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We study the dynamics of collisions between a pair of uncharged conducting droplets
under the influence of a uniaxial compressional flow and an external electric field. The
near-field asymptotic expression for the electric-field-induced attractive force demonstrates
that surface-to-surface contact in finite time is facilitated by overcoming lubrication re-
sistance. We demonstrate the significant role of the external electric field on the relative
trajectories of two droplets in a compressional flow and provide estimates of the correlation
between collision efficiency and the forces induced by the electric field. For droplet
collisions in clouds, continuum lubrication approximations become inadequate to capture
collision dynamics, and thus we incorporate noncontinuum lubrication interactions into
our analysis to address this complexity. Our findings reveal the dependence of collision
efficiency on the strength of the electric field, geometry of the two interacting droplets,
noncontinuum effects, and van der Waals forces. We show that the electric fields typical
of strongly electrified clouds substantially enhance the efficiency of droplet collisions. In
contrast, the electric fields typical of fair-weather conditions have a negligible influence on
the dynamics of droplet collisions.

DOI: 10.1103/nbwl-qlkl

I. INTRODUCTION

Understanding the mechanisms of droplet growth that lead to the rapid onset of warm rain poses
a significant challenge in cloud microphysics [1]. According to classical condensation theory, a
cloud droplet’s growth rate varies inversely with its radius, making it unlikely that condensation
alone can produce raindrops within a realistic timescale [2]. Furthermore, condensation tends to
result in a nearly monodisperse, narrow droplet size distribution (DSD), while in situ measurements
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reveal a broader DSD [3,4]. Therefore, collisions and subsequent coalescence between droplets are
responsible for forming larger droplets that lead to warm rain initiation [5]. When droplet radii
exceed approximately 30 µm, gravity-induced collisions accelerate the growth process, but for
smaller droplets, gravitational collisions are not efficient. Turbulent airflow is vital in promoting
droplet collisions, especially for equal-sized droplets. Many researchers have primarily focused
on the role of gravitational sedimentation and turbulence in droplet collisions (see Refs. [1,6–9]
and references therein). However, cloud droplets are not just passive particles; they often carry
electric charges and are affected by electric fields within clouds. Despite this, relatively few studies
have explored the impact of electrostatic forces on the collision-coalescence process [10–17]. These
electrostatic forces may play a central role in the early stages of cloud development, where collisions
between small droplets create size differences in the droplet spectrum essential for continuing the
growth process [18]. More importantly, incorporating an accurate parametrization of electrostatic
forces into large-scale models, such as numerical weather prediction simulations, could significantly
improve forecasting accuracy. Here we study how electrostatic forces arising from an external
electric field influence droplet collisions.

A downward-pointing fair-weather electric field arises from the potential difference between
Earth’s surface and the upper atmosphere, causing clouds to become electrified [5,19]. In thun-
derclouds, the electric field rapidly intensifies due to charge separation driven by cloud charging
mechanisms, such as convective, inductive, and noninductive processes, a thorough discussion of
which is given in Chap. 18.5 of Pruppacher and Klett [5] and Chap. 14.4 of Wang [19]. Laboratory
experiments have highlighted the significance of collisional charging during ice-ice collisions in
thundercloud electrification [20–27], which has inspired the development of theoretical models
aimed at explaining this phenomenon (see Refs. [28–35]).

The electric-field strength in clouds during fair-weather conditions is about 102–103 V/m,
whereas in moderately to highly electrified clouds it typically ranges from 104 to 105 V/m (see
Gunn [36]; Chap. 18, pp. 804-811 of Pruppacher and Klett [5]; Chap. 3, pp. 86-87 of Rakov and
Uman [37]; Trinh et al. [38]). Winn et al. [39] documented instances where the field strength
reached 4 × 105 V/m. Moreover, these studies indicate that the electric field can be oriented from
normal to parallel to the direction of gravity. Wind tunnel experiments have demonstrated that strong
electric fields can significantly alter the impact velocities and shapes of droplets, affecting their
collision characteristics [40–43]. More importantly, in their field observations, Mudiar et al. [44,45]
reported that these electric fields in thunderclouds promote raindrop growth and rainfall rates.
Therefore, these observations motivate theoretical investigations into the role of electric fields in
droplet collision dynamics. In this study, we determine the conditions under which electric fields
significantly enhance the collision efficiencies of small droplets under fair-weather conditions,
during thunderstorms, or in neither scenario.

An applied electric field induces the buildup of opposite charges on the adjacent sides of two
neutral conductive droplets. The interactions between these induced charges amplify the local
electric field between the droplets as they approach one another, resulting in an increase in the
attractive electrostatic force [46]. This force increases without bound as the droplets converge,
facilitating surface-to-surface contact by overcoming lubrication resistance [47]. However, at larger
separations, the electric force diminishes, making contact unlikely unless background flows, gravity,
and/or thermal fluctuations drive relative droplet motions.

The electrostatic force between two spherical conductors in an external electric field has been
studied extensively. Davis [48] calculated this force by integrating electrical stresses over the
surfaces of each sphere, which depends on the relative sizes of the two spheres, the amount of
surface charge, and the electric-field strength. The formulation involves an infinite series, which
converges extremely slowly for small separation distances. Lekner [47] overcame this challenge by
expressing these forces in terms of polarizabilities. To obtain the electric-field-induced force on the
close approach of two arbitrarily sized spherical conductors, we utilize the work of Lekner [49],
who derived the exact analytical expressions for the longitudinal and transverse polarizabilities for
small separation distances.
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Previous studies have utilized the work of Davis [48] to investigate the influence of electric-field-
induced forces on the collision rates of cloud droplets in the context of gravitational settling [50–55].
Nonetheless, the effects of an external electric field on the collision dynamics of droplets in a
background flow remain inadequately explored, which is the primary focus of this work. Addi-
tionally, these studies have not accounted for the exact hydrodynamic and electrostatic interactions
in the lubrication regime, where the gap between the surfaces of two spherical droplets becomes
much smaller than their radii. Recently, Thiruvenkadam et al. [56] analyzed the relative trajectories
of two uncharged conducting spheres of arbitrary sizes in an external electric field alone. They
demonstrated that, due to the divergent nature of the electric-field-induced forces in the lubrication
region, these spheres could come into contact in a finite time. Here, we incorporate the exact
lubrication form of hydrodynamic interactions and electric-field-induced forces to examine their
effects on pair trajectories and the collision rate of two uncharged conducting droplets subjected to
a linear flow.

