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Clustering and chaotic motion of heavy inertial
particles in an isolated non-axisymmetric vortex
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We investigate the dynamics of heavy inertial particles in a flow field due to an isolated,
non-axisymmetric vortex. For our study, we consider a canonical elliptical vortex — the
Kirchhoff vortex and its strained variant, the Kida vortex. Contrary to the anticipated
centrifugal dispersion of inertial particles, which is typical in open vortical flows,
we observe the clustering of particles around co-rotating attractors near the Kirchhoff
vortex due to its non-axisymmetric nature. We analyse the inertia-modified stability
characteristics of the fixed points, highlighting how some of the fixed points migrate
in physical space, collide and then annihilate with increasing particle inertia. The
introduction of external straining, the Kida vortex being an example, introduces chaotic
tracer transport. Using a Melnikov analysis, we show that particle inertia and external
straining can compete, where chaotic transport can be suppressed beyond a critical value
of particle inertia.
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1. Introduction

Coherent vortical structures are ubiquitous in nature. In the planetary context, the
flows are predominantly two dimensional due to the strong influence of rotation. These
turbulent flows naturally evolve into long-lived isolated eddies/vortices (McWilliams
1984), like in oceans and planetary atmospheres — for example, the Great Red Spot
on Jupiter, tropical cyclones and Gulf Stream rings. The inverse cascade of energy and
planetary rotation plays a prominent role in forming these coherent vortices (Vallis 2017).
The two-dimensional (2-D) turbulent flows in a rotating background will eventually
self-organize into concentrated vortical lumps as observed in various simulations and
observations (Fornberg 1977; Basdevant et al. 1981; Babiano et al. 1987; Benzi, Patarnello
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& Santangelo 1988). In three-dimensional turbulent flows as well, the formation of vortical
filaments has been similarly identified (Siggia 1981; Vincent & Meneguzzi 1991; Bartello,
Meétais & Lesieur 1994). Thus, the later evolution of turbulent flows is strongly influenced
by the underlying vorticity dynamics of these coherent eddies.

Turbulent flows in geophysical and astrophysical contexts are often dispersed with
particulate matter — water droplets and ice crystals in clouds (Shaw 2003), pyroclastic
flows (Dufek 2016), wind—sand interactions in aeolian processes (Kok er al. 2012) and
dust in protoplanetary disks (Armitage 2020). The coherent vortices embedded in these
flows greatly influence particle transport. Tracer particles can get trapped by the vortices
for a long time, much larger than the eddy turnover time, and get transported across
the distances over which the eddy travels (Elhmaidi, Provenzale & Babiano 1993). The
trapped particles can be released only after the disruption of the vortex itself. However,
the particulate matter does not necessarily have negligible inertia; the finite inertia aspect
of particles can make the dynamics of the suspended phase more complex with aspects
of clustering (Bec 2003, 2005; Sapsis & Haller 2010) and caustics (Crisanti et al. 1992;
Falkovich, Fouxon & Stepanov 2002; Wilkinson & Mehlig 2005). Heavy inertial particles
are centrifuged away by the vortex cores and get accumulated in the straining regions of
the flow (Maxey 1987). However, in a rotating background, the heavy inertial particles get
pushed by the Coriolis force into the cores of anticyclonic vortices, which is hypothesized
to trigger the formation of planetesimals in the astrophysical context (Barge & Sommeria
1995; Tanga et al. 1996; Chavanis 2000).

The transport of particles by various vortical structures has been extensively modelled
and studied in the past few decades. Batchelor & Nitsche (1994) investigated the expulsion
of heavy inertial particles from a rising bubble, considering the combined effects of
gravitational sedimentation and the toroidal circulation of gas inside. Marcu, Meiburg
& Newton (1995) explored the transport of inertial particles near a Burger’s vortex with
and without the influence of gravity. In the absence of gravity, particles with sufficiently
small inertia were captured by the vortex centre, while those with large inertia exhibited
stable limit cycle dynamics. The inclusion of gravity altered the dynamics, generating
additional fixed points that could capture the particles. Raju & Meiburg (1997) have
studied the transport of inertial particles with varying density ratios in three model flows:
a solid-body vortex, a point vortex and a stagnation point flow. Eames & Gilbertson (2004)
considered the sedimentation and dispersion of inertial particles past an isolated spherical
vortex and a random distribution of spherical vortices, revealing that the interplay between
particle inertia and stagnation points significantly increased the vertical dispersivity of
dense particles compared with tracers. Hunt er al. (2007) investigated inertial particle
transport near a vortex tube and steadily propagating vortex rings, providing analytical
treatment and experimental comparisons. The clustering of heavy inertial particles in a
pair of co-rotating vortices was explored by Angilella (2010); Ravichandran, Perlekar &
Govindarajan (2014). Ravichandran & Govindarajan (2015) have studied the clustering
of inertial particles and the subsequent emergence of caustics in a point vortex and
a system of point vortices. In the context of airborne pathogen transport through the
atmosphere, recent studies by Dagan (2021) and Avni & Dagan (2022) have modelled
evaporating droplets as advected by a Lamb—Chaplygin vortex dipole, revealing that the
interaction with the vortex enhanced droplets’ settling time and transported them over
large distances in the air. Motivated by the dispersion of droplets in warm cumulus
clouds during the condensational phase, Nath er al. (2022) investigated the dispersion of
condensing droplets in a background flow modelled as an array of Taylor—Green vortices;
they demonstrated a significant enhancement in droplet dispersion as they acquire more
inertia by condensation.
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Neighbouring coherent vortices in a turbulent flow can interact with each other and
induce shearing, which could disrupt them (Legras, Dritschel & Caillol 2001). According
to Reinaud, Dritschel & Koudella (2003), vortices that can withstand the highest levels
of strain are those most likely to be found in an actual turbulent flow. An elliptic vortex
patch of constant vorticity is an exact solution of the incompressible 2-D Euler equation
(see Kirchhoff 1876; Lamb 1945; Saffman 1995); below aspect ratio of 3 the vortices
are both linearly (Love 1893) and nonlinearly (Wan 1986; Tang 1987) stable. Elliptic
vortex patches and their interactions have been extensively studied to understand better
the stability and evolution of vortices in ideal fluid (see Moore & Saffman 1971; Kida
1981; Dritschel 1990; Legras & Dritschel 1991; Dritschel & JudRez 1996; Mitchell &
Rossi 2008), with motivations from geophysical turbulent flows (Dritschel 1995). Due to
the non-axisymmetric vorticity distribution, an elliptic patch of uniform vorticity in an
irrotational background will rotate with a constant angular velocity while preserving its
size and shape. This configuration, widely known as the Kirchhoff vortex, is well suited
for studying isolated non-axisymmetric coherent vortices in 2-D flows. The tracer transport
in the Kirchhoff vortex is non-chaotic as it is an integrable Hamiltonian system.

