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Electrostatic interactions between anisotropic particles
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We investigate the electrostatic interactions between two charged anisotropic conductors using a combination
of asymptotic and numerical methods. For widely separated particles, we employ the method of reflections to
analyze the interactions. Although the formulation applies to conductors of arbitrary shapes, it is specifically
implemented for spheroid-sphere systems to capture anisotropy effects in a simple configuration. In near-contact
cases with axisymmetric configurations, the lubrication approximation is used to extend the analysis. Addition-
ally, we develop a boundary integral method to study particle interactions at arbitrary separations, validating
the results with asymptotic solutions for both near and far fields. We derive analytical expressions for the
electrostatic force and torque on a spheroid due to another spheroid in the far-field regime. When combined
with hydrodynamic effects, the electrostatic torque competes with the hydrodynamically favorable alignments
of a pair of settling spheroids in certain regions while reinforcing them in others. Consequently, the inclusion of
electrostatic effects may influence the instability observed in dilute suspensions of spheroids.
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I. INTRODUCTION

Electrostatic interactions play a significant role in various
natural and industrial processes, influencing behaviors across
systems as diverse as atmospheric phenomena, biological
assemblies, and colloidal suspensions [1–5]. In atmospheric
science, for example, electrostatic forces are integral to cloud
formation, where charged particles, including ice crystals
and droplets, cluster and interact in complex ways that im-
pact precipitation and cloud evolution [5]. Even droplets
bearing the same charge can coalesce due to electrostatic
induction effects, enabling attraction through localized po-
larization despite net repulsion between like charges [6–8].
This phenomenon, while extensively studied for simple ge-
ometries like spherical particles [9,10], is less understood in
realistic cases involving anisotropic interactions and irregular
shapes.

One of the simplest nonspherical shapes relevant in such
studies is the spheroid, a shape commonly found in atmo-
spheric ice crystals and approximations of biological and
industrial particles. To better understand the interaction of
such anisotropic objects, this study focuses on the electrostatic
interaction between a conducting sphere and a spheroidal
body. Specifically, this work presents a calculation of the
electrostatic torque exerted on a spheroid by a nearby sphere,
which represents a key contribution to modeling how such
particles align and rotate under electrostatic forces. This
torque, together with the corresponding interaction forces,
could be incorporated into cloud microphysics models to
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complement hydrodynamic models that already consider
droplet interactions driven by hydrodynamic forces [11]. In
mixed-phase clouds, ice crystals collide with supercooled
liquid droplets, becoming coated in a process called rim-
ing [12,13]. Riming is a critical process in the formation
of precipitation-sized hydrometeors within clouds. Precise
calculation of the interaction forces between the anisotropic
hydrometeor and the droplet is vital for accurately determin-
ing the collision efficiency during the riming process between
ice particles and supercooled droplets.

Electrical charging mechanisms in clouds involve complex
interactions between droplets, ice crystals, and graupel parti-
cles, driven by a combination of collisions and environmental
factors [5,7]. Field measurements in weakly electrified clouds
show that ice crystal and droplet charges are proportional
to their surface areas [14–16]. Mechanisms such as induc-
tive charging, which arises from the polarization of particles
in an existing electric field, and convective charging, where
vertical air currents separate charged particles, also play a
role in cloud electrification. However, the most significant
mechanism is collisional charging, where charge transfer oc-
curs during collisions between particles. For example, when
supercooled water droplets freeze upon colliding with grau-
pel particles, charge separation occurs due to differences
in ion mobility, thermal properties, and the rime accretion
electrification process [5,17–19]. In these processes, smaller
ice crystals (10–100 µm) typically acquire a positive charge,
while larger graupel or hailstones (1–5 mm) gain a negative
charge, with the charge separated during each collision rang-
ing from 10−16 to 10−12 C, depending on factors such as
temperature, impact velocity, and the presence of supercooled
water. Since collisional charging is the dominant process
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driving charge separation in clouds, and ice crystals are inher-
ently anisotropic, understanding the role of particle anisotropy
and their electrostatic interactions is crucial for improving our
understanding of cloud electrification.

Analytical methods for determining electrostatic forces
and torques on multiple conductors are limited to simple
geometries such as sphere-sphere [20] and spheroid-spheroid
in specific configurations [21]. In this work we extend this
computation to two spheroidal conductors in a generic config-
uration in the far-field regime. The far-field calculations are
carried out using the method of reflections, widely used in the
problems of microhydrodynamics [22], and described in detail
in Appendix C. Having obtained the electrostatic interaction
between two spheroids, we explore the role of anisotropy in
the simpler, yet unexplored electrostatic interaction between
a spheroid and a sphere. This system is sufficient to capture
the anisotropy in the problem and provides a manageable
parameter space over which relevant quantities can be ana-
lyzed. We use a boundary integral method (BIM) to uniformly
capture the electrostatic interaction in both far- and near-field
regimes. We compare the BIM with the method of reflections
to determine the proximity at which the method of reflections
starts to lose accuracy for closely spaced conductors. We
derive an analytical expression for the electrostatic force and
torque in the far-field regime using the first reflection, appli-
cable to both spheroid-sphere and spheroid-spheroid systems.
It is speculated that incorporating electrostatic torque in a
dilute suspension of charged spheroids may modify the previ-
ously observed instability in density fluctuations of uncharged
spheroids.

II. METHODS

A. Potential matrix formulation

The electrostatic interaction between multiple conductors
involves determining the potential on the surface of each
conductor, given the total charge on each conductor. This
information is sufficient to determine the total electrostatic
energy of the system and hence compute forces and torques
on each conductor. The governing equation for the potential
outside the conductors is simply the Laplace equation. The
complexity of the problem comes from the boundary condi-
tions that need to be satisfied at the surface of each conductor.
The linearity of governing equations of electrostatics implies
a linear relationship between the total charges on each con-
ductor and the potential on their surfaces. The proportionality
constant is called the potential matrix �M [23–27], which
only depends on the permittivity of free space ε0, size, and
the geometry of the conductors [28]. Since we are interested
in two-body electrostatic interaction, the connection between
charges Q1 and Q2 and the potentials V1 and V2 on the surface
of the conductors S1 and S2 is given by(

V1

V2

)
= 1

4πε0a

(
�11 �12

�21 �22

)(
Q1

Q2

)
, (1)

where a is the typical size of the conductors and �i j , i, j ∈
{1, 2}, are the dimensionless elements of the potential matrix,
�M , which depends on the relative position, orientations, and
the geometry of the two conductors. Using the reciprocal

FIG. 1. A schematic illustrating the geometric setup for electro-
static pair interactions between a spheroid and a sphere in a generic,
nonaxisymmetric configuration. The unit vector p represents the
orientation of the spheroid, with a denoting the size of the spheroid, κ
denoting its aspect ratio, and γ denoting the size ratio of the sphere
to spheroid. (a) Prolate spheroid and a sphere. (b) Oblate spheroid
and a sphere.

theorem, one can show that the potential matrix is symmetric,
i.e., �T

M = �M [23–25].
The subsequent sections are concerned with the calculation

of the potential matrix �M of a spheroid-sphere system in
the far-field, near-field, and uniformly valid regimes. Before
undertaking full numerical calculations, we will first examine
two distinct asymptotic limits: when the particles are widely
separated and when they are nearly touching.

B. Far-field interactions: Method of reflections

The method of reflection is an iterative approach that
progressively satisfies boundary conditions on surfaces by
incorporating corrections from each preceding iteration [22].
The solution to each iteration is given by the multipole ex-
pansions, which yields a perturbation series in a/R, where
a is the typical size of the conductors and R is their typical
separation. A detailed description of this method in the con-
text of electrostatics is given in Appendix C. Here, we briefly
mention the common terminologies of this method. Consider
a prolate spheroid S1, carrying a total charge Q1, centered at
x1 with a as the distance from its center to the pole along the
symmetry axis denoted by the unit vector p (see Fig. 1). The
spheroid’s aspect ratio κ (>1) is defined as the ratio of a to its
equatorial radius lying perpendicular to p, and its eccentricity
is e = √

1 − κ−2. The surface of this prolate spheroid is given
by

(x − x1) ·
[

pp
a2

+ (1 − pp)

a2κ−2

]
· (x − x1) = 1, x ∈ S1. (2)

Here 1 is the identity tensor. The second conductor is a sphere
S2 centered at x2 with radius γ a and total charge Q2, the
surface of which is given by

(x − x2) · (x − x2) = (γ a)2, x ∈ S2. (3)

The relative separation vector between them is x21 ≡ x2 −
x1 ≡ −x12. The first reflection approximation accounts for
the correction of potential fields produced by the sphere and
spheroids as if they were isolated. The corresponding poten-
tial matrix in this case is accurate only up to O(a/R). The
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elements of the potential matrix for a prolate spheroid are given by

