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ABSTRACT

This study presents the implementation of the asymptotic homogenization method (AHM) to predict the effective thermal conductivity of
suspensions featuring core-shell particles. The AHM leverages the significant difference in scales between macroscopic and microscopic struc-
tures, making it possible to model the domain at multiple scales by capturing the influence of microscopic inclusions under macroscopic
loading conditions on the domain. The study begins by deriving an analytical formulation for the thermal conductivity problem of core-shell
composites, using a multiscale asymptotic expansion, followed by developing a finite element model to solve the unit cell problem. The results
for core-shell inclusions are validated against known analytical solutions for different volume fractions. At low inclusion volume fractions,
the numerical predictions closely match the effective medium approximations. However, at semi-dilute packing fractions, the AHM shows
superior accuracy, aligning more closely with the experimental and analytical results. The study reveals that the effective thermal conductivity
of the three-component composite is influenced by the volume fractions of the core and shell, the thermal conductivities of the core, shell,
and matrix, as well as the spatial distribution of inclusions. The proposed AHM method coupled with finite element analysis offers a general-
ized approach to predict effective thermal or electrical conductivity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0246385

I. INTRODUCTION

Particle-reinforced composites are widely used in various engi-
neering sectors, ranging from aerospace1 to energy2 and electronics.3

Despite their extensive applications, accurately computing and predict-
ing the effective behavior of these materials remains a significant chal-
lenge. The enhancement of the effective suspension properties due to
the presence of these inclusions applies to various mechanical and
transport properties, such as elasticity, diffusivity, and thermal conduc-
tivity. Interactions between the different constituents in composite
materials occur on a length scale much smaller than the characteristic
length scale of the heterogeneous medium. Multiscale models capital-
ize on such differences in length scales to compute the effective proper-
ties of the medium, using homogenization techniques which include
Mori–Tanaka,4 self-consistent approach,5 and asymptotic homogeni-
zation6,7 to name a few. These methods are widely used in elastic and

transport problems to determine the effective property, particularly at
dilute concentrations (/ < 0:1) of inclusion.

Maxwell8 made the earliest attempt to calculate effective conduc-
tivity considering non-interacting spherical inclusions with volume
fraction / and conductivity jinc, embedded in an infinite matrix with
conductivity jm. The effective conductivity jeff , is then expressed as a
function of the conductivities and the volume fraction. However, this
expression is only accurate up to Oð/Þ and is valid only at dilute vol-
ume fractions. On the other hand, in the limit of close-packing (/max),
analytical progress has been achieved by examining interactions
between neighboring particles. Keller9 pioneered the approach of
investigating interparticle interactions and provided analytical expres-
sions for the conductivity of spherical inclusions within a cubic matrix
near maximum packing fractions. His work laid the foundation for
further studies on effective thermal conductivity in two-component
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composites. Subsequent work by Batchelor and O’Brien10 addressed
complex double asymptotic limits involving large but finite inclusion
conductivity and small gaps between inclusions near the maximum
packing fraction. They calculated the effective conductivity by consid-
ering the dipole strength of spherical particles in contact with each
other. McPhedran and McKenzie11 further expanded on this work by
devising a multipole expansion method to predict the conductivity of
systems arranged in a simple cubic structure, achieving high accuracy
even for close-packed spheres. At this close-packing limit, Sangani and
Acrivos12 contributed by modifying Zuzovsky and Brenner’s13 meth-
odology to solve a set of linear equations, allowing for the computation
of effective conductivity for spherical inclusions.

Several investigations have been conducted to predict the effective
properties of suspension of homogeneous inclusions over a wide range
of inclusion volume fractions; however, they are rarely compared with
known asymptotic limits in the dense packing regimes. The work of
Easwar et al.,14 employing the asymptotic homogenization method
(AHM) to predict effective properties, is notable for its ability to accu-
rately capture the behavior of suspension in both dilute and near-
packing conditions. AHM leverages scale separation to incorporate
microstructural effects. It systematically incorporates interparticle
interactions, providing accurate predictions at near-packing limits,
aligning with the asymptotic estimates9–12 in that regime. These rigor-
ous comparisons with the analytical results make AHM a superior
framework for analyzing composite systems, particularly when particle
interactions dominate as systems approach maximum packing.

While traditional two-component heterogeneous media, consist-
ing of solid inclusions embedded in a continuous matrix, have been
extensively studied and modeled, recent advancements in materials sci-
ence and manufacturing techniques have led to the development of
hybrid particles, such as core-shell structures. Core-shell particles
(CSP) consist of two materials, forming the inner core and the outer
shell. This design allows for enhanced customization of a composite’s
effective properties, surpassing the capabilities of either material alone.
These hybrid particles have found applications across various fields,
including thermal energy storage systems,15 thermal insulation for
enhancing energy efficiency in civil structures,16 and as functional
additives in polymers to improve mechanical and thermal properties.17

However, the interaction between the core and shell materials and
their combined effect on the surrounding matrix introduces complex-
ity in predicting the effective thermal conductivity (ETC) of compo-
sites reinforced with core-shell particles.

This study aims to (1) review current models for predicting the
effective thermal conductivity of composites containing spherical CSP,
(2) develop a generalized method that uses the robustness of AHM
with the effectiveness of finite element (FE) solutions to predict effec-
tive properties across various parameters, and (3) evaluate the influ-
ence of volume fraction, conductivity ratios, and particle interactions
on the effective thermal conductivity of these composites.

II. CORE-SHELL PARTICLE REINFORCED COMPOSITES:
EXISTING MODELS AND APPROACHES

Maxwell’s method can be extended to include systems of spheri-
cal inclusions with contact resistance18 and core-shell inclusions19 as
shown below. As we advance, this adaptation will be called the
extendedMaxwell method.

A single core-shell particle embedded in an infinite matrix is con-
sidered (Fig. 1). The core, shell and matrix are represented by the sub-
scripts c, s, and m respectively. The thermal conductivity coefficients of
these phases are denoted as jc, js, and jm. The core and outer shell have
radii Rc and Rs, and their volume fractions are represented by /c and /s.
The combined volume fraction of the core and shell is denoted as/csp.

