PHYSICAL REVIEW E 111, 035410 (2025)

Electrostatic interactions between anisotropic particles

Harshit Joshi
International Centre for Theoretical Sciences, Bengaluru (ICTS-TIFR), Karnataka 560089, India

Anubhab Roy
Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India

® (Received 10 January 2025; accepted 25 February 2025; published 20 March 2025)

We investigate the electrostatic interactions between two charged anisotropic conductors using a combination
of asymptotic and numerical methods. For widely separated particles, we employ the method of reflections to
analyze the interactions. Although the formulation applies to conductors of arbitrary shapes, it is specifically
implemented for spheroid-sphere systems to capture anisotropy effects in a simple configuration. In near-contact
cases with axisymmetric configurations, the lubrication approximation is used to extend the analysis. Addition-
ally, we develop a boundary integral method to study particle interactions at arbitrary separations, validating
the results with asymptotic solutions for both near and far fields. We derive analytical expressions for the
electrostatic force and torque on a spheroid due to another spheroid in the far-field regime. When combined
with hydrodynamic effects, the electrostatic torque competes with the hydrodynamically favorable alignments
of a pair of settling spheroids in certain regions while reinforcing them in others. Consequently, the inclusion of

electrostatic effects may influence the instability observed in dilute suspensions of spheroids.
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I. INTRODUCTION

Electrostatic interactions play a significant role in various
natural and industrial processes, influencing behaviors across
systems as diverse as atmospheric phenomena, biological
assemblies, and colloidal suspensions [1-5]. In atmospheric
science, for example, electrostatic forces are integral to cloud
formation, where charged particles, including ice crystals
and droplets, cluster and interact in complex ways that im-
pact precipitation and cloud evolution [5]. Even droplets
bearing the same charge can coalesce due to electrostatic
induction effects, enabling attraction through localized po-
larization despite net repulsion between like charges [6-8].
This phenomenon, while extensively studied for simple ge-
ometries like spherical particles [9,10], is less understood in
realistic cases involving anisotropic interactions and irregular
shapes.

One of the simplest nonspherical shapes relevant in such
studies is the spheroid, a shape commonly found in atmo-
spheric ice crystals and approximations of biological and
industrial particles. To better understand the interaction of
such anisotropic objects, this study focuses on the electrostatic
interaction between a conducting sphere and a spheroidal
body. Specifically, this work presents a calculation of the
electrostatic torque exerted on a spheroid by a nearby sphere,
which represents a key contribution to modeling how such
particles align and rotate under electrostatic forces. This
torque, together with the corresponding interaction forces,
could be incorporated into cloud microphysics models to
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complement hydrodynamic models that already consider
droplet interactions driven by hydrodynamic forces [11]. In
mixed-phase clouds, ice crystals collide with supercooled
liquid droplets, becoming coated in a process called rim-
ing [12,13]. Riming is a critical process in the formation
of precipitation-sized hydrometeors within clouds. Precise
calculation of the interaction forces between the anisotropic
hydrometeor and the droplet is vital for accurately determin-
ing the collision efficiency during the riming process between
ice particles and supercooled droplets.

Electrical charging mechanisms in clouds involve complex
interactions between droplets, ice crystals, and graupel parti-
cles, driven by a combination of collisions and environmental
factors [5,7]. Field measurements in weakly electrified clouds
show that ice crystal and droplet charges are proportional
to their surface areas [14—16]. Mechanisms such as induc-
tive charging, which arises from the polarization of particles
in an existing electric field, and convective charging, where
vertical air currents separate charged particles, also play a
role in cloud electrification. However, the most significant
mechanism is collisional charging, where charge transfer oc-
curs during collisions between particles. For example, when
supercooled water droplets freeze upon colliding with grau-
pel particles, charge separation occurs due to differences
in ion mobility, thermal properties, and the rime accretion
electrification process [5,17-19]. In these processes, smaller
ice crystals (10-100 um) typically acquire a positive charge,
while larger graupel or hailstones (1-5 mm) gain a negative
charge, with the charge separated during each collision rang-
ing from 107'% to 107! C, depending on factors such as
temperature, impact velocity, and the presence of supercooled
water. Since collisional charging is the dominant process
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driving charge separation in clouds, and ice crystals are inher-
ently anisotropic, understanding the role of particle anisotropy
and their electrostatic interactions is crucial for improving our
understanding of cloud electrification.

Analytical methods for determining electrostatic forces
and torques on multiple conductors are limited to simple
geometries such as sphere-sphere [20] and spheroid-spheroid
in specific configurations [21]. In this work we extend this
computation to two spheroidal conductors in a generic config-
uration in the far-field regime. The far-field calculations are
carried out using the method of reflections, widely used in the
problems of microhydrodynamics [22], and described in detail
in Appendix C. Having obtained the electrostatic interaction
between two spheroids, we explore the role of anisotropy in
the simpler, yet unexplored electrostatic interaction between
a spheroid and a sphere. This system is sufficient to capture
the anisotropy in the problem and provides a manageable
parameter space over which relevant quantities can be ana-
lyzed. We use a boundary integral method (BIM) to uniformly
capture the electrostatic interaction in both far- and near-field
regimes. We compare the BIM with the method of reflections
to determine the proximity at which the method of reflections
starts to lose accuracy for closely spaced conductors. We
derive an analytical expression for the electrostatic force and
torque in the far-field regime using the first reflection, appli-
cable to both spheroid-sphere and spheroid-spheroid systems.
It is speculated that incorporating electrostatic torque in a
dilute suspension of charged spheroids may modify the previ-
ously observed instability in density fluctuations of uncharged
spheroids.

II. METHODS
A. Potential matrix formulation

The electrostatic interaction between multiple conductors
involves determining the potential on the surface of each
conductor, given the total charge on each conductor. This
information is sufficient to determine the total electrostatic
energy of the system and hence compute forces and torques
on each conductor. The governing equation for the potential
outside the conductors is simply the Laplace equation. The
complexity of the problem comes from the boundary condi-
tions that need to be satisfied at the surface of each conductor.
The linearity of governing equations of electrostatics implies
a linear relationship between the total charges on each con-
ductor and the potential on their surfaces. The proportionality
constant is called the potential matrix ®,, [23-27], which
only depends on the permittivity of free space &, size, and
the geometry of the conductors [28]. Since we are interested
in two-body electrostatic interaction, the connection between
charges Q| and O, and the potentials V| and V; on the surface
of the conductors Sy and S is given by

iy _ 1 P P\ (O )
Vo) dmega\ P P J\02)°

where a is the typical size of the conductors and ®;;, i, j €
{1, 2}, are the dimensionless elements of the potential matrix,
®,,, which depends on the relative position, orientations, and
the geometry of the two conductors. Using the reciprocal

FIG. 1. A schematic illustrating the geometric setup for electro-
static pair interactions between a spheroid and a sphere in a generic,
nonaxisymmetric configuration. The unit vector p represents the
orientation of the spheroid, with a denoting the size of the spheroid, «
denoting its aspect ratio, and y denoting the size ratio of the sphere
to spheroid. (a) Prolate spheroid and a sphere. (b) Oblate spheroid
and a sphere.

theorem, one can show that the potential matrix is symmetric,
ie., ® = &, [23-25].

The subsequent sections are concerned with the calculation
of the potential matrix @), of a spheroid-sphere system in
the far-field, near-field, and uniformly valid regimes. Before
undertaking full numerical calculations, we will first examine
two distinct asymptotic limits: when the particles are widely
separated and when they are nearly touching.

