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We investigate the dynamics of heavy inertial particles in a flow field due to an isolated,
non-axisymmetric vortex. For our study, we consider a canonical elliptical vortex – the
Kirchhoff vortex and its strained variant, the Kida vortex. Contrary to the anticipated
centrifugal dispersion of inertial particles, which is typical in open vortical flows,
we observe the clustering of particles around co-rotating attractors near the Kirchhoff
vortex due to its non-axisymmetric nature. We analyse the inertia-modified stability
characteristics of the fixed points, highlighting how some of the fixed points migrate
in physical space, collide and then annihilate with increasing particle inertia. The
introduction of external straining, the Kida vortex being an example, introduces chaotic
tracer transport. Using a Melnikov analysis, we show that particle inertia and external
straining can compete, where chaotic transport can be suppressed beyond a critical value
of particle inertia.

Key words: chaotic advection, particle/fluid flow

1. Introduction

Coherent vortical structures are ubiquitous in nature. In the planetary context, the
flows are predominantly two dimensional due to the strong influence of rotation. These
turbulent flows naturally evolve into long-lived isolated eddies/vortices (McWilliams
1984), like in oceans and planetary atmospheres – for example, the Great Red Spot
on Jupiter, tropical cyclones and Gulf Stream rings. The inverse cascade of energy and
planetary rotation plays a prominent role in forming these coherent vortices (Vallis 2017).
The two-dimensional (2-D) turbulent flows in a rotating background will eventually
self-organize into concentrated vortical lumps as observed in various simulations and
observations (Fornberg 1977; Basdevant et al. 1981; Babiano et al. 1987; Benzi, Patarnello
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& Santangelo 1988). In three-dimensional turbulent flows as well, the formation of vortical
filaments has been similarly identified (Siggia 1981; Vincent & Meneguzzi 1991; Bartello,
Métais & Lesieur 1994). Thus, the later evolution of turbulent flows is strongly influenced
by the underlying vorticity dynamics of these coherent eddies.

Turbulent flows in geophysical and astrophysical contexts are often dispersed with
particulate matter – water droplets and ice crystals in clouds (Shaw 2003), pyroclastic
flows (Dufek 2016), wind–sand interactions in aeolian processes (Kok et al. 2012) and
dust in protoplanetary disks (Armitage 2020). The coherent vortices embedded in these
flows greatly influence particle transport. Tracer particles can get trapped by the vortices
for a long time, much larger than the eddy turnover time, and get transported across
the distances over which the eddy travels (Elhmaïdi, Provenzale & Babiano 1993). The
trapped particles can be released only after the disruption of the vortex itself. However,
the particulate matter does not necessarily have negligible inertia; the finite inertia aspect
of particles can make the dynamics of the suspended phase more complex with aspects
of clustering (Bec 2003, 2005; Sapsis & Haller 2010) and caustics (Crisanti et al. 1992;
Falkovich, Fouxon & Stepanov 2002; Wilkinson & Mehlig 2005). Heavy inertial particles
are centrifuged away by the vortex cores and get accumulated in the straining regions of
the flow (Maxey 1987). However, in a rotating background, the heavy inertial particles get
pushed by the Coriolis force into the cores of anticyclonic vortices, which is hypothesized
to trigger the formation of planetesimals in the astrophysical context (Barge & Sommeria
1995; Tanga et al. 1996; Chavanis 2000).

The transport of particles by various vortical structures has been extensively modelled
and studied in the past few decades. Batchelor & Nitsche (1994) investigated the expulsion
of heavy inertial particles from a rising bubble, considering the combined effects of
gravitational sedimentation and the toroidal circulation of gas inside. Marcu, Meiburg
& Newton (1995) explored the transport of inertial particles near a Burger’s vortex with
and without the influence of gravity. In the absence of gravity, particles with sufficiently
small inertia were captured by the vortex centre, while those with large inertia exhibited
stable limit cycle dynamics. The inclusion of gravity altered the dynamics, generating
additional fixed points that could capture the particles. Raju & Meiburg (1997) have
studied the transport of inertial particles with varying density ratios in three model flows:
a solid-body vortex, a point vortex and a stagnation point flow. Eames & Gilbertson (2004)
considered the sedimentation and dispersion of inertial particles past an isolated spherical
vortex and a random distribution of spherical vortices, revealing that the interplay between
particle inertia and stagnation points significantly increased the vertical dispersivity of
dense particles compared with tracers. Hunt et al. (2007) investigated inertial particle
transport near a vortex tube and steadily propagating vortex rings, providing analytical
treatment and experimental comparisons. The clustering of heavy inertial particles in a
pair of co-rotating vortices was explored by Angilella (2010); Ravichandran, Perlekar &
Govindarajan (2014). Ravichandran & Govindarajan (2015) have studied the clustering
of inertial particles and the subsequent emergence of caustics in a point vortex and
a system of point vortices. In the context of airborne pathogen transport through the
atmosphere, recent studies by Dagan (2021) and Avni & Dagan (2022) have modelled
evaporating droplets as advected by a Lamb–Chaplygin vortex dipole, revealing that the
interaction with the vortex enhanced droplets’ settling time and transported them over
large distances in the air. Motivated by the dispersion of droplets in warm cumulus
clouds during the condensational phase, Nath et al. (2022) investigated the dispersion of
condensing droplets in a background flow modelled as an array of Taylor–Green vortices;
they demonstrated a significant enhancement in droplet dispersion as they acquire more
inertia by condensation.
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Dynamics of inertial particles in a non-axisymmetric vortex

Neighbouring coherent vortices in a turbulent flow can interact with each other and
induce shearing, which could disrupt them (Legras, Dritschel & Caillol 2001). According
to Reinaud, Dritschel & Koudella (2003), vortices that can withstand the highest levels
of strain are those most likely to be found in an actual turbulent flow. An elliptic vortex
patch of constant vorticity is an exact solution of the incompressible 2-D Euler equation
(see Kirchhoff 1876; Lamb 1945; Saffman 1995); below aspect ratio of 3 the vortices
are both linearly (Love 1893) and nonlinearly (Wan 1986; Tang 1987) stable. Elliptic
vortex patches and their interactions have been extensively studied to understand better
the stability and evolution of vortices in ideal fluid (see Moore & Saffman 1971; Kida
1981; Dritschel 1990; Legras & Dritschel 1991; Dritschel & JuáRez 1996; Mitchell &
Rossi 2008), with motivations from geophysical turbulent flows (Dritschel 1995). Due to
the non-axisymmetric vorticity distribution, an elliptic patch of uniform vorticity in an
irrotational background will rotate with a constant angular velocity while preserving its
size and shape. This configuration, widely known as the Kirchhoff vortex, is well suited
for studying isolated non-axisymmetric coherent vortices in 2-D flows. The tracer transport
in the Kirchhoff vortex is non-chaotic as it is an integrable Hamiltonian system.

To study vortex interactions, Kida (1981) proposed a model of a vortex tube in a uniform
shear flow; the effects of the other vortices on a certain vortex tube may be replaced, in
the first approximation, by a linear flow. Moore & Saffman (1971) had earlier studied
steady elliptic vortex patches in uniform shear; Kida (1981) generalized the solutions
to include exact unsteady elliptic vortices. However, we would like to mention that the
first study of an elliptic vortex in a specific linear flow, a simple shear flow, was carried
out by Chaplygin (see Chaplygin 1899; Meleshko & Van Heijst 1994). When an external
simple shear flow is superimposed on the Kirchhoff vortex, the configuration is known
to have three kinds of impact on the elliptic vortex patch: (i) rotation: full rotation of the
ellipse with periodically changing aspect ratio and angular velocity, (ii) nutation: back
and forth oscillatory angular motion of the elliptic patch, and (iii) elongation: irreversible
elongation of the vortex patch due to strong external straining (see Kida 1981; Neu 1984;
Dritschel 1990). Though the area of the ellipse is preserved, the unsteady rotation of
the ellipse with changing aspect ratio creates an unsteady flow field around, even in the
co-rotating frame (Kida 1981), which is referred to as the ‘Kida vortex’ in this paper.
The original motivation for studying sheared vortical patches was to understand vortex
interactions better. However, when analysed from the perspective of tracer transport,
sheared elliptic vortices exhibited chaotic Lagrangian trajectories (Polvani & Wisdom
1990; Dahleh 1992). Even a minor imposed shear induces periodic unsteadiness in the
deformation of the Kida vortex, disrupting the Hamiltonian integrability of the Kirchhoff
vortex. The hyperbolic fixed points and heteroclinic connections of the Kirchhoff vortex
(see § 2) experience perturbations, making them susceptible to transverse intersections
and, thus, allow for the possibility of chaotic dynamics (Smale 1967; Bertozzi 1987). A
comprehensive investigation was conducted into the impact of unsteady perturbations on
tracer transport in an otherwise integrable system of a pair of oppositely signed point
vortices by Rom-Kedar, Leonard & Wiggins (1990). In the absence of perturbation, the
vortex pair translates with a constant velocity, resulting in a steady flow field in the
co-moving frame with the vortices. However, the introduction of an external periodic strain
field, even in the co-moving frame, makes the flow field unsteady, causing the tangling
heteroclinic orbits in the flow field and leading to the chaotic transport of certain passive
tracers. This phenomenon also results in fluid entrainment by the vortex system, enhancing
mixing. Notably, this study represents one of the early applications of tools such as the
Melnikov analysis from dynamical systems to analyse and quantify chaos and mixing in a
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fluid flow problem. In the current context of inertial particle transport in the Kida vortex,
we apply some of the techniques derived from their work.

The dispersed phase embedded in the coherent structures in the various geophysical
and astrophysical flows is rarely inertialess – dust, bubbles, planktons. This raises the
question of how particle inertia alters particle dispersion in the neighbourhood of vortices.
Here, we are interested in the dynamics of small, heavy inertial particles, thus ignoring
the additional physics of added mass effects, the Basset history term, convective inertia
and Faxen corrections. Studies have shown that particle inertia can suppress the chaotic
transport in vortical flows (Angilella 2010; Angilella, Vilela & Motter 2014). However,
we have demonstrated recently (Nath et al. 2024b) that particle inertia can induce chaotic
dynamics and lead to non-ergodic dynamics due to the ‘scattering’ interaction of inertial
particles with an ordered array of stagnation points. Particle inertia modifies the fluid
tracer fixed points and their homoclinic/heteroclinic connections, which subsequently play
a prominent role in long-time particle transport. In this paper we study the transport of
heavy inertial particles near a non-axisymmetric vortex patch – first in the Kirchhoff vortex
and then in its strained variant, the Kida vortex. The configuration chosen is a simple
scenario of an isolated vortex where we can study the modification of the heteroclinic
tangles by particle inertia analytically and comment on the competing roles of background
shear and particle inertia to promote or suppress chaotic transport.

An earlier investigation on particle transport in a strained elliptical vortex is documented
in the work by Chavanis (2000). This study specifically focuses on the trapping of dust
by anticyclonic vortices in Keplerian protoplanetary disks, proposing it as a mechanism
for planet formation. In this context, the vortices experience Keplerian shear, leading to
the survival of only anticyclonic vortices that achieve a steady elliptic configuration. The
strength of the vorticity is determined by Keplerian shear, employing a solution provided
by Moore & Saffman (1971). The analysis of inertial dust particle transport is conducted
in a frame co-rotating with the vortex. The findings indicate that particles with small
inertia approximately follow an elliptic path, drifting inwards due to drag and the Coriolis
force, ultimately being captured by the vortex centre. On the other hand, particles with
larger inertia exhibit an epicyclic motion but eventually sink into the vortex. Particles with
substantial inertia may even escape the vortex. Despite some apparent similarities with the
second part of our work, which involves the transport of inertial particles by a strained
elliptic vortex, there are notable differences. Our study considers an elliptic vortex model
for a coherent vortex in turbulence, allowing for any general value of the strain rate it
experiences. Consequently, the vortex is not in a steady state but unsteady motion, leading
to the intriguing particle dynamics discussed in this paper.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the dynamics of heavy inertial particles in the Kirchhoff vortex, detailing their clustering
in various fixed points and presenting a stability analysis of these fixed points. In § 3 we
primarily focus on the modification of these dynamics in a strained Kirchhoff vortex
due to an imposed weak pure-strain flow, i.e. in a rotating Kida vortex. We analyse
the perturbative changes from stable fixed points to stable limit cycles. Additionally,
a Melnikov analysis is employed on saddle points to demonstrate the existence of
chaotic dynamics for inertial particles with sufficiently small inertia. Large-time Lyapunov
exponents and fractal dimension calculations are used to confirm the presence of chaotic
dynamics. A small discussion on the inertial particle dynamics in nutating and elongating
Kida vortices is added at the end of § 3. The large-time dispersion characteristics of heavy
inertial particles in Kirchhoff and Kida vortices are discussed in § 4. Additionally, the
trapping of particles around a Kida vortex is studied by evaluating their residence time in
the neighbourhood of the vortex.
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Dynamics of inertial particles in a non-axisymmetric vortex
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Figure 1. (a) Schematic showing the elliptic vortex patch with stationary reference frame X′–Y ′ and the
co-rotating reference frame X–Y . (b) The (steady) streamlines of the Kirchhoff vortex in the co-rotating
reference frame.

2. Dynamics of heavy inertial particles in an elliptic vortex

2.1. An isolated elliptic patch of uniform vorticity – the Kirchhoff vortex
Consider an elliptical patch of constant vorticity (ω0) in an irrotational background. As
mentioned earlier, due to the non-axisymmetric vorticity distribution, the elliptic patch
of uniform vorticity (ω0) will rotate with constant angular velocity Ω = ω0ab/(a + b)2,
where a and b are semi-major and semi-minor axes of the elliptic patch (see figure 1);
the size and shape of the elliptic patch is preserved during the rotation. The configuration,
known as the Kirchhoff vortex, is given by the streamfunction (as observed by a stationary
observer)

ψ ′
v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ω0

2(a + b)
(bx2 + ay2),

x2

a2 + y2

b2 < 1,

−abω0

4

(
2ξ + e−2ξ cos(2η)

)
,

x2

a2 + y2

b2 > 1.