In their pioneering work, Saffman and Turner [57] calculated the collision rate of droplets in a
cloud setting by approximating the turbulent flow experienced by the sub-Kolmogorov droplets as
a pseudosteady uniaxial compressional flow with Gaussian statistics for strain rates. They found
the collision rate to be (8π/15)1/2n1n2Γη(a1 + a2)3, where a1 and a2 are the droplet radii with
number densities n1 and n2 respectively, Γη = (ε/ν f )1/2 is the Kolmogorov shear rate, with ε the
turbulent energy dissipation rate and ν f the kinematic viscosity of the surrounding fluid. In clouds,
droplet sizes are significantly smaller than the Kolmogorov length scale (∼1 mm) of turbulence.
Consequently, the Reynolds number based on the droplet length scale is much less than unity. In this
scenario, researchers have studied droplet collisions in turbulence by approximating the background
turbulent flow in the vicinity of a droplet pair as a stochastically varying linear flow [58–60].
The most common realization of this stochastic flow is a compressional flow [61]. Zeichner and
Schowalter [62] determined the collision rate of two noninteracting spherical droplets subject to a
steady uniaxial compressional flow to be (8π/3

√
3)n1n2γ̇ (a1 + a2)3, where γ̇ is the compression

rate. Here, we consider the background flow as a frozen uniaxial compressional flow. We can express
the compression rate in terms of Kolmogorov shear rate by equating the collision rates evaluated
by Saffman and Turner [57] and Zeichner and Schowalter [62], yielding γ̇ = (9/40π )1/2(ε/ν f )1/2.
The turbulent energy dissipation rate depends on the cloud type. For example, ε ∼ 10−1 m2 s−3 in
cumulonimbus clouds (highly turbulent clouds), ε ∼ 10−2 m2 s−3 in cumuli, and ε ∼ 10−3 m2 s−3

in stratocumuli (low turbulence clouds). Hence, for ν f ≈ 10−5 m2 s−1, the compression-rate range
is γ̇ ∼ 1–30 s−1.

The inertia of larger droplets can significantly impact collision dynamics, but this effect is small
enough to be neglected for relatively small droplets. Thus, we assume that fluid inertia is negligible,
allowing us to use the Stokes equations to describe the flow field. Additionally, we assume that the
droplets are sufficiently large that thermal diffusion is negligible. We justify these assumptions by
calculating the relevant dimensionless parameters for a water droplet (density ρp ≈ 103 kg m−3) of
radius a1 = 10 µm in air (dynamic viscosity μ f ≈ 1.8 × 10−5 Pa s and density ρ f ≈ 1 kg m−3) at a
temperature T = 275 K. For a typical compression rate γ̇ = 25 s−1, the droplet Reynolds number is
Rep = ρ f γ̇ a2

1/μ f ≈ 1.38 × 10−4, the Stokes number is St = 2a2
1ρpγ̇ /9μ f ≈ 0.03, and the Peclet

number is Pe = 3πμ f γ̇ a3
1/kBT ≈ 1.12 × 103, where kB = 1.318 × 10−23 J K−1 is Boltzmann’s

constant. These values of Rep, St and Pe clearly support our assumptions.
The characteristic hydrodynamic and electric stresses for a spherical water droplet subjected

to a uniaxial compressional flow and an electric field are given by μ f γ̇ and ε0E2
0 , respectively,

where ε0 = 8.85 × 10−12 F m−1 is the free space permittivity (ostensibly that of air) and E0 is
the electric-field strength. The flow capillary number measures the relative strength of hydro-
dynamic and capillary stresses and is defined as Ca = μ f γ̇ a1/σ , where σ ≈ 72 × 10−3 N m−1

is the air-water surface tension. Similarly, the electric capillary number is the ratio of the
electric stress to interfacial tension stress and is defined as CaE = ε0E2

0 a1/σ . The deformation
of a droplet from a spherical shape depends on the magnitudes of these two parameters. For
a1 = 10 µm, γ̇ = 25 s−1, and E0 = 105 V m−1, we find that Ca ≈ 6.25 × 10−8 and CaE ≈ 1.23 ×
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10−5, which are both sufficiently small that we neglect droplet deformation. Furthermore, inter-
facial mobility and internal circulation become insignificant due to the high droplet-to-medium
viscosity ratio (≈102) for water droplets in air. Therefore, it is a reasonable approximation to treat
small cloud droplets as rigid spheres. In this context, Dhanasekaran et al. [63] have shown that
noncontinuum lubrication effects and van der Waals attractions emerge as the predominant mech-
anisms facilitating droplet collisions, surpassing the role of the interfacial motions of the droplets
(see Fig. 2 of Ref. [63]).

When two droplets approach each other, they create disturbance flow fields in the host fluid
medium that enhance the hydrodynamic resistance on each droplet. This hydrodynamic interaction
can significantly alter the outcome of collisions. We quantify this effect by calculating the collision
efficiency, which is the ratio of the collision rate with and without hydrodynamic interactions.
There is extensive treatment in the literature of two-body hydrodynamic interactions in Stokes
flow (see the book by Kim and Karrila [64]). The nondimensional surface-to-surface separation
distance is ξ = [r − (a1 + a2)]/a∗ = (r/a∗) − 2, where r and a∗ = (a1 + a2)/2 are the center-to-
center distance between the droplets and the mean radius of the two droplets, respectively. In the
lubrication region, the hydrodynamic resistance due to the normal motion of two surfaces is O(1/ξ ),
indicating that droplets will not come into contact in a finite time. For very small droplets, the
continuum lubrication approximation would not be valid when the separation distance between
the surfaces is less than the mean-free path of air molecules, λ0. Therefore, in such a situation,
we consider noncontinuum lubrication resistance, which is O(1/{ln[ln(Kn/ξ )]/Kn}) [65]. Here,
Kn = λ0/a∗ is the Knudsen number, which measures the significance of noncontinuum interactions.
This noncontinuum lubrication resistance has a weaker divergence than its continuum counterpart,
which allows for collisions in finite time. Previously, researchers have quantified the effects of
noncontinuum interactions on the collision rate of droplets subject to thermal fluctuations [66],
laminar flows [63,67], and a turbulent flow [60].

This paper is structured as follows: We start by defining the problem and describing the method
for computing the collision rate and efficiency in Sec. II. In Sec. III, we show the effects of a
background linear flow, an external electric field, and van der Waals forces on collision efficiency.
We summarize our results and conclude in Sec. IV.