B. Far-field interactions: Method of reflections

The method of reflection is an iterative approach that
progressively satisfies boundary conditions on surfaces by
incorporating corrections from each preceding iteration [22].
The solution to each iteration is given by the multipole ex-
pansions, which yields a perturbation series in a/R, where
a is the typical size of the conductors and R is their typical
separation. A detailed description of this method in the con-
text of electrostatics is given in Appendix C. Here, we briefly
mention the common terminologies of this method. Consider
a prolate spheroid S, carrying a total charge Q;, centered at
x; with a as the distance from its center to the pole along the
symmetry axis denoted by the unit vector p (see Fig. 1). The
spheroid’s aspect ratio « (>1) is defined as the ratio of a to its
equatorial radius lying perpendicular to p, and its eccentricity
is e = +/1 — k2. The surface of this prolate spheroid is given
by

@—x0w55+9%£?q-@—xﬂ=L xeSi @
Here 1 is the identity tensor. The second conductor is a sphere
S, centered at x, with radius ya and total charge Q,, the
surface of which is given by

(x—x2) - (x —x2) = (ya)’, x€S. A3)

The relative separation vector between them is x,; = x; —
x; = —xy3. The first reflection approximation accounts for
the correction of potential fields produced by the sphere and
spheroids as if they were isolated. The corresponding poten-
tial matrix in this case is accurate only up to O(a/R). The
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elements of the potential matrix for a prolate spheroid are given by

dD(lll) = ¢ 'arctanhe, (4a)
1 12 —ae — R_

o) = oV(xpy, ki 4b

12 1 (12, p) = 2¢ In Z12+ae — R, (4b)

oy =y, (40)

where

Ry = \/pi, + (212 £ ae)?, (5a)

piy =x12- (1 = pp) - x12, (5b)
212 = X1 P. (5¢)
Here we use the notation dbf;’) to represent the i jth element of the potential matrix up to the nth reflection. Note that up to the
first reflection correction the effect of interaction is only captured by the off-diagonal terms. Now, the second reflection accounts

for the correction in the potential fields produced in response to the first reflected fields. The corresponding potential matrix in
this case is accurate up to O(a*/R*), with the elements for a prolate spheroid given by

O w1z, ) = o) — L [(i ) (e e ﬂ’ o
42 R_ R, Ry(zin+ae—R,) R_(z1p—ae—R_)
2 (x12, p) = ©P(x12, p) = D) (12, p), (6b)
2
2 (x12. p) = B — 4;66 {x;{R —Ri+zpln (%)}
+ly C{ (R-=R)+2S(R-+R) = puln <M>ﬂ (6¢)
47 Z1p +ae — R,

where

3

Q

ch = ?(a.rctanh e—e)!, (72)
263 -
YPC = % <ﬁ — arctanhe) . (7b)

Now consider an oblate spheroid S, centered at x; with a as the distance from its center to the pole along the symmetry
axis denoted by the unit vector p (see Fig. 1). Its aspect ratio is «(< 1), with an eccentricity of e = +/1 — k2 and it carries a
total charge Q;. The surface of this oblate spheroid S is again given by (2) with the only difference being k < 1. The second
conductor S, is again a sphere of radius ya, centered at x,, carrying a total charge Q. To obtain the corresponding potential

matrix of the spheroid-sphere system we use the eccentricity transformation e — JI’L on the corresponding expressions of the

prolate spheroid [29]. Therefore, for an oblate spheroid and a sphere, we have

K arcsin e

) = ———, (8a)
e

o) — oM (x ,p) = Eaurccot St , 8b

12 21( 12 P) e v—ae/lc ( )

oh =y, (8¢)

where z;; is given by Eq. (5) and u and v are given by

_ [k ur | ate = )@’
u:\/z—’— I‘}‘?Z]z’ n = |x12| - 7’ (93)

aezy

: (9b)
Ku
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Similarly, the second reflection corrections are given by

2423 20 \° daex 212 — 2w +aew) |’
P (xps. p) = d k“avy 12 12 , 10a
11 *12, p) 11 402 W2+ 02 t P W? + v)[(z12 — u)? + (aex ! —v)?] e
W e12 ) = O w12,p) = ¥z, ), e
9 © Zi2 — U ’
o 0 c 12
D5 (x12, p) = D, — e |:X0 {U - leaICCOt(v - ae/c‘1>}
1_o[aex™"u—zov 2 U ’
+ ¥ ———2 — pparccot| ——— ) 1 |, (10
4 012 vV — aek

where

3
%[e(l —e®) — (1 —e»)?arcsine] ™!,

>
a
Il

(11a)
3
yC = %[e(l — )P — (1 — Y Parcsine] ™. (11b)

The potential matrix for two spherical conductors can be
obtained by taking the limit e — 0 in the potential matrix
expression for a prolate spheroid. Therefore, for a spherical
conductor, Sy, of radius a, centered at x|, and another spheri-
cal conductor, S5, of radius ya, centered at x,, the elements of
the potential matrix up to the second reflection are given by

3.4
y a
O () = 1= . (12a)
|21 |
1
P () = 5 (Ix21]) = —, (12b)
|21
1 a*
D5 (jxa) = — — —. (12¢)
2 y o lxeal*

C. Near contact interaction: Lubrication approximation

Using the lubrication approximation for the spheroid-
sphere system in the axisymmetric configuration involves
solving the Laplace equation for the potential field ¢(x) near
the gap of thickness ae between the conductors. Using polar
coordinates with z coordinate along the symmetry axis p and
r coordinate transverse to p, the boundary value problem to
be solved is

¢ 19 [ d¢
Vp=—+-——|r—)=0, 13
: 8z2+r8r<r8r> (130
I, z=h(r)
¢= {Vz, z=hy(r). (130)
The surface of the spheroid and the sphere can be expanded
as
hi(r) K22 1kt Kk6rb
= —+-—+0|— |, 14
ae 2¢a? + 8 ea* + €ab (142)
h 1 2 1 4 6
2(r) _ 1~ 1r r . (14b)
ae 2eya’  8eyiat €y’a

(

Defining the stretched coordinates R = r/(a+/€) and Z =
z/(ae€), we have

K2R? ex*R*
Hi(R) =1+ ~——+——+ O(€?), (15a)
2 €R4 )
Hy(R) = —— — — + 0(¢%). (15b)
2y 8y3

Rewriting the Laplace equation in terms of the stretched coor-
dinates, we have

3¢ €0 ( 09\

ot ﬁﬁ(Rﬁ> =0, (162)
_ i, Z=H({R)

"’—{vz, Z = Hy(R). (16b)

The solution can be expanded in the perturbation series as ¢ =
¢o + €d1 + O(€?). The total charge Q; and Q, on the spheroid
S and sphere S, are given by

O, = _80f Vo - idSy, a€f{l,2}, (17)
S

where i1, represents the unit normal pointing out of the surface
S.- The electrostatic force F | on the spheroid is given by

) P IN
Fi=—@ |V¢-a|'rdS:. (18)
2 Js
Using the zeroth-order solution ¢y, the charge difference
AQpy = Q1 — Q5 is given by

4agyy AVi, | 1+ y«?
n
1+ yx? 2yke

where AV, =V, —V; and § is an O(1) constant which has
to be determined using the outer solution. The weak logarith-
mic singularity is insufficient to overpower the § correction,
even at very small separations €, and therefore § cannot be
neglected. The forces F | and F; are given by

Fi = _Fy~ —%12(1 + yx?)AQY, ' 20)

l6ma’epy e[ In (%) + 8]2

AQyp =

> +8j| +0(e), (19)

Note that for unequal total charges AQ;, # 0, the electrostatic
forces at close range are attractive, regardless of whether the
conductors carry like or unlike charges. The force expression
(20) reduces to the near contact force between two spheres for
x = 1([20,30]).
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We rewrite Eq. (19) in terms of § as

(1+yc*)AQn (Lt yK?
4masyy AVi, 2yke ’

6 = lim
e—0

21

We shall use the BIM to evaluate the right-hand side of the
above equation for € <« 1 and thus obtain §. The numerical
values of the right-hand side of Eq. (21) will have small vari-
ations with € even when € <« 1. This is due to the fact that the
numerical errors in the BIM increases as the surfaces approach
each other [31,32]. The error in the numerical measurement of
8, 1.e., Ad, gives error on the forces |AF| [see Eq. (20)] as

275
[1n (522) + 3]

2yke

|AF| = |F,| : (22)

Note that the relative error in the forces decreases with €. Once
the § is obtained, the lubrication force (20) gives electrostatic
forces in the configurations where the minimum separation
between the conductors becomes vanishingly small.