�
(1)
11 = e−1arctanhe, (4a)

�
(1)
12 = �

(1)
21 (x12, p) = 1

2e
ln

(
z12 − ae − R−
z12 + ae − R+

)
, (4b)

�
(1)
22 = γ −1, (4c)

where

R± ≡
√

ρ2
12 + (z12 ± ae)2, (5a)

ρ2
12 ≡ x12 · (1 − pp) · x12, (5b)

z12 ≡ x12 · p. (5c)

Here we use the notation �
(n)
i j to represent the i jth element of the potential matrix up to the nth reflection. Note that up to the

first reflection correction the effect of interaction is only captured by the off-diagonal terms. Now, the second reflection accounts
for the correction in the potential fields produced in response to the first reflected fields. The corresponding potential matrix in
this case is accurate up to O(a4/R4), with the elements for a prolate spheroid given by

�
(2)
11 (x12, p) = �

(1)
11 − a2γ 3

4e2

[(
1

R−
− 1

R+

)2

+ ρ2
12

(
1

R+(z12 + ae − R+)
− 1

R−(z12 − ae − R−)

)2
]
, (6a)

�
(2)
12 (x12, p) = �

(2)
21 (x12, p) = �

(1)
12 (x12, p), (6b)

�
(2)
22 (x12, p) = �

(1)
22 − 9

4a2e6

[
XC

p

{
R− − R+ + z12 ln

(
z12 − ae − R−
z12 + ae − R+

)}2

+ 1

4
Y C

p

{
z12

ρ12
(R− − R+) + ae

ρ12
(R− + R+) − ρ12 ln

(
z12 − ae − R−
z12 + ae − R+

)}2
]
, (6c)

where

XC
p ≡ e3

3
(arctanh e − e)−1, (7a)

Y C
p ≡ 2e3

3

(
e

1 − e2
− arctanhe

)−1

. (7b)

Now consider an oblate spheroid S1 centered at x1 with a as the distance from its center to the pole along the symmetry
axis denoted by the unit vector p (see Fig. 1). Its aspect ratio is κ (<1), with an eccentricity of e = √

1 − κ2 and it carries a
total charge Q1. The surface of this oblate spheroid S1 is again given by (2) with the only difference being κ < 1. The second
conductor S2 is again a sphere of radius γ a, centered at x2, carrying a total charge Q2. To obtain the corresponding potential
matrix of the spheroid-sphere system we use the eccentricity transformation e → ie√

1−e2 on the corresponding expressions of the
prolate spheroid [29]. Therefore, for an oblate spheroid and a sphere, we have

�
(1)
11 = κ arcsin e

e
, (8a)

�
(1)
12 = �

(1)
21 (x12, p) = κ

e
arccot

(
z12 − u

v − ae/κ

)
, (8b)

�
(1)
22 = γ −1, (8c)

where z12 is given by Eq. (5) and u and v are given by

u ≡
√

μ

2
+

√
μ2

4
+ a2e2

κ2
z2

12; μ ≡ |x12|2 − a2e2

κ2
, (9a)

v ≡ aez12

κu
. (9b)
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Similarly, the second reflection corrections are given by

�
(2)
11 (x12, p) = �

(1)
11 − κ2a2γ 3

4e2

[(
2v

u2 + v2

)2

+ ρ2
12

{
4aeκ−1z12 − 2(z12v + aeκ−1u)

(u2 + v2)[(z12 − u)2 + (aeκ−1 − v)2]

}2
]
, (10a)

�
(2)
12 (x12, p) = �

(2)
21 (x12, p) = �

(1)
12 (x12, p), (10b)

�
(2)
22 (x12, p) = �

(1)
22 − 9κ6

a2e6

[
XC

o

{
v − z12arccot

(
z12 − u

v − aeκ−1

)}2

+ 1

4
Y C

o

{
aeκ−1u − z12v

ρ12
− ρ12arccot

(
z12 − u

v − aeκ−1

)}2
]
, (10c)

where

XC
o ≡ e3

3
[e(1 − e2) − (1 − e2)3/2 arcsin e]−1, (11a)

Y C
o ≡ 2e3

3
[e(1 − e2)2 − (1 − e2)3/2 arcsin e]−1. (11b)

The potential matrix for two spherical conductors can be
obtained by taking the limit e → 0 in the potential matrix
expression for a prolate spheroid. Therefore, for a spherical
conductor, S1, of radius a, centered at x1, and another spheri-
cal conductor, S2, of radius γ a, centered at x2, the elements of
the potential matrix up to the second reflection are given by

�
(2)
11 (|x21|) = 1 − γ 3a4

|x21|4 , (12a)

�
(2)
12 (|x21|) = �

(2)
21 (|x21|) = 1

|x21| , (12b)

�
(1)
22 (|x21|) = 1

γ
− a4

|x21|4 . (12c)

C. Near contact interaction: Lubrication approximation

Using the lubrication approximation for the spheroid-
sphere system in the axisymmetric configuration involves
solving the Laplace equation for the potential field φ(x) near
the gap of thickness aε between the conductors. Using polar
coordinates with z coordinate along the symmetry axis p and
r coordinate transverse to p, the boundary value problem to
be solved is

∇2φ = ∂2φ

∂z2
+ 1

r

∂

∂r

(
r
∂φ

∂r

)
= 0, (13a)

φ =
{

V1, z = h1(r)
V2, z = h2(r). (13b)

The surface of the spheroid and the sphere can be expanded
as

h1(r)

aε
= 1 + κ2r2

2εa2
+ 1

8

κ4r4

εa4
+ O

(
κ6r6

εa6

)
, (14a)

h2(r)

aε
= −1

2

r2

εγ a2
− 1

8

r4

εγ 3a4
+ O

(
r6

εγ 5a6

)
. (14b)

Defining the stretched coordinates R ≡ r/(a
√

ε) and Z ≡
z/(aε), we have

H1(R) = 1 + κ2R2

2
+ εκ4R4

8
+ O(ε2), (15a)

H2(R) = − R2

2γ
− εR4

8γ 3
+ O(ε2). (15b)

Rewriting the Laplace equation in terms of the stretched coor-
dinates, we have

∂2φ

∂Z2
+ ε

R

∂

∂R

(
R

∂φ

∂R

)
= 0, (16a)

φ =
{

V1, Z = H1(R)
V2, Z = H2(R). (16b)

The solution can be expanded in the perturbation series as φ =
φ0 + εφ1 + O(ε2). The total charge Q1 and Q2 on the spheroid
S1 and sphere S2 are given by

Qα = −ε0

∮
Sα

∇φ · n̂αdSα, α ∈ {1, 2}, (17)

where n̂α represents the unit normal pointing out of the surface
Sα . The electrostatic force F1 on the spheroid is given by

F1 = ε0

2

∮
S1

|∇φ · n̂1|2n̂1dS1. (18)

Using the zeroth-order solution φ0, the charge difference
�Q12 = Q1 − Q2 is given by

�Q12 = 4πaε0γ�V12

1 + γ κ2

[
ln

(
1 + γ κ2

2γ κε

)
+ δ

]
+ O(ε), (19)

where �V12 ≡ V1 − V2 and δ is an O(1) constant which has
to be determined using the outer solution. The weak logarith-
mic singularity is insufficient to overpower the δ correction,
even at very small separations ε, and therefore δ cannot be
neglected. The forces F1 and F2 are given by

F1 = −F2 ∼ −x̂12(1 + γ κ2)�Q2
12

16πa2ε0γ ε
[

ln
( 1+γ κ2

2γ κε

) + δ
]2 . (20)

Note that for unequal total charges �Q12 �= 0, the electrostatic
forces at close range are attractive, regardless of whether the
conductors carry like or unlike charges. The force expression
(20) reduces to the near contact force between two spheres for
κ = 1 ([20,30]).
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We rewrite Eq. (19) in terms of δ as

δ = lim
ε→0

{
(1 + γ κ2)�Q12

4πaε0γ�V12
− ln

(
1 + γ κ2

2γ κε

)}
. (21)

We shall use the BIM to evaluate the right-hand side of the
above equation for ε 	 1 and thus obtain δ. The numerical
values of the right-hand side of Eq. (21) will have small vari-
ations with ε even when ε 	 1. This is due to the fact that the
numerical errors in the BIM increases as the surfaces approach
each other [31,32]. The error in the numerical measurement of
δ, i.e., �δ, gives error on the forces |�F | [see Eq. (20)] as

|�F | = |F1|
∣∣∣∣∣∣

2�δ[
ln

( 1+γ κ2

2γ κε

) + δ
]
∣∣∣∣∣∣. (22)

Note that the relative error in the forces decreases with ε. Once
the δ is obtained, the lubrication force (20) gives electrostatic
forces in the configurations where the minimum separation
between the conductors becomes vanishingly small.