(2.1)

In the co-rotating frame with the vortex, the streamfunction is ψ = ψ ′ + (Ω/2)(x2 +
y2), where (x, y) and (ξ, η) are respectively the Cartesian and elliptic coordinates
measured in a co-rotating frame with the ellipse, which are inter-related as x =√

a2 − b2 cosh ξ cos η and y = √
a2 − b2 sinh ξ sin η, with ξ ≥ 0 and η ∈ [0, 2π). We

use primed (′) variables to denote quantities in the stationary frame, whereas unprimed
variables represent quantities in the co-rotating frame. We follow the same convention
throughout this paper unless specified otherwise. The stationary reference frame (X′–Y ′)
and the co-rotating reference frame (X–Y) are shown schematically in figure 1(a), making
an instantaneous angle θ , relates them as x′ = x cos θ − y sin θ and y′ = x sin θ + y cos θ ,
where dθ/dt = Ω . An advantage of choosing a co-rotating frame is that the velocity field
is steady in the co-rotating frame. The corresponding streamlines are shown in figure 1(b).
The tracer dynamics in the co-rotating frame is thus governed by a 2-D, time-independent
dynamical system, which guarantees non-chaotic fluid pathlines. Inside the ellipse, the
flow field is a solid-body rotation, and far away in the outer region, it resembles a decaying
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point vortex. The flow field is a tripole structure (see Viúdez 2021; Xu & Krasny 2023)
with five fixed points (where the flow velocity is zero) A, B, C, D and O, as marked in the
figure. The origin O (ξ̄0, η̄0) is an elliptic fixed point; the pair A and B (ξ̄±

1 , η̄±
1 ) located

along the major axis line outside the ellipse are hyperbolic type fixed points; the pair C
and D (ξ̄±

2 , η̄±
2 ) located along the minor axis line outside the ellipse (inside the lobes) are

elliptic type fixed points (see Kawakami & Funakoshi 1999). The hyperbolic fixed points
are interconnected by two pairs of heteroclinic orbits, denoted as H±

1 and H±
2 . As we

proceed further into our analysis, we will learn the significance of these heteroclinic orbits
and their possible perturbation, which is crucial for the onset of chaos, in § 3. The fixed
points are ‘fixed points’ only for a co-rotating observer; however, for a stationary observer,
they resemble ‘Lagrange points’ of celestial mechanics (Fitzpatrick 2012).

2.2. Dynamics of inertial particles
The dynamics of heavy inertial point particles in a background flow can be studied using
the Maxey–Riley equation (see Maxey & Riley 1983). In a rotating reference frame with
the ellipse (of angular velocity Ω), the modified form of the Maxey–Riley equation by
accounting for the pseudo forces reads, in non-dimensional form,

v̇ = u(x)− v

St
+ xΩ2 − 2Ω êz × v, (2.2)

where v is the particle velocity, u(x) is the velocity of the Kirchhoff vortex (steady, in
the co-rotating frame) evaluated at the particle location x, êz is the unit vector along
the z axis perpendicular to the plane. We use the length scale

√
ab and the rotation

time scale ω−1
0 to non-dimensionalize the system, where, as mentioned earlier, a and

b are the semi-major and semi-minor axes of the ellipse, respectively, and ω0 is the
uniform vorticity of the elliptical patch. Another relevant time scale in the problem is
τp = (2/9)ρpa2/(ρgν) – the relaxation time scale for a particle of characteristic size
a and density ρp navigating in a carrier phase of density ρg and kinematic viscosity
ν. The Stokes number (St = τpω0) quantifies the relative magnitude of the two time
scales and, thus, provides a non-dimensional measure of particle inertia. We denote the
non-dimensional time derivative using an overdot ( ˙ ). The non-dimensional quantities
are represented with the same notation as dimensional quantities, as we deal only with
non-dimensional quantities from here onwards (unless specified explicitly). The elliptic
vortex is characterized by the non-dimensional aspect ratio r = b/a, where we consider
0 < r < 1.

The first term on the right-hand side of (2.2) is the Stokes drag, the second is the
centrifugal force and the third is the Coriolis force. The Euler force (−Ω̇ êz × x) – a
fictitious tangential force that arises in a rotating reference frame – does not appear here
because the rotation rate is uniform (i.e. Ω̇ = 0). However, we will see later, in the context
of the Kida vortex, the Euler force needs to be accounted for due to its non-uniform
rotation rate. It is assumed that the particles are point size and, thus, in a Stokes flow
limit (Re = Ωa2/ν � 1). Also, we are dealing with heavy particles (i.e. much denser
than the background fluid (ρp � ρg), as is the case for dust particles or water droplets in
the air). Thus, as was mentioned earlier, the physics of added mass force and the Basset
history effect is negligible. However, suppose one were to study the role of fluid inertia
with the motivation of the current study and explore the long-time dispersion dynamics
of particles in the vicinity of coherent structures. In that case, the inclusion of convective
inertia (Re /= 0) is expected to play a more prominent role than the Basset history effect
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Figure 2. Snapshots showing the evolution of 105 particles of St = 0.5 in a Kirchhoff vortex of r = 0.5 at (a)
t = 0, (b) t = 50, (c) t = 100 and (d) t = 150 non-dimensional time units, obtained from numerical simulation.
The particles are initialized with zero velocity and randomly distributed inside a circle of non-dimensional
radius 1.76, enclosing the ellipse.

(see Lovalenti & Brady 1993; Dorgan & Loth 2007). However, for the sake of simplicity,
we restrict ourselves to the Re � 1 regime and ignore the physics of both unsteady and
convective inertia. In addition, for the same reason of ρp � ρg, the indirect effects of
the Coriolis and centrifugal forces acting on the fluid, which induces corrections into the
particle equation, have been neglected in (2.2).

In our study, we initialize a circular patch of inertial particles (randomly distributed)
with zero initial velocity in the Kirchhoff vortex around the ellipse (see figure 2a). We
let the particles evolve and track them using the dynamic (2.2) along with the kinematic
equation ẋ = v. We integrate the system using the ODE113 routine in Matlab with a
relative error of 10−12, absolute error of 10−12 and a maximum time step of 1/10 th of
the Stokes number. The typical evolution of St = 0.5 particles in the Kirchhoff vortex
of aspect ratio r = 0.5 observed from the co-rotating frame is shown as the snapshots in
figure 2.

As expected, the snapshots show that the inertial particles are getting centrifuged away
from the central ellipse. However, unlike in the case of an axisymmetric vortex (like the
point vortex or Rankine vortex), here we see that some of the particles are getting attracted
towards a pair of fixed points outside the ellipse, within each lobe denoted as C and D.
Note that, the elliptic fixed points of fluid tracers in the Kirchhoff vortex have already
been denoted as C and D in figure 1(b). The same choice of notation here for attracting
fixed points will make sense in the analytical exploration of the system in the upcoming
section.

2.3. Analytical evaluation of fixed points and their stability
The fixed points, as seen by an inertial particle in the Kirchhoff vortex, can be evaluated
by setting its velocity and acceleration to be zero, i.e. v = v̇ = 0. Substituting this in (2.2)
gives that the locations of the fixed points are the solution of the equation u(x)+ xStΩ2 =
0, i.e. the fixed points are formed by the balance between centrifugal force and Stokes
drag. Note that the fixed point equation is modified from that of fluid tracers (u(x) = 0)
due to the finite inertia effect as a St dependent term. For analytical treatment to be made
accessible, we may choose to rewrite (2.2) in elliptic coordinates, in component form, as

ξ̈ = hk−1uξ − ξ̇

St
+ 2Ωη̇ + h2

{
η̇2 − ξ̇2 +Ω2

2
sinh 2ξ − η̇ξ̇ sin 2η

}
, (2.3a)

η̈ = hk−1uη − η̇

St
− 2Ωξ̇ − h2

{
η̇2 − ξ̇2 +Ω2

2
sin 2η + η̇ξ̇ sinh 2ξ

}
, (2.3b)
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where x = k cosh ξ cos η and y = k sinh ξ sin η, and the fluid velocity components can be
obtained from the corresponding streamfunction in the co-rotating frame (ψ) as uξ =
(h/k)(∂ψ/∂η) and uη = −(h/k)(∂ψ/∂ξ). For the Kirchhoff vortex (of streamfunction
ψv = ψ ′

v + (Ω/2)(x2 + y2)), these components can be evaluated as

uξ =

⎧⎪⎪⎨
⎪⎪⎩

h
2k

(
e−2ξ − k2Ω

)
sin 2η, tanh ξ > r,

h
4

k3Ω(Λ− cosh 2ξ) sin 2η, tanh ξ < r,
(2.4a)

uη =

⎧⎪⎪⎨
⎪⎪⎩

h
2k

(
1 − e−2ξ cos 2η − k2Ω sinh 2ξ

)
, tanh ξ > r,

h
4

k3Ω(Λ− cos 2η) sinh 2ξ, tanh ξ < r,
(2.4b)

where the scale factor h = (cosh2 ξ − cos2 η)−1/2, the parameters k2 = (1/r − r),
Λ = (1 + r2)/(1 − r2) and the angular velocity Ω = θ̇ = r/(r + 1)2. Here, tanh ξ > r
indicates the region outside the ellipse and tanh ξ < r indicates the region inside the ellipse
since tanh ξ = r defines the boundary of the ellipse itself. The same equations in Cartesian
coordinates are convenient in numerical simulations and can be found in Appendix A.

The system of equations (2.3), along with the appropriate velocity field, describes the
trajectory of an inertial particle in an elliptic vortex. It is a nonlinear coupled dynamical
system in a four-dimensional phase space on the variables ξ, η, ξ̇ and η̇. The fixed points
of the system can be obtained by solving the equations ξ̇ = 0, η̇ = 0, ξ̈ = 0 and η̈ = 0
simultaneously. From (2.3), this gives the trivial criteria for all fixed points, i.e. ˙̄ξ = ˙̄η = 0;
however, their locations (ξ̄, η̄) should be obtained by solving the transcendental equations

2uξ + St hkΩ2 sinh 2ξ = 0, (2.5a)

2uη − St hkΩ2 sin 2η = 0. (2.5b)

These equations must be solved separately inside and outside the ellipse to identify the
fixed points since the velocity field is known in a piecewise manner. The identification of
fixed points and their stability analysis are discussed in the following §§ 2.3.1 and 2.3.2.
Note that setting St = 0 should recover the dynamics of the passive fluid tracers. By doing
so, one could see that the equations (2.5) for the fixed points reduce to uξ = 0 and uη = 0
– which will retrieve the five classical fixed points of the Kirchhoff vortex mentioned in
§ 2.1.

2.3.1. Fixed points outside the ellipse
Outside the ellipse (tanh ξ > r), (2.5) can be written by substituting the appropriate
velocity expressions from (2.4) as

(StΩ2 sinh 2ξ + (k−2 e−2ξ −Ω) sin 2η)h2 = 0, (2.6a)

(StΩ2 sin 2η +Ω sinh 2ξ + k−2 (e−2ξ cos 2η − 1))h2 = 0. (2.6b)

These are modified equations for fixed points outside the elliptic vortex accounting for the
effect of finite St. The solutions to (2.6) give the fixed points (ξ̄ , η̄) with p = tanh ξ̄ and
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Figure 3. (a) Variation of the fixed points perceived by inertial particles in a Kirchhoff vortex of r = 0.5 as
St changes (for log-spaced distribution of St). Elliptic and hyperbolic fixed points outside the ellipse merge
at St ≈ 0.772. (b) The trajectories of St = 0.2 particles in a Kirchhoff of r = 0.5 in the co-rotating reference
frame, obtained using slow manifold expression. Red indicates unstable fixed points and blue indicates stable
fixed points.

q = tan η̄ given by

p± = 2 − (α ± β)k2Ω2

2(1 + k2Ω)
, (2.7a)

q± = α ∓ β

2 St
, (2.7b)

where α = k2(1 + St2Ω2) and β = √
α2 − 4St2. These solutions form a set of four

fixed points outside the ellipse, located at (ξ̄+
1 , η̄

+
1 ) = (tanh−1 p+, tan−1 q+), (ξ̄−

1 , η̄
−
1 ) =

(tanh−1 p+,−π + tan−1 q+), (ξ̄+
2 , η̄

+
2 ) = (tanh−1 p−, tan−1 q−) and (ξ̄−

2 , η̄
−
2 ) = (tanh−1

p−,−π + tan−1 q−). In the limit of St → 0, we may deduce that these fixed points
coincide with the Kirchhoff vortex’s four classical fixed points A, B, C and D. For
simplicity, we choose to call these finite St modified fixed points with the same name
as that corresponding to the fluid tracers (A, B, C and D). The finite St symmetrically
displaces these fixed points, as shown in figure 3(a): A and B shift counterclockwise,
while C and D shift clockwise as St increases. As St increases, the fixed points A(ξ̄+

1 ,
η̄+

1 ) and C(ξ̄+
2 , η̄+

2 ) approach each other. The same thing happens for the counterpart fixed
points B(ξ̄−

1 , η̄−
1 ) and D(ξ̄−

2 , η̄−
2 ) as well.

In the limit of a small Stokes number (St � 1), the governing equation (2.2) can be
reduced to the slow manifold form as

v = u − St
{
∂u
∂t

+ u · ∇u − xΩ2 + 2Ω êz × u
}

+ O(St2), (2.8)

using which the particle trajectories are obtained and shown in the figure 3(b). By
comparing these particle trajectories with the streamlines for fluid tracers shown in
figure 1(b), it is evident that the inertial particles perceive different fixed points than fluid
tracers. They match exactly with the solution of (2.6) we obtained analytically (as marked
in blue and red). The trajectories also imply that the fixed points A and B remain hyperbolic
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fixed points (saddles); however, the fixed points C and D behave as stable spirals for inertial
particles. The divergence of the system (2.2) in the four-dimensional phase space is given
by ∇ · v + ∇v · v̇ = −2/St, a negative quantity, indicating the dissipative nature of the
dynamical system for any finite inertia particles. Here, ∇ · ( ) represents the divergence
in physical space, while ∇v · () represents the divergence in velocity/momentum space.
Even in the St � 1 limit, the divergence of the reduced system (2.8) in the 2-D phase
space yields ∇ · v = O(St) /= 0, indicating a compressible nature of inertial particle flow
in phase space unlike the fluid tracers where ∇ · u = 0. The dissipative nature of the
system for heavy, finite inertia particles is responsible for the elliptic fixed points becoming
spiral attractors. However, the hyperbolic fixed points remain intact, though their position
gets displaced.