D. Boundary integral method

The method of reflections is primarily effective for far-field
interactions. Achieving higher accuracy requires additional
reflections, but each successive reflection adds significant
complexity in the analytical expressions. To compute the
interactions in both far- and near-field regimes numerically,
we use the BIM. The BIM formulation is well established
for various linear partial differential equations, including the
Laplace equation [33-35]. A brief formulation of the BIM for
the electrostatic problem with total charges specified on each
conductor is given in Appendix D. Here we outline the main
integral equations to be solved numerically to compute the
potential matrix for a spheroid S; (both prolate and oblate) and
a sphere S,. The potentials on the surface of the conductors are
given by

sV = ﬁ f @S, well,2,  (23)
o S«

where |S,| is the surface area of the conductor S,. The fields
q. are obtained by solving the second-kind integral equa-
tion on every point x,, on the surface of conductor S, :

5(111 + Pfl +1 0112 |:6]1j|
L3, LS, +Ps, +1 |22

_ [ng(xslvxl) + ng(xn,xz)]
~ 016G, x1) + 06 (x0, x2) ||

where Q; and Q, are the charges on the conductors S; and S5,
respectively, and G is the Green’s function of the Laplacian,
given by

(24)

1

4 lx — x|

G(x,xp) = (25)

The integral operators are defined as

Egﬂqﬁ(xs) = 2% qp(xX)ig - VG(x,x,)dSg(x), (26a)

Sp

1
Papds = m&xﬂf qp(x)dSp(x); x5 € Sy, (26b)
o Sﬂ

TABLE I. The values of x and y used in the numerical calcula-
tions for the three systems—sphere-sphere, prolate spheroid-sphere,
and oblate spheroid-sphere—are provided.

K 1 4 0.25

y 1 0.445 3.01

o, B € {1, 2}. Equations (23) and (24) are used to determine
the potential matrix. The integral equation (24) is solved using
Generalized minimal residual method (GMRES) iterations
[31,36] and the integrals on the surfaces are evaluated using
the Gaussian quadrature [31,37].

E. Electrostatic force and torque

When particles carry an electric charge, they can expe-
rience strong mutual interactions. Precisely calculating the
electric forces and torques acting on these charged particles
is crucial across a wide range of physical systems, including
biological cells, ice crystals, and granular materials. These
force calculations are essential for predicting particle dynam-
ics, such as their trajectories and the potential for aggregation.
The electrostatic force and torque on each conductor can be
computed by taking derivatives of the electrostatic energy of
the system. The electrostatic energy of the spheroid-sphere
system is given by

W(lxa1|, %21 - p) = 30" - ®y(x21]. 221 - p)- Q. (27)

with Q = [Q; Q»]7, where the spheroid centered at x; car-
ries a total charge Q; and the sphere centered at x, carries
a total charge Q,. Here X,; is a unit vector along the sep-
aration vector x,; = x, — Xx;. The differential change in the
electrostatic energy upon differential change in the relative
configuration is given by

dW =dxy - VW +dp-V,W. (28)

The first term in Eq. (28) represents the negative of the work
done by the electrostatic force on the sphere, F,, in moving
the sphere by an amount dx,;. Equivalently, it represents the
negative of the work done by the electrostatic force on the
spheroid, F, in moving the spheroid by an amount —dx;;.
Therefore, the electrostatic forces on the conductors are given
by

F\=—-F, =V, W(lxyl, X2 - p). (29)

The second term shows that there is energy expense in
changing the orientation of the spheroid. This shows that the
electrostatic force on the spheroid does not act at its center.
Thus, an electrostatic torque T'; acts on the spheroid about
its center. The work done by the electrostatic force on the
spheroid in changing its orientation can be written in terms of
T asT, -nd6,where it is the axis about which p is rotated by
an angle d@, i.e., dp = dO it x p. Equating this to the second
term in Eq. (28) gives the torque on the spheroid about its
center as

Ty =—pxVW(xal X2 - p). (30)

The change in configuration due to the change in the ori-
entation vector p = d6 i x p is equivalent to keeping the
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FIG. 2. Elements of the potential matrix ®,, [see (1)] as a func-
tion of dimensionless minimum separation between the two spheres,
$21 = |x21]|/a — 2. The second reflection is decent up to the separa-
tions of the order of the size of the spheres. The exact result in terms
of an infinite series can be found in [20].

spheroid’s orientation fixed but rotating the separation vector
x,; about the spheroid’s center, the opposite way, such that
dxy; = —d6 i x xp;. The work done on the sphere by F,
in this case is simply, Fy - (—d0 i x xp1) = —(x31 X F») -
nd0 =T, - (—nd0). This shows the torque T, on the sphere
is simply

T, =x, xF,. 3D

It is easy to see using Eqgs. (29), (30), and (31) that T = —T 5,
and hence the total angular momentum of the system is con-
served.

III. RESULTS

The parameter space to be explored contains the aspect
ratio of spheroid « and the ratio of the sphere’s radius to the
spheroid’s semimajor axis y for various configurations given
by x;; and p. For a given «, we fix the value of y such that the
surface area of the spheroid is the same as that of the sphere.
We look at three different aspect ratios « € {1, 4, 0.25} (see
Table I). The first case corresponds to the electrostatic inter-
action between two identical spheres, the results of which are
well known [20]. This serves as a benchmark for our general
results for spheroid-sphere interactions. The other two cases
correspond to a prolate and an oblate spheroid, respectively.

A. Elements of the potential matrix

The elements of the potential matrix are defined in Eq. (1).
For the case of two spheres (¢ = 1), the exact expression is
known from Lekner [20] and the second reflection results are
given by Eq. (12). The comparison between second reflection,
BIM, and exact expression shows that the second reflection
performs well down to minimum separations between spheres
comparable to their size (see Fig. 2). This also validates both
the second reflection and the BIM.

For the case of electrostatic interactions between a spheroid
and a sphere, the exact expressions of the potential matrix are
not known, to the best of our knowledge. The potential matrix
depends on both the separation between the conductors |x;; |

FIG. 3. A schematic showing the point of contact x*, the min-
imum distance d* = dy;in(¥ ), and other relevant quantities for the
case of a prolate spheroid and a sphere. The relative sizes of the
conductors are proportional to their respective scales.

and the relative configuration of the conductors cos(y) =
%71 - p. The minimum separation between the centers of the
conductors when they are just touching depends on ¥ and is
denoted by dpin (). This minimum separation can be deter-
mined numerically by finding the roots x* (point of contact)
and d* of the following equations:

ni ny
L + 2 1=o, (32a)
|ni|  |na]
n N
x* + ya— — d*%,| =0, (32b)
ry
no|* = yd?, (320)
x*-(p x %) =0, (32d)

where n; and n, are the (non-normalized) normal vectors to
the spheroid and sphere at x*, given by

11—
n = [’g (QT”f)} @ ex) (3
n, = x* — X — d*.ﬁ'gl. (33b)

The four equations (32) uniquely determine x* and d* =
dmin(¥). Note that %, is given by a unit vector making an
angle ¥ with p, which does not require specifying d*.

A schematic representing x*, d* and other relevant quanti-
ties is shown in Fig. 3.

The physical interpretations of Egs. (32) are as follows:

(1) Equation (32a) enforces that the normals of the sphere
and the spheroid are oriented antiparallel to each other.

(2) Equation (32b) ensures that x* is the point of contact.

(3) Equation (32c) ensures that x* lies at the surface of the
sphere.

(4) Equation (32d) ensures that x* lies in the plane defined
by p and X5;.

For the case of a prolate spheroid and a sphere (k =
4), the second reflection results are given in Egs. (6).
Figure 4 shows the elements of the potential matrix for a
fixed ¢ = /4 as a function of dimensionless separation
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FIG. 4. Elements of the potential matrix @), [see (1)] as a func-
tion of dimensionless separation between a prolate spheroid and a
sphere, 571 = [|x¥21] — dmin(¥)]/a. Here ¥ = arccos(Xy; - p) and dpin
is the dimensionless center-to-center distance between the prolate
spheroid and the sphere when they are just in contact.

8§21 = [|x21] — dmin(¥)]/a. The second reflection is reliable up
to so; ~ 1 (Fig. 5).