II. PROBLEM FORMULATION

We consider uncharged conducting droplets that are moving within a uniaxial compressional flow
U∞(x) = (γ̇ x1, γ̇ x2,−2γ̇ x3) and subject to a uniform electric field that acts at an angle η relative
to the compressional axis. Here, x1 and x2 are the two extensional axes, and x3 is the compressional
axis. Although this study focuses on uniaxial compressional flow, the framework presented here
can be generalized to include arbitrary linear flows. As justified in Sec. I, we neglect gravitational
settling and droplet inertia for small cloud droplets; however, the droplets are sufficiently large to
ignore Brownian diffusion. In atmospheric clouds, droplet volume fractions are typically very low
(on the order of 10−6) [1], allowing us to disregard interactions involving three or more droplets.
Therefore, our analysis focuses on pairwise interactions and collisions. Because the Reynolds
number based on the droplet radius is sufficiently small, we can accurately describe the motion
of the surrounding fluid phase using the Stokes equations for creeping flow. The negligible inertia
of the droplets, combined with the linear nature of Stokes flow, enables us to express the relative
velocity between the droplets as a linear superposition of the relative velocities induced by the flow,
the external electric field, and van der Waals forces. Consequently, the relative velocity between the
droplets, denoted by V 12, is given by

V 12 = V 1 − V 2 = E∞ · r −
[

A
rr
r2

+ B
(

I − rr
r2

)]
· (E∞ · r)

+ 1

6πμ f

(
1

a1
+ 1

a2

)[
G

rr
r2

+ H
(

I − rr
r2

)]
· (FE + FvdW), (1)
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where V 1 and V 2 are the velocities of the satellite droplet (radius a1) and the test droplet (radius
a2), respectively, E∞ = [(∇U∞) + (∇U∞)T ]/2 is the strain rate tensor, r is the vector from the
center of the test droplet to the center of the satellite droplet, with r = |r|, I is the second-order
unit tensor, and FE and FvdW are the electric-field-induced and van der Waals forces, respectively.
The mobility functions A, B, G, and H describe the hydrodynamic interactions, where A and
G are axisymmetric mobilities, while B and H are asymmetric mobilities for linear flow and
nonhydrodynamic forces, respectively. These functions depend on the droplet size ratio κ = a2/a1

and the dimensionless center-to-center distance r/a∗. The methods for computing these mobilities
and their asymptotic expressions for small and large separation distances are given in Batchelor and
Green [68], Batchelor [69], Kim and Mifflin [70], Jeffrey [71], and Wang et al. [72]. In this analysis,
we employ the uniformly valid solutions for A and G developed by Dhanasekaran et al. [63],
which consider continuum lubrication interactions for ξ > O(Kn) and noncontinuum lubrication
interactions for ξ � O(Kn). Since B and H approach finite values as the separation distance between
the two inertia-free droplets approaches zero, continuum hydrodynamics remains valid for these
mobilities at all separation distances.

We adopt a spherical coordinate system (r, θ, φ) with the origin at the center of the test droplet.
To simplify the analysis, we nondimensionalize the governing equations by choosing a∗, γ̇ a∗,
and γ̇ −1 as the characteristic length, velocity, and timescales of the problem. Consequently, the
nondimensional radial separation between the centers of the two droplets, denoted by r from here
onwards, spans the interval from 2, referred to as the collision sphere, to ∞, where one droplet
exerts no influence on the other. Similarly, we nondimensionalize the spatial coordinates with
a∗ and represent these scaled coordinates with an overbar, such that x1 = x1/a∗, x2 = x2/a∗, and
x3 = x3/a∗. Here we choose a1 > a2, permitting the size ratio to vary over the range (0,1].

The electrostatic interaction between two spherical conductors subject to an external electric
field is governed by a boundary-value problem for Laplace’s equation for the electric potential
field in a bispherical coordinate system [48]. Given the resulting potential field, the electric-field-
induced forces on each conductor are determined by integrating the electrical stresses over their
surfaces. The forces on the two droplets are equal in magnitude, opposite in direction, and always
act to orient the center-to-center line with the direction of the external electric field. Exploiting
the axisymmetric nature of the problem, Davis [48] expressed these forces by decomposing them
into two components: one parallel to the center-to-center line and the other perpendicular to it. The
expressions for these forces in the radial (r) and angular (θ ) directions are given by

F r
E = −4πε0a2

2E2
0 [F1 cos2 (θ − η) + F2 sin2 (θ − η)] and (2)

F θ
E = 4πε0a2

2E2
0 F8 sin 2(θ − η), (3)

where θ − η is the angle of the electric field relative to the center-to-center line of the droplets.
The force coefficients F1, F2, and F8 are nontrivial series expressions that depend on the droplet
center-to-center distance and the size ratio. The analytical forms of these force coefficients in both
the near and far fields are given by Thiruvenkadam et al. [56].

The attractive van der Waals force acts along the center-to-center line of the droplets and
is FvdW = −dΦvdW/dr, where ΦvdW is the van der Waals potential. Hamaker [73] derived the
nonretarded form of ΦvdW using the principle of pairwise additivity. However, retardation effects
arise from the frequency dependence of the finite speed of electromagnetic wave propagation (see
French et al. [74], for a review). Retardation effects become significant when the droplet separation
distance is comparable to or greater than the London wavelength λL(≈ 0.1 µm). Here, we use the
form of retarded van der Waals potential given by Zinchenko and Davis [75], ΦRvdW, which of
course depends on r, as well as κ , the Hamaker constant AH , and the dimensionless parameter
NL = 2π (a1 + a2)/λL = 2πa1(1 + κ )/λL.
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Carrying out the vector and tensor operations in Eq. (1) yields the components of the dimension-
less relative velocity v = V 12/γ̇ a∗ in the r, θ , and φ directions as

vr = dr

dt
= −r(1− A)(3 cos2 θ− 1)− NE Gκ[F1 cos2 (θ − η) + F2 sin2 (θ − η)] − NvG

dΦRvdW

dr
,

(4)

vθ = r
dθ

dt
= 3(1 − B) sin θ cos θ + NE HκF8 sin 2(θ − η) and (5)

vφ = 0. (6)

Here, NE and Nv are dimensionless quantities describing the relative strength of electric-field-
induced and retarded van der Waals forces to the background flow and are

NE = 4ε0E2
0

3μ f γ̇
and (7)

Nv = 2AH

3πμ f γ̇ κ (1 + κ )a3
1

, (8)

respectively. The parameter NE is the principal indicator of how the strength of the electric field
influences the collision efficiency, and we have deliberately excluded the size ratio term from its
definition to facilitate a clear understanding of the interrelationship between NE and the collision
dynamics. However, consistent with the definitions given in preceding studies that explored the
effects of van der Waals forces on droplet interactions within a linear flow, the parameter Nv does
depend upon the size ratio. In clouds, depending on the strength of the electric field and compression
rate, the value of NE can vary from O(10−4) to O(104). Similarly, depending on the sizes of droplets
Nv varies from O(10−5) to O(100).