Let r be the position vector, and T be the temperature distribution
function. A constant temperature gradient E is applied at infinity and
the distribution of temperatures in the heterogeneous media is given by

Tc ¼ CcðE:rÞ; r � Rc; (1)

Ts ¼ S1 þ S2
r3

� �
ðE:rÞ; Rc � r � Rs; (2)

Tm ¼ 1þ Cm

r3

� �
ðE:rÞ; r � Rs; (3)

where

E ¼ �r � T; (4)

where Cc, S1, S2, and Cm are unknown coefficients. By applying the
boundary conditions, we solved the heat equation for the unknowns,
thereby obtaining the temperature distribution. Subsequently, follow-
ing the Maxwell analogy, which posits that a homogeneous sphere
with an equivalent radius Req induces the same perturbation in the far
field as a well-mixed cluster of N spherical inclusions, we get

jeff ¼ jm
1� 2/cspk

1þ / cspk

 !
; (5)

where

k ¼
ð1� bÞðaþ 2bÞ þ R3

c

R3
s
ð1þ 2bÞðb� aÞ

ðaþ 2bÞð2þ bÞ þ 2
R3
c

R3
s
ð1� bÞðb� aÞ

0
BBB@

1
CCCA;

a ¼ kc
ks
; b ¼ ks

km
; /csp ¼ N

R3
s

R3
eq

:

(6)

The derived expression is accurate only up to Oð/Þ since this
approach does not incorporate microstructural information beyond
the volume fraction. Later, Herve20 investigated a multilayered isotro-
pic spherical inclusion surrounded by an infinite matrix, introducing a
multistage homogenization technique. This process homogenizes the
core and shell into an equivalent inclusion with an effective

FIG. 1. A single core-shell particle in infinite medium.
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conductivity (jcsp), treated that as a single inclusion in an infinite
medium for further homogenization. Park et al.21 also developed a model
using a similar approach, based on the Mori–Tanaka4 method, which
yielded an expression similar to that of Herve’s model for a two-
component core-shell composite. Although these models19–21 are derived
using different approaches, the results predicted are similar to each other
and the results obtained were valid for dilute volume fractions.

Meanwhile, Woodside and Messmer22 used Lichtenecker’s23 model,
also known as the geometric mean method, to compute the ETC of
three-component composites. This model suggests that if the thermal
conductivity of either the core or the shell vanishes, the effective conduc-
tivity (jeff ) would also be zero. However, this prediction is not accurate
because heat conduction could still occur through the continuous matrix
material. The Brailsford and Major model is another prevalent ETC
model for composites reinforced with core-shell particles. Brailsford and
Major24 extended the two-component model to include monodisperse
core-shell particles randomly distributed in a continuous matrix.
However, Ngo and Truong25 and Thiele et al.26 have demonstrated both
Lichtenecker’s23 and Brailsford and Major’s24 models to be unable to
accurately predict the effective conductivity when there is a significant dif-
ference in the magnitudes of the conductivities of the constituent phases.

Felske’s model,27 derived using the self-consistent field approxi-
mation, is considered effective in predicting the properties of core-shell
composites.25,26 However, when the shell material is absent (/s ¼ 0),
Felske’s model reduces to a form similar to Maxwell’s model. This sug-
gests that Felske’s model might underestimate the effective thermal
conductivity (ETC) of core-shell composites when the volume fraction
of core-shell particles (/csp) is sufficiently high. Additionally, Pal28

noted that Felske’s model accurately describes the effective thermal
conductivity when /csp � 0:2.

Further studies were conducted to predict the effective properties
of composites with core-shell inclusions across the entire spectrum of
volume fractions. In one of the earlier studies, Lu and Song29 extended
the work of Chiew and Glandt,30 providing a general expression for
the effective conductivity of coated inclusions while considering the
effect of interparticle interactions. They evaluated the pair interaction
between neighboring particles by solving a boundary value problem
concerning two coated spheres. The resulting model achieved Oð/2Þ
accuracy, remaining valid even at non-dilute volume fractions.

Pal28 developed an implicit model to estimate the effective thermal
conductivity of three-component composites, featuring monodisperse
core-shell particles randomly dispersed in a continuous matrix.
Employing the differential effective medium approach, this model con-
sidered the maximum packing limit of the inclusions. While the predic-
tions aligned well with experimental data for 13 different samples of two-
phase media, in the case of three-phase media, significant differences in
the orders of magnitude of thermal conductivity coefficients led to an
overstatement of the effective conductivity of the composite.

Following this, numerical techniques were employed to predict
the homogenized macroscale properties of composites. Thiele et al.26

and Shen and Zhou31 utilized finite element methods for homogeniz-
ing core-shell composites. In addition, several authors conducted
experimental studies32–38 to determine the effective conductivity. The
combined data from these diverse investigations are illustrated in
Fig. 2, offering a comprehensive overview of the methods used to cal-
culate and predict the effective thermal conductivity of core-shell com-
posites at the macroscale. Despite the numerous contributions from

various authors over the years, these models show significant differ-
ences among themselves. Therefore, there is uncertainty as to which
model is the most appropriate and accurate. This uncertainty high-
lights the need for a more generalized method to predict the effective
conductivity of composites with core-shell inclusions, regardless of the
inclusion’s volume fraction and conductivity ratios. Therefore, this
work aims to provide a generalized method for predicting effective
conductivity using the asymptotic homogenization method.

The asymptotic homogenization method (AHM)6,50,51 exploits
the sharp separation between the microscale and macroscale to decou-
ple spatial variations and employs asymptotic expansions of the fields.
Under the assumption of periodicity in the microstructure, this
approach yields a set of effective governing equations that describe the
macroscale mechanics of the heterogeneous material. A detailed review
of AHM can be found in these articles.52,53 Many authors have used
AHM to predict effective properties for multifunctional layered com-
posite materials54–56 and have validated them against existing analyti-
cal expressions. In a recent work,49 the accuracy of the AHM was
compared with that of the representative volume element method in
thermal composites, emphasizing efficacy of AHM. Although the deri-
vations required to find the effective property expression are mathe-
matically extensive, the use of FEM helps simplify the solving
procedure. Such solving schemes have been adopted,46–48 and the
accuracy of the results obtained has been verified.

Effective medium models, such as the extended Maxwell model,
accurately predict effective properties in dilute packing conditions but fail
to capture interparticle interactions at semi-dilute and dense volume frac-
tions. Lu and Song29 provide a model that predicts effective conductivity
well up to semi-dilute packing fractions. However, the available expres-
sions are implicit functions of the volume ratio of core and shell, conduc-
tivity ratio, and volume fractions of inclusions, making it mathematically
challenging to derive a closed-form solution for new combinations of
these ratios. Finite element modeling using both unit cell and representa-
tive volume element (RVE) approaches offers an alternative to effective
mediummodels for predicting the effective properties of composites. The

FIG. 2. Different methods from literature to predict effective thermal conductivity of
CSP composites: mean field, analytical, numerical, and experimental approaches
and their applicability across /csp. The volume fraction range is approximately split
into three regimes: dilute (up to / � 0:1), semi-dilute (up to / � 0:1), and dense
(/ > 0:3), based on a simple cubic lattice approximation.).
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unit cell model employs a single, repeating unit cell to represent the com-
posite material, and assumes periodic boundary conditions.57 In contrast,
the RVE model uses a representative sample of the microstructure, mak-
ing it suitable for heterogeneous and complex materials. However, this
approach is computationally intensive and scale-dependent, as the model
must be large enough to accurately capture the macroscale features of the
material.58 A comparative summary of these methods and their limita-
tions is provided in Table I for reference.