Similarly, for the case of an oblate spheroid and a sphere
(k = 0.25), the second reflection results [Eqgs. (10)] are reli-
able up to sp; ~ 4 (see Fig. 5). This early deviation of the
second reflection method from the BIM arises because the
length scale used for s; does not correspond to the larger
dimension of the oblate spheroid, specifically the equatorial

radius of the oblate spheroid ax ~!.

B. Electrostatic force

Equation (29) is used to obtain the electrostatic force be-
tween the pair of conductors. This relies on differentiating the
electrostatic energy obtained using the potential matrix. The
exact results are available for the sphere-sphere case by [20].
The second reflection is again reliable up to s,; ~ 1. For very
small separation s;; < 1, the BIM needs a large number of
collocation points on the surfaces of the conductors to con-
verge to the solution accurately. Lubrication approximation

0.34] ©000004,, Y=nfd]  qe0000000000
0.33/ 0 Scastnnaatant

032 . SRS = 015
.'----------.__,//000 . 4
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0.29; 38 o o2 10.05
8388 . BIM ]
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0.10  0.50 1 5 10 '

S21

FIG. 5. Elements of the potential matrix &), [see (1)] as a func-
tion of dimensionless separation between an oblate spheroid and a
sphere, 571 = [|X21] — dmin(¥)]/a. Here ¢ = arccos(®; - p) and dp,
is the dimensionless center-to-center distance between the oblate
spheroid and the sphere when they are just in contact.

10?-?‘ —oo To.15
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0.100¢ ..o 10.10
0.010} | 77
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| ! - € - : 7Exact‘ . ‘70.00
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S21

FIG. 6. Dimensionless force on the second sphere as a function
of dimensionless minimum separation between the two spheres,
s21 = |x21|/a — 2. Note that the force is attractive in the case of
unequal charges (F, - x;; > 0). The filled dots are obtained using
the lubrication approximation [see Eq. (20)] with § obtained using
the BIM through Eq. (21). The inset shows 6 as a function of €, with
the dots indicating the range of values over which § is averaged to
approximate it as a constant.

[Eq. (20)] has been used for s5; < 1, shown by the filled dots
in Fig. 6, with the § fitted using the BIM results.

The force acting on the sphere in the axisymmetric config-
uration (p - X;;) involving a prolate spheroid and a spherical
conductor is shown in Fig. 7. The lubrication force is given by
Eq. (20) with the § fitted using the BIM results. Figure 8 shows
the corresponding force for the case of an oblate spheroid and
a sphere. Note that the electrostatic forces are attractive in the
near contact case for unequal charges and grows unboundedly.

Figure 9 shows the variation of electrostatic force as a
function of dimensionless separation s,; and the relative con-
figuration . This captures the effect of anisotropy of the
problem.

‘ Ooooboooooooooodoooooooo 192
100 > ... fmmmmmmcceeeesseameaee=====22Q0, |
Amega’q 2 Fy - &y obo,
for Q1 =q=Q2 °b 10.4
L o BIM ‘ ]
1 0 dmegaq T Fy - &y 90 | 2" reflection % |
for Q1 =q,Q2=0 o oo % ‘
o BIM %00 b |
li 0, . 4
1 ,,,,, 2™ reflection 00000 ‘Q 0 ’ 3
’ %0, . |
Q
o 9 \
o 11.6 = QQO 2
0.01}] w4 % 10-2
14 0.001 0.002 0003‘ he
1074 0.001 0.010 0.100 1
S21

FIG. 7. Dimensionless force on the second sphere as a function
of dimensionless separation between the prolate spheroid and the
sphere, s51 = |x1]/a — (1 4+ y), in the axisymmetric configuration
(p = X21). Note that the force is attractive in the case of unequal
charges (F, -xj» > 0). The lubrication approximation is obtained
using Eq. (20) with § obtained using the BIM through Eq. (21). The
inset shows § as a function of €, with the dots indicating the range of
values over which § is averaged to approximate it as a constant.
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FIG. 8. Dimensionless force on the second sphere as a function
of dimensionless separation between the oblate spheroid and the
sphere, s51 = |x1]/a — (1 4+ y), in the axisymmetric configuration
(p = %21). Note that the force is attractive in the case of unequal
charges (F, -xj» > 0). The lubrication approximation is obtained
using Eq. (20) with § obtained using the BIM through Eq. (21). The
inset shows § as a function of €, with the dots indicating the range of
values over which § is averaged to approximate it as a constant.

One is often interested in the dilute regime where particle
separations are much larger than their size. In this regime, the
first reflection is sufficient to capture the electrostatic force.
Using Eqgs. (29) and (4), the electrostatic force for the prolate
spheroid and sphere system is given by

1 1 X
010 {<_+_)fm+| a1l

8meglxa| Ry R_ ae
< 1l —ae/R; 1+ ae/R_ )
X —
Ry —ae—zn R_+ae—zn
X (1 —X%21%21) 'P], (34)

where R_, R, , and z;, are given by Eq. (5). The correspond-
ing electrostatic force due to the first reflection for the oblate

0.10
0.05

[«
o=
ol
1]
==
oy

spheroid and sphere system is given by

010> a’e’z}, + k2 |x i) Pu? +
12
4reglxin| | uQu? — w)(a?e? + k2u?)

a’|x o)1 A
- u(2u2—u)(a2e2+xzu2)(1_lexﬂ).p , (35

where u and p are given by Eq. (9). Note that the second term
in the right-hand side of Eqgs. (34) and (35) are the noncentral
parts which arise due to the anisotropy of the systems and
contribute to the electrostatic torques. Because these force
expressions are valid only for large separations, they fail to
account for the attractive forces between like charges that arise
at short distances due to electrostatic induction.

Similarly, one can obtain a closed-form expression of force
using Eq. (29) and the second reflection corrections to the
potential matrix [Eqgs. (6) and (10)] which is reliable up to
$21 = [|%21] — dmin(¥)]/a ~ 1. The force from the second re-
flection can explain the attractive interaction between like
charges; however, its accuracy diminishes at the separations
where the attractive region begins.

C. Electrostatic torque

The electrostatic torque is the result of electrostatic forces
on the conductors not being central. In other words, there is
electrostatic energy cost in changing the orientation of the
spheroid or changing the relative configuration yr. Figure 10
shows the torque on the spheroid as a function of dimen-
sionless separation s;; and ¥. As the separation decreases,
the torque in the unequal charge case changes direction,
indicating the onset of an attractive interaction between the
conductors.

A quantity of interest in the dilute regime is the electro-
static torque between a pair of particles. The torque computed
using the first reflection is accurate enough to capture the
anisotropic effects in the far field. Using Eq. (34), one can
obtain the torque for the prolate spheroid and sphere system,

- Io 0200
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& | £0.0150
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ool
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FIG. 9. Contour plot of dimensionless force along the separation vector, 4wega’q >F, - %51, as a function of ¥ = arccos(%,; - p) and
821 = [|*21] — dmin(¥)]/a. The white dotted lines are due to the second reflections. (a) The prolate spheroid has charge Q; = ¢ and the sphere
has charge O, = ¢, (b) The prolate spheroid has charge O, = ¢ and the sphere has charge O, = 2¢, (c) The oblate spheroid has charge O, = ¢
and the sphere has charge O, = ¢, (d) The oblate spheroid has charge Q, = ¢ and the sphere has charge Q, = 24.
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FIG. 10. Contour plot of dimensionless torque on spheroids about their center, 4w eqaq T - k, as a function of Y = arccos(Xy; - p) and
$21 = [|%21] — dmin(¥)]/a, where k is a unit vector along (p x X,;). The white dotted lines are the due to the second reflections. The green
curves in (b) and (d) separate the repulsive and the attractive regions. (a) The prolate spheroid has charge Q; = ¢ and the sphere has charge
0, = g, (b) The prolate spheroid has charge Q; = ¢ and the sphere has charge O, = 1.5¢, (c) The oblate spheroid has charge O, = ¢ and the
sphere has charge 0, = ¢, and (d) The oblate spheroid has charge Q; = g and the sphere has charge 0, = 1.5¢q.

given by

T, ~ 010> (

8megae

1 —ae/Ry 1+ ae/R_
— P X X21.
Ry —ae—z12» R_+ae—zp
(36)

Similarly, using Eq. (35), one can obtain the torque for the
oblate spheroid and sphere system, given by

010> —a*e’zp
Ty~ 2 2,20 1 2.2
dreouu? — ) \ (a%e? + k?u?)