The collision rate K12 quantifies the rate at which two species of given number densities collide
with each other per unit volume. Mathematically, K12 is equivalent to the flux of droplets into the
collision surface and can be expressed as follows:

K12 = −n1n2γ̇ (a∗)3
∫

(r=2)&(v·n<0)
(v·n)P(r)dA, (9)

where P(r) is the pair distribution function and n denotes the outward unit normal at the collision
surface. In this context, the condition v · n < 0 in Eq. (9) indicates that the droplet radial velocity
must be directed inwards at the collision surface for two droplets to collide. In a dilute system, such
as in clouds, the pair distribution function satisfies the quasisteady Fokker-Planck equation:

∇ · (Pv) = 0. (10)

In the far field, droplet motions become uncorrelated, so that the condition P → 1 as r → ∞ is
satisfied. For the purposes of calculation, we consider r = r∞, which is very large but finite.

The absence of diffusive flux in Eq. (10) allows us to determine the collision rate through
trajectory analysis. We use Eq. (10) and the divergence theorem to evaluate the integral in Eq. (9)
over the surface that encloses the volume occupied by all trajectories starting at r = r∞ and ending
at r = 2. Consequently, the flux through the cross section of this volume at r = r∞ defines the
collision rate. We define this cross section as the upstream interception area, Ac. Now, at r = r∞,
nonhydrodynamic forces become negligible, so that the background flow is the sole driving force
underlying the relative velocity between the droplets. Because the pair distribution function is P = 1
at r = r∞, we can simplify Eq. (9) as follows:

K12 = −n1n2γ̇ (a∗)3
∫

Ac

(v · n′)|r∞dA, (11)

where n′ is the outward normal unit vector on the area element of Ac.
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In the absence of hydrodynamic interactions and nonhydrodynamic forces, the trajectories of
inertialess droplets coincide with the undisturbed streamlines of the background flow. Therefore,
in this scenario, P = 1 for all droplet separation distances. The collision rate obtained without
interactions is called the ideal collision rate and is denoted as K0

12. Zeichner and Schowalter [62]
determined the ideal collision rate for a uniaxial compressional flow as

K0
12 = 8π

3
√

3
n1n2γ̇ (a1 + a2)3. (12)

The collision efficiency, E12, is defined as the ratio of the actual collision rate K12 to the ideal
collision rate K0

12, viz.

E12 = K12

K0
12

. (13)

It is clear from Eq. (11) that calculating the collision rate requires determining the upstream
interception area, which we do using a trajectory analysis methodology. This involves initializing
a test droplet at the origin and evolving the satellite droplets to identify those that collide, thereby
defining Ac.

Equations (4) and (5) give the components of the relative velocity between a pair of hydro-
dynamically interacting droplets, influenced by the combined effects of a uniaxial compressional
flow, an external electric field, and van der Waals forces. Combining these components allows us to
compute the relative trajectories of the droplets by integrating the following dimensionless trajectory
equation:

dθ

dr
= 1

r

vθ

vr
. (14)

The colliding trajectories correspond to the paths traversed by the centers of evolving satellite
droplets, which start from a position far upstream and end at the collision surface. Analyzing
these colliding trajectories in the far field is crucial for determining the upstream interception area.
However, if we choose initial conditions over the spherical shell at r∞, the computational burden
associated with trajectory calculations can be considerable, since most of the trajectories initiated
from this shell do not reach the collision sphere. To circumvent this complication, we exploit the
quasisteady nature of the trajectory equation and consider time-reversed trajectories initialized on
the collision surface. This methodological adjustment substantially reduces the required number
of trajectories for computation. To further streamline the selection of trajectory starting points, we
restrict our focus to those positions on the collision sphere where the radial velocity is negative;
vr < 0. It is important to note that at r = 2 the hydrodynamic mobilities are A = 1 and G = 0, so
that vr = 0. To avoid this issue, we set initial conditions on a sphere of radius r = 2 + δ, where
δ is a small offset distance from the collision surface. We demonstrate that converged results are
achievable with minimal computational effort when δ = 10−6. With these carefully chosen initial
conditions, we conduct backward integrations of Eq. (14) using a fourth-order Runge-Kutta method.
We note that, depending on the computational requirements, we may alternatively solve for r(θ )
from dr/dθ = rvr/vθ rather than solving for θ (r) from Eq. (14).

III. RESULTS AND DISCUSSION

A. Typical pair trajectories and collision efficiency

Our primary aim is to quantitatively assess the impact of an external electric field on the relative
trajectories and collision efficiency of two conducting droplets in a compressional airflow. To
establish a clear context for this investigation, we first briefly review the pair trajectories associated
with two distinct scenarios: one where a uniaxial compressional flow alone (NE = 0) and the
other where an external electric field alone (NE = ∞) drives the relative motion between two
hydrodynamically interacting droplets. We then analyze pair trajectories for the combined effects
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FIG. 1. Relative trajectories of two equal-sized hydrodynamically interacting droplets in (a) a uniaxial
compressional flow for Kn = 10−2 and (b) a vertical electric field. The blue, red, and black lines denote open,
colliding, and loop trajectories, respectively. The sphere at the center represents the test droplet, and the thin
black circle represents the projection of the colliding sphere. The arrows on the trajectories show representative
trajectory directions.

of the flow and electric field, that is, for finite NE . In this problem, the relative velocity between
the droplet pair is independent of the azimuthal coordinate φ, and hence we examine the relative
trajectories in a representative r sin θ -r cos θ plane.

Figure 1(a) shows the pattern of relative trajectories in a uniaxial compressional flow, where the
vertical axis corresponds to the axis of compression. With noncontinuum hydrodynamics, there are
two distinct types of relative trajectories: (i) open trajectories that arrive from infinity and depart to
infinity without reaching the collision sphere (blue lines), and (ii) colliding trajectories that arrive
from infinity and reach the collision sphere (red lines). These trajectories are fore–aft symmetric.
The analytical expression for these relative trajectories, derived by integrating Eq. (14) subject to
NE = Nv = 0, is given by

sin2 θ (r) cos θ (r) = Cϕ(r), (15)

where C is the constant specifying a particular trajectory and

ϕ(r) = exp

[∫ r

2

3(B − 1)

r(1 − A)
dr

]
. (16)

By examining the sign of the radial relative velocity at the collision sphere, it is straightforward
to establish that open and colliding trajectories correspond to |C| > 2/(3

√
3) and |C| < 2/(3

√
3),

respectively. The limiting colliding trajectories, given by |C| = 2/(3
√

3), touch the collision sphere
at one of the four locations: θ = θc, π − θc, π + θc, 2π − θc, where θc = arccos(1/