D. Boundary integral method

The method of reflections is primarily effective for far-field
interactions. Achieving higher accuracy requires additional
reflections, but each successive reflection adds significant
complexity in the analytical expressions. To compute the
interactions in both far- and near-field regimes numerically,
we use the BIM. The BIM formulation is well established
for various linear partial differential equations, including the
Laplace equation [33–35]. A brief formulation of the BIM for
the electrostatic problem with total charges specified on each
conductor is given in Appendix D. Here we outline the main
integral equations to be solved numerically to compute the
potential matrix for a spheroid S1 (both prolate and oblate) and
a sphere S2. The potentials on the surface of the conductors are
given by

ε0Vα = 1

|Sα|
∮

Sα

qα (x)dSα (x); α ∈ {1, 2}, (23)

where |Sα| is the surface area of the conductor Sα . The fields
qα are obtained by solving the second-kind integral equa-
tion on every point xsα on the surface of conductor Sα:[

Ld
11 + Pc

11 + I Ld
12

Ld
21 Ld

22 + Pc
22 + I

][
q1

q2

]

=
[

Q1G(xs1, x1) + Q2G(xs1, x2)

Q1G(xs2, x1) + Q2G(xs2, x2)

]
, (24)

where Q1 and Q2 are the charges on the conductors S1 and S2,
respectively, and G is the Green’s function of the Laplacian,
given by

G(x, x0) ≡ 1

4π |x − x0| . (25)

The integral operators are defined as

Ld
αβqβ (xs) ≡ 2

∮
Sβ

qβ (x)n̂β · ∇xG(x, xs)dSβ (x), (26a)

Pc
αβqβ ≡ 1

|Sα|δαβ

∮
Sβ

qβ (x)dSβ (x); xs ∈ Sα, (26b)

TABLE I. The values of κ and γ used in the numerical calcula-
tions for the three systems—sphere-sphere, prolate spheroid-sphere,
and oblate spheroid-sphere—are provided.

κ 1 4 0.25

γ 1 0.445 3.01

α, β ∈ {1, 2}. Equations (23) and (24) are used to determine
the potential matrix. The integral equation (24) is solved using
Generalized minimal residual method (GMRES) iterations
[31,36] and the integrals on the surfaces are evaluated using
the Gaussian quadrature [31,37].

E. Electrostatic force and torque

When particles carry an electric charge, they can expe-
rience strong mutual interactions. Precisely calculating the
electric forces and torques acting on these charged particles
is crucial across a wide range of physical systems, including
biological cells, ice crystals, and granular materials. These
force calculations are essential for predicting particle dynam-
ics, such as their trajectories and the potential for aggregation.
The electrostatic force and torque on each conductor can be
computed by taking derivatives of the electrostatic energy of
the system. The electrostatic energy of the spheroid-sphere
system is given by

W (|x21|, x̂21 · p) = 1
2 QT · �M (|x21|, x̂21 · p) · Q, (27)

with Q ≡ [Q1 Q2]T , where the spheroid centered at x1 car-
ries a total charge Q1 and the sphere centered at x2 carries
a total charge Q2. Here x̂21 is a unit vector along the sep-
aration vector x21 = x2 − x1. The differential change in the
electrostatic energy upon differential change in the relative
configuration is given by

dW = dx21 · ∇21W + d p · ∇pW. (28)

The first term in Eq. (28) represents the negative of the work
done by the electrostatic force on the sphere, F2, in moving
the sphere by an amount dx21. Equivalently, it represents the
negative of the work done by the electrostatic force on the
spheroid, F1, in moving the spheroid by an amount −dx21.
Therefore, the electrostatic forces on the conductors are given
by

F1 = −F2 = ∇x21W (|x21|, x̂21 · p). (29)

The second term shows that there is energy expense in
changing the orientation of the spheroid. This shows that the
electrostatic force on the spheroid does not act at its center.
Thus, an electrostatic torque T 1 acts on the spheroid about
its center. The work done by the electrostatic force on the
spheroid in changing its orientation can be written in terms of
T 1 as T 1 · n̂ dθ , where n̂ is the axis about which p is rotated by
an angle dθ , i.e., d p = dθ n̂ × p. Equating this to the second
term in Eq. (28) gives the torque on the spheroid about its
center as

T 1 = −p × ∇pW (|x21|, x̂21 · p). (30)

The change in configuration due to the change in the ori-
entation vector p = dθ n̂ × p is equivalent to keeping the

035410-5



HARSHIT JOSHI AND ANUBHAB ROY PHYSICAL REVIEW E 111, 035410 (2025)

FIG. 2. Elements of the potential matrix �M [see (1)] as a func-
tion of dimensionless minimum separation between the two spheres,
s21 = |x21|/a − 2. The second reflection is decent up to the separa-
tions of the order of the size of the spheres. The exact result in terms
of an infinite series can be found in [20].

spheroid’s orientation fixed but rotating the separation vector
x21 about the spheroid’s center, the opposite way, such that
dx21 = −dθ n̂ × x21. The work done on the sphere by F2

in this case is simply, F2 · (−dθ n̂ × x21) = −(x21 × F2) ·
n̂ dθ ≡ T 2 · (−n̂ dθ ). This shows the torque T 2 on the sphere
is simply

T 2 = x21 × F2. (31)

It is easy to see using Eqs. (29), (30), and (31) that T 1 = −T 2,
and hence the total angular momentum of the system is con-
served.

III. RESULTS

The parameter space to be explored contains the aspect
ratio of spheroid κ and the ratio of the sphere’s radius to the
spheroid’s semimajor axis γ for various configurations given
by x21 and p. For a given κ , we fix the value of γ such that the
surface area of the spheroid is the same as that of the sphere.
We look at three different aspect ratios κ ∈ {1, 4, 0.25} (see
Table I). The first case corresponds to the electrostatic inter-
action between two identical spheres, the results of which are
well known [20]. This serves as a benchmark for our general
results for spheroid-sphere interactions. The other two cases
correspond to a prolate and an oblate spheroid, respectively.

A. Elements of the potential matrix

The elements of the potential matrix are defined in Eq. (1).
For the case of two spheres (κ = 1), the exact expression is
known from Lekner [20] and the second reflection results are
given by Eq. (12). The comparison between second reflection,
BIM, and exact expression shows that the second reflection
performs well down to minimum separations between spheres
comparable to their size (see Fig. 2). This also validates both
the second reflection and the BIM.

For the case of electrostatic interactions between a spheroid
and a sphere, the exact expressions of the potential matrix are
not known, to the best of our knowledge. The potential matrix
depends on both the separation between the conductors |x21|

FIG. 3. A schematic showing the point of contact x∗, the min-
imum distance d∗ = dmin(ψ ), and other relevant quantities for the
case of a prolate spheroid and a sphere. The relative sizes of the
conductors are proportional to their respective scales.

and the relative configuration of the conductors cos(ψ ) ≡
x̂21 · p. The minimum separation between the centers of the
conductors when they are just touching depends on ψ and is
denoted by dmin(ψ ). This minimum separation can be deter-
mined numerically by finding the roots x∗ (point of contact)
and d∗ of the following equations:∣∣∣∣ n1

|n1| + n2

|n2|
∣∣∣∣ = 0, (32a)

∣∣∣∣x∗ + γ a
n1

|n1| − d∗x̂21

∣∣∣∣ = 0, (32b)

|n2|2 = γ 2a2, (32c)

x∗ · (p × x̂21) = 0, (32d)

where n1 and n2 are the (non-normalized) normal vectors to
the spheroid and sphere at x∗, given by

n1 ≡
[

pp
a2

+ (1 − pp)

a2κ−2

]
· (x∗ − x1), (33a)

n2 ≡ x∗ − x1 − d∗x̂21. (33b)

The four equations (32) uniquely determine x∗ and d∗ =
dmin(ψ ). Note that x̂21 is given by a unit vector making an
angle ψ with p, which does not require specifying d∗.

A schematic representing x∗, d∗ and other relevant quanti-
ties is shown in Fig. 3.

The physical interpretations of Eqs. (32) are as follows:
(1) Equation (32a) enforces that the normals of the sphere

and the spheroid are oriented antiparallel to each other.
(2) Equation (32b) ensures that x∗ is the point of contact.
(3) Equation (32c) ensures that x∗ lies at the surface of the

sphere.
(4) Equation (32d) ensures that x∗ lies in the plane defined

by p and x̂21.
For the case of a prolate spheroid and a sphere (κ =

4), the second reflection results are given in Eqs. (6).
Figure 4 shows the elements of the potential matrix for a
fixed ψ = π/4 as a function of dimensionless separation
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FIG. 4. Elements of the potential matrix �M [see (1)] as a func-
tion of dimensionless separation between a prolate spheroid and a
sphere, s21 = [|x21| − dmin(ψ )]/a. Here ψ ≡ arccos(x̂21 · p) and dmin

is the dimensionless center-to-center distance between the prolate
spheroid and the sphere when they are just in contact.

s21 = [|x21| − dmin(ψ )]/a. The second reflection is reliable up
to s21 ∼ 1 (Fig. 5).