>p X X21. (37)

Here R_, R, z12, u, and pu are given by Egs. (5) and (9).
Note that the electrostatic forces and torques up to first reflec-
tion do not depend on the radius of the sphere [38]. This is
because the electric field of a sphere, to a leading order in the
far-field regime, is identical to that of a point charge placed at
the center of the sphere. Now, if one has a pair of spheroids in
the far-field regime, the electrostatic field of a spheroid can be

° ‘1/} — 71-/4‘ _ 2" reflection
0.5+ ° — 1%t reflection
°© - BIM
OJ o
S o
T 00 ¢ o
o
'_
-0.5¢
0.1 0.5 1 5
S21
FIG. 11. Dimensionless torque on the prolate spheroid

47t80aq‘2T1 -k for 01 =q, O, =2q, as a function of separation
s21 = [|x21] — dmin(¥)]/a for a fixed ¥ = arccos(Xy - p) = 7 /4,
where k is a unit vector along (p X X31). The method of reflections
aligns well with the BIM in the far field. The sign change in the
torque at close range indicates an attractive electrostatic force due to
induction. While the first reflection fails to predict this sign change,
the second reflection captures it but loses accuracy in this close
range.

approximated by the field due to a point charge located at its
center. Therefore, in the far-field regime, the force and torque
expressions [Egs. (34)—(37)] serve as good approximations
even for a spheroid-spheroid system. The comparison between
torque due to first and second reflections and the BIM is
shown in Fig. 11.

Studies have shown that electrostatic interactions, when
combined with hydrodynamic interactions, can result in stable
configurations for a pair of spheres [39]. An array of spheres
and spheroids, as well as a dilute suspension of hydrodynam-
ically interacting spheroids, have been found to be unstable
to density perturbations [40—42]. The potential role of elec-
trostatics in altering the stability of such systems remains
unexplored.

In the like-charged anisotropic system, the electrostatic
torque tends to align the spheroid in a broadside orientation
relative to the separation vector xy;, as illustrated in Fig. 12.
In contrast, for oppositely charged particles, the stable orien-
tation changes to thin side, as evident from Eqs. (36) and (37).
These stable configurations contrast with the same system
interacting hydrodynamically in a viscous flow [42], where

0.02/"

0.01

— 2" reflection!

() S 1% reflection
=) =
g 0.00:
(o] [
I_ 8

-0.01; \

%
-0.02t. . . : g
s I 27
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¥

FIG. 12. Dimensionless torque on the prolate spheroid

4mepaq®T, -k for Q =Q,=gq, as a function of
Y= argcos(fczl -p) for fixed s31 = [|x21| — dmin(¥)]/a =2,
where k is a unit vector along (p x %,;). The change in the sign of
the torque shows a stable configuration of the prolate spheroid and
sphere system about ¥ = /2, as indicated in the insets.

035410-9



HARSHIT JOSHI AND ANUBHAB ROY

PHYSICAL REVIEW E 111, 035410 (2025)

FIG. 13. Schematic showing the favorable orientations of a sed-
imenting spheroid interacting with another sedimenting spheroid
through electrostatic and hydrodynamic interactions in the far-
field regime. In the case of purely hydrodynamic interactions, one
spheroid disturbs the flow as a force monopole (indicated by the red
arrow) and causes the other spheroid to align along the extensional
axis of the locally disturbed strain field (indicated by blue arrows).
When electrostatic interactions are included, the electrostatic torque
can either compete with or reinforce the hydrodynamic alignment,
depending on whether the spheroid is in a trailing or a leading posi-
tion. The black-shaded spheroids represent the favorable orientations
due to electrostatic effects, while the light blue-shaded spheroids
indicate those due to hydrodynamic effects. (a) For like-charged
spheroids, the electrostatic torque competes with the hydrodynamic
alignment for a trailing spheroid, as indicated by the arrows, while
it reinforces the alignment for a leading spheroid. (b) For oppositely
charged spheroids, the effects are reversed: the electrostatic torque
competes with the hydrodynamic alignment for a leading spheroid
and reinforces it for a trailing spheroid. This has implications in
changing the stability of the dilute suspension of charged spheroids.

a spheroid falling above another one tends to align its thin
side along their separation vector (see Fig. 13). As a result,
in a dilute suspension of sedimenting charged spheroids, the
hydrodynamic torque on a spheroid counteracts the electro-
static torque in some regions while reinforcing it in others.
Consequently, incorporating electrostatic effects in such sys-
tems could alter the instability typically observed in purely
hydrodynamic interactions [42].

IV. CONCLUSION

We have used the method of reflections to compute the
potential matrix for sphere-sphere and spheroid-sphere con-
ductors. This allows us to determine the electrostatic forces
and torques acting on these conductors in the far-field regime.
The formulation is general enough to be applied to arbitrary
shapes as long as their singularity solutions are known, as dis-
cussed in the Appendixes. We also compute the electrostatic
force under the lubrication approximation for nearly touching
conductors in the axisymmetric configuration. To determine
this close-range force accurately an order one constant § is
needed, which has been determined using the BIM. We also
test the validity of the method of reflections with the BIM
when the conductors are closely separated. The results show
that second reflection works well until the separation is of the
order of the size of the conductors.

The anisotropy of the problem of electrostatic interaction
between a spheroid and a sphere results in the electrostatic
torque. This torque tends to align the spheroid-sphere sys-
tem in a manner different from the alignment due to pure
hydrodynamic interactions [42] (see Fig. 13). This naturally
prompts the question: how does the instability in a dilute sus-
pension of sedimenting spheroids change when electrostatic
effects are taken into account? Our work offers a foundational
approach for computing electrostatic forces and torques on
anisotropic particle pairs, demonstrated with example cases
for a spheroid-sphere system, using the potential matrix.
In the dilute regime, the simpler first-reflection expressions
[Egs. (36) and (37)] can be used to account for electrostatic
interactions between spheroids and study the evolution of
density perturbations in a spheroid suspension.

This work draws extensively on concepts from microhy-
drodynamics but deliberately excludes its effects to avoid
additional complexity. However, in natural settings, micro-
hydrodynamics and electrostatic effects often act together.
Understanding the role of electrostatic forces in clustering
within clouds, for instance, sheds light on the formation and
dynamics of ice crystals and droplets. While hydrodynamic-
driven clustering and orientation dynamics through turbulence
has been extensively explored [43,44,47], the role of elec-
trostatic interactions remains underexamined. Such insights
can further our understanding of processes such as rain ini-
tiation, hail formation, and the structural evolution of clouds
under varying atmospheric charge distributions. Beyond at-
mospheric science, applications extend to areas like the
control of particulate matter in industrial filtration [2], the
alignment of particles in electric fields in colloidal chemistry
[4], and the behavior of charged proteins in biophysics [3],
where electrostatic torques influence assembly and organiza-
tion.
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APPENDIX A: SINGULARITY SOLUTIONS FOR
SPHEROIDS IN ELECTROSTATICS

The singularity solutions for the boundary value problems
of the Laplace equation involve representing the solution in
terms of the Green’s function G of the Laplace equation and
its higher derivatives located outside the domain of interest.
The Green’s function of the free-space Laplace equation in
three dimensions satisfies

VG (x) = —8(x) (AL)

and is given by

(A2)
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1. Charged prolate spheroid

Any point x on a prolate spheroid S, with semimajor axis
a and aspect ratio « (>1), oriented along the unit vector p and
centered at origin is given by

1 1
x- [a—2pp + 50 —pp)} x=1 xeS, (A3

The boundary value problem to be solved for the potential
field outside S, is

Vip(x) = 0, (Ada)
dx) = ¢o, X €S, (Adb)
¢(x) > 0 as |x|] > oo. (Adc)

The solution can be represented in terms of a uniform charge
distribution located along the symmetry axis of S, as [46]

ae

P(x) = ¢o{ Glx — Ep)dé}, (A5)

arctanh e

—ae

where e = /1 — b?/a? is the eccentricity. The total charge Q
on the surface of S, is given by

Q:-gof ﬁ~V</>dS=—so/ V3¢ dr
S Vp

»
dmagye
=| ———— |%o.