To study vortex interactions, Kida (1981) proposed a model of a vortex tube in a uniform
shear flow; the effects of the other vortices on a certain vortex tube may be replaced, in
the first approximation, by a linear flow. Moore & Saffman (1971) had earlier studied
steady elliptic vortex patches in uniform shear; Kida (1981) generalized the solutions
to include exact unsteady elliptic vortices. However, we would like to mention that the
first study of an elliptic vortex in a specific linear flow, a simple shear flow, was carried
out by Chaplygin (see Chaplygin 1899; Meleshko & Van Heijst 1994). When an external
simple shear flow is superimposed on the Kirchhoff vortex, the configuration is known
to have three kinds of impact on the elliptic vortex patch: (i) rotation: full rotation of the
ellipse with periodically changing aspect ratio and angular velocity, (ii) nutation: back
and forth oscillatory angular motion of the elliptic patch, and (iii) elongation: irreversible
elongation of the vortex patch due to strong external straining (see Kida 1981; Neu 1984;
Dritschel 1990). Though the area of the ellipse is preserved, the unsteady rotation of
the ellipse with changing aspect ratio creates an unsteady flow field around, even in the
co-rotating frame (Kida 1981), which is referred to as the ‘Kida vortex’ in this paper.
The original motivation for studying sheared vortical patches was to understand vortex
interactions better. However, when analysed from the perspective of tracer transport,
sheared elliptic vortices exhibited chaotic Lagrangian trajectories (Polvani & Wisdom
1990; Dahleh 1992). Even a minor imposed shear induces periodic unsteadiness in the
deformation of the Kida vortex, disrupting the Hamiltonian integrability of the Kirchhoff
vortex. The hyperbolic fixed points and heteroclinic connections of the Kirchhoff vortex
(see §2) experience perturbations, making them susceptible to transverse intersections
and, thus, allow for the possibility of chaotic dynamics (Smale 1967; Bertozzi 1987). A
comprehensive investigation was conducted into the impact of unsteady perturbations on
tracer transport in an otherwise integrable system of a pair of oppositely signed point
vortices by Rom-Kedar, Leonard & Wiggins (1990). In the absence of perturbation, the
vortex pair translates with a constant velocity, resulting in a steady flow field in the
co-moving frame with the vortices. However, the introduction of an external periodic strain
field, even in the co-moving frame, makes the flow field unsteady, causing the tangling
heteroclinic orbits in the flow field and leading to the chaotic transport of certain passive
tracers. This phenomenon also results in fluid entrainment by the vortex system, enhancing
mixing. Notably, this study represents one of the early applications of tools such as the
Melnikov analysis from dynamical systems to analyse and quantify chaos and mixing in a
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fluid flow problem. In the current context of inertial particle transport in the Kida vortex,
we apply some of the techniques derived from their work.

