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Exit time of colloidal particles from falling drops

Nishanth Murugan and Anubhab Roy *

Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India

(Received 17 June 2025; accepted 26 November 2025; published 17 December 2025)

This work investigates the influence of convective transport within a sedimenting drop on the exit time of a
colloidal particle. Using Brownian dynamics simulations, we compute exit times for particles originating from
various locations inside the drop over a range of Péclet numbers (Pe). The Péclet number quantifies the balance
between the convective transport, caused by the Hadamard-Rybczynski flow field within a sedimenting drop, and
the thermal fluctuations in the system. Additionally, we model the exit time as a first-passage process governed
by the backward Kolmogorov equation, solving it asymptotically for Pe � 1 and Pe � 1, as well as numerically,
to determine the mean exit time as a function of Pe.

DOI: 10.1103/h8sk-8kp7

I. INTRODUCTION

Particle-laden droplets are prevalent in numerous natu-
ral and environmental systems, playing a crucial role in
phenomena ranging from raindrop formation in clouds to
pathogen-laden aerosol transport. Understanding fluid trans-
port and mixing within such droplets is essential, as it directly
influences their physical and chemical dynamics. Tradition-
ally, particle transport in these systems has been characterized
using an effective diffusivity or mean-squared displacement.
In this work, we adopt an alternative approach by leveraging
the concept of first-passage exit time [1]—the time it takes for
a particle to leave the droplet—to gain deeper insights into its
transport behavior. This perspective is particularly relevant for
studying aerosol-mediated pathogen dispersion, where droplet
evaporation and gravitational settling affect how long infec-
tious agents remain airborne. Additionally, our findings have
broader implications for understanding droplet coalescence
in condensing cloud droplets, as well as transport processes
in environmental flows, such as volcanic ash dispersion and
pollutant dynamics in atmospheric aerosols.

Colloidal particles suspended in cloud droplets play a cru-
cial role in cloud microphysics by influencing droplet stability,
growth, and phase transitions [2]. These particles, which in-
clude insoluble mineral dust, soot, biological aerosols, and
organic matter, can act as cloud condensation nuclei or ice
nucleating particles, affecting cloud droplet formation and
ice crystal development. Their presence alters the optical
and radiative properties of clouds, impacting cloud albedo
and lifetime. Additionally, colloidal particles can modify
the chemical composition of cloud water, catalyzing het-
erogeneous reactions that influence atmospheric chemistry
and precipitation processes. Understanding their behavior is
essential for improving predictions of cloud dynamics, pre-
cipitation efficiency, and climate feedback mechanisms.

The study of heat and mass transport from drops has
been extensively explored, particularly in the regime of strong
convection effects (Pe � 1), where the Péclet number (Pe)
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characterizes the relative dominance of convection over dif-
fusion. Early work by Kronig and Brink [3] focused on
estimating heat transport from a falling drop by calculating the
Nusselt number in the asymptotic limits of weak and strong
convection over long timescales. This was later refined by
Oliver and Souccar [4], who employed improved numerical
methods to capture heat transfer at finite times, revealing the
presence of a boundary layer near the drop surface where
diffusion and convection effects become comparable. In a
related effort, Yu-Fang and Acrivos [5] computed the average
Nusselt number in a doubly connected convection-dominated
flow field with closed streamlines, analyzing various Reynolds
number (Re) regimes. Their results demonstrated that for
both Re � 1 (Stokes regime) and Re � 1 (a core of constant
vorticity with a shear layer at the boundary), heat transport
remains independent of Pe and Re, with variations emerg-
ing only at finite Re due to evolving streamline patterns
driven by the interplay of viscous and inertial forces. In the
context of passive scalar transport, Lingevitch and Bernoff
[6] studied advection in a Lamb dipole flow, deriving an
averaged diffusion equation in the Pe � 1 limit using homog-
enization theory and a coordinate transformation along flow
streamlines. Their findings also highlighted the formation of a
boundary layer of width Pe−1/2 along both the drop bound-
ary and the centerline, where the passive scalar is rapidly
expelled. A similar framework applies to particle transport in
a rising hot buoyant fluid parcel (a thermal), where Griffiths
[7] examined the high-Rayleigh-number (Ra � 1) regime and
identified a thin boundary layer responsible for fluid entrain-
ment from outside the thermal, thereby controlling both the
rate of mass exchange across the interface and the residence
time of suspended particles within the thermal. Following
the approach of Lingevitch and Bernoff [6], he modeled the
exterior flow as potential flow and the interior as a Hill’s
spherical vortex, incorporating a kinematic description of a
highly viscous expanding thermal, akin to the work of Turner
[8]. These studies collectively underscore the crucial role of
boundary layers in governing transport processes within con-
vective flows.