A6
arctanh e (A8)

where & is the permittivity of the free space and 7 is the
outward normal vector to S, and V), is the volume inside S,,.
Therefore, the capacitance C = Q/¢ of the perfectly con-
ducting prolate spheroid S, is given by [23,25-27]

dmagye

C=——. (A7)
arctanh e

Note that lim,_, o C = 4mwaggy, which is the capacitance of a
sphere of radius a.

2. Charged oblate spheroid

The singularity solution of an oblate spheroid can be de-
rived from that of a prolate spheroid using the eccentricity
transformation [29]

ie
Ji=é&'
Therefore, the potential field due to an isolated oblate spheroid
described by Eq. (A3) with ¥ < 1 is given by

e —

(A8)

ae/k
¢u>=¢m{ /‘ gu——fpx@}. (A9)

arcsine J_ e/

Note that for cartesian coordinates aligned such that the unit
vector p is along the z axis, G(x — i§p) gives rise to a term
m, which is singular on the disk of radius £ in
the x-y plane (z = 0), which corresponds to the singularity
distribution for an oblate spheroid [22].

Correspondingly, the capacitance of an isolated oblate
spheroid is given by [23,25-27]

dmagye

C=—2 (A10)
K arcsin e

3. Grounded prolate spheroid in presence
of a uniform electric field

The potential field in this case can be divided into two
parts as ¢ = ¢¢ + ¢*>°. Here ¢¢ is the disturbance potential
produced by the grounded prolate spheroid so as to maintain
zero potential on its surface and ¢ = —E* - x, with E®
being the ambient uniform electric field. The boundary value
problem to be solved for ¢¢ (x) outside S, in this case is

V' (x) = 0, (Alla)
¢'x) = E®-x, xe8, (Al1b)
¢%(x) > 0 as |x| > oo. (Allc)

The solution can be represented as [46]
d 00 6JTXPC “
¢“(x) =E™ - = P §G(x —&p)dg
3nY€ ae
- TV [ @)
X G(x—ép)dé}, (A12)
where
3
xC = & (arctanh e — e)! (A13a)
P 3 ’
263 !
ch = %(1%?2 — arctanh e) . (A13b)

The first integral term in Eq. (A12) represents a linear charge
distribution along the symmetry axis, whereas the second
integral term represents the parabolic distribution of dipole
moments pointing perpendicular to the symmetry axis. Note
that the charge distribution in the first integral term has
nonzero dipole moment but zero net charge. The induced

dipole moment d is given by
d= —sof xi-VodS = —80/ (Vo +x V3¢pldr.
N Vp
(Al14)

The volume integral of the gradient term does not contribute
since ¢ = 0 on §), and

P

/ Vodr = % ondS = 0. (A15)
Vp Sp
Therefore, the dipole moment is given by
d=— 8()/ xVipldr
vy
= 4dnd’s[XSpp+Y (1 —pp)] E™. (A16)

Note that
lim,_od = 4na’eoE® and we get the dipole moment of
a sphere of radius a. We can rewrite Eq. (A12) in terms of the
dipole moment d as

lim,o X =lim, oY =1 resulting in

ae

d-p| §G(x—§&p)dé

3,3 ’
2ae’ g —ae

¢ (x) =
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" (a*e* — &%)

—ae

- d-1-pp)-V,
4alede (L =pp)

x G(x — &p)dE. (A17)

4. Grounded oblate spheroid in presence
of a uniform electric field

We again use the eccentricity transformation (AS8) to obtain
the dipole moment d and disturbance potential field ¢¢ (x) due
to a grounded oblate spheroid in the presence of a uniform
background electric field E*. The dipole moment is given by

d=4na’eg[X pp+YE (A — pp)] - E™, (A18)
where

X€ = 83—3[@(1 —eA)— (1= ?arcsine]™,  (Al9a)

v¢ = 2%3[(3(1 —e*)? — (1 —é*)**arcsine] ™. (A19b)

The disturbance potential field is given by

3 3 ae/k
L{d-p [ —ig o - iepra

303
2a’e &o —ae/k

1 ae/k 6126’2
——d-(1- v g2
5 ( pp) x/;ae/’(( 2 & )

xGx — iEP)dS}-

¢ (x) =

(A20)

APPENDIX B: FAXEN LAWS FOR ARBITRARY SHAPED
CONDUCTORS IN ELECTROSTATICS

Faxén laws for electrostatics can be derived analogously
to those in microhydrodynamics [22], using the reciprocal
theorem. The electrostatic counterpart for spheres is detailed
in [24], and we extend this framework to arbitrarily shaped
conductors. Let ¢; and ¢, be two fields in the same domain
D. The reciprocal theorem states that

/ ¢ Virdt — / 1 Virdt
D D

= % ¢)2V¢)1'I’lds—¢ ¢1V¢2'ndS, (Bl)
aD aD

where n is the normal vector to the boundary of the domain
D, denoted by 0D, pointing away from D. In the context of
a conductor placed in a potential field, D is the region in R3
bounded by the surface of the conductor and a large sphere “at
infinity.”.

1. Faxén law for total charge and potential on a conductor

We follow the approach of [22] to relate the total charge
Q on the surface of a conductor to its surface potential V
in the presence of an arbitrary background potential field
¢ (x), such that ¢>°(x) ~ O(1/|x|) as x goes to infinity. Let
us denote the surface of an arbitrary shaped conductor by S,.
Note that total charge on S, due to a potential ¢ (x) outside it,

is given by

0= —80% V¢ - ads, (B2)
S

P

where 7t is the outward pointing normal vector to S, and & is
the permittivity of free space.

We use the reciprocal theorem with the details of the two
fields as follows:

(1) Take ¢; to be the potential field satisfying the Laplace
equation outside the isolated conductor with ¢; = ¢ on S,
where ¢ is some constant and ¢; goes to zero at infinity.
This is a case of an isolated conductor with some charge Q)
on its surface given by Q| = C¢1, where C is the capacitance
of the conductor.

(2) Take ¢, to be the potential field given by the solution
of V2py(x) = —Q'e;" 8(x —y), where y € D, with ¢ =V
on §,. Here the ambient potential field ¢3°(x) is given by
a point charge located at y and the conductor produces a
disturbance field in order to satisfy the boundary condition
on its surface. Let O, be the charge on the conductor, which is
to be determined using the reciprocal theorem.

Using Egs. (B1) and (B2), we have [48]

Qd1(y) =01V — Q210 = Q210 = ChioV — Q'd1 (v).
(B3)

Now, ¢ (y) can be represented in terms of a singularity solu-
tion as

$10) = p1Fv{Gly — Y = poFv{GE—y)). (B4

Here Fy is the corresponding linear functional and & rep-
resents the region inside the conductor over which the
singularities are distributed. Using Eqgs. (B3) and (B4), we
have

0, =CV = QF{GE -} =CV = Fy{¢°(§)}. (BY)

Here we have used the fact that Q'G(& —y) = ¢5°(§). How-
ever, all ambient fields ¢>°(x) that decay at infinity and satisfy
the Laplace equation can be constructed using an appropriate
set of point charges. Therefore, Eq. (B5) applies to a general
ambient field ¢*°(x). Thus, the relation between charge Q on
a conductor and the potential V on its surface in the presence
of a background potential field ¢*>°(x) is given by

Q=CV —F{p™ ()} (B6)

This result can be directly applied to the bodies with
known singularity solution of the form given in Eq. (B4).
In particular, for a prolate spheroid with semimajor axis a,
eccentricity e, and orientation vector p we have the singularity
representation given by Eq. (A5) and capacitance by Eq. (A7).
Therefore, the charge Q on the prolate spheroid in the pres-
ence of a background potential field ¢ is given by

4 agge {V 1

¢ (xc + Ep)dE } (B7)

arctanh e 2ae J_,,

where ¢ =ae and x. denotes the center of the prolate
spheroid.