√
3). These

limiting colliding trajectories act as separatrices between open and colliding trajectories. Here,
they form the boundaries of the two upstream interception areas, which are circles centered at two
extremes of the compressional axis. Finally, the analytical expression for the collision efficiency,
derived in terms of relevant hydrodynamic mobilities, is given by Wang et al. [72] as

E12 = exp

[∫ ∞

2

3(B − A)

r(1 − A)
dr

]
. (17)

In contrast, when the electric field alone dictates the dynamics, the relative trajectories begin and
end on the collision sphere, forming what we call loop trajectories. Figure 1(b) shows a map of these
loop trajectories for a vertical electric field. In this two-dimensional dynamical system, θ = π/2 and
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FIG. 2. Pair trajectories of two inertialess uncharged conducting droplets subject to a uniaxial compres-
sional flow and a vertical electric field (η = 0) when κ = 0.5, Kn = 10−2, Nv = 10−3, and (a) NE = 2 × 10−1,
(b) NE = 2, (c) NE = 20, and (d) NE = 2 × 102. The blue, green, red, and thick black lines are open, loop,
colliding, and limiting colliding trajectories. Pink lines are a separate class of trajectories that start from two
specific locations on the collision surface and diverge to infinity.

3π/2 are two unstable fixed points on the collision sphere r = 2. Droplet centers start near these
two points and follow trajectories either in the first and fourth or second and third quadrants. A
detailed discussion of relative trajectories in an electric field is given by Thiruvenkadam et al. [56].

A comprehensive investigation of the evolution of relative trajectory topologies under varying
strengths of the electric field and compressional flow is essential for an accurate description of
collision dynamics. Figures 2–4 show typical pair trajectories for three different angles between
the electric field and the compressional axis: η = 0, η = π/4, and η = π/2, respectively. For each
figure, we fix κ = 0.5, Kn = 10−2, and Nv = 0 and show four panels with (a) NE = 2 × 10−1, (b)
NE = 2, (c) NE = 20, and (d) NE = 2 × 102.

When the electric field is relatively small, such as for NE = 2 × 10−1 and NE = 2, the pair
trajectories resemble those observed in the absence of an electric field, where only open and
colliding trajectories are present. As we increase NE , colliding trajectories tend to converge toward
impact locations centered around θ = η and θ = η + π , and loop trajectories begin to emerge.
Depending on the value of η, these loop trajectories initiate at r = 2, θ = η + (π/2) and r = 2, θ =
η + (3π/2), and terminate at various locations on the collision sphere. As previously discussed,
these starting locations are unstable fixed points. However, not all trajectories that originate from
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FIG. 3. Same as Fig. 2 except that η = π/4.

these locations lead to loops. Notably, some trajectories (depicted by pink lines) diverge to infinity
instead, and the volume occupied by these trajectories increases as NE increases.

When the electric field is relatively large, such as for NE = 2 × 102, the forces induced by
the electric field dominate the dynamics at small droplet separations. This results in near-field
trajectories resembling the loop trajectories that would exist in the absence of flow. Furthermore,
colliding trajectories bend sharply at intermediate separation distances before following the loops
and eventually impacting the collision sphere. The influence of the electric field and the background
linear flow becomes comparable at these bending points. The flow dictates the relative motion for
larger droplet separation distances, causing far-field trajectories to converge to those determined
by flow alone. The limiting colliding trajectories, shown as thick black lines in Figs. 2–4, align
with open trajectories in the far field and loop trajectories in the near field, consistent with the
expected behaviors in both fields. Except for η = π/2, these limiting trajectories act as separatrices,
distinguishing loop and colliding trajectories in the near field and open and colliding trajectories in
the far field. Although not explicitly illustrated in the figures, for sufficiently large NE , the outermost
pink trajectories and limiting colliding trajectories intersect at points of maximum curvature for both
curves. These intersections define saddle points, whose locations depend strongly on the value of η.

The preceding trajectory analysis showed that the strength of the electric field and its inclination
angle relative to the compressional axis significantly influence the radii and locations of the centers
of the circular upstream interception areas. For a given η, the size of the upstream area increases with
the electric-field strength (i.e., as NE increases). This is due to the expanding sphere of influence
of the attractive force induced by the electric field as its strength increases. Notably, except at
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FIG. 4. Same as Fig. 2 except that η = π/2.

asymptotically small values of NE and for η = 0, π/2, the electric field breaks the fore-aft symmetry
of the trajectories, resulting in a shift of the centers of the two upstream areas away from the
compressional axis.

Having shown how the trajectory analysis underlies how the upstream interception area influ-
ences the collision efficiency, we now examine how the collision efficiency depends on the key
physical quantities involved in this problem. Figure 5(a) illustrates how the collision efficiency
varies with the relative strength of the electric-field-induced force and background flow for five
different orientations of the electric field (η = 0, π/6, π/4, π/3, π/2) when we have κ = 0.5,
Kn = 10−2, and Nv = 0. In the absence of van der Waals forces, noncontinuum hydrodynamics
drives the collision mechanism in the flow-dominated regime (i.e., NE 	 1). Since the droplet
pair experiences the same noncontinuum lubrication effects for a given κ and Kn, the curves
corresponding to different η tend to converge in the small NE regime before they asymptote to the
value that corresponds to the collision efficiency of the droplet pair in a uniaxial compressional
flow with noncontinuum lubrication interactions. For fixed η, the collision efficiency increases
monotonically with increasing NE and exhibits power-law growth when NE 
 1, the exponent of
which varies between 0.6 − 0.65 depending on the specific values of κ and η. To further examine
the dependency of collision efficiency on η, we compute E12 for fixed values of NE while varying
η from 0 to π/2. The inset in Fig. 5(a) shows the normalized collision efficiency, scaled by its
value at η = 0, as a function of η for NE = 10−2, 1, 10, and 102, and the same values of κ , Kn
and Nv . For moderate to large values of NE , as η increases, the scaled collision efficiency initially
decreases to a minimum before subsequently rising. As NE increases, this minimum shifts toward
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FIG. 5. (a) Variation of collision efficiency with the relative strength of electrostatic effects and compres-
sional flow, characterized by NE , for η = 0, π/6, π/4, π/3 and π/2 when κ = 0.5, Kn = 10−2, and Nv = 0.
The inset shows how collision efficiency scaled by its value at η = 0 varies with η for the same values of κ , Kn,
and Nv when NE = 10−2, 1, 10, and 102. (b) Variation of collision efficiency with NE for different collision-
inducing mechanisms when η = 0. The black dashed line shows the asymptotic behavior for noncontinuum
(NC) lubrication effects. All parameters are the same as in (a) except for the cases with der Waals force,
where NL = 500 and Nv = 10−3. (c) Collision efficiency as a function of Kn for noncontinuum hydrodynamics
plus van der Waals and electric-field-induced forces with NE = 2 × 10−1, 2, 20, and 2 × 102 when κ = 0.5,
NL = 250, Nv = 10−3, and η = 0. Continuous black lines and dash-dotted red lines are for the case without
an electric field. (d) Collision efficiency as a function of Nv for continuum (black lines) and noncontinuum
(Kn = 10−1, red lines) lubrication interactions when κ = 0.9, NL = 500, η = 0, and NE = 0, 10−1, 1, 10.