Beyond the role of steady advection, Lagrangian chaos
has been shown to significantly enhance transport in various
systems [9] and is particularly relevant to the mixing and
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stirring of particle-laden fluids. In the context of heat and
mass transfer from liquid drops, this has led to substantial
interest in the generation and characterization of chaotic flow
fields. Bajer and Moffatt [10] first mathematically constructed
a three-dimensional quadratic Stokes flow field within a
droplet, demonstrating the existence of chaotic streamlines
in the noninertial regime. Building on this, Stone et al. [11]
linked these chaotic streamlines to a physically realizable
system—a non-neutrally buoyant droplet in a linear shear flow
with background vorticity—and characterized the transport
using Poincaré sections. Their work further revealed that the
extent of chaotic behavior depended on the angle between
the principal strain axes and the vorticity vector, as well
as the relative magnitude of the vorticity tensor compared
to the strain rate tensor. Bryden and Brenner [12] extended
this study by incorporating the translation of a non-neutrally
buoyant drop relative to the bulk fluid, demonstrating signifi-
cant alterations in the Poincaré sections. Later, Kroujiline and
Stone [13] explored chaotic trajectories in the quadratic flow
field of a translating drop within a bulk fluid with background
vorticity, deriving the corresponding Poincaré sections. In a
different setting, Christov and Homsy [14] investigated how
the presence of an axial electric field modifies heat and mass
transport from falling drops, showing that increasing field
strength transforms the internal flow from the Hadamard-
Rybczynski profile to an antisymmetric Taylor flow. More
recently, Krishnamurthy and Subramanian [15] examined heat
and mass transport from a neutrally buoyant droplet in pla-
nar linear and three-dimensional extensional flows, focusing
on the small Reynolds number (Re � 1) and large Péclet
number (Pe � 1) limit. By shifting to a nonorthogonal coor-
dinate system aligned with the flow streamlines, they derived
a similarity solution for the advection-diffusion equation gov-
erning heat transport, particularly within the open-streamline
regime. These studies collectively underscore the crucial role
of chaotic advection in enhancing transport processes in
droplet-laden flows. The aforementioned studies have primar-
ily characterized heat and mass transport from liquid drops by
analyzing the long-time behavior of particle transport across
various settings. However, a significant challenge in under-
standing transport in chaotic flows lies in estimating their
finite-time behavior, which is complicated by the noninte-
grable nature of the underlying flow fields. In this context,
the concept of exit time—framing particle transport as a first-
passage process [1]—offers a particularly useful approach.
Batchelor and Nitsche [16] investigated this idea in the context
of non-neutrally buoyant drops in gas-fluidized beds, defining
an exit-time metric (T90) as the time required for 90% of the
particles to exit the drop. Their study sought to explain the
formation of clear bubbles devoid of particles in gas-fluidized
beds—an observation contrasting with liquid-fluidized beds—
ultimately attributing the difference to the weaker particle
expulsion mechanism in the latter due to the higher viscosity
and density of the surrounding fluid. More broadly, following
the framework of Redner [1], exit time can be rigorously
formulated as a first-passage process, leading to a backward
Kolmogorov equation governing its dynamics [17]. In a re-
lated study, Marcotte et al. [18] tackled the inverse problem,
optimizing the time-dependent flow field within a drop to
maximize heat transfer through its boundaries—an approach

FIG. 1. Trajectory of a Brownian particle starting at the drop
center (0,0,0) for Pe = 1000 (blue line) and Pe = 0.1 (red line)
depicting the effects of convective transport inside a sedimenting
drop. The black lines depict the streamlines associated with the
Hadamard-Rybczynski flow field in a comoving reference frame.

conceptually similar to modeling the exit of colloidal particles
from confined domains. Building upon these insights, the
objective of this paper is to compute the finite-time exit of
a colloidal particle from a falling drop and estimate its mean
exit time, thereby advancing our understanding of transport in
convective and chaotic droplet flows.