Therefore, to predict the effective conductivity across the com-
plete range of packing fractions and capture interparticle interactions
near maximum packing fractions, we propose the present method.
This method combines the robustness of the AHM with the efficiency
of FEM to predict the effective conductivity of core-shell composites.

The multiscale formulation for the effective conductivity problem
is derived in Sec. IIIA, followed by numerical methodology in Sec.
IIIB. In Sec. IVA, the proposed methodology is benchmarked against
known analytical results for homogeneous spherical inclusions, and
then the study is extended to include CSP inclusions in Sec. IVB.

III. MULTISCALE MODELLING

In this work, we investigate composite materials with periodic
arrangement, thus facilitating the application of periodic homogeniza-
tion. It is, therefore, assumed that the composite is composed of many
repeating unit cells, as shown in Fig. 3, whose length scale is well sepa-
rated from the macroscopic structure. The unit cell determines mate-
rial properties at the microstructure level, significantly influencing the
material’s macroscopic behavior.

As shown in Fig. 4, we consider a unit cell with inclusion of CSP
in continuous media. The interface between the different phases within
the composite is considered perfect (without any interface effects).
Since the material is composed of many repeating unit cells, the associ-
ated material properties within each unit cell will recur over a constant
length Y, termed as the periodicity of the material. In a heterogeneous

domain X having a periodic structure, any physical quantity w, dem-
onstrates the following property:

wðx þ YÞ ¼ wðxÞ 8x and 8ðxþYÞ 2 X; (7)

where x is the position vector. Based on these assumptions and the
existence of two distinguishable length scales, the effective properties
of the heterogeneous media could be predicted by solving a finite num-
ber of unit cell problems.

A. Asymptotic homogenization method

If we consider a coordinate system in which the global coordinate
vector x corresponds to the macroscopic structure, and the stretched local
coordinate vector y represents the microscopic unit cell, then the two
coordinate systems are related by a scale separation parameter e, as

yi ¼ xi
e
; e � 1: (8)

The slow or global variable, x, captures variations at the macroscale
[Oð1Þ]; variations at the microscopic length scale [OðeÞ], which scales

TABLE I. Overview of literature survey.

Domain Literature Remarks Limitations

Mean-field methods
Maxwell,8 Felske,27 Hatta and
Taya,39 Herve,20 Park et al.21

Single coated inclusion in an infi-
nite matrix space

Applicable only at dilute volume
fractions

Analytical estimates

Keller,9 Batchelor and O’Brien,10

McPhedran and McKenzie,11

Sangani and Acrivos,12

Bonnecaze and Brady40

Spherical inclusions Assumes periodic arrangement
at dense packing; deriving

closed-form solutions for varying
spatial distributions requires
extensive mathematical rigor

Lu and Song,29 Nan et al.,41

Benveniste and Milton,42 Cheng
and Torquato43

Spherical inclusions with interfa-
cial resistance and coatings

Numerical methods Thiele et al.,26 Zhu et al.,44 Shen
and Zhou31

Core-shell inclusions in a unit
cell

Conducted at macroscale;
focuses on macroscopic varia-

tions only

Asymptotic
homogenization

Torquato,45 Andreassen and
Andreasen,46 Fantoni et al.,47

Dutra et al.,48 Lee and Lee49

Application of AHM in predict-
ing effective transport

coefficients

Requires significant scale separa-
tion between inclusions and

macroscale for accurate results

FIG. 3. Continuous media with periodic inclusion and the corresponding unit cell.
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the macroscopic length scale by 1=e, are captured by the finer scale y,
as defined in Eq. (8). As the microstructural parameter e approaches
zero, the fields under consideration converge toward a homogeneous
macroscopic solution.

Now, a thermal conductivity problem within a heterogeneous
domain X is considered, with the governing equations defined as the
following:

1. Balance equation:

Qe
i;iðxÞ ¼ 0 in X; (9)

2. Constitutive relation:

Qe
i ðxÞ ¼ jeijðxÞEe

j ðxÞ in X; (10)

3. Temperature gradient:

Ee
i ðxÞ ¼ �Te

;iðxÞ in X; (11)

4. Boundary conditions and jumps:

vQe
i nib ¼ 0 on the interface; (12)

vTeb ¼ 0 on the interface; (13)

where QiðxÞ denotes heat flux, EiðxÞ-the temperature gradient,
jijðxÞ-the thermal conductivity tensor, T is the temperature potential,
and the superscript e denote that the macroscopic quantities that have a
dependency on microscale properties. ð:Þ;i denotes the spatial gradient
of any field along the ith direction. Owing to the Y-periodicity of the
material, the thermal conductivity tensor has the following property:

jeijðx þ YÞ ¼ jeijðxÞ; 8x 2 X: (14)

Hence, it is evident that the conductivity tensor varies with the micro-
scale variable y, indicating that the problem’s solution is influenced by
both the macrolength and microlength scales. Furthermore, assuming
that the periodicity of the material characteristics imposes a similar
periodic perturbation on factors governing the thermal behavior of the
material, a two-scale asymptotic expansion of the solution TðxÞ shall
be considered in terms of both macrovariables and microvariables.

TeðxÞ ¼ T0ðx; yÞ þ eT1ðx; yÞ þ e2T2ðx; yÞ: (15)

Similar expansion with respect to powers of e can be written for tem-
perature gradient and heat flux.

From the governing equations, using relations (10) and (11) in
Eq. (9), we get

�ðjeijðxÞT;jÞ;i ¼ 0: (16)

Given Eq. (16), in order to determine temperature field asymptotes,
the chain rule is exploited as follows:

T;i ¼ T;iðxÞ þ 1
e
T;iðyÞ: (17)

Making use of Eqs. (17) and (15), we get Eq. (16) to be expanded as

� jijðyÞTo;jðxÞ
� �

;iðxÞ �
1
e

jijðyÞTo;jðxÞ
� �

;iðyÞ

� 1
e

jijðyÞTo;jðyÞ
� �

;iðxÞ �
1
e2

jijðyÞTo;jðyÞ
� �

;iðyÞ
�e jijðyÞT1;jðxÞ
� �

;iðxÞ � jijðyÞT1;jðxÞ
� �

;iðyÞ

� jijðyÞT1;jðyÞ
� �

;iðxÞ �
1
e

jijðyÞT1;jðyÞ
� �

;i
¼ 0:

(18)

Grouping the results in OðeÞ, the leading order terms are given
by

� jijðyÞVo;jðyÞ
� � ¼ 0: (19)

For a solution to exist, Eqs. (19) and (20) must satisfy the solv-
ability condition.6 Equation (19) inherently fulfills the solvability con-
dition, implying that T0 is solely a function of the macroscopic
variable x. By grouping the next order terms in e, we obtain

� jijðyÞTo;jðxÞ
� �

;iðyÞ � jijðyÞT1;jðyÞ
� �

;iðyÞ ¼ 0: (20)

For Eq. (20) to satisfy the solvability condition, the solution T1 takes
the form

T1ðx; yÞ ¼ ZjðyÞTo;jðxÞ ; (21)

where Z represents the homogenization function, which exhibits peri-
odicity with a period of Y. The zero-order component of the equation
of heat balance (16), considering Eqs. (20) and (21), yields the govern-
ing equation or the cell problem, which must be solved to determine Z.