Similarly, for the case of an oblate spheroid and a sphere
(κ = 0.25), the second reflection results [Eqs. (10)] are reli-
able up to s21 ∼ 4 (see Fig. 5). This early deviation of the
second reflection method from the BIM arises because the
length scale used for s21 does not correspond to the larger
dimension of the oblate spheroid, specifically the equatorial
radius of the oblate spheroid aκ−1.

B. Electrostatic force

Equation (29) is used to obtain the electrostatic force be-
tween the pair of conductors. This relies on differentiating the
electrostatic energy obtained using the potential matrix. The
exact results are available for the sphere-sphere case by [20].
The second reflection is again reliable up to s21 ∼ 1. For very
small separation s21 	 1, the BIM needs a large number of
collocation points on the surfaces of the conductors to con-
verge to the solution accurately. Lubrication approximation

FIG. 5. Elements of the potential matrix �M [see (1)] as a func-
tion of dimensionless separation between an oblate spheroid and a
sphere, s21 = [|x21| − dmin(ψ )]/a. Here ψ ≡ arccos(x̂21 · p) and dmin

is the dimensionless center-to-center distance between the oblate
spheroid and the sphere when they are just in contact.

FIG. 6. Dimensionless force on the second sphere as a function
of dimensionless minimum separation between the two spheres,
s21 = |x21|/a − 2. Note that the force is attractive in the case of
unequal charges (F2 · x12 > 0). The filled dots are obtained using
the lubrication approximation [see Eq. (20)] with δ obtained using
the BIM through Eq. (21). The inset shows δ as a function of ε, with
the dots indicating the range of values over which δ is averaged to
approximate it as a constant.

[Eq. (20)] has been used for s21 	 1, shown by the filled dots
in Fig. 6, with the δ fitted using the BIM results.

The force acting on the sphere in the axisymmetric config-
uration (p · x̂21) involving a prolate spheroid and a spherical
conductor is shown in Fig. 7. The lubrication force is given by
Eq. (20) with the δ fitted using the BIM results. Figure 8 shows
the corresponding force for the case of an oblate spheroid and
a sphere. Note that the electrostatic forces are attractive in the
near contact case for unequal charges and grows unboundedly.

Figure 9 shows the variation of electrostatic force as a
function of dimensionless separation s21 and the relative con-
figuration ψ . This captures the effect of anisotropy of the
problem.

FIG. 7. Dimensionless force on the second sphere as a function
of dimensionless separation between the prolate spheroid and the
sphere, s21 = |x21|/a − (1 + γ ), in the axisymmetric configuration
(p = x̂21). Note that the force is attractive in the case of unequal
charges (F2 · x12 > 0). The lubrication approximation is obtained
using Eq. (20) with δ obtained using the BIM through Eq. (21). The
inset shows δ as a function of ε, with the dots indicating the range of
values over which δ is averaged to approximate it as a constant.
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FIG. 8. Dimensionless force on the second sphere as a function
of dimensionless separation between the oblate spheroid and the
sphere, s21 = |x21|/a − (1 + γ ), in the axisymmetric configuration
(p = x̂21). Note that the force is attractive in the case of unequal
charges (F2 · x12 > 0). The lubrication approximation is obtained
using Eq. (20) with δ obtained using the BIM through Eq. (21). The
inset shows δ as a function of ε, with the dots indicating the range of
values over which δ is averaged to approximate it as a constant.

One is often interested in the dilute regime where particle
separations are much larger than their size. In this regime, the
first reflection is sufficient to capture the electrostatic force.
Using Eqs. (29) and (4), the electrostatic force for the prolate
spheroid and sphere system is given by

F2 ∼ Q1Q2

8πε0|x21|

{(
1

R+
+ 1

R−

)
x̂21 + |x21|

ae

×
(

1 − ae/R+
R+ − ae − z12

− 1 + ae/R−
R− + ae − z12

)

× (1 − x̂21x̂21) · p

}
, (34)

where R−, R+, and z12 are given by Eq. (5). The correspond-
ing electrostatic force due to the first reflection for the oblate

spheroid and sphere system is given by

F2 ∼ Q1Q2

4πε0|x12|

{
a2e2z2

12 + κ2|x12|2u2

u(2u2 − μ)(a2e2 + κ2u2)
x̂12

− a2e2|x12|z12

u(2u2 − μ)(a2e2 + κ2u2)
(1 − x̂21x̂21) · p

}
, (35)

where u and μ are given by Eq. (9). Note that the second term
in the right-hand side of Eqs. (34) and (35) are the noncentral
parts which arise due to the anisotropy of the systems and
contribute to the electrostatic torques. Because these force
expressions are valid only for large separations, they fail to
account for the attractive forces between like charges that arise
at short distances due to electrostatic induction.

Similarly, one can obtain a closed-form expression of force
using Eq. (29) and the second reflection corrections to the
potential matrix [Eqs. (6) and (10)] which is reliable up to
s21 = [|x21| − dmin(ψ )]/a ∼ 1. The force from the second re-
flection can explain the attractive interaction between like
charges; however, its accuracy diminishes at the separations
where the attractive region begins.

C. Electrostatic torque

The electrostatic torque is the result of electrostatic forces
on the conductors not being central. In other words, there is
electrostatic energy cost in changing the orientation of the
spheroid or changing the relative configuration ψ . Figure 10
shows the torque on the spheroid as a function of dimen-
sionless separation s21 and ψ . As the separation decreases,
the torque in the unequal charge case changes direction,
indicating the onset of an attractive interaction between the
conductors.

A quantity of interest in the dilute regime is the electro-
static torque between a pair of particles. The torque computed
using the first reflection is accurate enough to capture the
anisotropic effects in the far field. Using Eq. (34), one can
obtain the torque for the prolate spheroid and sphere system,

FIG. 9. Contour plot of dimensionless force along the separation vector, 4πε0a2q−2F2 · x̂21, as a function of ψ ≡ arccos(x̂21 · p) and
s21 = [|x21| − dmin(ψ )]/a. The white dotted lines are due to the second reflections. (a) The prolate spheroid has charge Q1 = q and the sphere
has charge Q2 = q, (b) The prolate spheroid has charge Q1 = q and the sphere has charge Q2 = 2q, (c) The oblate spheroid has charge Q1 = q
and the sphere has charge Q2 = q, (d) The oblate spheroid has charge Q1 = q and the sphere has charge Q2 = 2q.
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FIG. 10. Contour plot of dimensionless torque on spheroids about their center, 4πε0aq−2T 1 · k̂, as a function of ψ ≡ arccos(x̂21 · p) and
s21 = [|x21| − dmin(ψ )]/a, where k̂ is a unit vector along (p × x̂21). The white dotted lines are the due to the second reflections. The green
curves in (b) and (d) separate the repulsive and the attractive regions. (a) The prolate spheroid has charge Q1 = q and the sphere has charge
Q2 = q, (b) The prolate spheroid has charge Q1 = q and the sphere has charge Q2 = 1.5q, (c) The oblate spheroid has charge Q1 = q and the
sphere has charge Q2 = q, and (d) The oblate spheroid has charge Q1 = q and the sphere has charge Q2 = 1.5q.

given by

T 1 ∼ Q1Q2

8πε0ae

(
1 − ae/R+

R+ − ae − z12
− 1 + ae/R−

R− + ae − z12

)
p × x21.

(36)

Similarly, using Eq. (35), one can obtain the torque for the
oblate spheroid and sphere system, given by

T 1 ∼ Q1Q2

4πε0u(2u2 − μ)

(
−a2e2z12

(a2e2 + κ2u2)

)
p × x21. (37)

Here R−, R+, z12, u, and μ are given by Eqs. (5) and (9).
Note that the electrostatic forces and torques up to first reflec-
tion do not depend on the radius of the sphere [38]. This is
because the electric field of a sphere, to a leading order in the
far-field regime, is identical to that of a point charge placed at
the center of the sphere. Now, if one has a pair of spheroids in
the far-field regime, the electrostatic field of a spheroid can be

FIG. 11. Dimensionless torque on the prolate spheroid
4πε0aq−2T 1 · k̂ for Q1 = q, Q2 = 2q, as a function of separation
s21 = [|x21| − dmin(ψ )]/a for a fixed ψ ≡ arccos(x̂21 · p) = π/4,
where k̂ is a unit vector along (p × x̂21). The method of reflections
aligns well with the BIM in the far field. The sign change in the
torque at close range indicates an attractive electrostatic force due to
induction. While the first reflection fails to predict this sign change,
the second reflection captures it but loses accuracy in this close
range.

approximated by the field due to a point charge located at its
center. Therefore, in the far-field regime, the force and torque
expressions [Eqs. (34)–(37)] serve as good approximations
even for a spheroid-spheroid system. The comparison between
torque due to first and second reflections and the BIM is
shown in Fig. 11.