The dispersed phase embedded in the coherent structures in the various geophysical
and astrophysical flows is rarely inertialess — dust, bubbles, planktons. This raises the
question of how particle inertia alters particle dispersion in the neighbourhood of vortices.
Here, we are interested in the dynamics of small, heavy inertial particles, thus ignoring
the additional physics of added mass effects, the Basset history term, convective inertia
and Faxen corrections. Studies have shown that particle inertia can suppress the chaotic
transport in vortical flows (Angilella 2010; Angilella, Vilela & Motter 2014). However,
we have demonstrated recently (Nath et al. 2024b) that particle inertia can induce chaotic
dynamics and lead to non-ergodic dynamics due to the ‘scattering’ interaction of inertial
particles with an ordered array of stagnation points. Particle inertia modifies the fluid
tracer fixed points and their homoclinic/heteroclinic connections, which subsequently play
a prominent role in long-time particle transport. In this paper we study the transport of
heavy inertial particles near a non-axisymmetric vortex patch — first in the Kirchhoff vortex
and then in its strained variant, the Kida vortex. The configuration chosen is a simple
scenario of an isolated vortex where we can study the modification of the heteroclinic
tangles by particle inertia analytically and comment on the competing roles of background
shear and particle inertia to promote or suppress chaotic transport.

An earlier investigation on particle transport in a strained elliptical vortex is documented
in the work by Chavanis (2000). This study specifically focuses on the trapping of dust
by anticyclonic vortices in Keplerian protoplanetary disks, proposing it as a mechanism
for planet formation. In this context, the vortices experience Keplerian shear, leading to
the survival of only anticyclonic vortices that achieve a steady elliptic configuration. The
strength of the vorticity is determined by Keplerian shear, employing a solution provided
by Moore & Saffman (1971). The analysis of inertial dust particle transport is conducted
in a frame co-rotating with the vortex. The findings indicate that particles with small
inertia approximately follow an elliptic path, drifting inwards due to drag and the Coriolis
force, ultimately being captured by the vortex centre. On the other hand, particles with
larger inertia exhibit an epicyclic motion but eventually sink into the vortex. Particles with
substantial inertia may even escape the vortex. Despite some apparent similarities with the
second part of our work, which involves the transport of inertial particles by a strained
elliptic vortex, there are notable differences. Our study considers an elliptic vortex model
for a coherent vortex in turbulence, allowing for any general value of the strain rate it
experiences. Consequently, the vortex is not in a steady state but unsteady motion, leading
to the intriguing particle dynamics discussed in this paper.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the dynamics of heavy inertial particles in the Kirchhoff vortex, detailing their clustering
in various fixed points and presenting a stability analysis of these fixed points. In § 3 we
primarily focus on the modification of these dynamics in a strained Kirchhoff vortex
due to an imposed weak pure-strain flow, i.e. in a rotating Kida vortex. We analyse
the perturbative changes from stable fixed points to stable limit cycles. Additionally,
a Melnikov analysis is employed on saddle points to demonstrate the existence of
chaotic dynamics for inertial particles with sufficiently small inertia. Large-time Lyapunov
exponents and fractal dimension calculations are used to confirm the presence of chaotic
dynamics. A small discussion on the inertial particle dynamics in nutating and elongating
Kida vortices is added at the end of § 3. The large-time dispersion characteristics of heavy
inertial particles in Kirchhoff and Kida vortices are discussed in § 4. Additionally, the
trapping of particles around a Kida vortex is studied by evaluating their residence time in
the neighbourhood of the vortex.
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Figure 1. (@) Schematic showing the elliptic vortex patch with stationary reference frame X'-Y’ and the
co-rotating reference frame X-Y. (b) The (steady) streamlines of the Kirchhoff vortex in the co-rotating
reference frame.

2. Dynamics of heavy inertial particles in an elliptic vortex

2.1. An isolated elliptic patch of uniform vorticity — the Kirchhoff vortex

Consider an elliptical patch of constant vorticity (wg) in an irrotational background. As
mentioned earlier, due to the non-axisymmetric vorticity distribution, the elliptic patch
of uniform vorticity (wg) will rotate with constant angular velocity £2 = woab/(a + b)?,
where a and b are semi-major and semi-minor axes of the elliptic patch (see figure 1);
the size and shape of the elliptic patch is preserved during the rotation. The configuration,
known as the Kirchhoff vortex, is given by the streamfunction (as observed by a stationary
observer)

2 2
w( 2 2 X y
————(bx* + ay?), —+ 35 <1,
oo 2at b 7) A o
v .
abwy 5 X2 y2
- (26 + e * cos(2p)) . ;+ﬁ>1.

In the co-rotating frame with the vortex, the streamfunction is ¥ = ¥’ + (£2/2) (x> +

y?), where (x,y) and (&, 1) are respectively the Cartesian and elliptic coordinates
measured in a co-rotating frame with the ellipse, which are inter-related as x =
va? —b%coshé& cosn and y = +/a? — b?sinh& sinn, with £ > 0 and n € [0, 21). We
use primed () variables to denote quantities in the stationary frame, whereas unprimed
variables represent quantities in the co-rotating frame. We follow the same convention
throughout this paper unless specified otherwise. The stationary reference frame (X'-Y)
and the co-rotating reference frame (X—Y) are shown schematically in figure 1(a), making
an instantaneous angle 0, relates them as X' = xcosf — ysinf and y' = xsin + ycos 6,
where df /dt = §2. An advantage of choosing a co-rotating frame is that the velocity field
is steady in the co-rotating frame. The corresponding streamlines are shown in figure 1(b).
The tracer dynamics in the co-rotating frame is thus governed by a 2-D, time-independent
dynamical system, which guarantees non-chaotic fluid pathlines. Inside the ellipse, the
flow field is a solid-body rotation, and far away in the outer region, it resembles a decaying
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point vortex. The flow field is a tripole structure (see Viddez 2021; Xu & Krasny 2023)
with five fixed points (where the flow velocity is zero) A, B, C, D and O, as marked in the
figure. The origin O (£, 7o) is an elliptic fixed point; the pair A and B (éli ﬁf—L) located
along the major axis line outside the ellipse are hyperbolic type fixed points; the pair C
and D (ézi, ﬁ;c) located along the minor axis line outside the ellipse (inside the lobes) are
elliptic type fixed points (see Kawakami & Funakoshi 1999). The hyperbolic fixed points
are interconnected by two pairs of heteroclinic orbits, denoted as Hf: and H;E. As we
proceed further into our analysis, we will learn the significance of these heteroclinic orbits
and their possible perturbation, which is crucial for the onset of chaos, in § 3. The fixed
points are ‘fixed points’ only for a co-rotating observer; however, for a stationary observer,
they resemble ‘Lagrange points’ of celestial mechanics (Fitzpatrick 2012).