higher values of η. Conversely, for a small value of NE (e.g., NE = 10−2), the collision efficiency
remains almost constant with respect to increases in η. This behavior is indicative of a slight
perturbative effect induced by a weak electric field on the collision efficiency of two droplets
in a uniaxial compressional flow with noncontinuum lubrication interactions. To capture these
perturbation effects quantitatively, in the Appendix we derive an analytical expression for collision
efficiency up to order NE .

To compare the importance of various collision-inducing mechanisms, in Fig. 5(b) we show the
collision efficiency as a function of NE for droplets interacting through continuum and noncon-
tinuum hydrodynamics, with or without van der Waals forces. The collision efficiency decreases
rapidly as NE decreases when the droplet pair interacts via full continuum hydrodynamics [blue line
in Fig. 5(b)]. In this case, due to the absence of collision-inducing mechanisms, E12 will approach
zero as NE → 0. However, attractive van der Waals forces can cause collisions by overcoming the
continuum lubrication resistance in the flow-dominated regime. Thus, the collision efficiency with
continuum hydrodynamics plus van der Waals interactions asymptotes to a finite value as NE → 0
[green line in Fig. 5(b)]. As expected, for small to moderate values of NE , the collision efficiency
resulting from noncontinuum hydrodynamics augmented by van der Waals interactions [shown by
the black line in Fig. 5(b)] surpasses that arising from noncontinuum hydrodynamics alone. The
asymptote shown by the black dashed line demonstrates the validity of the analytical expression
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for the collision efficiency up to O(NE ). In regimes characterized by strong electric fields, where
electrostatic forces dominate, collision efficiencies converge for all evaluated scenarios. In this
specific example, where κ = 0.5, Kn = 10−2, and η = 0, in the electric-field-dominated regime, the
collision efficiency scales as N3/5

E , which is a consequence of the following simple argument: When
the first and second terms in the radial relative velocity equation (4) are comparable, the droplet
center-to-center distance rcrit is large. Now, in the far field A → 0, G → 1, F1 ∼ 96λ(1 − λ)3/r4,
and F2 ∼ −48λ(1 − λ)3/r4, where λ = κ/(1 − κ ). Hence, by balancing the radial relative velocity
due to the linear flow with that due to the electric field, we find that when η = 0, we have rcrit ∝ N1/5

E .
Therefore, the collision efficiency E12 ∼ r3

crit ∝ N3/5
E , as shown in Fig. 5(b).

Figure 5(c) illustrates how collision efficiency varies with the strength of noncontinuum lubrica-
tion effects, as measured by the Knudsen number Kn for NE = 2 × 10−1, 2, 20, 2 × 102, κ = 0.5,
NL = 500, Nv = 10−3, and η = 0. To emphasize the impact of the electric field, we compare our
results with cases that do not account for electrostatic forces. The collision efficiency resulting from
noncontinuum lubrication effects (NC) alone is shown by the black line in Fig. 5(c), calculated by
evaluating the integral in Eq. (17) for a range of Kn. As Kn decreases, so too does the relative
thickness of the noncontinuum lubrication layer, leading to a monotonic decrease in E12 due to
NC alone, which approaches zero in the limit as Kn → 0. Incorporating van der Waals (vdW)
interactions modifies the asymptotic behavior of the collision efficiency in the small-Kn regime,
where noncontinuum effects become negligible [as shown by the red dash-dotted line in Fig. 5(c)].
Consequently, as Kn decreases, the collision efficiency for the NC + vdW case decreases and ulti-
mately asymptotes to a value representative of the collision efficiency controlled by van der Waals
forces for a droplet pair interacting through continuum hydrodynamics in a uniaxial compressional
flow. Including electric-field-induced forces in the NC + vdW case predictably enhances collision
efficiency. The dependence of E12 on Kn qualitatively resembles the NC + vdW case for weak
electric fields (e.g., NE = 2 × 10−1, 2). However, in a strong electric field, the electric-field-induced
forces are stronger than the combined effects of NC and vdW interactions, so that the collision
efficiency becomes independent of Kn. The lines for NE = 20 and NE = 2 × 102 in Fig. 5(c)
illustrate these scenarios.

To explore the influence of van der Waals forces on collision dynamics, we compute the collision
efficiency from weak (Nv = 10−7) to strong (Nv = 10−1) van der Waals interactions. In Fig. 5(d), we
illustrate how collision efficiency varies with Nv when κ = 0.9, NL = 500, and NE = 0, 10−1, 1, and
10. The red lines show results with noncontinuum lubrication effects, denoted by a Knudsen number
of Kn = 10−1, and the black lines show results using continuum hydrodynamic interactions. Our
analysis reveals that, for a given NE , the values of E12 with noncontinuum conditions consistently
exceed those with continuum hydrodynamics. As anticipated, the collision efficiency decreases as
Nv decreases, which is particularly noticeable in the continuum hydrodynamic cases with either no
electric field (NE = 0) or weak electric fields (NE = 10−2). In contrast, with noncontinuum lubrica-
tion interactions, the decrease in E12 is more gradual, ultimately approaching a value congruent with
the collision efficiency calculated without van der Waals interactions. Notably, when the imposed
electric-field strength is large, such as for NE = 10, the collision efficiency exhibits a remarkable
independence to variations in the van der Waals force, implying that electric-field-induced forces
dominate the other collision-inducing mechanisms.