Studies have shown that electrostatic interactions, when
combined with hydrodynamic interactions, can result in stable
configurations for a pair of spheres [39]. An array of spheres
and spheroids, as well as a dilute suspension of hydrodynam-
ically interacting spheroids, have been found to be unstable
to density perturbations [40–42]. The potential role of elec-
trostatics in altering the stability of such systems remains
unexplored.

In the like-charged anisotropic system, the electrostatic
torque tends to align the spheroid in a broadside orientation
relative to the separation vector x21, as illustrated in Fig. 12.
In contrast, for oppositely charged particles, the stable orien-
tation changes to thin side, as evident from Eqs. (36) and (37).
These stable configurations contrast with the same system
interacting hydrodynamically in a viscous flow [42], where

FIG. 12. Dimensionless torque on the prolate spheroid
4πε0aq−2T 1 · k̂ for Q1 = Q2 = q, as a function of
ψ ≡ arccos(x̂21 · p) for fixed s21 = [|x21| − dmin(ψ )]/a = 2,
where k̂ is a unit vector along (p × x̂21). The change in the sign of
the torque shows a stable configuration of the prolate spheroid and
sphere system about ψ = π/2, as indicated in the insets.
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FIG. 13. Schematic showing the favorable orientations of a sed-
imenting spheroid interacting with another sedimenting spheroid
through electrostatic and hydrodynamic interactions in the far-
field regime. In the case of purely hydrodynamic interactions, one
spheroid disturbs the flow as a force monopole (indicated by the red
arrow) and causes the other spheroid to align along the extensional
axis of the locally disturbed strain field (indicated by blue arrows).
When electrostatic interactions are included, the electrostatic torque
can either compete with or reinforce the hydrodynamic alignment,
depending on whether the spheroid is in a trailing or a leading posi-
tion. The black-shaded spheroids represent the favorable orientations
due to electrostatic effects, while the light blue-shaded spheroids
indicate those due to hydrodynamic effects. (a) For like-charged
spheroids, the electrostatic torque competes with the hydrodynamic
alignment for a trailing spheroid, as indicated by the arrows, while
it reinforces the alignment for a leading spheroid. (b) For oppositely
charged spheroids, the effects are reversed: the electrostatic torque
competes with the hydrodynamic alignment for a leading spheroid
and reinforces it for a trailing spheroid. This has implications in
changing the stability of the dilute suspension of charged spheroids.

a spheroid falling above another one tends to align its thin
side along their separation vector (see Fig. 13). As a result,
in a dilute suspension of sedimenting charged spheroids, the
hydrodynamic torque on a spheroid counteracts the electro-
static torque in some regions while reinforcing it in others.
Consequently, incorporating electrostatic effects in such sys-
tems could alter the instability typically observed in purely
hydrodynamic interactions [42].

IV. CONCLUSION

We have used the method of reflections to compute the
potential matrix for sphere-sphere and spheroid-sphere con-
ductors. This allows us to determine the electrostatic forces
and torques acting on these conductors in the far-field regime.
The formulation is general enough to be applied to arbitrary
shapes as long as their singularity solutions are known, as dis-
cussed in the Appendixes. We also compute the electrostatic
force under the lubrication approximation for nearly touching
conductors in the axisymmetric configuration. To determine
this close-range force accurately an order one constant δ is
needed, which has been determined using the BIM. We also
test the validity of the method of reflections with the BIM
when the conductors are closely separated. The results show
that second reflection works well until the separation is of the
order of the size of the conductors.

The anisotropy of the problem of electrostatic interaction
between a spheroid and a sphere results in the electrostatic
torque. This torque tends to align the spheroid-sphere sys-
tem in a manner different from the alignment due to pure
hydrodynamic interactions [42] (see Fig. 13). This naturally
prompts the question: how does the instability in a dilute sus-
pension of sedimenting spheroids change when electrostatic
effects are taken into account? Our work offers a foundational
approach for computing electrostatic forces and torques on
anisotropic particle pairs, demonstrated with example cases
for a spheroid-sphere system, using the potential matrix.
In the dilute regime, the simpler first-reflection expressions
[Eqs. (36) and (37)] can be used to account for electrostatic
interactions between spheroids and study the evolution of
density perturbations in a spheroid suspension.

This work draws extensively on concepts from microhy-
drodynamics but deliberately excludes its effects to avoid
additional complexity. However, in natural settings, micro-
hydrodynamics and electrostatic effects often act together.
Understanding the role of electrostatic forces in clustering
within clouds, for instance, sheds light on the formation and
dynamics of ice crystals and droplets. While hydrodynamic-
driven clustering and orientation dynamics through turbulence
has been extensively explored [43,44,47], the role of elec-
trostatic interactions remains underexamined. Such insights
can further our understanding of processes such as rain ini-
tiation, hail formation, and the structural evolution of clouds
under varying atmospheric charge distributions. Beyond at-
mospheric science, applications extend to areas like the
control of particulate matter in industrial filtration [2], the
alignment of particles in electric fields in colloidal chemistry
[4], and the behavior of charged proteins in biophysics [3],
where electrostatic torques influence assembly and organiza-
tion.
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APPENDIX A: SINGULARITY SOLUTIONS FOR
SPHEROIDS IN ELECTROSTATICS

The singularity solutions for the boundary value problems
of the Laplace equation involve representing the solution in
terms of the Green’s function G of the Laplace equation and
its higher derivatives located outside the domain of interest.
The Green’s function of the free-space Laplace equation in
three dimensions satisfies

∇2G(x) = −δ(x) (A1)

and is given by

G(x) = 1

4π |x| . (A2)
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1. Charged prolate spheroid

Any point x on a prolate spheroid Sp with semimajor axis
a and aspect ratio κ (>1), oriented along the unit vector p and
centered at origin is given by

x ·
[

1

a2
pp + 1

a2κ−2
(1 − pp)

]
· x = 1, x ∈ Sp. (A3)

The boundary value problem to be solved for the potential
field outside Sp is

∇2φ(x) = 0, (A4a)

φ(x) = φ0, x ∈ Sp, (A4b)

φ(x) → 0 as |x| → ∞. (A4c)

The solution can be represented in terms of a uniform charge
distribution located along the symmetry axis of Sp as [46]

φ(x) = φ0

{
2π

arctanh e

∫ ae

−ae
G(x − ξ p)dξ

}
, (A5)

where e =
√

1 − b2/a2 is the eccentricity. The total charge Q
on the surface of Sp is given by

Q = −ε0

∮
Sp

n̂ · ∇φ dS = − ε0

∫
Vp

∇2φ dτ

=
[

4πaε0e

arctanh e

]
φ0, (A6)

where ε0 is the permittivity of the free space and n̂ is the
outward normal vector to Sp and Vp is the volume inside Sp.
Therefore, the capacitance C ≡ Q/φ0 of the perfectly con-
ducting prolate spheroid Sp is given by [23,25–27]

C = 4πaε0e

arctanh e
. (A7)

Note that lime→0 C = 4πaε0, which is the capacitance of a
sphere of radius a.

2. Charged oblate spheroid

The singularity solution of an oblate spheroid can be de-
rived from that of a prolate spheroid using the eccentricity
transformation [29]

e → ie√
1 − e2

. (A8)

Therefore, the potential field due to an isolated oblate spheroid
described by Eq. (A3) with κ < 1 is given by

φ(x) = φ0

{
2π

arcsin e

∫ ae/κ

−ae/κ
G(x − iξ p)dξ

}
. (A9)

Note that for cartesian coordinates aligned such that the unit
vector p is along the z axis, G(x − iξ p) gives rise to a term

1√
x2+y2+(z−iξ )2

, which is singular on the disk of radius ξ in

the x-y plane (z = 0), which corresponds to the singularity
distribution for an oblate spheroid [22].