The flow field inside a falling drop, as described by the
Hadamard-Rybczynski solution, consists of closed stream-
lines. While convection influences particle motion within the
drop, the eventual escape of a particle is facilitated solely
by thermal fluctuations that enable diffusion across these
closed flow paths. A nondimensional Péclet number, Pe =
ŪR/(2D(1 + λ)), where λ = μ̂/μ with μ̂ and μ being the vis-
cosities pertaining to the drop and the ambient medium where
the drop is present, Ū is the terminal velocity attained by the
freely falling drop, and D is the diffusivity characterizing the
thermal fluctuations in the system. The particle trajectories
associated with the exit of a colloidal particle in the presence
and absence of convective effects are displayed in Fig. 1. In
the absence of any thermal fluctuations in the system, the
particle transport can be described by a Hamiltonian system
as shown in Kroujiline and Stone [13]. The current work can
thus be thought of as a Hamiltonian system that is perturbed
by a stochastic noise. The role of convective transport is more
prominently showcased in Fig. 2, wherein a line of 2 × 105

particles is allowed to evolve for Pe = 1000. Figures 2(a)–
2(c) depict the fine structure associated with the convective
transport at earlier times, whereas at later times, as shown in
Figs. 2(d)–2(f), the diffusive transport serves to disperse the
structure formed by the convective transport.

Everyday actions such as breathing, speaking, coughing, or
sneezing by an infected individual generate pathogen-laden
droplets, which serve as vehicles for airborne disease trans-
mission. These droplets, carrying viruses or bacteria, play a
crucial role in spreading infections to a larger population. The
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FIG. 2. The transport of a line comprising 2 × 105 particles inside a sedimenting drop for Pe = 1000 at times (a) t = 0, (b) t = 0.5, (c)
t = 1, (d) t = 2, (e) t = 3, (f) t = 4, (g) t = 5, and (h) t = 6 where t has been nondimensionalized using a convective timescale (R/Ū ).

fluid dynamics of transport and mixing fundamentally dictate
the behavior of pathogens within exhaled droplets, with the
droplet radius being a key factor in determining the governing
physical mechanisms. The size distribution of these droplets
is highly dependent on the mode of generation—whether
through a cough, sneeze, or speech—each producing a distinct
spectrum of droplet sizes [19]. A critical aspect of disease
transmission is the concept of residence time, which refers
to the duration that these pathogen-laden droplets remain sus-
pended in the air before settling due to gravity. If the exit time
of a pathogen from the droplet is shorter than the droplet’s
residence time, the pathogen can escape into the surrounding
air and remain suspended, thereby substantially elevating the
risk of airborne transmission. Understanding these processes
is essential for predicting and mitigating the spread of airborne
diseases.

In this paper, we examine the influence of convective
transport on the exit of colloidal-sized particles from sedi-
menting drops. In Sec. II, we employ Brownian dynamics
simulations to estimate the exit time. However, due to the
computational complexity of these simulations, they are im-
practical for obtaining a mean exit time across different Péclet
numbers (Pe). To address this limitation, in Sec. III, we for-
mulate the exit-time problem stochastically as a first-passage
process governed by a backward Kolmogorov equation, draw-
ing on the work of Redner [1], Thiffeault [17], Souccar and
Oliver [20], and Kronig and Brink [3]. Section III A explores
the small-Pe (Pe � 1) asymptotics using perturbation expan-
sions, while Sec. III B extends the analysis to the large-Pe
(Pe � 1) regime by transforming the problem into a coordi-
nate system aligned with the flow streamlines, following the
approach of Kronig and Brink [3].

