric-field-induced forces are
always attractive, except when the line of centers of the two spheres is
perpendicular to the external electric field. The electric-field-induced
torque always acts to align the line joining the sphere centers with the
direction of the imposed field. We utilized the work of Davis40 to cal-
culate the field-induced forces on the system when the separation
between the spheres is moderate to large. For calculating the forces in
the near field, we derived the force coefficients for arbitrary size ratio
using the work of Lekner,49 who have provided the closed-form ana-
lytical expressions for the longitudinal and transverse polarizabilities
of a system of two conducting spheres in close approach. We showed
a typical map of pair trajectories, while spheres interact through elec-
tric-field-induced forces and continuum hydrodynamics. We have
also presented how separations between the spheres evolve with time
for two particular configurations. In one case, the pair were aligned
with the electric field; in the other, they were in the perpendicular
configuration.

The collision rate calculations of drops due to the combined
effects of gravity,29 turbulence,64 particle inertia,65 and electrostatic
forces have important implications in several environmental and engi-
neering scenarios. The evolution of drop size distribution in warm
cumulus clouds significantly depends on the rate of collision between
drops. The present study will help quantify the enhancement of drop
collision rate due to electric-field-induced forces. The electrostatic
attraction forces due to an electric field dominate the drop–drop coa-
lescence process in strongly electrified clouds. The current study pro-
vides the near-field expressions for the electric-field-induced forces,
which are essential to understand the collisional dynamics of drops in
the presence of various driving forces like background flow and grav-
ity. Recently, Melheim and Chiesa66 and Lu et al.67 used direct numer-
ical simulations to study droplet size distributions and flow
modulation in droplet-laden turbulent shear flows with an external
electric field. Investigations on turbulent electrocoalescence would
require incorporating better models of interparticle forces; the asymp-
totic forms of the electric-field-induced forces derived in the present
study would be one such candidate. An extension of our study would
be to analyze the effects of electric-field-induced forces on the collision
rate of a pair of uncharged conducting drops settling in still air,
accounting for non-continuum hydrodynamic interactions.

In the present study, we have assumed the drops as non-
deformable conducting spheres. However, treating the drops as perfect
conductors is an idealization, and most liquids are weakly conducting
or leaky dielectrics. As was discussed earlier, several studies have inves-
tigated the deformation dynamics of a single drop in a strong electric
field with finite charge relaxation effects taken into account.15–18

Recently, researchers have developed theory and numerical schemes to
capture the electrohydrodynamic interactions between two drops
within the framework of the leaky dielectric model.33–36 Future work

could incorporate the derived asymptotic form of the electrostatic
interactions to investigate electric-field-mediated interactions between
drops in the weak deformation regime.
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