2.2. Dynamics of inertial particles

The dynamics of heavy inertial point particles in a background flow can be studied using
the Maxey—Riley equation (see Maxey & Riley 1983). In a rotating reference frame with
the ellipse (of angular velocity £2), the modified form of the Maxey—Riley equation by
accounting for the pseudo forces reads, in non-dimensional form,

po YT 02 206w, 2.2)

St

where v is the particle velocity, u(x) is the velocity of the Kirchhoff vortex (steady, in
the co-rotating frame) evaluated at the particle location x, e, is the unit vector along
the z axis perpendicular to the plane. We use the length scale +/ab and the rotation
time scale wg ! to non-dimensionalize the system, where, as mentioned earlier, a and
b are the semi-major and semi-minor axes of the ellipse, respectively, and wq is the
uniform vorticity of the elliptical patch. Another relevant time scale in the problem is
T, = (2/9)ppa2/ (pgv) — the relaxation time scale for a particle of characteristic size
a and density p, navigating in a carrier phase of density p, and kinematic viscosity
v. The Stokes number (St = 7,wp) quantifies the relative magnitude of the two time
scales and, thus, provides a non-dimensional measure of particle inertia. We denote the
non-dimensional time derivative using an overdot (). The non-dimensional quantities
are represented with the same notation as dimensional quantities, as we deal only with
non-dimensional quantities from here onwards (unless specified explicitly). The elliptic
vortex is characterized by the non-dimensional aspect ratio r = b/a, where we consider
O<r<l.

The first term on the right-hand side of (2.2) is the Stokes drag, the second is the
centrifugal force and the third is the Coriolis force. The Euler force (—$2e, x x) — a
fictitious tangential force that arises in a rotating reference frame — does not appear here
because the rotation rate is uniform (i.e. 2 = 0). However, we will see later, in the context
of the Kida vortex, the Euler force needs to be accounted for due to its non-uniform
rotation rate. It is assumed that the particles are point size and, thus, in a Stokes flow

limit (Re = 2a®/v < 1). Also, we are dealing with heavy particles (i.e. much denser
than the background fluid (o, > pg), as is the case for dust particles or water droplets in
the air). Thus, as was mentioned earlier, the physics of added mass force and the Basset
history effect is negligible. However, suppose one were to study the role of fluid inertia
with the motivation of the current study and explore the long-time dispersion dynamics
of particles in the vicinity of coherent structures. In that case, the inclusion of convective
inertia (Re # 0) is expected to play a more prominent role than the Basset history effect
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Figure 2. Snapshots showing the evolution of 10° particles of St = 0.5 in a Kirchhoff vortex of r = 0.5 at (a)
t=20,(b)t =50, (c) t = 100 and (d) t = 150 non-dimensional time units, obtained from numerical simulation.
The particles are initialized with zero velocity and randomly distributed inside a circle of non-dimensional
radius 1.76, enclosing the ellipse.

(see Lovalenti & Brady 1993; Dorgan & Loth 2007). However, for the sake of simplicity,
we restrict ourselves to the Re < 1 regime and ignore the physics of both unsteady and
convective inertia. In addition, for the same reason of p, > p,, the indirect effects of
the Coriolis and centrifugal forces acting on the fluid, which induces corrections into the
particle equation, have been neglected in (2.2).

In our study, we initialize a circular patch of inertial particles (randomly distributed)
with zero initial velocity in the Kirchhoff vortex around the ellipse (see figure 2a). We
let the particles evolve and track them using the dynamic (2.2) along with the kinematic
equation x = v. We integrate the system using the ODE113 routine in Matlab with a
relative error of 10™!2, absolute error of 107! and a maximum time step of 1/10th of
the Stokes number. The typical evolution of St = 0.5 particles in the Kirchhoff vortex
of aspect ratio r = 0.5 observed from the co-rotating frame is shown as the snapshots in
figure 2.