To analytically show this, we use the linear stability analysis and systematically study
the effect of finite St on the stability of the fixed points. The Jacobian matrix for the system
of differential equations (2.3), evaluated at the fixed point (ξ̄ , η̄) is

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

Γ −Δ − 1
St

2Ω

Δ− 2k−2(1 − p)( p + q2)

St( p2 + q2)
Γ + 2k−2q(1 − p)2

St( p2 + q2)
−2Ω − 1

St

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.9)

where Γ = ( p2 − 1){Ω(1 + q2)(StΩ( p2 − q2)− 2pq)+ 2k−2( p + q2)q(1 − p)}/{St
( p2 + q2)2} and Δ = (1 − p)(1 + q2){Ω(1 + p)( p2 − q2 + 2pq StΩ)− k−2(1 − p)
( p2 − q2)}/{St( p2 + q2)2}. The same matrix evaluated in Cartesian coordinates can be
found in Appendix A. By evaluating the eigenvalues for the matrix J, we can identify that
the fixed point pairs A and B are saddles, and the pairs C and D are stable spirals for a
finite inertia particle. For instance, the variation of all the eigenvalues with Stokes number
for each fixed point type is shown in figure 4. From figure 4(a,d), it can be seen that any
finite St particle will perceive fixed points A and B with purely real-valued eigenvalues
with signature (+,−,−,−), as saddles in the four-dimensional phase space. However,
for the fixed point C or D, as shown in figure 4(b,e), the eigenvalue is a pair of complex
conjugates with a negative real part, indicating a stable spiral in the four-dimensional phase
space. Thus, we conclude that the suspended heavy inertial particles will spiral and cluster
towards the fixed points C and D outside the elliptic vortex as time progresses, which we
have observed in numerical simulations (see figure 2). Note that, for the fixed point C or
D, for r = 0.5, when St � 0.771 (shown in the insets of figure 4b,e), we may see that there
occurs a bifurcation and the eigenvalues are no more conjugate pairs, rather purely real
valued with signature (−,−,−,−), indicating stable node/sink in the four-dimensional
phase space. Consequently, the particles will radially move towards the fixed points instead
of executing a spiral motion. For an elliptic vortex of arbitrary aspect ratio r, the critical
Stokes number S1 at which the spiral to node transition happens can be identified from
the discriminant of the solutions of the quartic eigenvalue polynomial for J (which can be
obtained from (2.9) or (A4), by setting |J − λ I| = 0). By examining the discriminant of
the solution for λ, one may find its behaviour changes when St2 satisfies the cubic equation

St6 + 3(1 + r)4(1 + 4r + r2)

2r3 St4 + (1 + r)8(1 + 6r + r2)(5 + 22r + 5r2)

16r6 St2

− (1 + r)12(1 − r)2(3 + r)(1 + 3r)
16r8 = 0. (2.10)
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Figure 4. Variation of all eigenvalues with St corresponding to the typical fixed points of inertial particles in a
Kirchhoff vortex of r = 0.5. (a,d) Real and imaginary parts of the eigenvalues of fixed points A or B. (b,e) Real
and imaginary parts of the eigenvalues of fixed point C or D. (c,f ) Real and imaginary parts of the eigenvalues
of fixed point O.

The real-valued, non-negative solution of (2.10) gives the critical Stokes number St = S1
for any r. For the case of r = 0.5, one could verify that this solution is S1 ≈ 0.7713,
matching with the prediction from figure 4(b,e).

As St increases, saddle type and stable spiral type fixed points approach closer, as
mentioned earlier. If we keep increasing St, we find that they merge (i.e. p+ = p− and
q+ = q−) and vanish at a critical inertia value. From (2.7), one could deduce that this
happens only if β = 0. Using the expression β2 = k4(1 + St2Ω2)2 − 4St2 and solving
for Stokes number, one would find that the critical value at which merging happens is
St = S2 = (1 + r)2(1 − √

r)/(r(1 + √
r)), i.e. the fixed points outside the elliptic vortex

(A, B, C and D) exist only for particles with 0 ≤ St < S2. For an elliptic vortex with
r = 0.5, the critical value can be evaluated as S2 ≈ 0.7721, i.e. A merges with C and
B merges with D at this critical value and disappears. Thus, we have only shown the
eigenvalues in figure 4 for the Stokes number until 0.7721.

2.3.2. Fixed points inside the ellipse
The origin O located inside the ellipse (tanh ξ < r) continues to exist as a fixed point for
heavy inertial particles (see figure 3b); however, O behaves as an unstable spiral. To show
this, we follow the same procedure mentioned in the previous § 2.3.1, using the flow field
inside the ellipse. By substituting appropriate expressions for uξ and uη from (2.4) in (2.5),
we obtain

(2StΩ sinh 2ξ + k2(Λ− cosh 2ξ) sin 2η)h2 = 0, (2.11a)

(2StΩ sin 2η − k2 (Λ− cos 2η) sinh 2ξ)h2 = 0. (2.11b)
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C, D

Annihilate

St

A, B

O

S1 S2

Figure 5. A schematic showing the projection of a four-dimensional phase space topology into three
dimensions, illustrating various fixed points and their transitions at critical Stokes numbers.

In the St → 0 limit, these equations yield the elliptic fixed point for fluid tracers at the
origin. Moreover, irrespective of the value of St, (2.11) has a single real-valued solution
(ξ̄0, η̄0) = (0,π/2), indicating that the origin O remains to be the fixed point for any
inertial particle as well. The Jacobian matrix for linear stability for the fixed point at origin
O is

J = 1
St

⎛
⎜⎝

0 0 St 0
0 0 0 St

StΩ2 −rΩ −1 2StΩ
Ω/r StΩ2 −2StΩ −1

⎞
⎟⎠ , (2.12)

which has two pairs of complex conjugate eigenvalues. One of these pairs has a
non-negative real part (see figure 4c, f ), indicating unstable spiral behaviour for any
non-zero St. Thus, the particles will be centrifuged away from the origin spirally. Some of
them, starting within certain basins (see § 2.5) accumulate in the stable fixed points C and
D outside the ellipse, as they are stable fixed points, as shown in the previous § 2.3.1. Note
that as we increase the particle inertia, even after the mutual annihilation of fixed points
A, B, C and D, fixed point O exists and remains an unstable spiral. Thus, beyond the S2,
one can observe that all particles merely centrifuge away without getting trapped in any
Lagrange points.

The nature of fixed points and phase space topology is depicted schematically in
figure 5 as the Stokes number varies. It is important to note that the phase space is four
dimensional; however, the schematic only presents a three-dimensional projection. The
fixed points C and D exhibit a ‘2-spiral sink’ behaviour when St < S1 and transition to a
‘sink’ when S1 < St < S2. On the other hand, fixed points A and B demonstrate a ‘3 : 1
saddle’ behaviour for St < S2. Additionally, fixed point A (B) annihilates with C (D) and
ceases to exist when St = S2. Meanwhile, fixed point O persists and behaves as a ‘2-spiral
saddle’ for all Stokes numbers. For more on terminology, see Hofmann, Rieck & Sadlo
(2018).
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Figure 6. The curves in the r–St plane demarcate regions where the change in the number of fixed points (blue
colour) and the change in the nature of stable fixed points (red colour) happens. The representative elliptic
patch of vorticity is also shown in a greenish yellow colour for three different aspect ratios.

2.4. Effect of the aspect ratio on the distribution of fixed points
Until now, all the analyses have been performed explicitly for the elliptic vortex with
aspect ratio r = 0.5. However, if the vortex has a different aspect ratio, the distribution
and stability nature of fixed points will change. Solving (2.6) and (2.11), we obtain the
fixed points inside and outside the ellipse, respectively, for various St and r values. There
is no qualitative change in the distribution of fixed points, such that the fixed point inside
the ellipse will always be at the origin, and there will always be four fixed points outside
the ellipse below Stokes number S2. In the r–St plane (see figure 6), it is shown that the
critical curve (blue colour) demarcates the region where all five fixed points (A, B, C, D
and O) coexist and the region where only the point at the origin exists.

By analysing the stability of the fixed points, we have already seen that the fixed point at
the origin remains an unstable spiral for any St > 0 in a Kirchhoff vortex of r = 0.5. One
can verify that this will also be valid for any r ∈ (0, 1). The pair A and B remain saddles for
all aspect ratios provided they exist (indicating the robustness of hyperbolic fixed points).
However, the stable spiral fixed points can change their behaviour if the aspect ratio is
above some critical value. The same fact has already been discussed towards the end of
§ 2.3.1 specifically for the aspect ratio r = 0.5. For any particular aspect ratio, some critical
Stokes number S1 exists above which the stable spirals become stable nodes/sinks. As
mentioned in § 2.3.1, by solving for the non-negative real-valued solution of (2.10), one
can find the critical pairs of St and r at which this behaviour change happens, and is
shown in the r–St plane (see figure 6, red colour). From asymptotic analysis of (2.10),
one may show that S1 = r−1√3/5 − 298/(25

√
15)+ O(r) for r → 0 and S1 = (1 − r)+

1
2 (1 − r)2 + O(1 − r)3 for r → 1, and the asymptotes are also shown in the figure. On the
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other hand, the exact expression for S2 = (1 + r)2 (1 − √
r)/(r (1 + √

r)), also mentioned
at the end of § 2.3.1, has asymptotic forms, S2 = r−1 − 2/

√
r + 4 + O(

√
r) for r → 0

and S2 = (1 − r)+ 1
2 (1 − r)2 + O((1 − r)3) for r → 1. We find that S1 < S2 for any r ∈

(0, 1). Note that the red curve is very close to the blue curve; however, they never intersect,
indicating that for any fixed St > 0, there always exists a narrow parameter regime bounded
by both red and blue curves (S1 < St < S2) inside which the fixed points C and D will
behave as nodes/sinks.

For any finite r value, one may note that both S1 and S2 values are finite. However,
as r → 0, both diverge as O(1/r), becoming a larger value. This divergence suggests
that particles must possess high inertia for critical dynamical behavioural changes to
occur. However, note that when r → 0, the vortex rotates slowly (Ω = r/(1 + r)2 → 0).
Thus, the relevant time scale in the problem becomes the angular velocity Ω rather
than the vorticity of the patch. Consequently, the Stokes number based on the angular
velocity of the vortex, StΩ = St r/(r + 1)2, evaluated for critical behaviours SΩ,1 ∼ √

3/5
and SΩ,2 ∼ 1, remains constant and bounded in the limit of r → 0, indicating that the
divergence was merely an artefact of the adopted scaling.

2.5. The basin of attraction of the fixed points
From numerical simulations, we have seen that all the particles repelled away from the
unstable fixed points (A, B and O) are not attracted to the stable fixed points (C and
D); instead, some spiral away to infinity. The initial particle locations that would result
in them getting attracted to any of the two stable fixed points are shown in figure 7,
representing the basin of attraction of those fixed points. The basins are coloured to
distinguish each other. The region outside these coloured regions indicates the basin of
attraction of infinity; i.e. particles initialized in these regions will eventually spiral away to
infinity and never get attracted to any of the stable fixed points. We have used 105 particles
randomly initialized in the flow field to generate the figure. We tracked their evolution
numerically and identified those that would approach any fixed points over a long time.
We marked their initial locations using specific colours to distinguish between the basins
of each fixed point. As visible in figure 7, the basin of attraction of the stable fixed points
shrinks as St increases and vanishes. It can be verified that the basins will disappear beyond
the critical value S2, indicating the absence of stable fixed points. The figure shows that
the stable fixed points C and D are enclosed within the corresponding basin of attraction,
which is obvious. However, the unstable fixed points A and B appear to fall at the edge
of the basins. The regular nature of the basin boundaries shows non-chaotic dynamics of
inertial particles in the elliptic vortex. Close to origin O, the basin of attraction of stable
fixed points (coloured regions), and that of infinity (empty region) forms an inter-twisting
pattern. As a result, a particle starting closer to the origin will have dynamics sensitive to
the initial condition. A small change in the initial position could lead the particle to end
up either in the fixed points C or D or spiral away to infinity.

Here, we would like to highlight prior studies on the dynamics of inertial particles in the
neighbourhood of a pair of like-signed point vortices by Angilella (2010), Ravichandran
et al. (2014) and Zhao et al. (2024). The system of like-signed point vortices bears
similarities with that of the Kirchhoff vortex. The inertial particles exhibit qualitatively
identical behaviour near the point vortex pair. The types of fixed points, stability
characteristics and the basin of attractions show qualitative similarities to those observed
in the case of the elliptic vortex. A recent study by Kapoor, Jaganathan & Govindarajan
(2024) extends previous studies near the like-signed point vortex pair by focusing on the
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Figure 7. The basin of attraction for inertial particles of (a) St = 0.2, (b) St = 0.5 and (c) St = 0.77 in a
Kirchhoff vortex of r = 0.5. The corresponding fixed points A, B, C and D are marked in each figure using the
‘×’ symbol. The streamlines of the Kirchhoff vortex are shown in grey in the background.

dynamics of inertial particles of any density ratio. The study reveals interesting dynamical
behaviours, with the existence of periodic and chaotic dynamics of particles depending on
their inertia and density ratio. Additionally, in the limit of a large density ratio, the particle
dynamics show similarity to that in a Kirchhoff vortex. Though it seems like an elliptic
vortex can be simply replaced by a pair of like-signed vortices, it is worthwhile to focus on
the subtle differences. The flow field in both cases matches well in the far field only. The
Kirchhoff vortex and the pair vortices have different features in the near field. Notably, the
origin behaves as a saddle in the case of pair vortices, whereas in the elliptic vortex, it acts
as a centre/spiral.

3. Dynamics of heavy inertial particles in a strained elliptic vortex

When an external uniform shear flow is superimposed on the Kirchhoff elliptical vortex
(ψ ′
v), Moore & Saffman (1971) was the first to obtain stationary elliptical vortices of

uniform vorticity as exact solutions of the steady Euler equations. Later, Kida (1981)
obtained the exact solutions of the unsteady Euler equations, resulting in unsteady
elliptical vortices in a uniform shear flow, now known as the Kida vortex. In a special
case of an external pure-strain flow of the form ψ ′

e = (s/4)(−x′2 + y′2), where s is the
strain rate, the dynamics of the elliptic vortex of uniform vorticity is governed by

ṙ = −sr sin 2θ, (3.1a)

θ̇ = Ω + s
2
Λ cos 2θ, (3.1b)

where, r is the instantaneous aspect ratio and θ is the instantaneous orientation of the
ellipse. The strain rate (s) in (3.1) is scaled with the uniform vorticity of the ellipse.
The expressions for Ω = r/(r + 1)2, Λ = (1 + r2)/(1 − r2) and k2 = (1 − r2)/r remain
consistent with those defined for the Kirchhoff vortex. However, for the Kida vortex, these
parameters are defined using the instantaneous aspect ratio r = r(t), which evolves over
time. It is evident from (3.1) that the dynamics of the Kida vortex depend on the initial
aspect ratio (r(t = 0) = r0), initial orientation (θ(t = 0) = θ0) and the strain rate (s) of
the external flow. The dynamical system described in (3.1) possesses a conserved integral,
as identified by Neu (1984), Baylay, Holm & Lifschitz (1996) and Meacham, Morrison &
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Figure 8. Schematic showing the three major types of dynamics exhibited by a strained elliptical vortex:
(a) an initial elliptical vortex patch with anti-clockwise vorticity content superimposed with an external
straining flow, (b–d) rotation: full rotation and periodic variation in the aspect ratio of the ellipse, (e–g) nutation:
back-and-forth oscillation and periodic variation in the aspect ratio of the ellipse, and (h–j) elongation: the
ellipse irreversibly stretches and aligns along the straining axes of the flow.