II. BROWNIAN DYNAMICS

The velocity field experienced by a colloidal particle due
to the thermal fluctuations of the medium where it is present
is given by dxxx/dt = √

2Dηηη(t ), where D = kBT/6πμa is the
diffusivity, T is the ambient temperature, μ is the viscosity of
the medium, and a is the particle radius. ηηη is a white noise
with zero mean,〈ηηη〉 = 0, and is delta correlated ηηη(t )ηηη(t ′) =
δ(t − t ′)III , with III being the identity tensor. The exit time τ

for such a colloidal particle initially present at the center
of a stationary drop is τ ∼ R2/D, where R is the drop ra-
dius. Drops suspended in air seldom remain stationary and
start sedimenting by their own weight. The flow field inside
such a sedimenting drop (Fig. 3) is given by the Hadamard-
Rybczynski equation. The nondimensional stream functions
describing the flow interior (ψ) and exterior (ψ̂) to the drop
can be found in Leal [21],

ψ = − sin2 θ

4

r2 − r4

λ + 1
, (1)

ψ̂ = sin2 θ

2

{
r2 − 3λ + 2

2(λ + 1)
+ λ

2(λ + 1)

1

r

}
. (2)

Here, r denotes the radial distance from the drop center,
nondimensionalized by the drop radius R, while θ represents
the polar angle measured relative to the direction of the drop’s
motion. The exit time of a colloidal particle is governed by the
interior flow field, which can be expressed as

uuu(xxx) = UUU

2(1 + λ)
· [(2r2 − 1)III − xxxxxx]. (3)

065104-3



NISHANTH MURUGAN AND ANUBHAB ROY PHYSICAL REVIEW E 112, 065104 (2025)

FIG. 3. The Hadamard-Rybczynski flow field inside a sediment-
ing drop. Points A, B, and C correspond to locations (0,0,0),
(0.25,0.25,0), and (0.5,0.5,0), with all lengths in the system being
scaled with the drop radius R.

UUU is the terminal velocity attained by the freely falling drop
as given by the Hadamard-Rybczynski equation,

UUU = 2

3

	ρgR2

μ

(
1 + λ

2 + 3λ

)̂
ẑẑz, (4)

where 	ρ = ρ − ρ̂ is the density difference between the drop
and the ambient fluid and g is the acceleration due to gravity.
To explore the role of convection in altering the exit time
of the particle, we start by performing Brownian dynamics
simulations. The colloidal particle is thus forced by both the
thermal fluctuations in the system as well as the Hadamard-
Rybczynski velocity field seen inside a sedimenting drop,

dxxx

dt
= UUU

2(1 + λ)
· [(2r2 − 1)III − xxxxxx] +

√
2Dηηη(t ). (5)

The above equation is nondimensionalized by scaling all
lengths in the system with the drop radius R and the time
t with the convective timescale RŪ , where Ū = |UUU | is the
terminal velocity of the sedimenting drop as given in Eq. (4).
This exercise yields a Péclet number Pe = ŪR/(2D(1 + λ)),
which characterizes the relative strengths of convective and
diffusive transport in the system.

In the context of aerosols, a droplet of radius R ∼ 10 µm
has a terminal velocity of Ū ∼ 10 mm s−1. This yields Pe ∼
243 for a pathogen of radius 50 nm present inside the drop.
The nondimensional form of Eq. (5) is given as

dxxx

dt
= Pe ẑ̂ẑz · [(2r2 − 1)III − xxxxxx] +

√
2ηηη(t ). (6)

FIG. 4. Distribution of exit times from 10 000 independent
Brownian dynamics realizations for particles initially located at
points A, B, and C for Pe = 0.01.

Equation (6) is solved using an Euler-Maruyama time march-
ing scheme with a time step chosen as

	t = 10−1 × min

(
ε,

ε2Pe

2

)
. (7)