FIG. 4. (a) Unit cell with CSP inclusion
and (b) mesh convergence study for the
corresponding unit cell for /csp ¼ 0.5 and
jr ¼ 104.
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� jijðyÞ þ jikðyÞZj;kðyÞðyÞ
� �

;iðyÞ ¼ 0: (22)

The volumetric average of a quantity a over Y is defined by

aH ¼ 1
jY j
ð
Y
aðx; yÞ dY : (23)

Using the results from Eqs. (9), (15), and (23), The macro-
behavior can be defined now by averaging the terms in Eq. (22), in the
domain Y. The heterogeneous structure can now be studied as a
homogeneous one, with the effective conductivity jH given by

jHij ¼
1
jY j
ð
Y
jijðyÞ þ jikðyÞZjðyÞ;kðyÞ
� �

dY : (24)

B. Numerical implementation method

The cell problem derived from AHM as defined by Eq. (22) can
be solved numerically using FE.59 To predict the effective conductivity
matrix, a unit potential is applied in x, y, and z directions, resulting in
three distinct solutions for the homogenization function. The homoge-
nization function Z within a given element can then be expressed in
matrix form as

ZðyÞ½ � ¼ Zf1 Zf2 Zf3½ �1	3; (25)

where Zfi is the solution of cell problem for the applied unit potential
difference along the direction yi. The (
) in the following expression
denotes the nodal value matrix in a finite element mesh of the unit cell,
corresponding to the applied unit potential difference along with yi.
We have the usual representations for each element as

ZðyÞ½ �1	3 ¼ NðyÞ½ �1	n
~Zf gn	3; (26)

where ½N� is the matrix of the standard Lagrange shape functions and
n is the number of degrees of freedom per element. The variational
form of Eq. (22) can be given asð

Y
jijðyÞ þ jikðyÞZj;kðyÞ
� �

�;j dY ¼ 0; (27)

where � is the variation in Z. Using the matrix notations for FE, the
variational form can be rewritten asð

Y
B½ �T D½ � þ B½ �T D½ � B½ � ~Zf g

� �
dY ¼ 0: (28)

The system of linear equations that is to be solved reduces to

K½ � ~Zf g þ Ff g ¼ 0f g; (29)

where Z is Y-periodic with zero mean value over the unit cell, and

Ff g ¼
ð
Y
B½ �T D½ � dY; K½ � ¼

ð
Y
B½ �T D½ � B½ � dY ;

B½ �3	n ¼ L½ �3	1 N½ �1	n:

where L denotes the matrix of differential operators, andD denotes the
coefficient of thermal conductivity of the corresponding element.
Having calculated Z and by the consequence T1, the effective material
conductivity can therefore be derived as

jHij ¼
1
jYj
ð
Y
D½ � I½ � þ B½ � ~Zf g� �

dY : (30)

In-house Python codes were developed to compute the effective con-
ductivity as given by Eq. (30). The code was initially benchmarked for
a solid spherical inclusion and then expanded to accommodate core-
shell inclusions for a range of volume fractions and conductivity ratios.

IV. RESULTS AND DISCUSSION
A. Spherical inclusion

In this section, to validate the proposed model, we employ a core-
shell inclusion model with core-shell inclusions arranged in a simple
cubic structure within a matrix, as depicted in Fig. 4(a). For initial vali-
dation, we assume equal thermal conductivities for both the core and
shell phases, enabling direct comparison with two-phase models across
all volume fractions up to the maximum packing fraction characteristic
of the simple cubic arrangement. We define jc as the conductivity of the
core, js as the conductivity of the shell, and jm as the conductivity of
the matrix. The conductivity of the core-shell inclusion phase is indi-
cated by jcsp, and the conductivity ratio is indicated by jr ¼ jcsp=jm.
For the simulations, we assume isotropic conductivities for all phases.

A mesh convergence study was carried out for each volume frac-
tion of inclusion until the difference between the effective property cal-
culated for the current mesh and the subsequent finer mesh was less
than a specified tolerance value (10�2), as suggested in the literature.60

The simulations were carried out for two conductivity ratios
jr ¼ 102; 104. Based on Fig. 4(b), it was determined that 190 000 four-
noded tetrahedral elements at a volume fraction /csp ¼ 0:5 and jr
¼ 104 were sufficient for this simulation.

Figure 5(a) presents a comparison between our model and exist-
ing analytical estimates. At lower volume fractions (/csp < 0:1), our
results align closely with the Maxwell model, which is expected due to
the weak interactions between inclusions in dilute systems. However,
as the volume fraction increases and approaches the maximum pack-
ing fraction (/csp > 0:5), there are noticeable deviations. This diver-
gence arises because Maxwell’s mean-field model does not account for
significant interactions between neighboring particles, which impact
the effective properties of the material. Unlike the Maxwell model, the
Asymptotic Homogenization Method incorporates field perturbations
caused by these inclusions [as shown in Eq. (20)], allowing it to pro-
vide more accurate predictions, especially at high-volume fractions
near the maximum packing limit.

Figure 5(b) illustrates the accuracy of the asymptotic homogeni-
zation method by comparing its predictions in two conductivity ratios
with Keller’s results and the limit defined by Sangani and Acrivos at
the maximum packing fraction (/max ¼ 0:52 for a simple cubic struc-
ture). The AHM results are in close agreement with Keller’s predic-
tions and fall within the bounds established by Sangani and Acrivos,
demonstrating the validity and feasibility of the proposed approach.
These results for spherical core-shell structures with equal thermal
conductivities, are consistent with foundational work on the effective
conductivity of spherical inclusions.

B. Core-shell inclusion

In this section, we analyze the thermal properties of composites
with spherical core-shell inclusions, where the core and shell possess
distinct thermal conductivities, jc and js, respectively.
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The Felske27 model provides an analytical solution for estimating
the effective thermal conductivity of composites with concentric core-
shell structures, accounting for the distinct thermal properties of the
core and shell materials. While this model addresses individual core-
shell inclusions, it does not fully capture interactions between inclu-
sions, which can be significant at higher volume fractions. In contrast,
Lu and Song29 employed a boundary value problem approach using
twin spherical expansions to account for interactions between pairs of
coated spheres in a composite material. Their rigorous method cap-
tures the field perturbations caused by neighboring inclusions, provid-
ing more accurate predictions for effective thermal conductivity in
systems where particle interactions play a critical role.