B. Implications for droplet collisions in electrified cloud environments

Having examined the influence of key parameters on droplet collision dynamics, we now focus
on the dependence of collision efficiency on the electric-field strength (E0) observed in clouds. We
take the compression rate of γ̇ = 25 s−1 and consider two distinct sets of droplet pairs: one with a
significant size disparity of a1 = 15 µm and a2 = 6 µm (κ = 0.4), and the other with equal-sized
droplets of a1 = a2 = 15 µm (κ = 1.0). (Note that in Sec. I we gave values for the densities of water
droplets (ρp) and air (ρ f ) and the dynamic viscosity of air (μ f ) in typical clouds.) The mean-free
path of air tends to increase with altitude in the troposphere, and its value for warm clouds is
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FIG. 6. (a) Collision efficiency as a function of the strength of the vertical (η = 0) or horizontal (η = π/2)
electric field for pairs of droplets with sizes a1 = 15 µm and a2 = 6, 15 µm, assuming the absence of van der
Waals forces. Continuous and dash-dotted lines represent vertical and horizontal electric fields, respectively.
Dashed lines are from the asymptotic expression of collision efficiency for a weak electric field given by
Eq. (A9). (b) Collision efficiency as a function of the size ratio for water droplets in air with a1 = 10 µm,
vertical (indicated by “V” within parentheses) and horizontal (indicated by “H” within parentheses) electric
fields of 104 V m−1 and 105 V m−1 when noncontinuum effects (NC), van der Waals interactions (vdW) and
electric-field-induced forces act together. To compare these findings, we present results from Dhanasekaran
et al. [63], in which the authors predicted collision efficiencies without an external electric field. The three
black lines delineate the efficiencies corresponding to E0 = 0.

approximately 0.1 µm (see Wallace and Hobbs [76]). Therefore, the expression for the Knudsen
number as a function of the size ratio becomes Kn = 0.013/(1 + κ ). The Hamaker constant for
water droplets in air is approximately 3.7 × 10−20 J (see Friedlander [77]). Accordingly, the depen-
dencies of NL and Nv on κ are NL = 9.42 × 102(1 + κ ) and Nv = 5.5 × 10−3/[κ (1 + κ )], so that NE

varies with the strength of the electric field as NE = 2.77 × 10−8E2
0 . Using these relationships, we

obtain the values of Kn, NL, Nv , and NE that are essential for calculating the upstream interception
area and the collision efficiency. As expected and shown in Fig. 6(a), the dependence of the collision
efficiency on the strength of a vertical or horizontal electric field is qualitatively similar to that of
E12 on NE that we showed in Fig. 5(a). For electric-field magnitudes E0 reaching a few thousand
V m−1, there is only an incremental increase in E12, indicating a negligible contribution of the
fair-weather electric field on droplet collisions. The dashed lines in Fig. 6(a) show results derived
from the analytical form of E12 in Eq. (A9) for weak electric fields, demonstrating the accuracy of
the asymptotic prediction of collision efficiency influenced by the fair-weather electric field. As the
electric-field strength exceeds 104 V m−1, which is characteristic of strongly electrified clouds, the
collision efficiency is enhanced, as shown in Fig. 6(a). In the case of strong vertical electric fields,
since NE ∝ E2

0 , we have E12 ∼ E6/5
0 . These findings show that a vertical electric field exerts a more

pronounced effect than does a horizontal electric field in promoting collisions between droplets in a
uniaxial compressional flow.

Finally, we examine the influence of droplet polydispersity on collision dynamics when non-
continuum hydrodynamics, van der Waals forces, and electric-field-induced forces are operative.
Figure 6(b) shows the dependence of collision efficiency on the droplet size ratio for vertical
or horizontal electric-field strengths of 104 V m−1 and 105 V m−1, when a1 = 10 µm and γ̇ =
25 s−1. Here, the size ratio dependencies are Kn = 0.02/(1 + κ ), NL = 6.28 × 102(1 + κ ), and
Nv = 1.8 × 10−2/[κ (1 + κ )]. Since NE does not depend on droplet size, its dependence on E0

discussed above is the same. Collision efficiencies are weaker for droplets with smaller size ratios.
This is because, when the size difference between two interacting droplets is large, the smaller
droplet tends to follow the flow streamlines and moves around the larger droplet without colliding.
Therefore, in the flow-dominated regime, droplets can collide if the smaller droplet follows a
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streamline very close to the larger droplet. Moreover, weakening electric-field-induced forces in
conjunction with decreasing size ratios further diminishes collision efficiency. Our findings indicate
that, for a given droplet pair, the collision efficiency increases by an order of magnitude as the
strength of the vertical or horizontal electric field increases from 104 to 105 V m−1. As discussed
in Sec. I, collisions of spheres in a uniaxial compressional flow with continuum and noncontinuum
hydrodynamics and van der Waals forces have been studied extensively [63,72]. Comparing these
results, shown by the three black lines in Fig. 6(b), with our current findings shows that an external
electric field invariably enhances collision efficiency.

As noted in Sec. I, previous research has quantitatively assessed the collision efficiencies of
uncharged droplets settling under the influence of gravity within electrified clouds [51,53]. Our
findings align with the general conclusion of these earlier studies: electric fields can significantly
enhance collision efficiency, which increases with both the strength of the electric field and
the ratio of droplet sizes. By incorporating accurate near-field interactions, we describe detailed
mechanisms for the enhancement of droplet collisions in the presence of a linear background
flow. It is important to note that the background flow in clouds is inherently turbulent, so that
the relative motion between two droplets is complicated substantially. Consequently, the collision
efficiency will also depend on turbulence intensity. Nevertheless, based on our current findings,
we anticipate that the collision efficiency resulting from strong electric fields—especially when
the field strength is on the order of O(104) V m−1 or higher—can be comparable to or even
exceed that caused by turbulence in the case of small droplets. Under the assumption of negligible
droplet inertia, one can extend the stochastic calculations performed by Dhanasekaran et al. [60]
to predict the collision efficiency due to the combined effects of turbulence and an external electric
field.

IV. CONCLUSIONS

Motivated by the microphysics of clouds, we have quantified the influence of an external electric
field on the collision dynamics of uncharged water droplets within a uniaxial compressional air flow.
We have captured the complex interplay between the multiple forces that control collision efficiency
and find that, at close separations, electric-field-induced forces and noncontinuum hydrodynamic
effects can overcome lubrication resistance, facilitating surface-to-surface contact in finite time. By
mapping typical pair trajectories, we have provided a comprehensive framework for calculating
the upstream interception area, which is a vital quantity for determining collision efficiency. The
findings establish that the collective influence of electric-field-induced forces and noncontinuum
hydrodynamic effects significantly enhances droplet collisions.

While our analysis offers valuable insights into the dynamics of droplet collisions, we did
not consider the effects of droplet inertia, which, along with gravitational settling, can signifi-
cantly influence the collision efficiency of larger droplet pairs. Specifically, for larger droplet radii
a1 > 40 µm, the Stokes number based on gravitational settling is O(1) or higher. In such scenarios,
inertial effects become increasingly significant, diminishing the relative influence of electric-field-
induced forces, even in strongly electrified cloud environments (see Refs. [53,55]).