Flierl (1997), which is

H = log
(
(1 + r)2

4r

)
+ s

(1 − r2)

2 r
cos 2θ. (3.2)

The numerical value of H is determined by r0, θ0 and s, and remains constant throughout
the time evolution of the vortex.

Analysis of the system in (3.1) reveals that the unsteady Kida vortex can exhibit three
distinct dynamical behaviours: rotation, nutation and elongation (see Kida 1981; Neu 1984;
Dritschel 1990). Figure 8 schematically illustrates these dynamics of the Kida vortex.
A general Kida vortex, as shown in Kida (1981), which encounters a broader class of
background linear flow (that has both straining and rotational components, e.g. simple
shear flow), will also exhibit all these dynamical behaviours. However, in this study we
limit ourselves to the case of a Kida vortex under pure-strain (irrotational) background
flow. An elliptical vortex patch in a straining flow conserves its area throughout its
dynamical evolution, while its aspect ratio, angular velocity and angular orientation vary
over time. The ellipse undergoes rotation similar to the Kirchhoff vortex for low strain
rates, albeit with a periodically changing aspect ratio and angular velocity. However, the
ellipse tends to align with the straining axis at high strain rates and elongate indefinitely.
The ellipse can also show oscillations with a periodically varying aspect ratio under
suitable conditions.

To elaborate, consider the phase portrait in figure 9, which depicts contours of constant
H for three different s values. Depending on the initial values r0 and θ0, which determine
the value of H, the subsequent dynamics of the vortex will flow along the contour line of
the same H in the phase portrait. Figure 9(a) corresponds to s = 0.2, encompassing all
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Figure 9. The phase portraits show contour lines of constant H in the r vs θ plane for a Kida vortex for
(a) s = 0.2, (b) s = 0.27 and (c) s = 0.32. The various dynamical regimes are marked using Roman numerals:
I for rotation, II for nutation and III for elongation. The blue and red curves demarcate these dynamical regimes.
The critical values of strain rates at which the transition in dynamical nature occurs are marked on the s axis.

three dynamical regimes. In region I, a typical H contour extends from θ = 0 to θ = 2π,
while r varies periodically over a restricted range, indicating rotation dynamics of the
ellipse. In region II, both r and θ vary periodically over a restricted range, indicating
nutation dynamics where the ellipse oscillates with a changing aspect ratio instead of
completing a rotation. In region III, the contour lines show r asymptotically approaching
zero while θ approaches π/4 or 5π/4 (i.e. the straining axes), indicating irreversible
elongation of the ellipse. When s = 0.27, as shown in figure 9(b), only nutation and
elongation dynamics exist, with rotation dynamics disappearing. The critical value of s at
which this transition occurs is approximately s ≈ 0.2454. Further increasing s to 0.32, as
depicted in figure 9(c), results in only elongation dynamics, as nutation also disappears
for s � 0.3. Note that these critical values of s for the disappearance of rotation and
nutation dynamics have been previously discussed by Kida (1981) and Neu (1984), though
their values differ by a factor of two due to different definition conventions (i.e. 0.1227
and 0.15, respectively). Therefore, for s � 0.3, all elliptical vortices in a pure-strain flow
will elongate indefinitely, as noted by Moore & Saffman (1971). For larger strain rates,
the phase portrait qualitatively resembles figure 9(c) with only elongation dynamics.
Conversely, when s is very small, the phase portrait resembles figure 9(a) but with a larger
region I, indicating a higher likelihood of rotation dynamics.

Figure 10 shows the typical time evolution of r and θ of a Kida vortex with r0 = 0.5,
for various s and θ0 values, obtained by numerically solving (3.1). For the smallest strain
rate (s = 0.01) and θ0 = 0, the aspect ratio of the ellipse barely changes, but it undergoes
rotation as θ varies from 0 to 2π periodically. For a slightly larger strain rate (s = 0.1)
with the same θ0, the ellipse completes a rotation again but with a larger periodic variation
in the aspect ratio. However, when s is increased to 0.2 with the same θ0, the ellipse
asymptotically elongates (r → 0) and aligns with the straining axes (θ → π/4), losing
its periodic dynamics. This occurs because the critical s value for the specific initial
conditions (r0 = 0.5 and θ0 = 0) is numerically determined to be 0.174, beyond which
only elongation dynamics exist. Note that this critical value is less than 0.3 mentioned
earlier, which is the critical value for this transition irrespective of the initial conditions.
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Figure 10. The time variation of the (a) aspect ratio r and (b) angular orientation θ of a Kida vortex with
r0 = 0.5 is shown for various non-dimensional strain rates s and initial orientations θ0. The angular variation
is represented modulo 2π to indicate the completion of a full ellipse rotation. Different colours indicate the
various dynamics of the Kida vortex: blue, orange and violet for rotation, black for elongation and green for
nutation. The period of rotation differs for each case, as inferred from the figure.

Now, fixing s = 0.2 but adjusting the initial θ : when θ0 = π/3, the ellipse undergoes
rotation; however, when θ0 = π/2, the ellipse nutates. The figure summarizes the typical
cases of the Kida vortex considered in this study to analyse the dispersion of particles. Our
primary focus here is on the dynamics of inertial particles in a slightly strained (s � 1)
Kida vortex with r0 = 0.5 and θ0 = 0, as discussed in the upcoming subsection. Later
(see § 3.2), we also consider the case of sufficiently strong external straining (s = 0.2) on
the same ellipse but with θ0 = 0 and π/2, to discuss particle dispersion in nutating and
elongating Kida vortices.

3.1. Dynamics of inertial particles in a weakly strained, rotating Kida vortex
This section focuses on the dynamics of inertial particles in a Kida vortex, which is weakly
strained (s � 1) by a pure-strain flow. We consider the case where the ellipse undergoes a
rotary dynamics. The inertial particles in the co-rotating frame with the ellipse are tracked
using the modified form of the Maxey–Riley equation:

v̇ = u − v

St
+ xθ̇2 − 2θ̇ êz × v − θ̈ êz × x. (3.3)

Note that the unsteady nature of the Kida vortex, even in the co-rotating frame, is
accounted for in the Stokes drag term, centrifugal term and Coriolis term on the right-hand
side as u = u(x, t) and θ̇ = θ̇ (t). In addition, the non-uniform rate of rotation of the frame,
which is responsible for the Euler force, is represented by the last term on the right-hand
side. We simulate the dynamics of St = 0.1 point particles in a Kida vortex of initial aspect
ratio r0 = 0.5 and orientation θ0 = 0. The simulation is performed for two different strain
rate values, and the particles’ evolution is shown in figure 11 as snapshots, as observed
in a co-rotating frame. For a smaller value of strain rate s = 0.01, the overall dynamics
resemble that in the case of the Kirchhoff vortex, as can be seen from figure 11(a–d); most
of the particles are getting centrifuged away, and a fraction of them attracted towards a pair
of stable attractors. Unlike the Kirchhoff vortex, here the attractors are not fixed points but
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Figure 11. Snapshots showing the evolution of 2 × 105 inertial particles of St = 0.1 in a Kida vortex of
r0 = 0.5, θ0 = 0 for (a–d) s = 0.01 and (e–h) s = 0.035, observed in a co-rotating frame, obtained from
numerical simulation. The time stamps are: (a,e) t = 50, (b, f ) t = 100, (c,g) t = 500, (d,h) t = 2000.The
particles are initialized with zero velocity inside a circular region of radius 2.5, enclosing the ellipse. The
instantaneous streamlines of the corresponding Kida vortex are shown in grey in the background. The insets
of (d,h) are the enlarged views at t = 2000 showing the accumulation of particles in limit cycle trajectories,
obtained numerically, shown in red. The blue colour indicates the limit cycles evaluated using a perturbative
approach as in § 3.1.1.

limit cycles in extended phase space (including the time axis), which can be seen as the
red curve in the inset of figure 11(d), obtained by tracking the particles for a long time.

For a relatively larger value of the strain rate s = 0.035 (which is still less than the
critical value of 0.174, allowing for the rotation of the ellipse), the particle dynamics
become intricate, as evident in the corresponding figure 11(e–h). We note that some
particles are drawn towards an additional, larger-sized limit cycle, depicted in red in the
inset of figure 11(h). Contrary to a simple spiralling dispersion, the remaining particles
become trapped in a pair of stationary attractors at far field (for a co-rotating observer,
which appears to be counter-rotating as in the snapshots). Further details regarding this
attractor and particle dispersion due to it can be found in §§ 3.1.2 and 4, respectively.
Additionally, the particle dynamics exhibit chaotic behaviour, consistent with the effect of
external strain on fluid tracers (Polvani & Wisdom 1990; Ngan, Meacham & Morrison
1996; Kawakami & Funakoshi 1999). In this context, a systematic analytical study is
presented in the upcoming §§ 3.1.1 and 3.1.2 to illustrate that the interplay of inertia (St)
and straining (s) leads to complex dynamics, as depicted in figure 11.

3.1.1. Modification to the fixed points of the Kirchhoff vortex due to external straining
For the analytical treatment to be accessible, the governing equation (3.3) is written in
component form using elliptic coordinates as

ξ̈ = hk−1uξ − ξ̇

St
− 2k̇

k
ξ̇ + 2θ̇ η̇ − h2k̇

2k St
sinh 2ξ

+ h2
{
−
(
η̇ξ̇ + k̇θ̇

k
+ θ̈

2

)
sin 2η +

(
η̇2 − ξ̇2 + θ̇2

2
− k̈

2 k

)
sinh 2ξ

}
, (3.4a)
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η̈ = hk−1uη − η̇

St
− 2k̇

k
η̇ − 2θ̇ ξ̇ + h2k̇

2k St
sin 2η

− h2
{(
η̇ ξ̇ + k̇θ̇

k
+ θ̈

2

)
sinh 2ξ +

(
η̇2 − ξ̇2 + θ̇2

2
− k̈

2k

)
sin 2η

}
. (3.4b)

Note that when k̇ = θ̈ = 0, these equations will reduce to the case of the Kirchhoff vortex
as in (2.3); however, which is not the case for any finite strain s /= 0. The flow velocity
fields can be obtained from the total streamfunction (ψ = ψ ′

v + ψ ′
e + (θ̇/2)(x2 + y2)) as

uξ = (h/k)(∂ψ/∂η) and uη = −(h/k)(∂ψ/∂ξ). One must remember that the ellipse’s
evolution (3.1) must also be integrated along to obtain the particle trajectory. Since we
know that the attractors of the system are not fixed points but limit cycles from the
simulations, we may search for them using the approach by IJzermans & Hagmeijer
(2006) as a periodic modification to the fixed points of the unperturbed system. Let (ξ̄ , η̄)
denote the fixed points for any inertial particle in the Kirchhoff vortex, a time-dependent
perturbation of the form ξ = ξ̄ + sξ ′(t)+ O(s2) and η = η̄ + sη′(t)+ O(s2) may denote
the limit cycles for any small straining s � 1.

The system behaves as a perturbed Kirchhoff vortex in an external straining flow of s �
1. A time-periodic, strain-dependent term will perturb the Kirchhoff vortex’s Hamiltonian
(streamfunction). For low strain rates, a regular perturbation approach yields the solution
of (3.1) as r = r0 + sr1 + O(s2) and θ = θ0 +Ω0t + sθ1 + O(s2), where

r1 = − r0

Ω0
sin(Ω0t) sin(Ω0t + 2θ0), (3.5a)

θ1 = (1 + r3
0)

r0(1 − r0)
sin(Ω0t) cos(Ω0t + 2θ0)− t

2
(1 − r0)

(1 + r0)
cos 2θ0, (3.5b)

with r0 = r(t = 0), θ0 = θ(t = 0) and Ω0 = r0/(r0 + 1)2. Note that the leading-order
solutions (i.e. solutions when s = 0) match the Kirchhoff vortex, indicating a constant
aspect ratio and uniform rotation rate. Since the parameter k is dependent on aspect ratio r,
k can also be expanded as a perturbation in s as k = k0 − sk0Λ0r1/(2r0)+ O(s2), where
k2

0 = (1/r0 − r0) and Λ0 = (1 + r2
0)/(1 − r2

0). Similarly, the velocity field (uξ , uη) can
also represent a strain perturbation to that of the Kirchhoff vortex.

By using these perturbation expansions along with the perturbation ansatz for the limit
cycle coordinates (ξ = ξ̄ + sξ ′(t)+ O(s2) and η = η̄ + sη′(t)+ O(s2)), substituted in the
governing equations (3.4) will reduce to the matrix equation

St χ̈ + L χ̇ + K χ = −M λ− N, (3.6)

where χ = [ξ ′(t), η′(t)]T, λ = [cos(2Ω0t + 2θ0), sin(2Ω0t + 2θ0)]T, N = [N1,N2]T are
vectors, and K , L and M are 2 × 2 matrices. The entries N, K , L and M are determined by
the Kirchhoff vortex and its fixed points (ξ̄ , η̄) and are listed in Appendix B. Equation (3.6)
represents a pair of coupled, forced, second-order, linear ordinary differential equations.
We are interested in the large-time/steady-state solutions as they would tell us about the
limit cycles. For this, we assume a periodic solution of the form χ = F0 + F 1 λ and the
substitution yields two independent matrix equations (which are related to the particular
solution of (3.6)),

K F0 = −N, (3.7a)(
4Ω2

0 St I − 2Ω0 L Σ − K
)

F 1 = M, (3.7b)
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Figure 12. The variation of limit cycles corresponds to the fixed points of inertial particles of various St in
a Kida vortex of r0 = 0.5, θ0 = 0 and s = 0.035, obtained using the perturbative approach (cf. figure 3a).
The stable limit cycles are represented using continuous lines and the unstable limit cycles are represented
using dashed lines. Only the first quadrant is shown here. A similar pair of limit cycles also exists in the third
quadrant (not shown here). The perturbative approach does not capture the larger limit cycles and, thus, is not
shown here. The grey curves in the background indicate the streamlines of the Kida vortex and the black curve
indicates the ellipse at t = 0.

where I = (
1 0
0 1

)
is a 2 × 2 identity matrix and Σ = ( 0 −1

1 0

)
. These equations are linear and

a simple inversion yields the unknowns F0 and F 1 and, thus, the limit cycles. However, the
stability of the limit cycle is determined by the transient dynamics of the solutions of
(3.6). It is determined by the eigenvalues of the matrix P that satisfy the quadratic matrix
equation St P2 + L · P + K = 0 (related to the homogeneous solution of (3.6)). Any
eigenvalue with a positive real part indicates an unstable limit cycle; if all the eigenvalues
have a negative real part, it is stable. The limit cycles are derived as a perturbation to
the fixed points of the Kirchhoff vortex as ([ξ, η] = [ξ̄ , η̄]T + sχ + O(s2)). They are then
evaluated for the case of r0 = 0.5 and θ0 = 0 and is shown in figure 12 as St varies.
Note that the originally stable fixed points (C and D) transform into stable limit cycles, as
confirmed through numerical verification by tracking particles over an extended period, as
depicted in the insets of figure 11(d,h). While theoretically predicting that the hyperbolic
fixed points (A and B) transition into unstable limit cycles under strain perturbation, it
may be more accurate to state that the hyperbolic fixed points retain their hyperbolic
nature. However, the stable and unstable manifolds connecting them are now susceptible
to the oscillatory effects induced by this unstable limit cycle, potentially leading to their
intersections and the formation of tangles. A detailed analysis of the perturbations to the
hyperbolic fixed points is presented in the upcoming § 3.1.2.