In Fig. 6, the AHM model results are compared with the predic-
tions of Lu and Song, as well as the Felske model. At lower volume
fractions, both the AHM model and the Felske model show similar

results, reflecting their ability to accurately predict effective thermal
conductivity in dilute conditions where particle interactions are mini-
mal. However, as the volume fraction increases, the AHM model
diverges from the Felske model and aligns more closely with the pre-
dictions of Lu and Song. This is particularly evident at non-dilute vol-
ume fractions, where particle interactions become significant. The
AHM model effectively captures the influence of these interactions,
demonstrating consistency with the behavior observed in Lu and
Song’s results. This close alignment validates the AHM model’s capa-
bility to accurately account for complex particle interactions, making it
a reliable tool for predicting thermal properties in core-shell compo-
sites at higher inclusion concentrations.

1. Effect of core and shell thermal conductivites

Figure 7 illustrates the effective thermal conductivity predicted by
the AHM and Felske models at two different volume fractions. At a lower
volume fraction [/csp ¼ 0:2, Fig. 7(a)], both models align closely and
accurately predict the ETC. However, at a higher volume fraction
[/csp ¼ 0:5, Fig. 7(b)], particularly when js=jm � 1, the numerical
results from the AHM model begin to deviate from the Felske model.
This deviation indicates that the Felske model underestimates the effective
thermal conductivity of core-shell composites at high volume fractions.

Both the core and shell significantly influence the effective con-
ductivity, but their effects vary depending on the thermal conductivi-
ties of each component. When the ratio of the conductivity of the
shell-to-matrix is extremely high (js=jm ¼ 103 and js=jm ¼ 10�3),
the effective conductivity of the composite remains largely unchanged
regardless of the core-to-matrix conductivity ratio. This highlights that
the effective conductivity is primarily governed by the shell conductiv-
ity, with the core exerting a limited impact.

2. Effect of spatial distribution of the inclusions

Although the periodicity assumption simplifies the analysis of
composite materials, it is crucial to understand that actual composites

FIG. 5. (a) The ratio of jeff =jcsp as a function of the inclusion’s volume fraction /csp. The dashed line corresponds to Maxwell’s model, whereas the dotted line represents
Keller’s result. The results from the present model are plotted using circles. (b) The ratio of jeff =jm as a function of the deviation from the maximum packing fraction p=6 (sim-
ple cubic arrangement of spherical inclusions). The dotted line corresponds to Keller’s expression, while the solid lines represent the limits predicted by Sangani and Acrivos at
the maximum packing fraction. The values obtained for conductivity ratios jr¼ 102 and 104 are represented by blue and red color, respectively.

FIG. 6. Ratio of jeff =jm as a function of the inclusion’s volume fraction /csp for
jc=jm ¼ 0:01�.
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frequently differ from this idealized model. In practice, composites
exhibit a more intricate microstructure, often featuring clusters or net-
works of particles. The presence of particle agglomerations or network
formations can significantly alter the thermal conduction pathways,
thereby affecting the material’s overall heat transfer characteristics.
These clusters can have a substantial impact on the effective thermal
conductivity of the composite. To extend the analysis, we consider com-
putational cells where inclusions are arranged in random dispersions, as
shown in Fig. 8. The macroscopic composite is modeled as a periodic
array of these cells, each containing randomly placed inclusions. The
Latin hypercube sampling (LHS)61 technique is used to ensure a struc-
tured, yet random distribution of inclusions within each cubic cell. This
method ensures that inclusions are evenly distributed throughout the
cell without overlapping, while maintaining randomness.

In ABAQUS, a core-shell composite is constructed as follows:

1. The core radius (Rc), core-shell radius ratio (Rc=Rs), and the
number of particles (N) required for a specific volume ratio
(/csp) are determined.

2. Core-shell particles are randomly placed in a 3D cubic domain
using coordinates generated by the LHS technique. The position
of each new particle is checked to prevent overlap with existing
particles. If an overlap occurs, the coordinate is discarded.

3. The process is repeated until the required number of particles is
placed without overlap.

The computational model for this simulation consists of a unit
cell that contains eight particles. The simulations were conducted with
a core-to-shell radius ratio of Rc=Rs ¼ 0:9. The effects of varying vol-
ume fractions were investigated by systematically increasing the size of
the inclusions, thus increasing the overall volume fraction in the com-
posite. Three specific volume fractions are analyzed, as depicted in
Fig. 8. The thermal conductivities for the core, shell and matrix materi-
als are established at jc¼ 0.24W�m�1�K�1, js¼ 430W�m�1�K�1, and
jm¼ 0.45W�m�1�K�1, respectively. These values correspond to com-
posite silver-coated polyamide inclusions embedded within a high-
density polyethene (HDPE) matrix.32

As shown in Fig. 9, two different inclusion configurations are
illustrated: (a) a simple cubic arrangement and (b) a randomly ori-
ented arrangement. The results presented in Table II indicate that the
effective thermal conductivity jeff of the composite increases with the
volume fraction of inclusions. In addition, comparing computational
cells with a periodic arrangement of inclusions to those with a random
arrangement, the latter demonstrates a significant increase in jeff . The
findings reveal that particle interactions and collective effects gain
prominence in the semidilute volume fraction regime, leading to a
marked increase in effective thermal conductivity. As the volume frac-
tion increases, the interaction of the particles intensifies, leading to
enhanced effective thermal conductivity.

The observed enhancement in effective thermal conductivity can
be attributed to several factors inherent in the random arrangement of

FIG. 7. Ratio of jeff =jm as a function of the conductivity ratio js=jm (a) /csp ¼ 0:2� and (b) /csp ¼ 0:5. The x axis is displayed on a logarithmic scale for enhanced
clarity.

FIG. 8. Computational cells containing
monodisperse core-shell inclusions with
Rc=Rs ¼ 0:9 and (a) /csp ¼ 0:11, (b)
/csp ¼ 0:18, and (c) /csp ¼ 0:26.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 012018 (2025); doi: 10.1063/5.0246385 37, 012018-8

Published under an exclusive license by AIP Publishing

 11 January 2025 07:12:38

pubs.aip.org/aip/phf


the particles. First, this configuration allows for multiple conduction
pathways, thereby increasing conductivity across all directions.
Additionally, as illustrated in Fig. 9(b), random orientations can
include preferential alignments, such as along the x axis, which further
enhance thermal conduction in that specific direction. This directional
enhancement is evident in the results for /csp ¼ 0:26 shown in
Table II, where the effective conductivity is higher along the x direction
compared to the y and z directions. This pattern suggests that align-
ments along certain axes lead to improved conduction along those
paths, contributing to an overall increase in jeff . Furthermore, the rela-
tive spread of the ETC at moderate volume fractions is higher than at
close packing. This can be attributed to the wide range of possible spa-
tial arrangements and conduction paths between inclusions at moder-
ate volume fractions. In contrast, the particles are more densely packed
in the near-packing limit, restricting their rearrangement and resulting
in a smaller spread of ETC values.

3. Comparison with experimental results

Numerous experimental32–34 studies have measured the effective
thermal conductivity of three-component core-shell composites. These
measurements were compared with theoretical models such as

Felske27 and numerical models. Numerical studies, such as those con-
ducted by Thiele et al.,26 have applied finite element methods for esti-
mating thermal conductivity; however, they often do not fully account
for particle orientation and interaction effects, which are crucial at
higher volume fractions where these interactions significantly influence
overall thermal conductivity.