Similarly, the charge relation for an oblate spheroid with
semimajor axis a and orientation vector p in the presence of a
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background potential field ¢*° is given by

4magpe : K aefx
=—V

K arcsin e

™ (xc + iép)dé‘}- (B8)

2ae —ae/k

2. Faxén law for induced dipole moment on a conductor

To relate the induced dipole moment d on a conductor due
to the presence of an ambient potential field ¢>°(x), we again
use the reciprocal theorem with the details of the two fields as
follows:

(1) Take ¢, to be the potential field satisfying the Laplace
equation outside the isolated conductor with ¢; = EJj - x on
S,, where E{j is a constant electric field and ¢; goes to zero
at infinity. This is a case of the disturbance potential produced
by a grounded isolated conductor placed in a uniform ambient
field E;.

(2) Take ¢, to be the potential field given by the solution
of V2 (x) = —Q’egl 8(x —y), wherey € D, with ¢, = 0 on
Sp. The goal is to determine the induced dipole moment d; in
this case.

Applying the reciprocal theorem in these two fields gives

0'd1(y) = &ET yg xVe,-idS=—Ef5-d>, (BY)
P

where we have used the fact that the surface charge density

on the conductor is given by o, = —gyV¢, - it and dipole

moment d; is simply the first moment of this charge density

on the conductor. Now, ¢ (y) can be represented in terms of

singularity solution as

o10) =ET - FelGy — O} =Efy - Fe{G(E —y)}. (B10)

Here Fg is the corresponding linear functional and & rep-
resents the region inside the conductor over which the
singularities are distributed. Using this in Eq. (B9) and fac-
toring out EJj, we have

dr = —Fp{Q'GE —y) = ~Fr{e®)}.

where ¢5° is the ambient potential field in the second case.
Again, for the general ambient field ¢°°(x) constructed using
an appropriate set of point charges, the dipole moment d on
the conductor is simply given by

d = —-Fr{p= (&)}

This result can be directly applied to the bodies with a
known singularity solution of the form given in Eq. (B10).
In particular, for a prolate spheroid with semimajor axis a,
eccentricity e, and orientation vector p we have the singularity
representation given by Eq. (A12). Therefore, the induced
dipole moment on the prolate spheroid in the presence of a
background potential field ¢*° is given by

(B11)

(B12)

3 ae
d = —4na’s [WXPCP £ ¢>(x. +Ep)dE

YSA —pp) Vs, | (aP —&7)

—ae

+ 4a3e3

x ¢ (x. + ép)dé} (B13)

Similarly, the dipole moment of an oblate spheroid with
semimajor axis a and orientation vector p in the presence of a
background potential field ¢ is given by

3 33 c ae/k . )
d= —4mna SOW Xop l§¢ (xc+l%_p)ds

—ae/k

YC ae/k azez )
+L(11—pp)-Vx(./ (—2—%‘)
2 —ae/k K

x % (x. + iép)d§i|. (B14)

APPENDIX C: ELECTROSTATIC INTERACTIONS USING
THE METHOD OF REFLECTIONS

The exact way to incorporate electrostatic interaction
between conductors would require obtaining a harmonic po-
tential field which satisfies the constant potential boundary
conditions on the surface of each conductor. This problem
is barely tractable for two spheres, and hence we need to
resort to some approximate methods such as the method of
reflections for more complex shapes like spheroids.

Method of reflections is an iterative scheme widely used in
microhydrodynamics to calculate hydrodynamic interactions
between widely separated bodies [22]. This method produces
a perturbation series in terms of the order a/R where a is the
typical size of the objects and R is their typical separation. The
method is described in [22] and is outlined for an electrostatic
interaction between two conductors as follows.

In the zeroth-order approximation, the solution for two
conductors (denoted S; and §5) that are far apart is obtained
by simply adding the potential fields of each isolated conduc-
tor, meaning the electrostatic interactions between them are
ignored. Let ¢»; and ¢, be two potential fields such that

p1(x) =V,
h2(x) = V3,

(Cla)
(Clb)

xeSl,

xess.

However, ¢ = ¢ + ¢» does not satisfy the boundary condi-
tions on either of the surfaces. In fact, the error in the boundary
condition on S, is ¢3_4(x), which is of the order of a/R. The
fields ¢;(x) and ¢,(x) are called the first incident fields on
the conductors S, and S, respectively. Now, S; produces a
disturbance field ¢,; and S, produces a disturbance field ¢,
such that

xeSl,

$21(x) = —r(x),
P12(x) = —1(x),

These disturbance fields are called the reflected fields, which
accounts for the correction in the boundary conditions. Now,
¢ = ¢ + P2 + ¢ + @12 is a better approximation to the
complete solution because the error in the boundary condi-
tions is now O(¢12) ~ O(¢71), which takes contributions from
higher multipole moments and decays faster than a/R. This
procedure can be iterated with the reflected fields from one
conductor being incident on the other conductor and produc-
ing subsequent reflected fields. We shall apply this method up
to second reflections in the case of interacting spheroids.

(C2a)

x €S, (C2b)
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1. Far-field interaction of two prolate spheroids

Consider two prolate spheroids S; and S, with semimajor
axes a; and a, eccentricities e; and e, position vectors x;
and x;, and orientations p; and p,, respectively. Faxén laws
[see Eq. (B7)] can be used to relate the potentials V| and V,
on the surfaces of the spheroids to their total charges Q; and
0», respectively. The ambient field around the first spheroid
is generated by the second spheroid and can be expressed
perturbatively using the method of reflections. The same ap-
proach applies to the second spheroid, where its ambient field
is influenced by the first spheroid. Using Eq. (B7), we have
for the first spheroid

arctanh e; 1 aer o
Vi =0 @y (x1 + &1py)déEL,
47Ta18061 261161 —aje;
(C3a)
arctanh e 1 @2
V=0, : B (2 + £1py)dE).
47'[6128062 26126‘2 —aer
(C3b)
Using the method of reflections, we have
) = d10) + d2 ) + P21 ()., (C4a)
$°0) = p2(¥) + ¢120) + P21209)... . (C4b)

Here ¢,(y) and ¢,(y) are the zeroth-order disturbance fields,
¢21(y) and ¢12(y) are the first reflection fields, and ¢y, (y) and
¢212(y) are the second reflection fields produced by S; and S5,
respectively.

The zeroth-order solution to the problem is

arctanh e; arctanh e,

o _

v? =0, A (C5)

s 27— -
47Ta18061 47‘[6128062

Since ¢; and ¢, are the potentials due to isolated spheroids S
and S, they are given by Eqs. (A5) and (A6) as

H0) =5 o / Gy —x) — Epy)dEr,  (C6a)
odi€1 J_ge

) = 2 / G —x2 — Eipy)dEr. (C6b)
00262 J _q,e,

The first-order correction comes through the first reflection as

1 aey
v = 2_/ $2(x1 + &1py)dEy,
aep

—ae;

(C7a)

0 Lfee
V2 = 2—
ases —aze;

¢1(x2 + E1py)dé1, (CT7b)
with the first reflection fields ¢»; and ¢, represented to the
leading order in a/R by the dipole moments d (11) andd (21). The
explicit expression for the first reflection field ¢, by spheroid
S, is [see Eq. (A17)]

¢12(y) =

—dayen

|:d§1) ~p2/ &Gy —xy — &py)dés

2a3e360

d(zl) R N
- -(1 —Pzpz)'vy/ (5’262_‘52)

—aren

X Gy —x;— §2P2)d§2:|- (C8)

The dipole moment dél) is given by the Faxén laws as [see
Eq. (B13)]

3
d\V = — 473 ——| x°
2 22ageg 2P

szdszf g

- e 2aie

YC
X Gxy+& —x1 — &) d& + %(]l —P2P2) Vi,

y /flzez (ageg_gzz) /01"1 Ql

—arer aye; 2(1]8]

X Gxr + & —x —51)d§1:|, (€9

where we have used Eq. (C6) for ¢(y) in place of ¢* in
Eq. (B13). The corres([laonding first reflection field ¢, (y) and
the dipole moment d ) is obtained by simply switching the
labels 1 and 2.