The perturbation to the fixed point at the origin O yields all the entries of M and N to
be zero, indicating that no limit cycle perturbation exists (either stable or unstable) to the
origin. The origin remains an unstable spiral for heavy inertial particles in the Kida vortex,
which centrifuges them away from the centre.

In the inset of figure 11(d,h), the perturbatively obtained limit cycle solutions are shown
in blue and agree with the respective actual limit cycles (red colour, obtained numerically).
However, for the case of s = 0.035, an additional pair of larger limit cycles exists, as can
be seen in the inset of figure 11(h) that this method could not capture.
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3.1.2. Non-integrable perturbation to saddles and criteria for chaos
The external straining (s � 1) introduces a time-periodic perturbation (non-integrable)
to the Kirchhoff vortex (integrable Hamiltonian system). This perturbation leads to
Lagrangian chaos of fluid tracers (St = 0) in the Kida vortex (Polvani & Wisdom 1990).
The perturbations affect the hyperbolic fixed points of the Kirchhoff vortex, leading to
the heteroclinic orbits to split into stable and unstable manifolds, which transversely
intersect and form tangles, as shown by the zero crossings of the corresponding Melnikov
functions. The result is a topological similarity to a horseshoe map and a dense set near
the intersections (see Smale 1967; Ott 2002), which guarantees the existence of a strange
attractor and chaotic dynamics. Though the original theorem is formulated for homoclinic
orbits, a later extension for heteroclinic orbits conveys a similar concept (see Bertozzi
1987). Here, we study the modification to the dynamics of suspended heavy inertial
particles in the Kida vortex due to their finite inertia using the same approach. A competing
effect may arise for inertial particles due to their finite inertia and suppress chaos as seen
from similar studies (Angilella 2010; Angilella et al. 2014). To analytically study this,
we consider modifying the particle dynamics in the Kida vortex (of s � 1) due to weak
inertial particles (St � 1).

Using the slow manifold expansion of (3.4) for St � 1, we obtain the modified
kinematic equations for ξ̇ and η̇ as perturbations in St. By combining the s � 1 expansion
of instantaneous aspect ratio r and angle of rotation θ with this slow manifold equation,
we can express the modified kinematic equations describing the trajectory of an inertial
particle in the Kida vortex as

ξ̇ = f̂1(ξ, η)+ sĝ1(ξ, η; t)+ Stφ̂1(ξ, η)+ O(s2, St2, s St), (3.8a)

η̇ = f̂2(ξ, η)+ s ĝ2(ξ, η; t)+ St φ̂2(ξ, η)+ O(s2, St2, s St), (3.8b)

where the relevant functions f̂1 to φ̂2 outside and inside the ellipse are listed in Appendix C.
In (3.8) the functions f̂1 and f̂2 describe the dynamics resulting from the dominant
Kirchhoff vortex (integrable); ĝ1 and ĝ2 are time-periodic perturbations due to external
straining flow; φ̂1 and φ̂2 are the time-independent perturbations due to particle inertia
that is novel in our work. Thus, the dynamics of weak inertial particles in a Kida vortex
will be perturbations to that of fluid tracers in a Kirchhoff vortex, where the perturbations
are together contributed from external straining and particle inertia.

The dynamics of fluid tracers in a Kirchhoff vortex (i.e. (3.8) with s = 0 and St = 0)
is integrable and, thus, represents a Hamiltonian system. The introduction of an external
straining will not affect the integrability of the system inside the elliptic vortex as the flow
field inside is pure solid-body rotation and devoid of any hyperbolic fixed points. However,
the flow field outside the ellipse has two hyperbolic fixed points, A and B, connected
by the two pairs of heteroclinic orbits H±

1 and H±
2 , as shown in figure 1(b). The strain

perturbation can lead to the formation of heteroclinic tangles. To identify that, we use
Melnikov’s method. According to the method, one must evaluate the Melnikov function
for all hyperbolic fixed points, which measures the distance between stable and unstable
manifolds in the Poincaré section. Odd zeros of the Melnikov function indicate a transverse
crossing of the corresponding stable and unstable manifolds (see Bertozzi 1987; Wiggins
1990). For fluid tracers in the Kida vortex, Ngan et al. (1996); Kawakami & Funakoshi
(1999) have evaluated the Melnikov function, which is shown to satisfy the requirements
for tangle formation for any non-zero straining. They also showed the space-filling nature
of the Poincaré section and, thus, concluded that the transport of fluid tracers in the Kida
vortex can be chaotic.
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Dynamics of inertial particles in a non-axisymmetric vortex

Here, we use the same analytical tools to identify the dynamical behaviour of heavy
inertial particles in the Kida vortex. For very small values of the Stokes number, the
particles are expected to behave like fluid tracers and, thus, can be chaotic. On the contrary,
when the strain rate is small, the inertial particles can simply be attracted to the fixed points
of the dominant Kirchhoff vortex and, thus, will not be chaotic. It is when the Stokes
number and strain rate are of the same order that the competition between these effects
takes place, and complicated things can happen. Thus, for the case of St � 1 and s � 1,
we consider St = q s, where q is an O(1) quantity. By substituting the same in (3.8), the
system can be rewritten up to O(s2) as

ξ̇ = f̂1(ξ, η)+ s
{

ĝ1(ξ, η; t)+ qφ̂1(ξ, η)
}
, (3.9a)

η̇ = f̂2(ξ, η)+ s
{

ĝ2(ξ, η; t)+ qφ̂2(ξ, η)
}
. (3.9b)

The system is perturbed from the integrable Kirchhoff vortex in s and, thus, may not be
integrable in general. Following Bertozzi (1988), the Melnikov functions associated with
the hyperbolic fixed points of the system can be evaluated as

M±
j (φ) =

∫ ∞

−∞

[
f̂1(ξ±

j (t), η
±
j (t))

{
ĝ2(ξ

±
j (t), η

±
j (t); t + φ)+ qφ̂2(ξ

±
j (t), η

±
j (t))

}

− f̂2(ξ±
j (t), η

±
j (t))

{
ĝ1(ξ

±
j (t), η

±
j (t); t + φ)+ q φ̂1(ξ

±
j (t), η

±
j (t))

}]
× e− ∫ t

0 tr(Df ) dt′ dt, (3.10)

where the subscript j(= 1, 2) indicates the heteroclinic orbits (ξ±
j (t), η

±
j (t)) of the

unperturbed system (Kirchhoff vortex) connected to the hyperbolic fixed points for which
the Melnikov function is evaluated. Here the term tr(Df ) = ∂ f̂1/∂ξ + ∂ f̂2/∂η is the trace
of the Jacobian matrix of the unperturbed system evaluated along the same heteroclinic
orbit, which is not zero in general. One may note that the non-zero trace results from
writing the dynamical system in non-standard variables (ξ, η). However, the divergence
of the corresponding velocity vector field in the elliptical coordinate system, evaluated as
∇ξ,η · [uξ , uη] = h2 (∂( f̂1/h2)/∂ξ + ∂( f̂2/h2)/∂η), is different from the trace mentioned
above; ∇ξ,η · [uξ , uη] = 0 in accordance with the Hamiltonian nature of tracer dynamics
in the Kirchhoff vortex.

After splitting the integrals, it can be seen that the time-periodic perturbations (due to
straining) ĝ1 and ĝ2 will result in a periodic term in M of period π/Ω0, however, the
time-independent perturbations φ̂1 and φ̂2 will contribute as a constant term, i.e. M(φ) =
m0(φ)+ q m1 where m0(φ + π/Ω0) = m0(φ) is the periodic function and m1 is a
constant, which are dependent on the aspect ratio of the ellipse. When the particles are
inertialess (i.e. q = 0), the resulting Melnikov function is periodic m0(φ), known to have
zeros for any finite s � 1. However, for inertial particles (q /= 0), the term m1 effectively
shifts the periodic function m0(φ) up or down when plotted against φ, depending on the
sign of m1. Thus, there can exist a critical value of q = |max(m0(φ))/m1| such that beyond
which the Melnikov function M(φ) ceases to have transverse zeros. This indicates that
there can be a critical value of St for a given strain rate s above which the heteroclinic
tangles will disappear and possibly the chaos too. Since, in our system, there is more
than one heteroclinic orbit, this critical value will be the greatest of all the critical values
corresponding to each orbit so that the complete disappearance of heteroclinic tangles will
be ensured.
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Figure 13. The Melnikov functions (a) M+
1 (φ) and (b) M+

2 (φ) for a Kida vortex of r0 = 0.5 and θ0 = 0 are
plotted against φ for various q values. The abscissa is shown as a dashed-dotted line to identify the zeros of the
Melnikov functions.

Similar dynamical behaviour can also be observed in systems where two competing
physics leads to a critical parameter value at which the appearance/disappearance of chaos
occurs, for example, (i) the settling of inertial particles in a flow field created by a pair of
like-signed vortices (see Angilella 2010), and (ii) the transport of passive fluid tracers in
the same flow field near a wall (see Angilella et al. 2014). In either case, the zeros of the
sinusoidal Melnikov function are affected by the vertical shift to the Melnikov function
due to the competing parameter in the problem.

For the Kida vortex, we explain the scenario using an example. Consider a Kirchhoff
vortex with r0 = 0.5 and θ0 = 0, perturbed with a pure-strain flow to form the Kida
vortex. The heteroclinic orbits H±

1 and H±
2 are numerically obtained for the case. By

substituting them in (3.10), we evaluate the Melnikov function for each orbit. For M±
1 (φ),

the amplitude of the periodic function m0(φ) is evaluated to be approximately 0.0082 and
m1 ≈ −0.4889. Similarly, for M±

2 (φ), the amplitude of corresponding m0(φ) is evaluated
to be approximately 0.8267 and m1 ≈ 0.1950. The variation of the Melnikov functions
with φ over a period π/Ω0 is shown in figure 13. We can evaluate the critical value of q at
which the zeros of the Melnikov function disappear as qcr,1 ≈ 0.0168 and qcr,2 ≈ 4.2395,
which is independent of whether it is a ‘+′ or ‘−′ type heteroclinic orbit (due to their
symmetry). Thus, we may conclude that the heteroclinic tangles of H±

1 disappear if
St > qcr,1 s and that of H±

2 disappear if St > qcr,2 s. When St > qcr,2 s, the complete
disappearance of heteroclinic tangles occurs. In other words, there will not be any chaos
when the straining is less than the critical value scr,2 = St/qcr,2.

Figure 14 illustrates the schematic representation of tangles associated with the saddles
A and B and the heteroclinic connection H±

1 in various contexts. In each scenario, the red
curve denotes the unstable manifold of saddle A, while the blue curve represents the stable
manifold of saddle B. For tracers in the Kirchhoff vortex, as depicted in figure 14(a), the
stable and unstable manifolds coincide without any transverse intersection. With a small
strain perturbation, as shown in figure 14(b), the stable and unstable manifolds form folds
and transversely intersect, leading to heteroclinic tangles. This tangle is responsible for
the onset of chaotic dynamics of tracer particles in a Kida vortex. We now concentrate on
the effect of particle inertia on the dynamics in the absence of external straining – inertial
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Figure 14. Schematic showing the unstable and stable manifolds of saddles A and B, respectively in the colour
red and blue for various scenarios: (a) for tracers in the Kirchhoff vortex (s = 0, St = 0), (b) for tracers in the
Kida vortex (s � 1, St = 0), (c) for inertial particles in the Kirchhoff vortex (s = 0, St � 1), (d–e) inertial
particles in the Kida vortex, where (d) s � 1, St < qcr,1s and (e) s � 1, St > qcr,1s.

particles in the Kirchhoff vortex. Figure 14(c) shows the effect of particle inertia, where
inertial particles in the Kirchhoff vortex have wide open, stable and unstable manifolds
due to centrifugal effects. Folds are absent as there is no strain perturbation, preventing the
formation of tangles. Figure 14(d,e) examines the combined effect of strain perturbation
and particle inertia. In figure 14(d), particles with weak inertia (St < qcr,1s) allow for weak
centrifuging, enabling the transverse intersection of the folds to form tangles. Conversely,
in figure 14(e), dominant particle inertia (St > qcr,1s) causes manifolds to spread apart and
prevent the intersection of the folds.