As illustrated in Fig. 10, experimental data are compared with
theoretical predictions from both the Felske model27 and the AHM
model with simple cubic and random arrangements. Both models
show reasonable agreement with experimental results at low volume
fractions, but the AHM model with random particle arrangements
achieves a closer match at higher volume fractions. This improvement
can be attributed to the random arrangement that brings particles
closer together, enabling more interactions that enhance thermal con-
ductivity. The random arrangement of the particles not only allows for
greater interparticle interactions but also exhibits a preferential align-
ment along the x axis, as plotted for uniformity. This preferential ori-
entation contributes to an increase in effective thermal conductivity,
particularly in the x-direction, by supporting enhanced thermal trans-
port along this axis. In addition, as the number of particles and the size
of the unit cell increased, leading to a more randomized particle
arrangement, the results showed even closer alignment with the experi-
mental data. This trend suggests that the greater randomness and den-
sity of particles enhance the accuracy of the thermal conductivity
predictions. This observation further supports the reliability of this
approach in capturing complex interactions in higher volume frac-
tions, indicating its potential for more precise thermal analysis in com-
posite materials.

Krupa et al.32 also mention the presence of continuous conduc-
tive chains within their samples, a factor absent in our simulations.
Despite this limitation, the AHM model captures significant particle–
matrix interactions, providing a reliable representation of the physical
processes involved in the thermal behavior of core-shell composites.

V. CONCLUSION

The asymptotic homogenization method coupled with finite ele-
ment analysis has demonstrated its effectiveness in predicting the

TABLE II. Numerical predictions of the effective thermal conductivity for composites
with inclusions arranged periodically (SC) and randomly distributed within a computa-
tional cell.

/csp Direction

jeff ðW=mKÞ
% differenceSC Random

x 0.62 0.67 7.56
0.11 y 0.62 0.69 11.19

z 0.62 0.68 10.34
x 0.74 0.83 10.28

0.18 y 0.74 0.84 13.14
z 0.74 0.87 15.89
x 0.95 1.13 19.09

0.26 y 0.95 1.04 8.84
z 0.95 1.08 13.75

FIG. 10. Comparison of effective thermal conductivity predicted from theoretical and
numerical models with experimental results.

FIG. 9. Computational cell with (a) inclusions arranged in a simple cubic lattice
within the unit cell, and (b) inclusions with random orientations that show a preferen-
tial alignment along the x axis at /csp ¼ 0:26.
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thermal behavior of composites with core-shell inclusions. This study
highlights how critical factors such as the volume fraction of inclu-
sions, the thermal conductivity of the shell, and particle orientation
play a pivotal role in determining the effective thermal conductivity of
these materials. The analysis revealed that the thermal conductivity of
the shell material plays a decisive role, and applying a conductive coat-
ing can significantly improve the overall thermal performance by facil-
itating better heat transfer between particles and the matrix.
Furthermore, the arrangement and orientation of the particles signifi-
cantly affect the ETC, underscoring the importance of microstructural
considerations when designing composites for thermal applications.

The approach used in this study not only aligns with traditional
models but also provides a more detailed understanding of deviations
arising from particle interactions, especially in moderate and dense
packing scenarios. The adaptability of this method for diverse configu-
rations and inclusion types extends its potential applications, offering
valuable insights for optimizing thermal performance in advanced
composite materials.

ACKNOWLEDGMENTS

The Institute of Eminence Research Initiative Project on
Materials and Manufacturing for Futuristic Mobility (Project No.
SB22231272MMMOEX008702) (IIT Madras) is gratefully
acknowledged by A. Arockiarajan. Anubhab Roy acknowledges the
funding from the Science & Engineering Research Board (SERB),
Government of India (Grant No. SPR/2021/000536).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

A. Karthiban: Formal analysis (equal); Investigation (equal);
Methodology (equal); Writing – original draft (equal); Writing –
review & editing (equal). M. K. Easwar: Methodology (equal);
Validation (equal); Writing – original draft (equal); Writing – review
& editing (equal). A. Arockiarajan: Conceptualization (equal);
Resources (lead); Supervision (equal); Validation (equal); Writing –
review & editing (equal). Anubhab Roy: Conceptualization (equal);
Resources (lead); Supervision (equal); Validation (equal); Writing –
review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from
the corresponding author upon reasonable request.

REFERENCES
1H. K. Azad and D. Rahman, “Ceramic matrix composites with particulate rein-
forcements—progress over the past 15 years,” in Comprehensive Materials
Processing (Elsevier, 2024), pp. 395–408.
2N. P. Chuan-Yong Zhu and Z.-Y. Li, “Design and thermal insulation perfor-
mance analysis of endothermic opacifiers doped silica aerogels,” Int. J. Therm.
Sci. 145, 105995 (2019).

3H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, and B.
Chen, “Thermal conductivity of polymer-based composites: Fundamentals and
applications,” Prog. Polym. Sci. 59, 41–85 (2016).

4T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of
materials with misfitting inclusions,” Acta Metall. 21, 571 (1973).

5R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys.
Solids 13, 213 (1965).

6G. Papanicolau, A. Bensoussan, and J.-L. Lions, Asymptotic Analysis for
Periodic Structures (Elsevier, 1978).

7N. Charalambakis, “Homogenization techniques and micromechanics. A sur-
vey and perspectives,” Appl. Mech. Rev. 63, 030803 (2010).

8Maxwell, J., A Treatise on Electricity and Magnetism (Clarendon Press, 1873),
Vol. 1.

9J. Keller, “Conductivity of a medium containing a dense array of perfectly con-
ducting spheres or cylinders or nonconducting cylinders,” J. Appl. Phys. 34,
991 (1963).

10G. K. Batchelor and R. W. O’Brien, “Thermal or electrical conduction through
a granular material,” Proc. R. Soc. Lond. A 355, 313–333 (1977).

11R. C. McPhedran and D. R. McKenzie, “The conductivity of lattices of spheres.
i. the simple cubic lattice,” Proc. R. Soc. Lond. A 359, 45–63 (1978).

12A. S. Sangani and A. Acrivos, “The effective conductivity of a periodic array of
spheres,” Proc. R. Soc. Lond. A 386, 263–275 (1983).

13M. Zuzovsky and H. Brenner, “Effective conductivities of composite materials
composed of cubic arrangements of spherical particles embedded in an isotropic
matrix,” J. Appl. Math. Phys. 28, 979–992 (1977).

14E. M. K, A. Arockiarajan, and A. Roy, “A multiscale approach to predict the
effective conductivity of a suspension using the asymptotic homogenization
method,” Phys. Fluids 34, 062002 (2022).