Correspondingly, the capacitance of an isolated oblate
spheroid is given by [23,25–27]

C = 4πaε0e

κ arcsin e
. (A10)

3. Grounded prolate spheroid in presence
of a uniform electric field

The potential field in this case can be divided into two
parts as φ = φd + φ∞. Here φd is the disturbance potential
produced by the grounded prolate spheroid so as to maintain
zero potential on its surface and φ∞ = −E∞ · x, with E∞

being the ambient uniform electric field. The boundary value
problem to be solved for φd (x) outside Sp in this case is

∇2φd (x) = 0, (A11a)

φd (x) = E∞ · x, x ∈ Sp, (A11b)

φd (x) → 0 as |x| → ∞. (A11c)

The solution can be represented as [46]

φd (x) = E∞ ·
{

6πXC
p

e3
p
∫ ae

−ae
ξ G(x − ξ p)dξ

− 3πY C
p

e3
(1 − pp) · ∇

∫ ae

−ae
(a2e2 − ξ 2)

× G(x − ξ p)dξ

}
, (A12)

where

XC
p ≡ e3

3
(arctanh e − e)−1, (A13a)

Y C
p ≡ 2e3

3

(
e

1 − e2
− arctanh e

)−1

. (A13b)

The first integral term in Eq. (A12) represents a linear charge
distribution along the symmetry axis, whereas the second
integral term represents the parabolic distribution of dipole
moments pointing perpendicular to the symmetry axis. Note
that the charge distribution in the first integral term has
nonzero dipole moment but zero net charge. The induced
dipole moment d is given by

d = −ε0

∮
Sp

x n̂ · ∇φ dS = −ε0

∫
Vp

[∇φ + x ∇2φ]dτ.

(A14)
The volume integral of the gradient term does not contribute
since φ = 0 on Sp and∫

Vp

∇φ dτ =
∮

Sp

φn̂ dS = 0. (A15)

Therefore, the dipole moment is given by

d = − ε0

∫
Vp

x ∇2φd dτ

= 4πa3ε0
[
XC

p pp + Y C
p (1 − pp)

] · E∞. (A16)

Note that lime→0 XC
p = lime→0 Y C

p = 1 resulting in
lime→0 d = 4πa3ε0E∞ and we get the dipole moment of
a sphere of radius a. We can rewrite Eq. (A12) in terms of the
dipole moment d as

φd (x) = 3

2a3e3ε0
d · p

∫ ae

−ae
ξ G(x − ξ p)dξ
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− 3

4a3e3ε0
d · (1 − pp) · ∇x

∫ ae

−ae
(a2e2 − ξ 2)

×G(x − ξ p)dξ . (A17)

4. Grounded oblate spheroid in presence
of a uniform electric field

We again use the eccentricity transformation (A8) to obtain
the dipole moment d and disturbance potential field φd (x) due
to a grounded oblate spheroid in the presence of a uniform
background electric field E∞. The dipole moment is given by

d = 4πa3ε0
[
XC

o pp + Y C
o (1 − pp)

] · E∞, (A18)

where

XC
o ≡ e3

3
[e(1 − e2) − (1 − e2)3/2 arcsin e]−1, (A19a)

Y C
o ≡ 2e3

3
[e(1 − e2)2 − (1 − e2)3/2 arcsin e]−1. (A19b)

The disturbance potential field is given by

φd (x) = 3κ3

2a3e3ε0

{
d · p

∫ ae/κ

−ae/κ
−iξ G(x − iξ p)dξ

− 1

2
d · (1 − pp) · ∇x

∫ ae/κ

−ae/κ

(
a2e2

κ2
− ξ 2

)

×G(x − iξ p)dξ

}
. (A20)

APPENDIX B: FAXÉN LAWS FOR ARBITRARY SHAPED
CONDUCTORS IN ELECTROSTATICS

Faxén laws for electrostatics can be derived analogously
to those in microhydrodynamics [22], using the reciprocal
theorem. The electrostatic counterpart for spheres is detailed
in [24], and we extend this framework to arbitrarily shaped
conductors. Let φ1 and φ2 be two fields in the same domain
D. The reciprocal theorem states that∫

D
φ2∇2φ1dτ −

∫
D

φ1∇2φ2dτ

=
∮

∂D
φ2∇φ1 · n dS −

∮
∂D

φ1∇φ2 · n dS, (B1)

where n is the normal vector to the boundary of the domain
D, denoted by ∂D, pointing away from D. In the context of
a conductor placed in a potential field, D is the region in R3

bounded by the surface of the conductor and a large sphere “at
infinity.”.

1. Faxén law for total charge and potential on a conductor

We follow the approach of [22] to relate the total charge
Q on the surface of a conductor to its surface potential V
in the presence of an arbitrary background potential field
φ∞(x), such that φ∞(x) ∼ O(1/|x|) as x goes to infinity. Let
us denote the surface of an arbitrary shaped conductor by Sp.
Note that total charge on Sp due to a potential φ(x) outside it,

is given by

Q = −ε0

∮
Sp

∇φ · n̂ dS, (B2)

where n̂ is the outward pointing normal vector to Sp and ε0 is
the permittivity of free space.

We use the reciprocal theorem with the details of the two
fields as follows:

(1) Take φ1 to be the potential field satisfying the Laplace
equation outside the isolated conductor with φ1 = φ10 on Sp,
where φ10 is some constant and φ1 goes to zero at infinity.
This is a case of an isolated conductor with some charge Q1

on its surface given by Q1 = Cφ10, where C is the capacitance
of the conductor.

(2) Take φ2 to be the potential field given by the solution
of ∇2φ2(x) = −Q′ε−1

0 δ(x − y), where y ∈ D, with φ2 = V
on Sp. Here the ambient potential field φ∞

2 (x) is given by
a point charge located at y and the conductor produces a
disturbance field in order to satisfy the boundary condition
on its surface. Let Q2 be the charge on the conductor, which is
to be determined using the reciprocal theorem.

Using Eqs. (B1) and (B2), we have [48]

Q′φ1(y) = Q1V − Q2φ10 ⇒ Q2φ10 = Cφ10V − Q′φ1(y).
(B3)

Now, φ1(y) can be represented in terms of a singularity solu-
tion as

φ1(y) = φ10FV {G(y − ξ)} = φ10FV {G(ξ − y)}. (B4)

Here FV is the corresponding linear functional and ξ rep-
resents the region inside the conductor over which the
singularities are distributed. Using Eqs. (B3) and (B4), we
have

Q2 = CV − Q′FV {G(ξ − y)} = CV − FV
{
φ∞

2 (ξ)
}
. (B5)

Here we have used the fact that Q′G(ξ − y) = φ∞
2 (ξ). How-

ever, all ambient fields φ∞(x) that decay at infinity and satisfy
the Laplace equation can be constructed using an appropriate
set of point charges. Therefore, Eq. (B5) applies to a general
ambient field φ∞(x). Thus, the relation between charge Q on
a conductor and the potential V on its surface in the presence
of a background potential field φ∞(x) is given by

Q = CV − FV {φ∞(ξ)}. (B6)

This result can be directly applied to the bodies with
known singularity solution of the form given in Eq. (B4).
In particular, for a prolate spheroid with semimajor axis a,
eccentricity e, and orientation vector p we have the singularity
representation given by Eq. (A5) and capacitance by Eq. (A7).
Therefore, the charge Q on the prolate spheroid in the pres-
ence of a background potential field φ∞ is given by

Q = 4πaε0e

arctanh e

{
V − 1

2ae

∫ ae

−ae
φ∞(xc + ξ p)dξ

}
, (B7)

where c = ae and xc denotes the center of the prolate
spheroid.

Similarly, the charge relation for an oblate spheroid with
semimajor axis a and orientation vector p in the presence of a
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background potential field φ∞ is given by

Q = 4πaε0e

κ arcsin e

{
V − κ

2ae

∫ ae/κ

−ae/κ
φ∞(xc + iξ p)dξ

}
. (B8)

2. Faxén law for induced dipole moment on a conductor

To relate the induced dipole moment d on a conductor due
to the presence of an ambient potential field φ∞(x), we again
use the reciprocal theorem with the details of the two fields as
follows:

(1) Take φ1 to be the potential field satisfying the Laplace
equation outside the isolated conductor with φ1 = E∞

10 · x on
Sp, where E∞

10 is a constant electric field and φ1 goes to zero
at infinity. This is a case of the disturbance potential produced
by a grounded isolated conductor placed in a uniform ambient
field E∞

10.
(2) Take φ2 to be the potential field given by the solution

of ∇2φ2(x) = −Q′ε−1
0 δ(x − y), where y ∈ D, with φ2 = 0 on

Sp. The goal is to determine the induced dipole moment d2 in
this case.