For inertial particles with St = 0.1, the critical strain rates scr = St/qcr can be obtained
as scr,1 ≈ 5.9524 and scr,2 ≈ 0.0236, such that when s � 0.0236, there will be no chaotic
dynamics. In figure 15(a,b) we have shown the basin of attraction (evaluated using the full
nonlinear system of (3.4)) of St = 0.1 particles in the Kida vortex with r0 = 0.5, θ0 = 0
of s = 0.02 and s = 0.03, respectively. The basin of attraction has clear boundaries for the
case of s = 0.02, indicating regular dynamics; however, for s = 0.03, the boundaries are
mixed/fractal, indicating an underlying chaotic set near the separatrices. The dimension of
the basins is evaluated using a method similar to that used by Angilella et al. (2014). We
identify a set of points on a line intersecting the basin boundary. We chose the line segment
x = 1.68 and −0.4 ≤ y ≤ 0.4, close to the hyperbolic fixed point A. Pairs of random points
on the line segment are checked to see if they belong to different basins. If they do not,
they are discarded. If they do, the bisection method is used to refine these points closer
until their inter-distance reaches a threshold of 10−8, ensuring they approach the basin
boundary. Once a few thousand such points are identified, lying on both the line and the
basin boundary, we use a box-counting algorithm to identify the scaling law N(ε) ∼ ε−D(1)
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Figure 15. The basin of attraction of St = 0.1 particles in a Kida vortex (of r0 = 0.5 and θ0 = 0) with strain
rates (a) s = 0.02 indicating smooth basin boundaries and (b) s = 0.03 indicating fractal basin boundaries.
Figures are generated using the full system of (3.4) along with (3.1).

to obtain the dimension D(1) in the limit of ε → 0. Here, N(ε) is the number of boxes of
side length ε required to cover the sampled points in the basin boundary. The dimension
obtained (D(1)) is the dimension of the intersection set between the basin boundary and
the initial line segment. To obtain the basin boundary dimension in 2-D space, one needs
to evaluate D(2) = 1 + D(1). Figure 16(a) shows the variation of ε vs N(ε) for the cases
of s = 0.02 and s = 0.03, corresponding to the fractal basins in figure 15. A curve fitting
reveals that the respective slopes are zero and −0.7679, as mentioned in the figure, which
indicates that the respective fractal dimensions are D(2) = 1 for the basin in figure 15(a)
and D(2) ≈ 1.7679 for the basin in figure 15(b). Figure 16(b) shows the variation of D(2)
with s for the basin boundaries corresponding to a fixed St = 0.1. The critical value of s
for the onset of a fractal basin boundary is scrit ≈ 0.0288. The prediction of scrit from the
Melnikov analysis of the overdamped system (3.9) is scr,2 ≈ 0.0236. We would expect the
predictions of the two methods to agree better for smaller values of St. The overdamped
system is strictly valid in the asymptotic limit of St → 0; St = 0.1 is significantly large
from the perspective of its validity (see Nath et al. (2022) for discussion on flows with
stagnation points). However, the overdamped system and the subsequent Melnikov analysis
offer significant computational advantages over the full system, which tends to get very
stiff for small St. It can be used to efficiently diagnose the chaotic dynamics when we are
interested in first-order effects of particle inertia.

Note that the existence of zeros of the Melnikov function is a necessary criterion for
chaos but not a sufficient one. Apart from a dense set, the heteroclinic tangles may also
result in (i) a countable infinity of periodic orbits with an arbitrarily high period and (ii)
an uncountable infinity of periodic orbits (Smale 1967). Thus, for our system, whenever it
is suspected, the existence of chaos needs to be shown using other methods, like Lyapunov
exponents, frequency spectra and Poincaré sections. However, from the investigations of
chaotic dynamics of tracers in a Kida vortex (Polvani & Wisdom 1990; Dahleh 1992;
Ngan et al. 1996; Kawakami & Funakoshi 1999), one can assume the same continues to
exist for inertial particles until they have the critical inertia value. For further validation,
we have evaluated the largest Lyapunov exponent (LLE) of the reduced dynamical system
(3.9) to show the existence of chaos for weakly inertial particles and its disappearance
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Figure 16. (a) Plot showing the variation of log(N(ε)) with log(ε), where N(ε) is the number of boxes of side
length ε required to cover the set of points in the basin boundary that intersects with a line segment at x = 1.68
and −0.4 ≤ y ≤ 0.4. The cases shown correspond to the two typical strain rates in figure 15. The black straight
lines represent the fitted curves with the specific slopes mentioned. (b) The variation of the dimension D(2)

with the strain rate s. All cases here correspond to St = 0.1 particles in a Kida vortex with r0 = 0.5 and θ0 = 0.
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Figure 17. The variation of the largest Lyapunov exponent (LLE) with time for a Kida vortex with r0 = 0.5,
θ0 = 0 and s = 10−2, corresponding to inertial particle trajectories of different q (or St). Note that the case
q = 0 indicates the LLE associated with tracers in the Kida vortex. The initial location of the particle is chosen
to be the location of hyperbolic fixed point A at t = 0.

for heavy inertial particles. We used the classical algorithm by Benettin et al. (1980) for
this purpose. For a fixed strain rate of s = 10−2, we evaluated the time variation of the
LLE for various St values for a point close to the hyperbolic fixed point A of the Kida
vortex with r0 = 0.5 and θ0 = 0. The results are shown in figure 17. Note that fixed point
A periodically changes location as the system changes periodically with time. Thus, we
chose the location of point A at t = 0 to evaluate the Lyapunov exponent. The figure
shows that the system has a non-zero positive asymptotic value for the LLE for small
values of q (or equivalently St, as St = q s). As q increases beyond the first critical value
qcr,1 ≈ 0.0168, the variation of the LLE with time does not seem to saturate for large
times, which indicates a weakening of chaotic behaviour. Similarly, as q further increases
to the next critical limit qcr,2 ≈ 4.2395, the LLE asymptotically approaches zero at large
times, indicating a complete disappearance of chaos.
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Figure 18. (a) The critical curves that demarcate the regions where the heteroclinic tangles can and cannot
exist for H±

1 and H±
2 are shown in the parameter plot of St/s vs r0, for a Kida vortex, obtained from the

Melnikov analysis. The initial orientation of the Kida vortex θ0 will not affect these curves. (b) Curves in
the s − St plane demarcate the regions where heteroclinic tangles can and cannot exist for H±

p , for various r0
values.

The critical ratio between St and s for the occurrence of heteroclinic tangles of both
H±

1 and H±
2 have been evaluated numerically for various initial aspect ratios (r0) of the

elliptic vortex and plotted in figure 18. The initial orientation (θ0) of the elliptic vortex will
only phase shift the Melnikov functions; thus, these critical values will not be affected.
The regions in the parametric plot where the heteroclinic tangles occur are identified and
marked. The region above the red curve is where no heteroclinic tangles form, indicating
complete suppression of chaos by inertia. However, below the red curve, chaotic transport
may occur. The degree of chaos may vary across the blue curve.

It is important to remember that these critical curves are derived from a perturbative
method, assuming both St � 1 and s � 1. However, note that the red curve reaches a value
of St/s = O(102) when r0 = 0.1. For s = O(10−2), this results in the critical Stcr,2 ∼ 1.
The caveat here is that the Kirchhoff vortex’s saddles disappear for St > S2; on the other
hand, as mentioned earlier, the Kida vortex itself is elongated and destroyed beyond critical
strain rate 0.3. Thus, the validity of our analysis is restricted to sufficiently smaller St and
s, although their ratio can vary within the large range as shown in figure 18(a).

3.1.3. Chaotic dynamics far away from the ellipse
Unlike the Kirchhoff vortex, far away from the Kida vortex (distance of O(s−1/2)), the
decaying vortex field and external straining flow can balance each other and form a pair
of hyperbolic fixed points/saddles. The saddles remain stationary when observed from
the lab reference frame and exhibit counter-rotation when observed from a co-rotating
perspective. The snapshots in figure 19 show the evolution of streamlines in the far field of
the Kida vortex over a period of revolution of the ellipse for s = 0.035. The saddle points
Ap and Bp are connected by a pair of heteroclinic orbits H±

p and are perturbed due to the
unsteady oscillations of the central ellipse, which is shown to bring chaotic dynamics for
fluid tracers, far away from the ellipse (Ngan et al. 1996; Kawakami & Funakoshi 1999).
As done in the previous § 3.1.2, we modify the tracer analysis by incorporating the effect
of particle inertia. The detailed analysis of evaluating the Melnikov function for H±

p can
be found in Appendix D. However, our findings are similar to the case for H±

1 and H±
2 ;

i.e. finite inertia competes with strain perturbation and suppresses the chaotic transport.
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Figure 19. The typical streamlines of the Kida vortex, as observed in a stationary reference frame, show the
hyperbolic fixed points far away for (a) t = 0, (b) t = 7, (c) t = 11 and (d) t = 27, shown in grey. The strain rate
here is s = 0.035, and the period of revolution of the ellipse is ≈ 29.034. The rotating ellipse at corresponding
instants is shown as the black dashed curve.

Using the Melnikov analysis, the parametric regime in the s − St plane, where H±
p can or

cannot form a tangle, is identified and illustrated in figure 18(b). For r0 = 0.5 and St = 0.1,
the critical value of the strain rate is found to be scr,p ≈ 0.0341, below which particles
cannot exhibit chaotic dynamics near H±

p . However, it is important to note a caveat: the
Melnikov analysis for H±

p assumes that St ∼ 1 and s � 1 (see Appendix D); nonetheless,
the critical curve in figure 18(b) covers even smaller values of St.

3.2. Dynamics of inertial particles in a nutating and elongating Kida vortex
So far, we have considered cases of a rotating Kida vortex under a weak pure-strain flow.
Here, we discuss the role of a Kida vortex’s nutating and elongating configurations on
the dispersion of inertial particles. To be consistent with previous results, we consider
an elliptical vortex with the same aspect ratio as before, i.e. r0 = 0.5. With this aspect
ratio, it must experience a larger strain rate to exhibit both nutation and elongation. We
chose a strain rate of s = 0.2, with which the vortex can experience nutation if θ0 = π/2
and elongation if θ0 = 0 (see figure 10). The governing equations (3.4) are solved along
with (3.1) numerically for St = 0.1 particles in both the nutating and elongating cases
of the vortex. The particles are initialized randomly in a circular patch with a radius of
2.5 non-dimensional units. The time evolution of the particles is shown in figure 20. It is
important to bear in mind that as the study is restricted to a specific strain rate and initial
aspect ratio, the results in this section only qualitatively represent the dynamics of inertial
particles in a general class of nutating and elongating Kida vortices.

Figure 20(a–e) shows the evolution of inertial particles when the vortex is nutating.
It is observed that the straining axes of the background flow carry away the majority of
particles far from the central vortex. Additionally, most particles initialized within the
vortex are initially centrifuged out and then carried by the straining flow. However, over
time, a smaller fraction of particles accumulate in a pair of attractors revolving around the
vortex, similar to the case of a rotating Kida vortex (as shown in figure 11). These particles
can be seen in figure 20(e) as two small blue dots. Note that these attractors revolve around
the central ellipse, even though the ellipse only undergoes periodic oscillations.

Figure 20( f –j) shows the results for the case of an elongating Kida vortex. The ellipse
quickly aligns with the extensional axis of the straining flow and so do the particles. All the
particles are observed to move along the ±π/4 axes. Note that a kink formation occurs in
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Figure 20. The time evolution of the dispersion of 2 × 105 inertial particles with St = 0.1 in a Kida vortex
with r0 = 0.5 and s = 0.2 is shown when it exhibits (a–e) nutation (θ0 = π/2) and ( f –j) elongation (θ0 = 0).
The plots are presented in the lab/stationary reference frame (i.e. using x′–y′ coordinates). The grey curves in
the background depict the instantaneous streamlines in the lab reference frame, while the black curves represent
the instantaneous state of the elliptical vortex. The axes limit for the nutation cases are fixed to [−4, 4], while
for the elongation case, they are set to [−8, 8]. For better visualisation, the time stamps in both cases are
taken incoherently. Results are shown for (a) t = 0, (b) t = 10, (c) t = 50, (d) t = 100, (e) t = 500, ( f ) t = 0,
(g) t = 5, (h) t = 10, (i) t = 20, ( j) t = 40.

figure 20(i) near the edge of the ellipse. This is because the particles near the ellipse move
along with its instantaneous orientation (which is not ±π/4), while the farther particles
move along the straining axes (±π/4) of the background flow. At large times, these kinks
disappear (see figure 20j) as the ellipse aligns with the straining axes, and all the particles
disperse in the same direction, θ = ±π/4.

From the previous subsection, we inferred that for a fixed St case, as s increases, the
particle dynamics can become chaotic beyond some critical strain rate, as demonstrated by
Melnikov analysis – a perturbative analysis. However, for larger strain rates, as in the case
here (s = 0.2), the applicability of Melnikov analysis is questionable. Thus, analysing the
system in a large straining regime is analytically challenging and requires a fully numerical
approach.

4. Large-time dispersion characteristics of particles

One of the motivations for studying the dynamics of particles embedded in a sea of
coherent structures is to learn about their long-time dispersion and the rate of capture.
As we have seen in the case of the Kirchhoff vortex, heavy inertial particles can have two
fates at large times: those starting within the basin of attraction of a fixed point will get
attracted towards the corresponding fixed point, and those starting outside will spiral off to
infinity. We can quantify the dispersion of particles using a mean squared distance (MSD),
σ 2(t) = 〈‖xi(t)− xi(0)‖2〉, which is the average squared distance the particles travelled
from their initial location. Here, 〈·〉 represents the average taken over all i, where i indicates
the index of (a few hundred of) trajectories of particles that started from the same basin.
The variation of MSD with time can give information about the nature of dispersion the
particle follows. The MSD increasing quadratically with time indicates ballistic dispersion

998 A62-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

83
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.831


Dynamics of inertial particles in a non-axisymmetric vortex

10–2 100 102

t
104 10–2 100 102

t
104

10–10

10–5 O(t4)

σ
2
(t)

100

105
(a) (b)

10–10

10–5

100

105

4000 5000 6000

1010

100

Escape to infinity
Attracted to stable fixed point/limit cycle

�t St

O(ets)

Figure 21. The variation of MSD (evaluated in a co-rotating frame) with time for typical inertial particles of
St = 0.5 starting within and outside the basin of attraction of stable fixed points/limit cycles in (a) Kirchhoff
vortex of r = 0.5 and (b) Kida vortex of r0 = 0.5 and s = 0.01. The scaling behaviour of MSD is shown using
dashed lines.

of the particle, while a linear in-time behaviour of the MSD indicates diffusive dispersion
of the particle; if the MSD saturates with time, it suggests the particle is attracted to
some fixed point and will have limited dispersion. The variation of MSD with time for
typical particles in a Kirchhoff vortex is numerically obtained and shown in figure 21(a).
The MSD saturates at a large time for particles starting within a basin of attraction (blue
curve), indicating the attraction towards the respective fixed point. However, the MSD
increases with time, indicating dispersion to infinity for a particle starting outside the
basins (black curve). The oscillations in the MSD curves indicate the spiralling nature of
trajectories. Despite that, the average growth of the black curve can be shown to scale as
σ 2(t) ∼ √

t, indicating that the particle dispersion is slower than a diffusive process. The
same scaling has already been obtained by Ravichandran et al. (2014) for the dispersion
of inertial particles in a pair of like-signed vortices. In both cases, the particles perceive a
point vortex field far away. Appendix E provides a detailed derivation for the scaling.