As expected, the snapshots show that the inertial particles are getting centrifuged away
from the central ellipse. However, unlike in the case of an axisymmetric vortex (like the
point vortex or Rankine vortex), here we see that some of the particles are getting attracted
towards a pair of fixed points outside the ellipse, within each lobe denoted as C and D.
Note that, the elliptic fixed points of fluid tracers in the Kirchhoff vortex have already
been denoted as C and D in figure 1(b). The same choice of notation here for attracting
fixed points will make sense in the analytical exploration of the system in the upcoming
section.

2.3. Analytical evaluation of fixed points and their stability

The fixed points, as seen by an inertial particle in the Kirchhoff vortex, can be evaluated
by setting its velocity and acceleration to be zero, i.e. v = v = (. Substituting this in (2.2)
gives that the locations of the fixed points are the solution of the equation u(x) + xSt2% =
0, i.e. the fixed points are formed by the balance between centrifugal force and Stokes
drag. Note that the fixed point equation is modified from that of fluid tracers (u(x) = 0)
due to the finite inertia effect as a St dependent term. For analytical treatment to be made
accessible, we may choose to rewrite (2.2) in elliptic coordinates, in component form, as

R hk—l _ 5 22 &2 92 .

§:+§+2Qﬁ+h2{usinh%—ﬁésinzn}, (2.3a)
hk—l o . 22 &2 92 .

i = % _2QE—i? {L sin 2y + 7é sinhzg} , (2.3b)
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where x = kcosh & cosn and y = ksinh & sin#, and the fluid velocity components can be
obtained from the corresponding streamfunction in the co-rotating frame () as ug =
(h/k)(0yr/dn) and u, = —(h/k)(dy/0&). For the Kirchhoff vortex (of streamfunction

Yo =Y, + (82/2) (x2 4+ y?)), these components can be evaluated as

h
— (e_2§ — kZQ) sin 27, tanh& > r,

ue = ik (2.40)
Zk3Q(A —cosh2£)sin2n, tanhé < r,
% (1 —e % cos2n — k2 smh2§) tanh & > r,
=1 (2.4b)
Zk3.{2(A — cos 2n) sinh 2&, tanh& < r,

where the scale factor h = (cosh2§ cos? )~ 172, the parameters kK= /r—r),
A= (14r?)/( —7r? and the angular velocity 2 =6 = r/(r + 1)>. Here, tanh& > r
indicates the region outside the ellipse and tanh & < r indicates the region inside the ellipse
since tanh & = r defines the boundary of the ellipse itself. The same equations in Cartesian
coordinates are convenient in numerical simulations and can be found in Appendix A.
The system of equations (2.3), along with the appropriate velocity field, describes the
trajectory of an inertial particle in an elliptic vortex. It is a nonlinear coupled dynamical
system in a four-dimensional phase space on the variables &, 1, £ and 7. The fixed points
of the system can be obtained by solving the equations S =0,n=0, S =0 and n =0

simultaneously. From (2.3), this gives the trivial criteria for all fixed points, i.e. S =i=0;
however, their locations (&, 77) should be obtained by solving the transcendental equations

2ue + St hk§2% sinh 2& = 0, (2.5a)
2u, — St hk$2? sin2n = 0. (2.5b)

These equations must be solved separately inside and outside the ellipse to identify the
fixed points since the velocity field is known in a piecewise manner. The identification of
fixed points and their stability analysis are discussed in the following §§ 2.3.1 and 2.3.2.
Note that setting St = 0 should recover the dynamics of the passive fluid tracers. By doing
so, one could see that the equations (2.5) for the fixed points reduce to ug = 0 and u,) = 0
— which will retrieve the five classical fixed points of the Kirchhoff vortex mentioned in
§2.1.

2.3.1. Fixed points outside the ellipse
Outside the ellipse (tanh& > r), (2.5) can be written by substituting the appropriate
velocity expressions from (2.4) as

(St£2? sinh 26 + (k2 e™% — ) sin2n)h?> = 0, (2.6a)
(S1£2% sin 25 + £2 sinh 2€ + k2 (e~ cos 2 — 1))h> = 0. (2.6b)

These are modified equations for fixed points outside the elliptic vortex accounting for the
effect of finite St. The solutions to (2.6) give the fixed points (£, 1) with p = tanh & and
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Figure 3. (a) Variation of the fixed points perceived by inertial particles in a Kirchhoff vortex of r = 0.5 as
St changes (for log-spaced distribution of St). Elliptic and hyperbolic fixed points outside the ellipse merge
at St ~ 0.772. (b) The trajectories of St = 0.2 particles in a Kirchhoff of » = 0.5 in the co-rotating reference
frame, obtained using slow manifold expression. Red indicates unstable fixed points and blue indicates stable
fixed points.

q = tan 7 given by
L _2-(a* B)k?§2?

204122) 279
£ _0FF (2.7b)
251

where o = k>(1 4+ S22%) and B = ~/a? — 452, These solutions form a set of four
fixed points outside the ellipse, located at (§1+ , ﬁf) = (tanh™! p*, tan—1 ¢), (51_ ) =
(tanh™! pT, = +tan~! ¢), (&, 7)) = (tanh ™' p~, tan"' ¢7) and (£, , 71, ) = (tanh™!
p~,—m+tan"' g7). In the limit of St — 0, we may deduce that these fixed points
coincide with the Kirchhoff vortex’s four classical fixed points A, B, C and D. For
simplicity, we choose to call these finite St modified fixed points with the same name
as that corresponding to the fluid tracers (A, B, C and D). The finite St symmetrically
displaces these fixed points, as shown in figure 3(a): A and B shift counterclockwise,
while C and D shift clockwise as St increases. As St increases, the fixed points A(éfr ,
ﬁfL) and C(.g;;r , ﬁ;r ) approach each other. The same thing happens for the counterpart fixed
points B(&;", 77) and D(&;, 77, ) as well.