15T. Nomura, N. Sheng, C. Zhu, G. Saito, D. Hanzaki, T. Hiraki, and T. Akiyama,
“Microencapsulated phase change materials with high heat capacity and high
cyclic durability for high-temperature thermal energy storage and transporta-
tion,” Appl. Energy 188, 9–18 (2017).

16Y. Zhu, S. Liang, K. Chen, X. Gao, P. Chang, C. Tian, J. Wang, and Y. Huang,
“Preparation and properties of nanoencapsulated n-octadecane phase change
material with organosilica shell for thermal energy storage,” Energy Convers.
Manag. 105, 908–917 (2015).

17D. Mao, J. Chen, L. Ren, K. Zhang, M. M. Yuen, X. Zeng, R. Sun, J.-B. Xu, and
C.-P. Wong, “Spherical core-shell al@al2o3 filled epoxy resin composites as
high-performance thermal interface materials,” Compos. Part A Appl. Sci.
Manuf. 123, 260–269 (2019).

18D. Hasselman and L. F. Johnson, “Effective thermal conductivity of composites
with interfacial thermal barrier resistance,” J. Compos. Mater. 21, 508–515
(1987).

19G. Sukhinin, M. Morozova, and S. Novopashin, “Thermal conductivity of the
suspensions based on core-shell particles,” J. Heat Transfer 138, 064501 (2016).

20E. Herve, “Thermal and thermoelastic behaviour of multiply coated inclusion-
reinforced composites,” Int. J. Solids Struct. 39, 1041–1058 (2002).

21Y. K. Park, J.-K. Lee, and J.-G. Kim, “A new approach to predict the thermal
conductivity of composites with coated spherical fillers and imperfect interface,”
Mater. Trans. 49, 733–736 (2008).

22W. Woodside and J. H. Messmer, “Thermal conductivity of porous media. I.
Unconsolidated sands,” J. Appl. Phys. 32, 1688–1699 (1961).

23K. Lichtenecker, “Die dielektrizitatskonstante naturlicher und kunstlicher mis-
chkorper,” Physikalische Z. 27, 115–158 (1926).

24A. D. Brailsford and K. G. Major, “The thermal conductivity of aggregates of
several phases, including porous materials,” Br. J. Appl. Phys. 15, 313 (1964).

25I. L. Ngo and V. A. Truong, “An investigation on effective thermal conductivity
of hybrid-filler polymer composites under effects of random particle distribu-
tion, particle size and thermal contact resistance,” Int. J. Heat Mass Transf.
144, 118605 (2019).

26A. M. Thiele, A. Kumar, G. Sant, and L. Pilon, “Effective thermal conductivity
of three-component composites containing spherical capsules,” Int. J. Heat
Mass Transf. 73, 177–185 (2014).

27J. Felske, “Effective thermal conductivity of composite spheres in a continuous
medium with contact resistance,” Int. J. Heat Mass Transf. 47, 3453–3461
(2004).

28R. Pal, “Thermal conductivity of three-component composites of core-shell
particles,”Mater. Sci. Eng. A 498, 135–141 (2008).

29S. Lu and J. Song, “Effective conductivity of composites with spherical inclu-
sions: Effect of coating and detachment,” J. Appl. Phys. 79, 609–618 (1996).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 012018 (2025); doi: 10.1063/5.0246385 37, 012018-10

Published under an exclusive license by AIP Publishing

 11 January 2025 07:12:38

https://doi.org/10.1016/j.ijthermalsci.2019.105995
https://doi.org/10.1016/j.ijthermalsci.2019.105995
https://doi.org/10.1016/j.progpolymsci.2016.03.001
https://doi.org/10.1016/0001-6160(73)90064-3
https://doi.org/10.1016/0022-5096(65)90010-4
https://doi.org/10.1016/0022-5096(65)90010-4
https://doi.org/10.1115/1.4001911
https://doi.org/10.1063/1.1729580
https://doi.org/10.1098/rspa.1977.0100
https://doi.org/10.1098/rspa.1978.0031
https://doi.org/10.1098/rspa.1983.0036
https://doi.org/10.1007/BF01601666
https://doi.org/10.1063/5.0091451
https://doi.org/10.1016/j.apenergy.2016.11.025
https://doi.org/10.1016/j.enconman.2015.08.048
https://doi.org/10.1016/j.enconman.2015.08.048
https://doi.org/10.1016/j.compositesa.2019.05.024
https://doi.org/10.1016/j.compositesa.2019.05.024
https://doi.org/10.1177/002199838702100602
https://doi.org/10.1115/1.4032735
https://doi.org/10.1016/S0020-7683(01)00257-8
https://doi.org/10.2320/matertrans.MRA2007135
https://doi.org/10.1063/1.1728419
https://doi.org/10.1088/0508-3443/15/3/311
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118605
https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.002
https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.002
https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.013
https://doi.org/10.1016/j.msea.2007.10.123
https://doi.org/10.1063/1.360803
pubs.aip.org/aip/phf


30Y. C. Chiew and E. D. Glandt, “Effective conductivity of dispersions: The
effect of resistance at the particle surfaces,” Chem. Eng. Sci. 42, 2677–2685
(1987).

31Z. Shen and H. Zhou, “Predicting effective thermal and elastic properties of
cementitious composites containing polydispersed hollow and core-shell micro-
particles,” Cem. Concr. Compos. 105, 103439 (2020).

32I. Krupa, A. Boudenne, and L. Ibos, “Thermophysical properties of polyethyl-
ene filled with metal coated polyamide particles,” Eur. Polym. J. 43, 2443–2452
(2007).

33Z. Wang, Y. Zhang, J. Yi, N. Cai, and J. Guo, “Core-shell cu@al2o3 fillers for
enhancing thermal conductivity and retaining electrical insulation of epoxy
composites,” J. Alloys Compd. 928, 167123 (2022).

34H. Wang, F. Hou, and C. Chang, “Experimental and computational modeling
of thermal conductivity of cementitious syntactic foams filled with hollow glass
microspheres,” Constr. Build. Mater. 265, 120739 (2020).

35Y. Qiao, X. Wang, X. Zhang, and Z. Xing, “Thermal conductivity and compres-
sive properties of hollow glass microsphere filled epoxy-matrix composites,”
J. Reinf. Plast. Compos. 34, 1413 (2015).

36A. Ricklefs, A. M. Thiele, G. Falzone, G. Sant, and L. Pilon, “Thermal conduc-
tivity of cementitious composites containing microencapsulated phase change
materials,” Int. J. Heat Mass Transf. 104, 71–82 (2017).

37Y. Zhou, L. Wang, H. Zhang, Y. Bai, Y. Niu, and H. Wang, “Enhanced high
thermal conductivity and low permittivity of polyimide based composites by
core-shell Ag@SiO2 nanoparticle fillers,” Appl. Phys. Lett. 101, 012903
(2012).

38K. Zheng, D. Wang, L. Duo, F. Sun, Z. Zhang, Y. He, P. Li, Y. Ma, and C. Xu,
“Covalently bonded silica interfacial layer for simultaneously improving ther-
mal and dielectric performance of copper/epoxy composite,” Surf. Interfaces
26, 101404 (2021).