In the case of a Kida vortex, as the fixed points become limit cycles, the corresponding
MSD saturates but with sustained periodic oscillations, as shown in figure 21(b) in blue.
On the other hand, a particle centrifuged away will be affected by the heteroclinic orbits
H±

p . These orbits limit the centrifuging, trap the particles along its stable and unstable
manifolds, and limit their dispersion. One may remember the far-field attractor mentioned
at the beginning of § 3. Since the fixed points Ap and Bp and the associated heteroclinic
connections H±

p are stationary in the lab reference frame, for a co-rotating observer, this
attractor seems to be counter-rotating, as seen in figure 11(e–h). Below the associated
critical Stokes number Stcr,p, the particles may get transported chaotically and above
it can be transported regularly near these orbits. However, at large time, the inertial
particles can leak near through the saddles Ap and Bp. This behaviour can be either
due to the oscillations induced to the particle trajectory by the time-periodic perturbation
by the central rotating ellipse or due to the under-damped oscillations of inertial particle
trajectories near the stagnation points (Nath et al. 2022). The leaked inertial particles are
tempted to travel along the extensional axis of the straining flow exponentially with time
and, thus, will have an enhanced dispersion later. The situation can be seen in the snapshot
in figure 11(h), where the centrifuged inertial particles are aligned along the orbits H±

p ;
the particle trajectory oscillations near saddles Ap and Bp, and their leakage along the
extensional axis can be observed in a co-rotating frame. The black curve in figure 21(b)
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shows the typical MSD for such particles. Due to the heteroclinic orbit barrier, the particle
has a limited dispersion at intermediate times with large amplitude oscillations. At large
times, the dispersion becomes exponentially fast (but anisotropic) as they get caught and
confined along the unstable manifold of the heteroclinic orbit. This behaviour can be
quantified by the scaling relation σ 2(t) ∼ exp(t s) for small St.

One may note that at initial times, the dispersion of all particles starting from rest gets
centrifuged from the centre, scaling identically as σ 2(t) ∼ t4 (super-ballistic), as illustrated
in the figure. This behaviour is identical for both the Kirchhoff and Kida vortex. It occurs
due to the constant initial acceleration experienced by the particles initially, akin to the
scenario elucidated in Nath et al. (2024b). Since the particles start with zero initial velocity
(v(t = 0) = 0), (3.3) provides the initial acceleration a0 = ẍ(t = 0) = u(x0, t = 0)/St +
x0Ω

2 − Ω̇ êz × x0, where x0 = x(t = 0) denotes the initial particle location. Depending
on the particle location, it may undergo an approximately constant initial acceleration
contributed by the flow and the centrifugal force in a Kirchhoff vortex and, in addition,
the Coriolis force in a Kida vortex. For t � 1, the approximate solution can be obtained
as x(t) ≈ x0 + a0 t2/2. This solution yields σ 2(t) ≈ |a0|2 t4/4, i.e. σ ∼ t4 when t � 1.

4.1. Residence time
As shown earlier, in a Kirchhoff vortex, some of the heavy inertial particles can get
trapped indefinitely at the fixed points C and D if the Stokes number is below some
critical value (see § 2). The remaining particles would be spirally centrifuged away at a
rate σ 2(t) ∼ √

t St. However, no other particles, aside from those trapped at fixed points C
and D, would get trapped by a Kirchhoff vortex. In the case of a Kida vortex, however,
there exists a barrier, or separatrices (H±

p ), at the far field (O(1/
√

s)), formed by the
balance between the external straining flow and the central vortex (see figure 19). The
separatrices act as a natural barrier and prevent any fluid tracer from crossing it. As a
result, fluid parcels initialized inside the region bounded by the separatrices remain within
it and become effectively trapped. However, in the case of finite inertia, particles can
cross these separatrices, destroying the permanent trapping effect (see Nath et al. 2022).
Nonetheless, it can be expected that once particles reach closer to the separatrices, they
can be temporarily trapped or slowed down by these barriers.

To confirm this, we use a quantitative analysis by calculating the residence time (Tres)
of particles. For any inertial particle in a Kida vortex, we track its dynamics by solving
(3.9) and integrating up to 1000 time periods of the vortex revolution. The time taken
for the particle to leave a square box of size 20 × 20 is considered the residence time, as
particles that escape this box are expected to travel exponentially fast in a strain-dominant
regime. We use 11 × 104 regularly arranged particles to obtain the field of Tres, shown in
figure 22(a–c) for particles with St = 0.2 at three different strain rates. The white regions
indicate areas of infinite residence time, while the darkest regions indicate the shortest
residence time or the quickest escape time. It can be observed that the white regions in
the figure resemble the shape of the basins of attractors (fixed points or limit cycles) near
C and D. This is expected as they indicate the initial locations of particles that will never
leave the 20 × 20 box. For the smallest value of s = 0.01, the interior of the separatrices
shows a bright yellow region, indicating finite time trapping; but the inertial particles
eventually escape as time progresses. As the strain rate increases, the brightness of this
interior region reduces, indicating a shorter residence time. It can be seen that there are no
white regions other than the basins, indicating that indefinite trapping can only occur near
the attractors at C and D. The stable manifolds of the separatrices, extending to infinity,
also show a slightly bright yellow colour, indicating that particles near these manifolds can
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Figure 22. The field of residence time, in logarithmic scale log10(Tres), of inertial particles with St = 0.2 in
the neighbourhood of a Kida vortex with r0 = 0.5 and θ0 = 0 is shown as a coloured contour plot in the lab
reference frame for (a) s = 0.01, (b) s = 0.02 and (c) s = 0.035. The boundary of the initial elliptical vortex
patch is depicted as a solid blue curve, while the far-field separatrix at the initial time, separating the interior
vortex flow and outer straining flow, is shown as a dashed blue curve. The variation of Tres over a vertical
section (shown as a red line in a–c) across the saddle point Bp is shown in plots (d), (e) and ( f ), respectively,
where x′ = 0 for the sections.

be temporarily trapped. However, no particles, especially those far away, are permanently
trapped by any other attractors.

In addition, for these same cases, we have also plotted the variation of residence time
with a vertical section (i.e. a range of y′ values at a fixed x′ = 0). The sections are shown as
red vertical lines passing through the saddle point Bp in figure 22(a–c). The corresponding
Tres vs y′ is shown in figure 22(d–f ). The section is subdivided into 11 × 104 uniformly
distributed points, and the corresponding residence times of these points are evaluated.
It can be observed that, for smaller strain rates, there is a regular increase in Tres as
y′ approaches the vortex centre (see figure 22d,e). For the larger strain rate s = 0.035,
however, the Tres shows irregular dependence on y′, especially within the region bounded
by separatrices – another indication of the underlying fractal nature (see figure 22f ).

5. Conclusion

We have studied the dispersion of heavy inertial particles in (i) an elliptic Kirchhoff vortex
and (ii) a Kida vortex. This study has offered insights into particle transport in 2-D flows
relevant to geophysical and astrophysical scenarios, which can be approximated as the
resultant flow from isolated vortex patches and their interactions. The Kirchhoff vortex is
an elliptic patch that self-rotates and creates an unsteady flow around it. The stability
characteristics of the fixed points govern the dynamics of the inertial particles in this
flow field. When observed from a co-rotating frame with the vortex, some particles are
attracted to stable fixed points in the flow field, while the remaining ones are centrifuged
to infinity. The location of the fixed points depends on the inertia of the particles. Thus, in
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a polydisperse system, each particle will cluster into its own fixed points, which can result
in the segregation of particles according to their inertia. A critical Stokes number exists
above which all the particles only get centrifuged to infinity.

The introduction of a weak extensional flow to the system (owing to the interaction from
other vortices), known as the Kida vortex, disrupts the particle trajectories in the Kirchhoff
vortex. Inertial particles in the Kida vortex can have limit cycle trajectories as well as
chaotic trajectories in an extended phase space over time. However, a Melnikov analysis
revealed that particles with sufficiently high inertia are less prone to chaotic transport.

The present study offers insights into the clustering and dispersion of particles
in an ambient vortical flow field. As mentioned earlier, this has been of interest to
understanding the trapping of dust, which has the potential for forming planetesimals.
However, we have exclusively considered one-way coupling between the particle and
fluid phases in the current study. The feedback force from the dispersed phase to the
carrier phase can be significant, particularly during the clustering phase. Allowing for
two-way coupling introduces additional instabilities, such as streaming instabilities in
the context of protoplanetary disks (Youdin & Goodman 2005; Youdin & Johansen
2007). In the axisymmetric vortex system context, two-way coupling results in the
expulsion of particle clumps in a spiralling arm manner, even in the limit of vanishing
particle inertia and leads to a dramatic destabilization of an otherwise stable isolated
vortex due to a particle-induced baroclinic torque (Shuai et al. 2022). As mentioned
earlier, a non-axisymmetric vortex system formed by like-signed point vortices exhibits
topological and dynamical similarities to the system under consideration. While it is
known that like-signed vortex pairs are prone to merging below a critical separation
(Griffiths & Hopfinger 1987; Dritschel 2002; Cerretelli & Williamson 2003), the inclusion
of two-way coupling introduces novel vorticity dynamics before their merging (Shuai,
Roy & Kasbaoui 2024). At the leading order, momentum coupling from fluid to particle
induces clustering dynamics, as demonstrated in this paper. However, once clustering is
achieved, the particle concentration at those locations becomes sufficiently high that the
feedback from the particle phase to the fluid phase cannot be neglected. A recent study
by the authors (see Nath, Roy & Kasbaoui 2024a) reiterates the same argument: a dusty
simple shear flow is unstable when the dust particles are distributed non-uniformly. In
2-D dusty turbulence, this feedback has produced a non-universal energy spectrum that
depends on particle inertia and mass loading (Pandey, Perlekar & Mitra 2019). Therefore,
it is crucial to approach the results presented in this paper with caution, acknowledging
that their applicability may be limited as long as the particle feedback to the fluid is
negligible, particularly in a dilute mixture, in the earlier stages of dynamics before particle
clustering. After the onset of clustering, the feedback force would alter the morphology
of the underlying coherent structures; subsequently, delineating a causal effect between
clustering and two-way coupling may become difficult.

While the present study focuses on the transport of very heavy particles, there may
be potential applications for studying particle transport in oceanic flows where the
particle-to-fluid density ratio is finite. Understanding particles’ dispersion and duration of
residence in a region is of immense interest when studied in the oceanic context. Studies
on the transport of marine particulate matter often overlook the effects of finite inertia,
treating the particles as tracers. Recently, however, the Maxey–Riley equation has been
used to study transport in scenarios relevant to oceanic flows, be it in canonical flows like
the unsteady double gyres (Sudharsan, Brunton & Riley 2016) or the flow field relevant
to the feeding of jellyfish (Peng & Dabiri 2009). In most of these scenarios, coherent
structures dominate the flow field and, thus, play an overarching role in the transport.
Accounting for the inertial nature of particles is crucial for understanding the motion of
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drifting buoys, macroscopic algae or debris, as shown in Miron et al. (2020). Satellite
observations show that the transport of floating matter on the ocean surface near coherent
eddies is dissipative, contrary to the expected conservative fluid trajectories. Beron-Vera
et al. (2015) have shown that particle inertia effects, rather than the turbulent nature of the
background flow, can better explain the divergence of nearby buoy trajectories observed in
satellite data. Thus, future studies can explore the trajectories of particles in the vicinity
of long-lived coherent structures in the ocean when particle inertia is accounted for in
the dynamics, with appropriate modification to the Maxey–Riley equation (Beron-Vera,
Olascoaga & Miron 2019).
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Appendix A. Governing equations in the co-rotating Cartesian reference frame

The dynamic equations (2.3) governing the transport of heavy inertial particles in the
Kirchhoff vortex are obtained from the Maxey–Riley equation (2.2) by writing it in
elliptic coordinates (ξ, η), which is helpful in analytical exercises. However, for numerical
simulations, it is convenient to use these equations in the co-rotating Cartesian reference
frame (x, y), which are

v̇x = ux − vx

St
+ xΩ2 + 2Ωvy, ẋ = vx, (A1a)

v̇y = uy − vy

St
+ yΩ2 − 2Ω vx, ẏ = vy. (A1b)

The flow velocity field in the stationary reference frame can be obtained from the
streamfunction as u′

x = ∂ψ ′/∂y′ and u′
y = −(∂ψ ′/∂x′), which is unsteady. The velocity

field in the co-rotating frame can be obtained from the following transformation:

ux = u′
x cos θ + u′

y sin θ +Ωy, (A2a)

uy = −u′
x sin θ + u′

y cos θ −Ωx. (A2b)

For the Kirchhoff vortex, we get

ux =
{

k−1 sin η{− cosh ξ + (1 + k2Ω) sinh ξ}, tanh ξ > r,

−kΩr−1 sinh ξ sin η, tanh ξ < r,
(A3a)

uy =
{−k−1 cos η{sinh ξ + (−1 + k2Ω) cosh ξ}, tanh ξ > r,

kΩr cosh ξ cos η, tanh ξ < r,
(A3b)

where the variables in both the coordinate system are related as x = k cosh ξ cos η and
y = k sinh ξ sin η. The dynamical system remains four dimensional; however, now in the
phase space of variables x, y, vx and vy. The fixed points of the system can be obtained by
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solving for (ẋ, ẏ, v̇x, v̇y) = (0, 0, 0, 0). Trivially it implies that v̄x = v̄y = 0 and the fixed
point positions x̄ = (x̄, ȳ) are solutions of the vector equation u(x)+ StΩ2 x = 0. Using
numerical solvers like ‘fsolve’ in MATLAB or the Newton–Raphson method, one can
obtain the fixed points and verify that they exactly match the analytical expressions (2.7).
For the Cartesian equations (A1), the entries in the stability matrix will be much simpler
than (2.9) and are

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

Ω2 + 1
St
∂ux

∂x
1
St
∂ux

∂y
− 1

St
2Ω

1
St
∂uy

∂x
Ω2 + 1

St
∂uy

∂y
−2Ω − 1

St

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

Ω2 + h2 sin 2η
2k2St

Ω

St
+ 2 − h2 sinh 2ξ

2k2St
− 1

St
2Ω

−Ω
St

+ 2 − h2 sinh 2ξ
2k2St

Ω2 − h2 sin 2η
2k2St

−2Ω − 1
St

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (A4)

Note that the eigenvalues of the Jacobian matrix in (A4) and (2.9) will be the same
since they are invariants of the same dynamical system. However, the components of the
eigenvectors differ by the coordinate transformation.