This choice ensures that the particle displacement due to
convective effects and the mean-squared displacement due
to diffusive effects remain smaller than ε. In the simula-
tions we choose ε = 10−2. For particles initially located at
points A, B, and C within the drop (as shown in Fig. 3), the
ensemble-averaged numerical solution of Eq. (6) provides the
corresponding escape times as functions of Pe. The Brownian
dynamics simulations were conducted over 10 000 indepen-
dent realizations, and the resulting distribution of exit times
from these simulations is presented in Fig. 4. The escape
time varies with the initial location of the particle inside the
drop (Fig. 5). Thus, the mass transport in the system is better
depicted through the calculation of a mean escape time of
a particle present inside a drop, for a given value of Pe.
Brownian dynamics simulations are computationally inten-
sive, rendering the evaluation of τ at a sufficiently dense set of
points within the drop a costly and time-consuming process.
Furthermore, the time stepping used in the numerical solution
of Eq. (6) is required to be smaller than both the diffusive
and the convective timescales in the system. This results in
the calculation of τ for Pe � 1 to be computationally more
expensive. In the next section of the paper, we calculate the
mean exit time through a probabilistic formulation of τ .

III. THE BACKWARD KOLMOGOROV EQUATION

The probabilistic formulation invokes the definition of
a transition probability F (xxx, t |x0x0x0, t0), which represents the
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FIG. 5. The escape time τ is computed for particles starting from
points A (0,0,0), B (0.25,0.25,0), and C (0.5,0.5,0), as indicated in
Fig. 3, across a range of Péclet numbers (Pe). The vertical lines
represent the standard deviation obtained from ensemble averaging
over 10 000 realizations for each data point.

probability distribution function associated with finding a par-
ticle at the location xxx at time t , given that it was present
at x0x0x0 at time t0. Such a transition probability distribution is
governed by a forward Kolmogorov equation (also known as
a Fokker-Planck equation) as follows:

∂F
∂t

+ ∇ · (uuuF − D∇F ) = 0. (8)

The boundary conditions for Eq. (8) consist of the distribution
function going to zero at a free boundary (
e), which allows
for a free exit of the particle, and a no-flux condition at the
walls of the boundary (
w ):

F = 0 ∀xxx ∈ 
e, (9a)

n̂̂n̂n · (
uuu − D∇)

F = 0 ∀xxx ∈ 
w, (9b)

where n̂ denotes the normal to the wall boundary 
w. Inte-
grating F (xxx, t, |,xxx0, t0) over the entire domain gives a quantity
known as the survival probability,

S(t |xxx0, t0) =
∫




F (xxx, t |xxx0, t0)dV, (10)

which depicts the distribution function of finding a particle
anywhere in the domain at time t given that it was initially
at location xxx0 at time t0. The quantity −∂S/∂t pertains to the
first-passage distribution function for a particle at time t . The
exit time for a particle inside the domain can be written as
the following weighted average:

τ (xxx0, t0) = −
∫ ∞

t0

(t − t0)
∂S

∂t
dt . (11)

Through the use of the Chapman-Kolmogorov equation, it
can be shown that F also obeys the backward Kolmogorov
equation (see Thiffeault [17] Appendix 2.A),

−∂F
∂t0

− ∇xxx0 · (uuuF + D∇xxx0F ) = 0. (12)

Using Eqs. (10)–(12), it can be shown that the exit time formu-
lated as a first-passage process is governed by the following
backward Kolmogorov equation (Redner [1] and Thiffeault
[17]):

Peuuu · ∇xxx0τ + ∇2
xxx0

τ + 1 = 0. (13a)

In the above equation, all lengths have been scaled with the
drop radius R, and t has been scaled using the diffusive
timescale (R2/D). A Dirichlet boundary condition is imposed
at the drop boundary since the exit time for a particle at the
boundary is zero.

τ = 0 ∀xxx ∈ 
S, (13b)

where 
S represents the drop boundary. Due to the drop’s
spherical nature, it is convenient to write Eq. (13a) in spherical
polar coordinates,

Pe

[
ur

∂τ

∂r
+ uθ

r

∂τ

∂θ

]
+ 1

r2

∂

∂r

{
r2 ∂τ

∂r

}
+ 1

r2 sin θ

∂

∂θ

{
sin θ

∂τ

∂θ

}
+ 1 = 0, (14)

with (13b) transforming to

τ = 0 at r = 1, (15a)

τ is bounded at r = 0. (15b)

The flow velocity in spherical polar coordinates is given by
[13]

ur = (1 − r2) cos θ, uθ = (2r2 − 1) sin θ. (16)

For a given value of Pe, Eq. (14) can be solved numerically to
determine τ , and the mean exit time can then be estimated by
averaging τ over all spatial positions within the domain.