39H. Hatta and M. Taya, “Thermal conductivity of coated filler composites,”
J. Appl. Phys. 59, 1851–1860 (1986).

40R. T. Bonnecaze and J. F. Brady, “A method for determining the effective con-
ductivity of dispersions of particles,” Proc. R. Soc. Lond. A 430, 285–313
(1990).

41C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal con-
ductivity of particulate composites with interfacial thermal resistance,” J. Appl.
Phys. 81, 6692–6699 (1997).

42Y. Benveniste and G. W. Milton, “An effective medium theory for multi-phase
matrix-based dielectric composites with randomly oriented ellipsoidal inclu-
sions,” Int. J. Eng. Sci. 49, 2–16 (2011).

43H. Cheng and S. Torquato, “Effective conductivity of periodic arrays of spheres
with interfacial resistance,” Proc. R Soc. Lond. A 453, 145–161 (1997).

44C.-Y. Zhu, W.-X. Yang, H.-B. Xu, B. Ding, L. Gong, and Z.-Y. Li, “A general
effective thermal conductivity model for composites reinforced by non-contact
spherical particles,” Int. J. Therm. Sci. 168, 107088 (2021).

45S. Torquato, “Random heterogeneous media: Microstructure and improved
bounds on effective properties,” Appl. Mech. Rev. 44(2): 37–76 (1991).

46E. Andreassen and C. S. Andreasen, “How to determine composite material
properties using numerical homogenization,” Comput. Mater. Sci. 83, 488
(2014).

47F. Fantoni, A. Bacigalupo, and M. Paggi, “Multi-field asymptotic homogeniza-
tion of thermo-piezoelectric materials with periodic microstructure,” Int. J.
Solids Struct. 120, 31 (2017).

48T. A. Dutra, R. T. L. Ferreira, H. B. Resende, A. Guimar~aes, and J. M. Guedes,
“A complete implementation methodology for asymptotic homogenization
using a finite element commercial software: Preprocessing and postprocessing,”
Compos. Struct. 245, 112305 (2020).

49D. Lee and J. Lee, “Comparison and validation of numerical homogenization
based on asymptotic method and representative volume element method in
thermal composites,”Multiscale Sci. Eng. 3, 165 (2021).

50P. Suquet, “Elements of homogenization for inelastic solid mechanics, homoge-
nization techniques for composite media,” in Homogenization Techniques for
Composite Media, edited by E. Sanchez-Palencia and A. Zaoui (Springer,
Berlin, 1987), pp. 193–279.

51S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic
Properties (Springer, 2002), Vol. 55, pp. B62–B63.

52P. Kanoute, D. Boso, J. Chaboche, and B. Schrefler, “Multiscale methods for
composites: A review,” Arch. Comput. Methods Eng. 16, 31 (2009).

53A. L. Kalamkarov, I. V. Andrianov, and V. V. Danishevs’kyy, “Asymptotic
homogenization of composite materials and structures,” Appl. Mech. Rev. 62,
030802 (2009).

54J. Castillero, J. Otero, R. Ramos, and A. Bourgeat, “Asymptotic homogenization
of laminated piezocomposite materials,” Int. J. Solids Struct. 35, 527 (1998).

55J. Bravo-Castillero, R. Rodríguez-Ramos, H. Mechkour, J. A. Otero, and F. J.
Sabina, “Homogenization of magneto-electro-elastic multilaminated materials,”
Q. J. Mech. Appl. Math. 61, 311 (2008).

56J. Bravo-Castillero, H. Mechkour, J. Otero, J. Cabanas, L. Sixto, R. G. Díaz, and
F. Sabina, “Homogenization and effective properties of periodic thermomagne-
toelectroelastic composites,” J. Mech. Mater. Struct. 4, 819 (2009).

57H. Berger, S. Kari, U. Gabbert, R. Rodriguez-Ramos, R. Guinovart, J. A. Otero,
and J. Bravo-Castillero, “An analytical and numerical approach for calculating
effective material coefficients of piezoelectric fiber composites,” Int. J. Solids
Struct. 42, 5692–5714 (2005).

58S. Li and E. Sitnikova, “An excursion into representative volume elements and
unit cells,” in Reference Module in Materials Science and Materials Engineering,
edited by P. W. Beaumont and C. H. Zweben (Elsevier 2017), pp. 451–489.

59R. L. T. Olek and C. Zienkiewicz, The Finite Element Method for Solid and
Structural Mechanics (Butterworth-Heinemann, 2005).

60R. Penta and A. Gerisch, “Investigation of the potential of asymptotic homoge-
nization for elastic composites via a three-dimensional computational study,”
Comput. Visual. Sci. 17, 185 (2015).

61M. Mckay, R. Beckman, and W. Conover, “A comparison of three methods for
selecting vales of input variables in the analysis of output from a computer
code,” Technometrics 21, 239–245 (1979).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 012018 (2025); doi: 10.1063/5.0246385 37, 012018-11

Published under an exclusive license by AIP Publishing

 11 January 2025 07:12:38

https://doi.org/10.1016/0009-2509(87)87018-5
https://doi.org/10.1016/j.cemconcomp.2019.103439
https://doi.org/10.1016/j.eurpolymj.2007.03.032
https://doi.org/10.1016/j.jallcom.2022.167123
https://doi.org/10.1016/j.conbuildmat.2020.120739
https://doi.org/10.1177/0731684415592172
https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.013
https://doi.org/10.1063/1.4733324
https://doi.org/10.1016/j.surfin.2021.101404
https://doi.org/10.1063/1.336412
https://doi.org/10.1098/rspa.1990.0092
https://doi.org/10.1063/1.365209
https://doi.org/10.1063/1.365209
https://doi.org/10.1016/j.ijengsci.2010.06.019
https://doi.org/10.1098/rspa.1997.0009
https://doi.org/10.1016/j.ijthermalsci.2021.107088
https://doi.org/10.1115/1.3119494
https://doi.org/10.1016/j.commatsci.2013.09.006
https://doi.org/10.1016/j.ijsolstr.2017.04.009
https://doi.org/10.1016/j.ijsolstr.2017.04.009
https://doi.org/10.1016/j.compstruct.2020.112305
https://doi.org/10.1007/s42493-021-00067-4
https://doi.org/10.1007/s11831-008-9028-8
https://doi.org/10.1115/1.3090830
https://doi.org/10.1016/S0020-7683(97)00028-0
https://doi.org/10.1093/qjmam/hbn010
https://doi.org/10.2140/jomms.2009.4.819
https://doi.org/10.1016/j.ijsolstr.2005.03.016
https://doi.org/10.1016/j.ijsolstr.2005.03.016
https://doi.org/10.1007/s00791-015-0257-8
https://doi.org/10.2307/1268522
pubs.aip.org/aip/phf