In the limit of a small Stokes number (St < 1), the governing equation (2.2) can be
reduced to the slow manifold form as

0
v=u—St{a—l;+u-Vu—xSZz+2{22’Zxu}+0(St2), (2.8)

using which the particle trajectories are obtained and shown in the figure 3(b). By
comparing these particle trajectories with the streamlines for fluid tracers shown in
figure 1(b), it is evident that the inertial particles perceive different fixed points than fluid
tracers. They match exactly with the solution of (2.6) we obtained analytically (as marked
in blue and red). The trajectories also imply that the fixed points A and B remain hyperbolic
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fixed points (saddles); however, the fixed points C and D behave as stable spirals for inertial
particles. The divergence of the system (2.2) in the four-dimensional phase space is given
by V.-v+V,.-v=—-2/5t a negative quantity, indicating the dissipative nature of the
dynamical system for any finite inertia particles. Here, V - (') represents the divergence
in physical space, while V,, - () represents the divergence in velocity/momentum space.
Even in the St « 1 limit, the divergence of the reduced system (2.8) in the 2-D phase
space yields V - v = O(Sr) #0, indicating a compressible nature of inertial particle flow
in phase space unlike the fluid tracers where V - u = 0. The dissipative nature of the
system for heavy, finite inertia particles is responsible for the elliptic fixed points becoming
spiral attractors. However, the hyperbolic fixed points remain intact, though their position
gets displaced.

To analytically show this, we use the linear stability analysis and systematically study
the effect of finite Sz on the stability of the fixed points. The Jacobian matrix for the system
of differential equations (2.3), evaluated at the fixed point (€, 1) is

0 0 1 0
0 0 0 1
1
— r —A —— 28
J= 5 , (2.9)
220 =p)(p+ D) % 2q1=p* 1
St(p* + ¢ St(p* + ¢ St

where  I' = (p* — D{2(1 + ¢»)(St2(p* — ¢*) — 2pq) + 2k~ *(p + q>)q(1 — p)}/{St
(P2 +4>)% and  A=(1-p)(+g) U +p)(p? —q*+2pgSt2) — k(1 = p)
(p* — ¢»)}/{5t(p?> + ¢*)?}. The same matrix evaluated in Cartesian coordinates can be
found in Appendix A. By evaluating the eigenvalues for the matrix J, we can identify that
the fixed point pairs A and B are saddles, and the pairs C and D are stable spirals for a
finite inertia particle. For instance, the variation of all the eigenvalues with Stokes number
for each fixed point type is shown in figure 4. From figure 4(a,d), it can be seen that any
finite St particle will perceive fixed points A and B with purely real-valued eigenvalues
with signature (4, —, —, —), as saddles in the four-dimensional phase space. However,
for the fixed point C or D, as shown in figure 4(b,e), the eigenvalue is a pair of complex
conjugates with a negative real part, indicating a stable spiral in the four-dimensional phase
space. Thus, we conclude that the suspended heavy inertial particles will spiral and cluster
towards the fixed points C and D outside the elliptic vortex as time progresses, which we
have observed in numerical simulations (see figure 2). Note that, for the fixed point C or
D, for r = 0.5, when St 2 0.771 (shown in the insets of figure 4b,¢), we may see that there
occurs a bifurcation and the eigenvalues are no more conjugate pairs, rather purely real
valued with signature (—, —, —, —), indicating stable node/sink in the four-dimensional
phase space. Consequently, the particles will radially move towards the fixed points instead
of executing a spiral motion. For an elliptic vortex of arbitrary aspect ratio r, the critical
Stokes number S; at which the spiral to node transition happens can be identified from
the discriminant of the solutions of the quartic eigenvalue polynomial for J (which can be
obtained from (2.9) or (A4), by setting |J — 41| = 0). By examining the discriminant of
the solution for A, one may find its behaviour changes when Sz? satisfies the cubic equation

6 3A+n*A+4r+r) _, A+P3A+6r+r)G+22r+5%) ,

+ St + St
2r3 1616

(1+n21—r*@+n1+3r)

1678 N

St

0. (2.10)
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Figure 4. Variation of all eigenvalues with St corresponding to the typical fixed points of inertial particles in a
Kirchhoff vortex of r = 0.5. (a,d) Real and imaginary parts of the eigenvalues of fixed points A or B. (b,e) Real
and imaginary parts of the eigenvalues of fixed point C or D. (c,f) Real and imaginary parts of the eigenvalues
of fixed point O.

The real-valued, non-negative solution of (2.10) gives the critical Stokes number St = S
for any r. For the case of » = 0.5, one could verify that this solution is S ~ 0.7713,
matching with the prediction from figure 4(b,e).