A. Diffusion-dominated regime (Pe � 1)

In the diffusion-dominated regime of Pe � 1, it is possible
to arrive at an analytical expression for the exit time through
a perturbation expansion of τ ,

τ = τ0 + Peτ1 + Pe2τ2 + O(Pe3). (17)

At leading order, the governing equation for τ0 reduces to
a purely diffusive and hence isotropic problem with bound-
ary conditions that do not depend on θ . By symmetry and
uniqueness, τ0 is therefore a function of r alone, τ0 = τ0(r).
The perturbation expansion from Eq. (17) applied to Eq. (14)
yields the following results at O(1):

1

r2

∂

∂r

{
r2 ∂τ0

∂r

}
+ 1 = 0 ⇒ τ0 = 1

6
(1 − r2). (18)
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At O(Pe),

−1

3
(1 − r2)r cos θ + 1

r2

∂

∂r

{
r2 ∂τ1

∂r

}
+ 1

r2 sin θ

∂

∂θ

{
sin θ

∂τ1

∂r

}
= 0

⇒ τ1 = 1

420

{ − 9r + 14r3 − 5r5
}

cos θ. (19)

At O(Pe2),

(1 − r2) cos2 θ
∂τ1

∂r
+ 1

r
(2r2 − 1) sin θ

∂τ1

∂θ
+ 1

r2

∂

∂r

{
r2 ∂τ2

∂r

}
+ 1

r2 sin θ

∂

∂θ

{
sin θ

∂τ2

∂r

}
= 0

⇒ τ2 = F1 + F1P2(cos θ ), (20)

where

F1 = (r2 − 1)3(31 − 5r2)

30 240
and

F2 = − (r2 − 1)r2(315r4 − 994r2 + 887)

873 180
.

The accuracy of the asymptotic predictions is demonstrated by
comparison with Brownian dynamics simulations, as shown
in Fig. 6. The asymptotic results exhibit good agreement
for Pe � 10, beyond which they fail to capture the escape
time in the convection-dominated regime. The solution from
Eqs. (18)–(20) allows for a spatial averaging of the exit time
over the entire drop and the calculation of a mean exit time
〈〈τ 〉〉,

〈〈τ 〉〉 = 1
15 − 148

1 091 475 Pe2 + O(Pe3). (21)

In computing the mean exit time, we assume that the parti-
cle’s initial position within the drop is uniformly distributed.
While the exit time for an individual particle, as derived in
Eqs. (17)–(20), includes a correction at O(Pe), the mean exit

FIG. 6. A comparison of the Brownian dynamics simulations
[Eq. (6)] and the Pe � 1 asymptotics [Eqs. (18)–(20)] for a particle
starting from points A (0,0,0), B (0.25,0.25,0), and C (0.5,0.5,0) as
indicated in Fig. 3, across various values of Pe.

time given by Eq. (21) is shown to be an even function of Pe.
The lack of an O(Pe) correction in the mean exit time arises
from the fore-aft symmetry about the drop center displayed by
the internal velocity field, which corresponds to the classical
Hadamard-Rybczynski solution. Because of this symmetry,
the O(Pe) correction contains equal and oppositely signed
contributions from pairs of symmetric points, which cancel
upon spatial averaging. As a result, the leading nonzero cor-
rection appears at O(Pe2), and the mean exit time becomes an
even function of Pe. Physically, this implies that 〈〈τ 〉〉 depends
only on the magnitude of the translational velocity and not on
its direction.