The next order correction comes through the second reflec-
tion as

1 ae;
V= / $r(xX1 +Ep)dE,  (Cl0a)
aieg —aje;
@ [
V,” = > / @21(x2 + &1py)dé,  (C10b)
aen —aze;

with the second reflection fields ¢, and ¢,;» represented
to the leading order in a/R by the dipole moments dgz) and
d;z). These dipole moments can again be obtained using
Faxén laws [Eq. (B13)] with first reflection fields in place
on ¢*.

Therefore, up to second reflections, the potentials on the
surface of the spheroids are related to their respective total
charges as V, = VO + V(D + V@ o € {1,2}. These inter-
action potentials are accurate up to O(a*/R*).

2. Far-field interaction of a prolate spheroid and a sphere

Knowing the procedure for two spheroids, it is easy to look
at a special case where the second spheroid is a sphere. This
simplification is analytically tractable to obtain closed-form
expressions without losing the flavor of anisotropy in the
problem. Consider a spheroid S| centered at x; with semi-
major axis a, aspect ratio «, eccentricity e = +/1 — k2, and
orientation vector p, carrying total charge Q;. The second
conductor is a sphere S, centered at x, with radius ya and
total charge Q,. The relative separation vector between them
1S X21 =X, —Xx; = —Xx12. The relation between the surface
potentials of S} and S, can be found by either taking limit
e, — 0 in the previous analysis or by applying the method
of reflection to this system. The results up to the second
reflection are stated as follows:

tanh
M= () e
0
v, = ngﬁ + VO V@, (Cl1b)
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where
) ) ae
Vil=5—r G(x12 + &p)ds, (C12a)
2aegy J_ge
M 01 ae
V' =—— [ Gxu —é&p)ds, (C12b)
2aegy J_g4e
and
1 ae
V1(2) = _/ d;l) -V Gx12 +Ep)dE, (C13a)
2aegy J_g4e
v _ 3 /a i [pg G(xar — £p)
2 2a3e3gy J_

1
3@ —€)(1 = pp) - Vi, Gl — p)| .
(C13b)

Here the dipole moments are given by

d\" = —4nd’Q, f {chpg Gxi2 +&p)

2a3e3
1
+ EYPC(aze2 — &)1 —pp) - Vi, Glxia + SP)}df,
(Cl4a)

1 ae

d\ = —47'[]/3(13Q12_Vx2/ G(xy —x; —&p)d§.
ae —ae

(C14b)

These line integrals over G can be computed analytically
[46,49]. After some algebra, we arrive at the closed-form
expressions for the potentials given by

1 —ae —R_
v = 0] 1 (e . (Clsa)
dragg 2e Z1p +ae — R
o = Ly, (C15b)
)
where
Ry = \/p}, + (212 T ae)?,
sz =xi2-(L—pp)-x12, zZn=x12-p. (C16)

The second-order corrections are given by

2
V(z) _ 01 a2y3 i . L +p2
! dasy 42 | \R_- R, 12

5 < 1 ~ 1 )2
Ri(zip+ae—Ry) R_(zp—ae—R.)) |
(C17)

) 9
Vo = - =2 XIR_—R
2 4ragy 4a’e®| *

2
Z1p —ae — R_
In{ ——
e (Z12+ae_R+>}

Ye | ; ae
+ i{ﬁ(R —Ry)+ —(R_+Ry)
4 | p12 P12

2
ol <zlz—ae—R_)
— o e ac T R _
! Z12+ae— Ry

Recall that X and Y are given by Eq. (A13).

(C18)

3. Far-field interaction of a oblate spheroid and a sphere

The eccentricity transformation (A8) allows us to directly
obtain the surface potential from the prolate spheroid and
sphere case, given below.

K arcsin e
Vi= 471Qale ( e >+Vl(l) +V2, (C19a)
0
v = Mfﬁ + VO v, (C19b)
The first-order corrections are
Vl(l) = &Earccot<ﬂ>, (C20a)
4magy e v —ae/k
v = 9\/(”, (C20b)
2 0,
where
M2 a2e?
u = Z le,
d2e?
= ko - S5, v=SE0 @
K Ku

The second-order corrections are given by
) Q] K 2(12 Y 3 2v 2
i=- 2 21,2
dmagy 4e us—+v

402 daex'z1p — 2(ziav + aex " 'u) o
P2 U2 + v)[(z12 — u)? + (aex—! — v)?]

(ézza)

6 2
0, % c 2 —u
- X, v — zparccot| ———
dragy a*e v — aek

2
2l —Uu
—,olzarccot(—l>} j|
v —aek~

(C22b)

2) _
V,” =

+l C{ae’clu—zlzv
4°° P12

Recall that X€ and Y€ are given by Eq. (A19).

APPENDIX D: BOUNDARY INTEGRAL FORMULATION
FOR ARBITRARY SHAPED CONDUCTORS IN
ELECTROSTATICS

The external Dirichlet problem of N charged conductors in
an unbounded medium in electrostatics is

Vipx) = 0, (Dla)
o(x;) = V,, forx;eS,, (D1b)
¢(x) —> 0 as |x|] = oo, (Dlc)
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where S, denotes the surface of conductor o and « €
{1,2,...,N}. In a manner similar to microhydrodynamics
[22,31-33,50], the potential field ¢(xy) can be represented in
terms of a double-layer potential as

N
o) = 23 a0, - VaG(x. 70)dS, )
a=1 Sa

N
+ ) 0uG(xo, xa). (D2)

a=1

Here the first term denotes the double-layer potential, g, is
an unknown double-layer density, i, is outward normal to the
surface Sy, Qy is the total charge on S, and x,, is a point lying
inside the conductor S,. The unknown double-layer densities
q. are determined using the boundary conditions

lim ¢(xp) =V, ae{l,2,...N}, (D3)
xo—>S}

where xo — S, denotes the approach to the surface S, is from
the outside of the surface, i.e., along i, [S1]. The second
term involving Q, is needed to complete the double-layer
representation [22,50]. Applying the boundary condition in

Eq. (D2), we obtain a second kind of integral equations given
by

N
> (L5 + Sap) qﬂ(xg_ZQﬁg(xs,xa) 0V, (D4)
B=1

p=1

where o € {1, 2, ..,
given by

N} and £¢ g is the double-layer operator

£ gpx,) = 255 45 Rp - V,G(x, x,)dSs (), (DS)
Sp

x; € Sy. Given total charges Q, on each conductor, we are
required to obtain the potentials V,, on the surface of each con-
ductor. Using £4 p¢ = —C8qp Where c is a constant function
defined on the surface of Sg, we see that (D4) has no unique
solution. Since V,,’s are unknown, one chooses the solutions
g, such that the projection of ¢, onto the subspace of constant
functions (which are eigenfunctions of LZ ﬂ) is exactly V. The
corresponding projection operator is given by

(D6)

Papds = fé qp(x)dSg(x),
B

! 8
1Sal
where |S,| is the surface area of conductor S,. Therefore,
choosing Zg;l Papdp = Vo not only fixes the nonuniqueness
problem but also determines the V,’s once the solutions g,
are known. This leads to a well-defined second kind integral
equation given by

N N
D (Lop + Pop+8ap) ap(x) = Y 0pG(xs, x0), (D7)
p=1 p=1

a € {1,2,..., N}, with the potential fields given by

1
sV = mjﬁ (e (®)dSe(x), a€{l,2,..N}. (D)
o Se

Using arguments similar to those in [22,50], it can be shown
that the spectrum of ,Cg st P 8 lies in the interval (—1, 1)
and hence Eq. (D7) admits a unique solution which can be
obtained through Picard iterations.

To solve the boundary integral equations (D7) for a
spheroid and a sphere we perform the surface integrals using
Gaussian quadrature defined on the surfaces [31,37] using the
parametric equations of the surfaces. GMRES [31,36] is used
to converge to the solutions.
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