As St increases, saddle type and stable spiral type fixed points approach closer, as
mentioned earlier. If we keep increasing St, we find that they merge (i.e. p™ = p~ and
g" = ¢~) and vanish at a critical inertia value. From (2.7), one could deduce that this
happens only if 8 = 0. Using the expression 8% = k*(1 4 St2£22)? — 45> and solving
for Stokes number, one would find that the critical value at which merging happens is
St =38, = (142 — /r)/(r(1 + /7)), i.e. the fixed points outside the elliptic vortex
(A, B, C and D) exist only for particles with 0 < St < S. For an elliptic vortex with
r = 0.5, the critical value can be evaluated as S, ~ 0.7721, i.e. A merges with C and
B merges with D at this critical value and disappears. Thus, we have only shown the
eigenvalues in figure 4 for the Stokes number until 0.7721.

2.3.2. Fixed points inside the ellipse

The origin O located inside the ellipse (tanh & < r) continues to exist as a fixed point for
heavy inertial particles (see figure 3b); however, O behaves as an unstable spiral. To show
this, we follow the same procedure mentioned in the previous § 2.3.1, using the flow field
inside the ellipse. By substituting appropriate expressions for ug and u,, from (2.4) in (2.5),
we obtain

(281 §2 sinh 2€ + k*(A — cosh 2€) sin 2n)h? = 0, (2.11a)
(28t 2 sin2n — k> (A — cos 27) sinh 26)h% = 0. (2.11b)
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Figure 5. A schematic showing the projection of a four-dimensional phase space topology into three
dimensions, illustrating various fixed points and their transitions at critical Stokes numbers.

In the St — O limit, these equations yield the elliptic fixed point for fluid tracers at the
origin. Moreover, irrespective of the value of St, (2.11) has a single real-valued solution
(&0, 1o) = (0, m/2), indicating that the origin O remains to be the fixed point for any
inertial particle as well. The Jacobian matrix for linear stability for the fixed point at origin
Ois

0 0 St 0
1{ o o 0 St
J=3 s -2 -1 2sie ] (2.12)

Q/r St2? 252 -1

which has two pairs of complex conjugate eigenvalues. One of these pairs has a
non-negative real part (see figure 4c,f), indicating unstable spiral behaviour for any
non-zero St. Thus, the particles will be centrifuged away from the origin spirally. Some of
them, starting within certain basins (see § 2.5) accumulate in the stable fixed points C and
D outside the ellipse, as they are stable fixed points, as shown in the previous § 2.3.1. Note
that as we increase the particle inertia, even after the mutual annihilation of fixed points
A, B, C and D, fixed point O exists and remains an unstable spiral. Thus, beyond the &>,
one can observe that all particles merely centrifuge away without getting trapped in any
Lagrange points.

The nature of fixed points and phase space topology is depicted schematically in
figure 5 as the Stokes number varies. It is important to note that the phase space is four
dimensional; however, the schematic only presents a three-dimensional projection. The
fixed points C and D exhibit a ‘2-spiral sink’ behaviour when St < S} and transition to a
‘sink” when S; < St < &;. On the other hand, fixed points A and B demonstrate a ‘3 : 1
saddle’ behaviour for St < &,. Additionally, fixed point A (B) annihilates with C (D) and
ceases to exist when St = S,. Meanwhile, fixed point O persists and behaves as a ‘2-spiral
saddle’ for all Stokes numbers. For more on terminology, see Hofmann, Rieck & Sadlo
(2018).
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Figure 6. The curves in the r—St plane demarcate regions where the change in the number of fixed points (blue
colour) and the change in the nature of stable fixed points (red colour) happens. The representative elliptic
patch of vorticity is also shown in a greenish yellow colour for three different aspect ratios.

2.4. Effect of the aspect ratio on the distribution of fixed points

Until now, all the analyses have been performed explicitly for the elliptic vortex with
aspect ratio r = 0.5. However, if the vortex has a different aspect ratio, the distribution
and stability nature of fixed points will change. Solving (2.6) and (2.11), we obtain the
fixed points inside and outside the ellipse, respectively, for various St and r values. There
is no qualitative change in the distribution of fixed points, such that the fixed point inside
the ellipse will always be at the origin, and there will always be four fixed points outside
the ellipse below Stokes number S;. In the r—St plane (see figure 6), it is shown that the
critical curve (blue colour) demarcates the region where all five fixed points (A, B, C, D
and O) coexist and the region where only the point at the origin exists.