It is well-established that cloud droplets usually possess surface charges. Based on an empirical
fit of observations, the average absolute charge q on a droplet of radius a can be expressed as
q = 3.33 × 10−6αa2, with a in units of meters and q in units of coulombs (see Ref. [5]). The
empirical parameter α is approximately 2 under average conditions in strongly electrified clouds [5].
Prior studies have shown that the magnitude and polarity of the charges on the droplets can
significantly influence collision processes; electrostatic interactions can either hinder or promote
these collisions (see Refs. [14,55]). Nevertheless, for the larger droplet radii, exceeding 40 µm,
the impact of electrostatic interactions on collision efficiency is generally not significant [55]. In
realistic cloud conditions, it is necessary to consider both external electric fields and the direct
electrostatic interactions between charged droplets. Thus, a logical extension of this work involves
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incorporating exact hydrodynamic and electrostatic forces into the calculation of collision rates for
inertial droplets settling in a laminar background flow.

Here, we have assumed a deterministic background flow, but clearly atmospheric turbulence
significantly influences the growth of cloud droplets and the initiation of precipitation [8]. Specifi-
cally, for cloud droplets with radii in the range 15–40 µm, which fall within the so-called size gap
regime, turbulence enhances collision rates of droplets by (i) increasing the relative radial velocities
between droplet pairs [57,78], and (ii) promoting the preferential concentration of inertial droplets
in the straining regions of the turbulent flow [79,80]. Moreover, droplet hydrodynamic interactions
further modulate collision processes [81]. Recent direct numerical simulations coupled with La-
grangian particle tracking have provided compelling evidence that turbulence, along with droplet
hydrodynamic interactions, play a pivotal role in broadening the droplet size distribution [82,83].
However, there is a need to develop the theory of collision efficiencies for inertial droplets under
the combined effects of turbulence, gravitational settling, and short-range and external electric-field
forces.

In this paper, we have concentrated solely on an idealized treatment of droplets that would be
applicable to warm clouds, wherein the collision of water droplets underlies raindrop formation.
In contrast, mixed-phase clouds contain both supercooled droplets and ice crystals, whose in-
teractions significantly complicate precipitation processes. For example, whereas the aggregation
of snow results from collisions between ice crystals, graupel grows by rimming, which occurs
when descending ice crystals collide with supercooled droplets under turbulent conditions [5,19].
Unlike spherical droplets, due to their shape anisotropy and variable settling orientations, quan-
tifying collisions involving ice crystals remains very challenging. Recent studies have delved
into the gravitational and turbulent dynamics affecting ice crystal collisions [84,85], as well as
examining interactions between ice crystals and supercooled droplets [86–88]. However, it is
noteworthy that these investigations typically employ the so-called ghost collision approxima-
tion, which neglects hydrodynamic and electrostatic interactions between colliding hydrometeors.
Electrostatic forces become increasingly influential at small separation distances, considerably
impacting the outcomes of ice-crystal collisions. Recently, Joshi and Roy [89] quantitatively
assessed the electrostatic forces and torques acting between charged anisotropic particles, re-
vealing that these effects can lead to a preferential alignment of ice crystals, thereby affecting
their collision dynamics. For a more thorough understanding of hydrometeor interactions, future
research should seek to integrate these geometric and electrostatic influences into collision rate
calculations.
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APPENDIX: FORMULA FOR THE COLLISION EFFICIENCY FOR WEAK ELECTRIC FIELDS
(NE � 1) IN THE ABSENCE OF VAN DER WAALS FORCES (Nv = 0)

First, we derive a formula for the angle θ (r) used in the analysis of relative droplet trajectories
under the influence of a weak electric field (NE 	 1). We assume θ (r) = θ0(r) + NEθ1(r) + O(N2

E ),
where θ0 and θ1 denote the leading-order behavior and first-order correction in NE , respectively, and
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we ignore the van der Waals force (Nv = 0). With this ansatz, from Eq. (14), the relative trajectory
equations at O(1) and O(NE ) are

dθ0

dr
= − 3(1 − B) sin θ0 cos θ0

r(1 − A)(3 cos2 θ0 − 1)
, and (A1)

dθ1

dr
= −T1(r)θ1 + T2(r), (A2)

where the terms T1(r) and T2(r) are given by

T1(r) = 3(1 − B)(cos 2θ0 + 3)

2r(1 − A)(3 cos2 θ0 − 1)2
, and (A3)

T2(r) = 3(1 − B)Gκ sin 2θ0[F1 cos2 (θ0 − η) + F2 sin2 (θ0 − η)]

2r2(1 − A)2(3 cos2 θ0 − 1)2

+ (1 − A)HκF8(3 cos 2θ0 + 1) sin [2(η − θ0)]

2r2(1 − A)2(3 cos2 θ0 − 1)2
. (A4)

To calculate the upstream collisional area necessary for computing collision efficiency, we need
to determine the limiting colliding trajectory. We can achieve this by imposing the condition
vr = 0, which allows us to determine the boundary conditions for equations (A1) and (A2). Up
to an arbitrary constant C1, these boundary conditions for both the O(1) and O(NE ) trajectory
equations are given by

θ0(r = 2) = arccos

(
1√
3

)
, and (A5)

θ1 = Gκ[F1 cos2 (θ0 − η) + F2 sin2 (θ0 − η)]

6(1 − A)r sin θ0 cos θ0

∣∣∣∣∣
r=2

= C1. (A6)

Using these boundary conditions, the solutions for θ0(r) and θ1(r) are

θ0(r) = cos−1

[
2 × 31/3 + 21/3(−9I (r) +

√
−12 + 81I2(r))2/3

62/3(−9I (r) +
√

−12 + 81I2(r))1/3

]
, with I (r) = 2

3
√

3
ϕ(r),

(A7)

θ1(r) = exp

(
−

∫ r

2
T (r′)dr′

)[
C1 +

∫ r

2
T2(r′) exp

(∫ r′

2
T (r′′)dr′′

)
dr′

]
. (A8)

The trajectory analysis in Sec. III suggests that upstream interception areas for weak electric fields
are circles with their centers on the compressional axis. By evaluating θ0(r) and θ1(r) at a large
separation distance, we can determine the nondimensional radius of each upstream area, and the
nondimensional droplet relative velocity normal to these areas. These quantities allow us to evaluate
the integral in Eq. (11). Finally, we arrive at the following expression for the collision efficiency
accurate to O(NE ):

E12 = lim
r→∞ exp

[∫ r

2

3(B − A)

r(1 − A)
dr

]
{1 + NE [2 cot θ0(r) − tan θ0(r)]θ1(r)} + O

(
N2

E

)
. (A9)
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