Applying the reciprocal theorem in these two fields gives

Q′φ1(y) = ε0E∞
10 ·

∮
Sp

x∇φ2 · n̂ dS = −E∞
10 · d2, (B9)

where we have used the fact that the surface charge density
on the conductor is given by σ2 = −ε0∇φ2 · n̂ and dipole
moment d2 is simply the first moment of this charge density
on the conductor. Now, φ1(y) can be represented in terms of
singularity solution as

φ1(y) = E∞
10 · FE {G(y − ξ)} = E∞

10 · FE {G(ξ − y)}. (B10)

Here FE is the corresponding linear functional and ξ rep-
resents the region inside the conductor over which the
singularities are distributed. Using this in Eq. (B9) and fac-
toring out E∞

10, we have

d2 = −FE {Q′G(ξ − y)} = −FE
{
φ∞

2 (ξ)
}
, (B11)

where φ∞
2 is the ambient potential field in the second case.

Again, for the general ambient field φ∞(x) constructed using
an appropriate set of point charges, the dipole moment d on
the conductor is simply given by

d = −FE {φ∞(ξ)}. (B12)

This result can be directly applied to the bodies with a
known singularity solution of the form given in Eq. (B10).
In particular, for a prolate spheroid with semimajor axis a,
eccentricity e, and orientation vector p we have the singularity
representation given by Eq. (A12). Therefore, the induced
dipole moment on the prolate spheroid in the presence of a
background potential field φ∞ is given by

d = − 4πa3ε0

[
3

2a3e3
XC

p p
∫ ae

−ae
ξ φ∞(xc + ξ p)dξ

+ 3

4a3e3
Y C

p (1 − pp) · ∇xc

∫ ae

−ae
(a2e2 − ξ 2)

× φ∞(xc + ξ p)dξ

]
. (B13)

Similarly, the dipole moment of an oblate spheroid with
semimajor axis a and orientation vector p in the presence of a
background potential field φ∞ is given by

d = − 4πa3ε0
3κ3

2a3e3

[
XC

o p
∫ ae/κ

−ae/κ
iξφ∞(xc + iξ p)dξ

+ Y C
o

2
(1 − pp) · ∇xc

∫ ae/κ

−ae/κ

(
a2e2

κ2
− ξ 2

)

× φ∞(xc + iξ p)dξ

]
. (B14)

APPENDIX C: ELECTROSTATIC INTERACTIONS USING
THE METHOD OF REFLECTIONS

The exact way to incorporate electrostatic interaction
between conductors would require obtaining a harmonic po-
tential field which satisfies the constant potential boundary
conditions on the surface of each conductor. This problem
is barely tractable for two spheres, and hence we need to
resort to some approximate methods such as the method of
reflections for more complex shapes like spheroids.

Method of reflections is an iterative scheme widely used in
microhydrodynamics to calculate hydrodynamic interactions
between widely separated bodies [22]. This method produces
a perturbation series in terms of the order a/R where a is the
typical size of the objects and R is their typical separation. The
method is described in [22] and is outlined for an electrostatic
interaction between two conductors as follows.

In the zeroth-order approximation, the solution for two
conductors (denoted S1 and S2) that are far apart is obtained
by simply adding the potential fields of each isolated conduc-
tor, meaning the electrostatic interactions between them are
ignored. Let φ1 and φ2 be two potential fields such that

φ1(x) = V1, x ∈ S1, (C1a)

φ2(x) = V2, x ∈ S2. (C1b)

However, φ = φ1 + φ2 does not satisfy the boundary condi-
tions on either of the surfaces. In fact, the error in the boundary
condition on Sα is φ3−α (x), which is of the order of a/R. The
fields φ1(x) and φ2(x) are called the first incident fields on
the conductors S2 and S1, respectively. Now, S1 produces a
disturbance field φ21 and S2 produces a disturbance field φ12

such that

φ21(x) = −φ2(x), x ∈ S1, (C2a)

φ12(x) = −φ1(x), x ∈ S2. (C2b)

These disturbance fields are called the reflected fields, which
accounts for the correction in the boundary conditions. Now,
φ = φ1 + φ2 + φ21 + φ12 is a better approximation to the
complete solution because the error in the boundary condi-
tions is now O(φ12) ∼ O(φ21), which takes contributions from
higher multipole moments and decays faster than a/R. This
procedure can be iterated with the reflected fields from one
conductor being incident on the other conductor and produc-
ing subsequent reflected fields. We shall apply this method up
to second reflections in the case of interacting spheroids.
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1. Far-field interaction of two prolate spheroids

Consider two prolate spheroids S1 and S2 with semimajor
axes a1 and a2, eccentricities e1 and e2, position vectors x1

and x2, and orientations p1 and p2, respectively. Faxén laws
[see Eq. (B7)] can be used to relate the potentials V1 and V2

on the surfaces of the spheroids to their total charges Q1 and
Q2, respectively. The ambient field around the first spheroid
is generated by the second spheroid and can be expressed
perturbatively using the method of reflections. The same ap-
proach applies to the second spheroid, where its ambient field
is influenced by the first spheroid. Using Eq. (B7), we have
for the first spheroid

V1 = Q1
arctanh e1

4πa1ε0e1
+ 1

2a1e1

∫ a1e1

−a1e1

φ∞
2 (x1 + ξ1 p1)dξ1,

(C3a)

V2 = Q2
arctanh e2

4πa2ε0e2
+ 1

2a2e2

∫ a2e2

−a2e2

φ∞
1 (x2 + ξ1 p2)dξ1.

(C3b)

Using the method of reflections, we have

φ∞
1 (y) = φ1(y) + φ21(y) + φ121(y)..., (C4a)

φ∞
2 (y) = φ2(y) + φ12(y) + φ212(y)... . (C4b)

Here φ1(y) and φ2(y) are the zeroth-order disturbance fields,
φ21(y) and φ12(y) are the first reflection fields, and φ121(y) and
φ212(y) are the second reflection fields produced by S1 and S2,
respectively.

The zeroth-order solution to the problem is

V (0)
1 = Q1

arctanh e1

4πa1ε0e1
, V (0)

2 = Q2
arctanh e2

4πa2ε0e2
. (C5)

Since φ1 and φ2 are the potentials due to isolated spheroids S1

and S2, they are given by Eqs. (A5) and (A6) as

φ1(y) = Q1

2ε0a1e1

∫ a1e1

−a1e1

G(y − x1 − ξ1 p1)dξ1, (C6a)

φ2(y) = Q2

2ε0a2e2

∫ a2e2

−a2e2

G(y − x2 − ξ1 p2)dξ1. (C6b)

The first-order correction comes through the first reflection as

V (1)
1 = 1

2a1e1

∫ a1e1

−a1e1

φ2(x1 + ξ1 p1)dξ1, (C7a)

V (1)
2 = 1

2a2e2

∫ a2e2

−a2e2

φ1(x2 + ξ1 p2)dξ1, (C7b)

with the first reflection fields φ21 and φ12 represented to the
leading order in a/R by the dipole moments d (1)

1 and d (1)
2 . The

explicit expression for the first reflection field φ12 by spheroid
S2 is [see Eq. (A17)]

φ12(y) = 3

2a3
2e3

2ε0

[
d (1)

2 · p2

∫ a2e2

−a2e2

ξ2 G(y − x2 − ξ2 p2)dξ2

− d (1)
2

2
· (1 − p2 p2) · ∇y

∫ a2e2

−a2e2

(
a2

2e2
2 − ξ 2

2

)

× G(y − x2 − ξ2 p2)dξ2

]
. (C8)

The dipole moment d (1)
2 is given by the Faxén laws as [see

Eq. (B13)]

d (1)
2 = − 4πa3

2
3

2a3
2e3

2

[
XC

2 p2

∫ c2

−c2

ξ2 dξ2

∫ a1e1

a1e1

Q1

2a1e1

× G(x2 + ξ2 − x1 − ξ1) dξ1 + Y C
2

2
(1 − p2 p2) · ∇x2

×
∫ a2e2

−a2e2

(
a2

2e2
2 − ξ 2

2

) ∫ a1e1

a1e1

Q1

2a1e1

× G(x2 + ξ2 − x1 − ξ1)dξ1

]
, (C9)

where we have used Eq. (C6) for φ1(y) in place of φ∞ in
Eq. (B13). The corresponding first reflection field φ21(y) and
the dipole moment d (1)

1 is obtained by simply switching the
labels 1 and 2.

The next order correction comes through the second reflec-
tion as

V (2)
1 = 1

2a1e1

∫ a1e1

−a1e1

φ12(x1 + ξ1 p1)dξ1, (C10a)

V (2)
2 = 1

2a2e2

∫ a2e2

−a2e2

φ21(x2 + ξ1 p2)dξ1, (C10b)

with the second reflection fields φ121 and φ212 represented
to the leading order in a/R by the dipole moments d (2)

1 and
d (2)

2 . These dipole moments can again be obtained using
Faxén laws [Eq. (B13)] with first reflection fields in place
on φ∞.

Therefore, up to second reflections, the potentials on the
surface of the spheroids are related to their respective total
charges as Vα = V (0)

α + V (1)
α + V (2)

α , α ∈ {1, 2}. These inter-
action potentials are accurate up to O(a4/R4).