B. Convection-dominated regime (Pe � 1)

In the limit of Pe � 1, due to the convective timescale
being much smaller than the diffusive timescale, the back-
ward Kolmogorov equation is written down using a convective
timescaling as follows:

1

Pe

[
1

r2

∂

∂r

{
r2 ∂τc

∂r

}
+ 1

r2 sin θ

∂

∂θ

{
sin θ

∂τc

∂θ

}]

+
[

ur
∂τc

∂r
+ uθ

r

∂τc

∂θ

]
+ 1 = 0, (22)

where τc = Peτ is the exit time based on a convective
timescale. For Pe � 1, the diffusive flux can be ignored and
Eq. (22) becomes[

ur
∂τc

∂r
+ uθ

r

∂τc

∂θ

]
+ 1 = 0. (23)

Following the work of Kronig and Brink [3], it is possible
to shift to a coordinate system based on the flow streamlines
(with stream function ψ) within the drop,

τ (r, θ ) ≡ τ (ξ ),

where ξ = 16(1 + λ)ψ = 4r2(1 − r2) sin2 θ. (24)

This transformation to the streamline coordinates is enabled
by the fact that the variation of the particle concentration
remains negligibly small along a flow streamline due to the
strong effects of convective transport. The transport enabled
through the thermal fluctuations in the system exists only
through the cross-streamline diffusive flux (see Kronig and

065104-6



EXIT TIME OF COLLOIDAL PARTICLES FROM … PHYSICAL REVIEW E 112, 065104 (2025)

(a) (b)

FIG. 7. (a) The numerical solution for τ (ξ ) given by (25) and (b) the exit time τ for varying r for θ = π/2, π/4, and π/8 calculated from
Eq. (25) (indicated by solid lines) and from the full numerical solution of the backward Kolmogorov equation given by Eq. (14) (indicated by
the dots and discussed further in Sec. III C).

Brink [3] and Yu-Fang and Acrivos [5]). Thus, Eq. (23) trans-
forms as

∂

∂ξ

(
A(ξ )

∂τ

∂ξ

)
= B(ξ )

16
, (25)

where B(ξ ) = 2√
1 + √

ξ
K

(
1 − √

ξ

1 + √
ξ

)
,

A(ξ ) = 2
√

1 + √
ξ

3

[
(4 − 3ξ )E

(
1 − √

ξ

1 + √
ξ

)
− (4

√
ξ − 3ξ )K

(
1 − √

ξ

1 + √
ξ

)]
. (26)

Here, the functions K and E denote the complete elliptic inte-
grals of the first and second kind, respectively. These elliptic
integrals are evaluated using standard numerical routines. The
boundary conditions from (15a) are modified as

τ = 0 at ξ = 0, (27a)

τ is bounded at ξ = 1. (27b)

The above system is solved numerically to obtain the exit time
as a function of the streamline coordinate ξ [see Fig. 7(a)].
The exit time exhibits a maximum near ξ ≈ 1. For θ = π/2,
this corresponds to τ attaining its peak value at r = 1/

√
2

[Fig. 7(b)], which coincides with the location of the vortex
center in the Hadamard-Rybczynski flow field. The mean exit
time 〈〈τc〉〉 can be calculated using a spatial averaging given
as follows (see Kronig and Brink [3]):

〈〈τ 〉〉 = 3

8

∫ 1

0
τ (ξ )B(ξ )dξ, (28)

which yields 〈〈τ 〉〉 = 0.0258 for the asymptote Pe � 1.

C. Numerical solution of backward Kolmogorov equation

A better picture of the exit time τ (r, θ ) for arbitrary values
of Pe is possible through the numerical solution of Eq. (22). A
comparison of the full numerical solution with the Pe � 1 and
Pe � 1 asymptotics along with the results from the Brownian

dynamics simulations is shown in Fig. 8. The numerical solver
is employed to compute the contours of exit time for a given
value of Pe. It can be observed from Figs. 9(a) and 9(b) that
at low values of Pe the exit-time contours are fairly isotropic
due to the low strength of convection in the system. At a
larger value of Pe = 1000 [Fig. 9(d)], the exit-time contours
closely resemble the Hadamard-Rybczynski flow field shown
in Fig. 3. The numerical solution allows for a more robust
calculation of the mean exit time described by Eq. (28).