Appendix B. Perturbation analysis for the limit cycles for a Kida vortex – entries of
K , L, M and N

The strain perturbation to the system affects the fixed points (ξ̄ , η̄) of a Kirchhoff vortex.
Using the method of IJzermans & Hagmeijer (2006), we assume the fixed points are
perturbed to a limit cycle and solve for its coordinates (ξ̄ + s ξ ′(t)+ O(s2), η̄ + s η′(t)+
O(s2)) using (3.6). The entries in the coefficient matrices depend on the fixed points of
the Kirchhof vortex and are listed below:

L =
[

1 −2StΩ0

2StΩ0 1

]
, K =

[
K11 K12

K21 K22

]
, and M =

[
M11 M12

M21 M22

]
. (B1)

Outside the ellipse (tanh ξ > r), corresponding to the fixed points A or B or C or D,
denoted as (ξ̄, η̄), the elements of K , M and N are

K11 = h̄2Ω0

(
sin(2η̄)− e2ξ̄StΩ0

)
, (B2a)

K12 = h̄2 cos(2η̄)
(
Ω0 − k−2

0 e−2ξ̄
)
, (B2b)

K21 = h̄2
(
Ω0 cosh(2ξ̄ )− k−2

0 e−2ξ̄ cos(2η̄)
)
, (B2c)
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K22 = h̄2Ω0

(
StΩ0 cos(2η̄)− l−1

1 e−2ξ̄ sin(2 η̄)
)
, (B2d)

M11 = h̄2

4

{
sin(2η̄)(l1 − cosh(2ξ̄ ))− l3StΩ0 sinh(2ξ̄ )

}
, (B2e)

M12 = h̄2

4

{
sinh(2ξ̄ )(Λ0 − cos(2η̄))− 2l1StΩ0 sin(2η̄)

}
, (B2f )

M21 = h̄2

4

{
sinh(2ξ̄ )(l1 − cos(2η̄))+ l3StΩ0 sin(2η̄)

}
, (B2g)

M22 = − h̄2

4

{
sin(2η̄)(Λ0 − cosh(2ξ̄ ))+ 2l1StΩ0 sinh(2ξ̄ )

}
, (B2h)

N1 = h̄2

4
cos(2θ0)

(
2k−2

0 sin(2η̄)+ l3StΩ0 sinh(2ξ̄ )
)
, (B2i)

N2 = h̄2

4
cos(2θ0)

(
2k−2

0 sinh(2ξ̄ )− l3StΩ0 sin(2η̄)
)
, (B2j)

where h̄ = (cosh2 ξ̄ − cos2 η̄)−1/2, l1 = (1 − r0)/(1 + r0) and l3 = (1 − 4 r0 + r2
0)/(1 −

r2
0) = 2 l1 −Λ0. Inside the ellipse (tanh ξ < r), corresponding to the fixed point at the

origin O, the corresponding elements are

K11 = r0Ω0, (B3a)

K12 = K21 = −StΩ2
0 , (B3b)

K22 = −Ω0/r0, (B3c)

M11 = M12 = M21 = M22 = N1 = N2 = 0. (B3d)

Appendix C. Terms required for the evaluation of the Melnikov function for weakly
inertial particles in a Kida vortex

Outside the ellipse tanh ξ > r0 + s r1 + O(s2),

f̂1 = h2

2

(
−Ω0 + k−2

0 e−2ξ
)

sin 2η, (C1a)

f̂2 = −h2

2

(
Ω0 sinh 2ξ + k−2

0

[
−1 + e−2ξ cos 2η

])
, (C1b)

ĝ1 = h2

4

{
F(ξ, η; r0,Ω0t + θ0)− 2

Ω0

r0
r1

(
l1 − l2e−2ξ

)
sin 2η

}
, (C1c)

ĝ2 = h2

4

{
G(ξ, η; r0,Ω0 t + θ0)− 2

Ω0

r0
r1

(
l1 sinh 2ξ + l2[−1 + e−2ξ cos 2η]

)}
,

(C1d)

φ̂1 = h2 k−2
0 e−2ξ

(
k−2

0 −Ω0 cos 2η
)
, (C1e)

φ̂2 = −h2 k−2
0 e−2ξΩ0 sin 2η. (C1f )
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Inside the elliptic region tanh ξ < r0 + sr1 + O(s2),

f̂1 = h2

2

(
−Ω0 + 1

2
{1 − l1 cosh 2ξ}

)
sin 2η, (C2a)

f̂2 = h2

2

(
−Ω0 + 1

2
{1 − l1 cos 2η}

)
sinh 2ξ, (C2b)

ĝ1 = h2

4

{
F(ξ, η; r0,Ω0t + θ0)− 2

Ω0

r0
r1 (l1 − cosh 2ξ) sin 2η

}
, (C2c)

ĝ2 = h2

4

{
G(ξ, η; r0,Ω0 t + θ0)− 2

Ω0

r0
r1 (l1 − cos 2η) sinh 2ξ

}
, (C2d)

φ̂1 = h2l1
2

sinh 2ξ
(

k−2
0 −Ω0 cos 2η

)
, (C2e)

φ̂2 = −h2l1
2

sin 2η
(

k−2
0 −Ω0 cosh 2ξ

)
, (C2f )

where l2 = (1 + r2
0)/(1 − r0)

2. The functions F and G are defined as

F(ξ, η; r, θ) = cosh 2ξ sin 2η cos 2θ + sinh 2ξ cos 2η sin 2θ

−Λ(sin 2η cos 2θ + sinh 2ξ sin 2θ) , (C3a)

G(ξ, η; r, θ) = sinh 2ξ cos 2η cos 2θ − cosh 2ξ sin 2η sin 2θ

+Λ(sin 2η sin 2θ − sinh 2ξ cos 2θ) . (C3b)

Expressions for f̂1 to ĝ2 for a Kida vortex of θ0 = π/4 can also be found in Kawakami &
Funakoshi (1999), but with a sign mistake in l1 and l2.

Appendix D. Evaluation of the Melnikov function in the far field of a Kida vortex

The streamfunction for a Kida vortex in the stationary reference frame (ψ ′ = ψ ′
v + ψ ′

e)
can be written in the far field (far from the central elliptic vortex) using polar coordinates
as

ψ ′ = −1
2

log R − sR2

4
cos 2Θ − k2

16R2 cos(2Θ − 2θ)+ O(R−4), (D1)

where the Cartesian coordinates in stationary frame (x′, y′) are related to the polar
coordinates in stationary frame (R,Θ) as x′ = R cosΘ and y′ = R sinΘ . The dominant
point vortex field balances with external straining to create an integrable system far field.
However, the central rotating ellipse induces a time-periodic perturbation to this system.
We rescale radial and time coordinates with strain rate such that the balance between the
point vortex and extensional flow is apparent and the perturbation due to the elliptic vortex
is clearly visible. Following Kawakami & Funakoshi (1999), the appropriate scaling is
R̃ = R

√
s, t̃ = ts, which will reduce (D1) to the streamfunction in scaled variables as

ψ ′ = −1
2

log R̃ − R̃2

4
cos 2Θ − s k2

16R̃2
cos(2Θ − 2θ)+ O(s2). (D2)

The first two terms on the right-hand side indicate the integrable system formed by the
point vortex and the extensional flow. The streamlines of this Hamiltonian system are
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Dynamics of inertial particles in a non-axisymmetric vortex

shown in figure 23, along with the heteroclinic orbits H±
p and far-field fixed points Ap

and Bp as marked. Observe the similarity of the far-field streamlines to the snapshots
in figure 19. The third term on the right-hand side is the perturbation due to the central
rotating elliptic vortex patch. Using the slow manifold equations for inertial particles in
the stationary reference frame,

ẋ′ = u′
x − St

[
∂u′

x

∂t
+ u′

x
∂u′

x

∂x′ + u′
y
∂u′

x

∂y′

]
+ O(St2), (D3a)

ẏ′ = u′
y − St

[
∂u′

y

∂t
+ u′

x
∂u′

y

∂x′ + u′
y
∂u′

y

∂y′

]
+ O(St2), (D3b)

we may write the modified kinematic equations for a particle in polar coordinates as

Ṙ = 1
R
∂ψ ′

∂Θ
+ St

R

{
− ∂2ψ ′

∂Θ∂t
+

(
∂ψ ′

∂R

)2

+ 1
R

[
∂2ψ ′

∂Θ2
∂ψ ′

∂R
− ∂2ψ ′

∂R ∂Θ
∂ψ ′

∂Θ

]
+ 1

R2

(
∂ψ ′

∂Θ

)2
}

+ O(St2), (D4a)

Θ̇ = − 1
R
∂ψ ′

∂R
+ St

R

{
∂2ψ ′

∂R ∂t
+ 1

R

[
∂2ψ ′

∂R2
∂ψ ′

∂Θ
− ∂2ψ ′

∂R∂Θ
∂ψ ′

∂R

]
+ 1

R2
∂ψ ′

∂Θ

∂ψ ′

∂R

}

+ O(St2). (D4b)

After substituting the small s expansion of k and θ (see § 3.1.1) in (D4), evolution equations
for the scaled coordinates can be obtained as

dR̃
dt̃

= f̃1 + s
{

g̃1 + Stφ̃1

}
+ O(s2, St2s, s2 St), (D5a)

dΘ
dt̃

= f̃2 + s
{

g̃2 + Stφ̃2

}
+ O(s2, St2 s, s2 St), (D5b)

where

f̃1 = R̃
2

sin 2Θ, (D6a)

f̃2 = 1

2R̃2
+ 1

2
cos 2Θ, (D6b)

g̃1 = k2
0

8R̃3
sin(2Θ − 2θ0 − 2Ω0 t̃/s), (D6c)

g̃2 = − k2
0

8R̃4
cos(2Θ − 2θ0 − 2Ω0 t̃/s), (D6d)

φ̃1 = 1

4R̃3

{
1 − R̃4 + k2

0Ω0 cos(2Θ − 2θ0 − 2Ω0 t̃/s)
}
, (D6e)

φ̃2 = 1

2R̃2

{
sin 2Θ + k2

0 Ω0

2R̃2
sin(2Θ − 2θ0 − 2Ω0 t̃/s)

}
. (D6f )

Note that the above system of equations reduces to the form given in Kawakami &
Funakoshi (1999) for the case of St = 0 and θ0 = 0 (with a sign mistake in g̃1 and g̃2).
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For s � 1 and St � 1, the Melnikov function associated with the far-field hyperbolic fixed
points Ap and Bp can be evaluated as

M±
p (φ, s) =

∫ ∞

−∞

[
f̃1(R̃±

0 (t̃),Θ
±
0 (t̃))

{
g̃2

(
R̃±

0 (t̃),Θ
±
0 (t̃);

t̃
s

+ φ

)
+Stφ̃2

(
R̃±

0 (t̃),Θ
±
0 (t̃);

t̃
s

+ φ

)}

−f̃2(R̃±
0 (t̃),Θ

±
0 (t̃))

{
g̃1

(
R̃±

0 (t̃),Θ
±
0 (t̃);

t̃
s

+ φ

)
+ St φ̃1

(
R̃±

0 (t̃),Θ
±
0 (t̃);

t̃
s

+ φ

)}]
e− ∫ t̃

0 tr(Df̃ ) dt′ dt̃,

(D7)

where the integration is performed along the heteroclinic orbits H±
p of the unperturbed

integrable system parametrised by (R̃±
0 (t̃),Θ

±
0 (t̃)). Here

tr(Df̃ ) = ∂ f̃1
∂R̃

+ ∂ f̃2
∂Θ

= −1
2

sin 2Θ (D8)

is the trace of the Jacobian matrix of the unperturbed system, which is not zero in general.
From (D7), one can infer that M±

p is periodic in φ with period π/Ω0. Unlike M±
1 and

M±
2 , M±

p has explicit dependency on the strain rate s. However, it does not affect the
validity of the Melnikov analysis and related theorems as stated by Kawakami & Funakoshi
(1999). The variation of the Melnikov function M±

p with φ for various s values for St = 0.1
particles in a Kida vortex is shown in figure 24. Since M±

p depends on s implicitly, it will
result in a nonlinear relation between the critical values of s and St, as can be seen in
figure 18(b).

Appendix E. Scaling law for large-time dispersion with time

The inertial particles centrifuged away to infinity by the Kirchhoff vortex spiral outward
and form a ring-like structure, as we see in the simulation result (figure 2). At large times,
these particles reach far away from the central ellipse. Thus, the background flow they
perceive can be approximated to that created by an irrotational vortex (point vortex). Using
the polar coordinates (R,Θ) about the origin, the flow field for the point vortex can be
represented in stationary frame as

UR = 0, UΘ = 1
2R
. (E1)

Then, the dynamics of a heavy inertial particle in the point vortex is given by the
Maxey–Riley equations in polar coordinates as (see Ravichandran & Govindarajan 2015)

v̇R + vR

St
= v2

Θ

R
, Ṙ = vR, (E2a)

˙(RvΘ)+ RvΘ
St

= R UΘ
St

, Θ̇ = vΘ

R
. (E2b)

Solving the first equation among (E2b) along with (E1) yields the azimuthal velocity of
the particle as

vΘ = 1
2R
(1 + C1e−t/St), (E3)

where C1 is an integration constant. The form of the solution says that the azimuthal
velocity of the particle approaches that of fluid tracers at a large time, i.e. vΘ = UΘ

998 A62-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

83
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.831


Dynamics of inertial particles in a non-axisymmetric vortex

–1 0 1
–2
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0

1
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Hp
+
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–

x′ �s

y′
 �

s

Figure 23. The streamlines of the flow-field result from the balance between the irrotational (point) vortex and
external extensional flow. The flow pattern mimics the far-field flow around a Kida vortex (cf. figure 19). The
hyperbolic fixed points and connecting heteroclinic orbits are marked.

as t → ∞. Substituting this result in (E2a) and solving for R asymptotically (v̇R � vR)
yields, at large time R(t) ∼ (t St)1/4. i.e. in terms of the dispersion parameter MSD,
σ 2(t) = 〈R(t)2〉 ∼ √

t St at large time.
The same scaling law can also be obtained from an analysis using the method of

characteristics for the evolution of the number density field of particles. The single fluid
model is an Eulerian model for particle-laden flows, where the suspended particles are
treated as a field, characterized by their number density. The model is valid if the particles
are only weakly inertial and their concentration is just right. The model yields the evolution
equation for the axisymmetric number density field n(t,R) as

∂n
∂t

+ St
R
∂

∂R
(U2

Θ n) = 0. (E4)

The solution for this partial differential equation in a point vortex field (E1) can be obtained
using the method of characteristics as

n(t,R) = R2
√

R4 − t St
n0({R4 − t St}1/4), (E5)

where n(0,R) = n0(R) is the initial number density distribution. Note that the scaling
R4 ∼ t St automatically appears in this solution.
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φ
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–0.4
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–0.2

M
p+
(φ

,s) –0.1
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s = 0.0300

s = 0.0341

s = 0.0400

Figure 24. The Melnikov function M+
p corresponding to a Kida vortex of r0 = 0.5 and θ0 = 0 for particles of

St = 0.1 is plotted against φ for different values of strain rate s. The abscissa is shown as a dashed-dotted line
to identify the zeros of the Melnikov function.
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