2. Far-field interaction of a prolate spheroid and a sphere

Knowing the procedure for two spheroids, it is easy to look
at a special case where the second spheroid is a sphere. This
simplification is analytically tractable to obtain closed-form
expressions without losing the flavor of anisotropy in the
problem. Consider a spheroid S1 centered at x1 with semi-
major axis a, aspect ratio κ , eccentricity e ≡ √

1 − κ−2, and
orientation vector p, carrying total charge Q1. The second
conductor is a sphere S2 centered at x2 with radius γ a and
total charge Q2. The relative separation vector between them
is x21 ≡ x2 − x1 ≡ −x12. The relation between the surface
potentials of S1 and S2 can be found by either taking limit
e2 → 0 in the previous analysis or by applying the method
of reflection to this system. The results up to the second
reflection are stated as follows:

V1 = Q1

4πaε0

(
arctanh e

e

)
+ V (1)

1 + V (2)
1 , (C11a)

V2 = Q2

4πε0γ a
+ V (1)

2 + V (2)
2 , (C11b)
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where

V (1)
1 = Q2

2aeε0

∫ ae

−ae
G(x12 + ξ p)dξ, (C12a)

V (1)
2 = Q1

2aeε0

∫ ae

−ae
G(x21 − ξ p)dξ, (C12b)

and

V (2)
1 = − 1

2aeε0

∫ ae

−ae
d (1)

2 · ∇x1G(x12 + ξ p)dξ, (C13a)

V (2)
2 = 3

2a3e3ε0

∫ ae

−ae
d (1)

1 ·
{

p ξ G(x21 − ξ p)

−1

2
(a2e2 − ξ 2)(1 − pp) · ∇x2G(x21 − ξ p)

}
dξ .

(C13b)

Here the dipole moments are given by

d (1)
1 = −4πa3Q2

3

2a3e3

∫ ae

−ae

{
XC

p p ξ G(x12 + ξ p)

+ 1

2
Y C

p (a2e2 − ξ 2)(1 − pp) · ∇x1G(x12 + ξ p)

}
dξ,

(C14a)

d (1)
2 = −4πγ 3a3Q1

1

2ae
∇x2

∫ ae

−ae
G(x2 − x1 − ξ p)dξ .

(C14b)

These line integrals over G can be computed analytically
[46,49]. After some algebra, we arrive at the closed-form
expressions for the potentials given by

V (1)
1 = Q2

4πaε0

1

2e
ln

(
z12 − ae − R−
z12 + ae − R+

)
, (C15a)

V (1)
2 = Q1

Q2
V (1)

1 , (C15b)

where

R± ≡
√

ρ2
12 + (z12 ± ae)2,

ρ2
12 ≡ x12 · (1 − pp) · x12, z12 ≡ x12 · p. (C16)

The second-order corrections are given by

V (2)
1 = − Q1

4πaε0

a2γ 3

4e2

[(
1

R−
− 1

R+

)2

+ ρ2
12

×
(

1

R+(z12 + ae − R+)
− 1

R−(z12 − ae − R−)

)2
]
,

(C17)

V (2)
2 = − Q2

4πaε0

9

4a2e6

[
XC

p

{
R− − R+

+ z12 ln

(
z12 − ae − R−
z12 + ae − R+

)}2

+ Y C
p

4

{
z12

ρ12
(R− − R+) + ae

ρ12
(R− + R+)

− ρ12 ln

(
z12 − ae − R−
z12 + ae − R+

)}2]
. (C18)

Recall that XC
p and Y C

p are given by Eq. (A13).

3. Far-field interaction of a oblate spheroid and a sphere

The eccentricity transformation (A8) allows us to directly
obtain the surface potential from the prolate spheroid and
sphere case, given below.

V1 = Q1

4πaε0

(
κ arcsin e

e

)
+ V (1)

1 + V (2)
1 , (C19a)

V2 = Q2

4πε0γ a
+ V (1)

2 + V (2)
2 . (C19b)

The first-order corrections are

V (1)
1 = Q2

4πaε0

κ

e
arccot

(
z12 − u

v − ae/κ

)
, (C20a)

V (1)
2 = Q1

Q2
V (1)

1 , (C20b)

where

u ≡
√

μ

2
+

√
μ2

4
+ a2e2

κ2
z2

12,

μ ≡ |x12|2 − a2e2

κ2
, v ≡ aez12

κu
. (C21)

The second-order corrections are given by

V (2)
1 = − Q1

4πaε0

κ2a2γ 3

4e2

[(
2v

u2 + v2

)2

+ ρ2
12

{
4aeκ−1z12 − 2(z12v + aeκ−1u)

(u2 + v2)[(z12 − u)2 + (aeκ−1 − v)2]

}2
]
,

(C22a)

V (2)
2 = − Q2

4πaε0

9κ6

a2e6

[
XC

o

{
v − z12arccot

(
z12 − u

v − aeκ−1

)}2

+ 1

4
Y C

o

{
aeκ−1u−z12v

ρ12
−ρ12arccot

(
z12 − u

v − aeκ−1

)}2
]
.

(C22b)

Recall that XC
o and Y C

o are given by Eq. (A19).

APPENDIX D: BOUNDARY INTEGRAL FORMULATION
FOR ARBITRARY SHAPED CONDUCTORS IN

ELECTROSTATICS

The external Dirichlet problem of N charged conductors in
an unbounded medium in electrostatics is

∇2φ(x) = 0, (D1a)

φ(xs) = Vα, for xs ∈ Sα, (D1b)

φ(x) → 0 as |x| → ∞, (D1c)
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where Sα denotes the surface of conductor α and α ∈
{1, 2, ..., N}. In a manner similar to microhydrodynamics
[22,31–33,50], the potential field φ(x0) can be represented in
terms of a double-layer potential as

ε0φ(x0) = − 2
N∑

α=1

∮
Sα

qα (x)n̂α · ∇xG(x, x0)dSα (x)

+
N∑

α=1

QαG(x0, xα ). (D2)

Here the first term denotes the double-layer potential, qα is
an unknown double-layer density, n̂α is outward normal to the
surface Sα , Qα is the total charge on Sα , and xα is a point lying
inside the conductor Sα . The unknown double-layer densities
qα are determined using the boundary conditions

lim
x0→S+

α

φ(x0) = Vα, α ∈ {1, 2, . . . N}, (D3)

where x0 → S+
α denotes the approach to the surface Sα is from

the outside of the surface, i.e., along n̂α [51]. The second
term involving Qα is needed to complete the double-layer
representation [22,50]. Applying the boundary condition in
Eq. (D2), we obtain a second kind of integral equations given
by

N∑
β=1

(
Ld

αβ + δαβ

)
qβ (xs) =

N∑
β=1

QβG(xs, xα ) − ε0Vα, (D4)

where α ∈ {1, 2, .., .N} and Ld
αβ is the double-layer operator

given by

Ld
αβqβ (xs) ≡ 2

∮
Sβ

qβ (x) n̂β · ∇xG(x, xs)dSβ (x), (D5)

xs ∈ Sα. Given total charges Qα on each conductor, we are
required to obtain the potentials Vα on the surface of each con-
ductor. Using Ld

αβc = −c δαβ where c is a constant function
defined on the surface of Sβ , we see that (D4) has no unique
solution. Since Vα’s are unknown, one chooses the solutions
qα such that the projection of qα onto the subspace of constant
functions (which are eigenfunctions of Ld

αβ ) is exactly Vα . The
corresponding projection operator is given by

Pc
αβqβ ≡ 1

|Sα|δαβ

∮
Sβ

qβ (x)dSβ (x), (D6)

where |Sα| is the surface area of conductor Sα . Therefore,
choosing

∑N
β=1 Pc

αβqβ = Vα not only fixes the nonuniqueness
problem but also determines the Vα’s once the solutions qα

are known. This leads to a well-defined second kind integral
equation given by

N∑
β=1

(
Ld

αβ + Pc
αβ + δαβ

)
qβ (xs) =

N∑
β=1

QβG(xs, xα ), (D7)

α ∈ {1, 2, ..., N}, with the potential fields given by

ε0Vα = 1

|Sα|
∮

Sα

qα (x)dSα (x), α ∈ {1, 2, ..., N}. (D8)

Using arguments similar to those in [22,50], it can be shown
that the spectrum of Ld

αβ + Pc
αβ lies in the interval (−1, 1)

and hence Eq. (D7) admits a unique solution which can be
obtained through Picard iterations.

To solve the boundary integral equations (D7) for a
spheroid and a sphere we perform the surface integrals using
Gaussian quadrature defined on the surfaces [31,37] using the
parametric equations of the surfaces. GMRES [31,36] is used
to converge to the solutions.
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