FIG. 8. The escape time τ with varying Pe for a particle start-
ing from points A (0,0,0) (blue), B (0.25,0.25,0) (green), and C
(0.5,0.5,0) (red) as displayed in Fig. 3. The solid lines pertain to
the full numerical solution of Eq. (22) for a particle starting from
points A, B, and C. The open squares correspond to the exit times
from the Brownian dynamics calculations. The colored dashed lines
pertain to the limit of Pe � 1 and the dotted black lines pertain to the
asymptotic solution for the Pe � 1 limit derived in Eqs. (18)–(20).
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FIG. 9. The contour plots depicting the exit time τ for (a) Pe = 1, (b) Pe = 10, (c) Pe = 100, and (d) Pe = 1000.

Figure 10 gives the variation of the mean exit time 〈〈τ 〉〉 across
different values of Pe. The mean exit time is analogous to the
bulk temperature seen from the work on heat transport in a
falling drop by Kronig and Brink [3].

The mean exit time (〈〈τ 〉〉) as a function of the Péclet
number (Fig. 10) has then been used to estimate the exit
time of particles of varying sizes from droplets of different
radii as shown in Fig. 11. For example, the mean exit time
of a 10-nm-sized colloidal particle from a 20 µm drop, when
driven purely by the thermal fluctuations, is approximately
1 s. In contrast, when convective transport within the sedi-
menting drop is taken into account, the exit time decreases
to around ∼0.4 s, representing a roughly 2.5-fold speedup.
These results underscore the crucial role played by the con-
vective flow in governing the transport characteristics of the
system.

IV. CONCLUSION

In this work, we introduce an exit-time-based metric for
quantifying transport within droplets. This metric stands in
contrast to most theoretical studies on mass transfer, which
focus on long-time asymptotic diagnostics, such as Sherwood
or Nusselt numbers. These quantities often characterize the

FIG. 10. The average escape time 〈〈τ 〉〉 with varying Pe.
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FIG. 11. The exit time in seconds for 10 and 100 nm particles
present inside drops of radius R (µm).

final quasisteady or ultimate transport state, which may not
be experimentally relevant, either due to limited observation
times or finite droplet lifetimes. Exit time, on the other hand, is
a finite-time, experimentally measurable quantity that serves
as a practical and physically meaningful descriptor of solute
or particle transport in realistic droplet systems.

We demonstrate that the exit-time calculation of a
colloidal-sized particle can be effectively formulated as a first-
passage process. By leveraging the backward Kolmogorov
equation, we obtain numerical solutions that provide a com-
putationally efficient alternative to Lagrangian simulations.
The accuracy of this stochastic approach is validated by the
results presented in Fig. 8, highlighting its reliability in pre-
dicting exit times. Furthermore, this method offers a scalable
framework for characterizing mass transport in arbitrary flow
conditions, with significantly lower computational costs com-
pared to Brownian dynamics simulations or solving full scalar
transport equations.

One particularly relevant application of this approach lies
in understanding aerosol transmission of pathogenic diseases.
The results from Fig. 11 reveal that larger droplets facilitate

faster particle exit due to enhanced convective effects. The
plot exhibits a smooth crossover from the diffusion-dominated
regime, where the exit time scales as ∼R2/(15D), to the
convection-dominated regime, where enhanced convective
transport accelerates particle escape. Experimental validation
of these predictions—such as measuring the residence time
of droplets expelled during sneezing or coughing—could help
identify the size ranges most conducive to airborne disease
transmission. Beyond biomedical applications, this frame-
work can also be extended to study colloidal particle dynamics
inside cloud droplets. In atmospheric sciences, understanding
the residence time of particles within cloud droplets is cru-
cial for predicting their impact on cloud formation, growth,
and precipitation processes. The stochastic formulation pre-
sented here could provide a computationally efficient means
to model particle transport under turbulent cloud conditions,
aiding in the study of cloud microphysics and aerosol-climate
interactions.

While the present framework offers broad applicability, it
does not account for interactions between colloidal particles
and the drop interface. In particular, when the separation
between the particle and the drop surface becomes small,
lubrication-type interactions can give rise to secondary flows.
These flows, and the associated resistance tensor, may al-
ter the particle’s exit time and potentially deform the drop
interface. Future extensions of this work could incorporate
these interactions to provide a more complete description.
Additionally, applying the stochastic framework to chaotic
fluid systems could provide new insights into finite-time trans-
port phenomena in complex flow environments.
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