By analysing the stability of the fixed points, we have already seen that the fixed point at
the origin remains an unstable spiral for any St > 0 in a Kirchhoff vortex of r = 0.5. One
can verify that this will also be valid for any r € (0, 1). The pair A and B remain saddles for
all aspect ratios provided they exist (indicating the robustness of hyperbolic fixed points).
However, the stable spiral fixed points can change their behaviour if the aspect ratio is
above some critical value. The same fact has already been discussed towards the end of
§ 2.3.1 specifically for the aspect ratio r = 0.5. For any particular aspect ratio, some critical
Stokes number S exists above which the stable spirals become stable nodes/sinks. As
mentioned in § 2.3.1, by solving for the non-negative real-valued solution of (2.10), one
can find the critical pairs of St and r at which this behaviour change happens, and is
shown in the »—St plane (see figure 6, red colour). From asymptotic analysis of (2.10),

one may show that S| = /375 — 298/(25\/3) 4+ O@) forr > 0and S| = (1 —r) +
%(1 — 12401 =) forr — 1, and the asymptotes are also shown in the figure. On the
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other hand, the exact expression for S = (1 + 21— 1)/ (r (1 + 4/r)), also mentioned
at the end of §2.3.1, has asymptotic forms, S = r~' —2//r +4 + O(/r) for r = 0
and Sy = (1 —7) + 3 (1 = 12+ O((1 — r)3) for r — 1. We find that S; < S, forany r €
(0, 1). Note that the red curve is very close to the blue curve; however, they never intersect,
indicating that for any fixed St > 0, there always exists a narrow parameter regime bounded
by both red and blue curves (51 < St < &) inside which the fixed points C and D will
behave as nodes/sinks.

For any finite r value, one may note that both S; and S, values are finite. However,
as r — 0, both diverge as O(1/r), becoming a larger value. This divergence suggests
that particles must possess high inertia for critical dynamical behavioural changes to
occur. However, note that when r — 0, the vortex rotates slowly (2 = r/(1 + r? — 0).
Thus, the relevant time scale in the problem becomes the angular velocity 2 rather
than the vorticity of the patch. Consequently, the Stokes number based on the angular
velocity of the vortex, St = Str/(r + 1)?, evaluated for critical behaviours Sg | ~ +/3/5
and Sg 2 ~ 1, remains constant and bounded in the limit of r — 0, indicating that the
divergence was merely an artefact of the adopted scaling.

2.5. The basin of attraction of the fixed points

From numerical simulations, we have seen that all the particles repelled away from the
unstable fixed points (A, B and O) are not attracted to the stable fixed points (C and
D); instead, some spiral away to infinity. The initial particle locations that would result
in them getting attracted to any of the two stable fixed points are shown in figure 7,
representing the basin of attraction of those fixed points. The basins are coloured to
distinguish each other. The region outside these coloured regions indicates the basin of
attraction of infinity; i.e. particles initialized in these regions will eventually spiral away to
infinity and never get attracted to any of the stable fixed points. We have used 10° particles
randomly initialized in the flow field to generate the figure. We tracked their evolution
numerically and identified those that would approach any fixed points over a long time.
We marked their initial locations using specific colours to distinguish between the basins
of each fixed point. As visible in figure 7, the basin of attraction of the stable fixed points
shrinks as St increases and vanishes. It can be verified that the basins will disappear beyond
the critical value &, indicating the absence of stable fixed points. The figure shows that
the stable fixed points C and D are enclosed within the corresponding basin of attraction,
which is obvious. However, the unstable fixed points A and B appear to fall at the edge
of the basins. The regular nature of the basin boundaries shows non-chaotic dynamics of
inertial particles in the elliptic vortex. Close to origin O, the basin of attraction of stable
fixed points (coloured regions), and that of infinity (empty region) forms an inter-twisting
pattern. As a result, a particle starting closer to the origin will have dynamics sensitive to
the initial condition. A small change in the initial position could lead the particle to end
up either in the fixed points C or D or spiral away to infinity.

Here, we would like to highlight prior studies on the dynamics of inertial particles in the
neighbourhood of a pair of like-signed point vortices by Angilella (2010), Ravichandran
et al. (2014) and Zhao et al. (2024). The system of like-signed point vortices bears
similarities with that of the Kirchhoff vortex. The inertial particles exhibit qualitatively
identical behaviour near the point vortex pair. The types of fixed points, stability
characteristics and the basin of attractions show qualitative similarities to those observed
in the case of the elliptic vortex. A recent study by Kapoor, Jaganathan & Govindarajan
(2024) extends previous studies near the like-signed point vortex pair by focusing on the
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Figure 7. The basin of attraction for inertial particles of (a) St = 0.2, (b) St =0.5 and (¢) St =0.77 in a
Kirchhoff vortex of r = 0.5. The corresponding fixed points A, B, C and D are marked in each figure using the
‘x’ symbol. The streamlines of the Kirchhoff vortex are shown in grey in the background.

dynamics of inertial particles of any density ratio. The study reveals interesting dynamical
behaviours, with the existence of periodic and chaotic dynamics of particles depending on
their inertia and density ratio. Additionally, in the limit of a large density ratio, the particle
dynamics show similarity to that in a Kirchhoff vortex. Though it seems like an elliptic
vortex can be simply replaced by a pair of like-signed vortices, it is worthwhile to focus on
the subtle differences. The flow field in both cases matches well in the far field only. The
Kirchhoff vortex and the pair vortices have different features in the near field. Notably, the
origin behaves as a saddle in the case of pair vortices, whereas in the elliptic vortex, it acts
as a centre/spiral.

3. Dynamics of heavy inertial particles in a strained elliptic vortex

When an external uniform shear flow is superimposed on the Kirchhoff elliptical vortex
(), Moore & Saffman (1971) was the first to obtain stationary elliptical vortices of
uniform vorticity as exact solutions of the steady Euler