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We conduct experimental and numerical investigations to understand how subperiodic
variability in oscillatory flows drives fluid stirring and facilitates the transition to chaos
in slow viscous flows. Our work introduces pulsatile fluid flow through a bifurcating
network called the T-section model, which incorporates piston assemblies driven by
stepping motors. In this configuration, the velocity disparity between the pistons—defined
by the phase angle φ—is the basis for subperiodic variability. The interplay between φ

and the normalized oscillation frequency f governs the transition from regular to chaotic
trajectories. Our analyses identify that this subperiodic variability within the bifurcating
T-section setup results in the coexistence of open and closed streamlines, with periodic
switching between them effectively driving stretch-and-fold mechanisms that are crucial
for stirring. We have created a regime map in the f-φ parameter space to identify regions of
chaotic and nonchaotic stirring while also delineating the boundaries of the chaotic zone.
These findings highlight the significant role of subperiodic variability in enhancing stirring
within viscous flows, with broad implications for transportation and mixing processes in
physical, biological, and industrial systems.

DOI: 10.1103/PhysRevFluids.10.064101

I. INTRODUCTION

Mixing in slow viscous flows plays crucial roles across various environmental, physiological,
and engineering applications. In oceanic environments, chaotic mixing is vital for distributing
heat and oxygen to the seabed and evenly spreading nutrients and plankton throughout marine
ecosystems [1,2]. Similarly, chaotic fluid trajectories enhance mixing in microfluidic devices [3],
while mechanically induced chaotic mixing improves energy efficiency and mixing quality in
industries such as food processing, pharmaceuticals, chemicals, and semiconductors [4–6].

In this study, we examine a bifurcating network with pulsatile boundary conditions, generating
slow, viscous flow, to explore how velocity disparity in these boundary conditions can induce mixing
without relying on particle diffusion or turbulent flow. Pulsatile flows in bifurcating networks are
critical in physiological contexts, such as pulmonary and blood flows, and industrial applications
like micromixers. In many practical settings, such as pulmonary airflow in the lung acinus, flow
oscillations lack synchronization due to the geometry. The irregular shape of the acinar walls leads
to asynchronous deformation, resulting in uncoordinated expansion and contraction. Our study is
inspired to investigate the effects of nonuniform expansion and contraction observed in lung alveoli.

Airflow in the lung airways transitions from the nasal passage to the alveoli, where gas exchange
occurs. The fluid dynamics vary significantly, with Reynolds numbers ranging from O(103) in the
trachea to O(10−3) in the acinar region [7–11]. In the acinus, flow is primarily quasi-steady and
viscous-dominated, which is vital for adequate gas exchange. Previous studies [12–14] characterized
acinar flow as kinematically reversible; however, Tsuda and colleagues identified a saddle point near
the alveolar openings, suggesting potential chaotic flow [15–18]. While particle inertia is negligible
and impaction is minor, increased mixing in this region is crucial for understanding pulmonary
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diseases. Recent research highlights that nonuniform movement of alveolar walls may significantly
influence particle trajectories in deeper lung areas, where the airflow is calm (dominated by viscous
forces), and diffusion-driven mixing is the primary mechanism at play [19–22]. Diffusion-driven
mixing is less effective for particles with lower diffusion constants, as this process occurs at a
slower time scale. Therefore, mixing enhanced by chaotic stretching becomes crucial [23].

The time-dependent, two-dimensional (2D) dynamical systems that adhere to fluid incompress-
ibility can produce chaotic trajectories, as demonstrated by various experimental and numerical
studies [24–28] following the foundational work of Aref [29]. These studies emphasize the sig-
nificance of the wrapping action around the elliptic fixed point, referred to as a “whorl” and the
stretching and compression near the hyperbolic fixed points, known as “tendrils” in generating
patterns that are smaller than the flow scale [30]. Aref and Balachandar [31] examined the influence
of time modulation on fluid trajectories, identifying that chaotic motion can arise even in the
presence of strong viscous damping. Furthermore, Hackborn et al. [32] underscored the significance
of the often-overlooked degenerate mixing zone, which is as crucial as the hyperbolic mixing zone.
More recent studies have addressed how wall effects can diminish global mixing efficiency and have
emphasized the role of rotating boundary conditions in establishing a transport barrier that separates
the global mixing zone from its surroundings [33–35].

We employ experimental and numerical techniques to explore the stirring mechanisms within
a slow, viscous oscillatory flow occurring through a bifurcating geometry. Our primary objective
is to understand the influence of asymmetric oscillation and oscillation frequency on fluid stirring
mechanism and their subsequent transition to chaos. This study examines explicitly the stirring
mechanism in pulsatile flows through a T-junction configuration. Although the terms “stirring” and
“mixing” are often used interchangeably, they refer to distinct physical processes. As articulated
by Villermaux [36], mixing entails the agitation of scalar fields by flow coupled with molecular
diffusion, ultimately resulting in homogenization. In the present work, we focus exclusively on the
stirring aspect, analyzing how pulsatile flow fields stretch and fold material lines to create conditions
that favour eventual mixing. Notably, this investigation deliberately omits the consideration of
molecular diffusion. In Sec. II, we outline our experimental apparatus and the operating conditions.
We then detail the numerical methods in Sec. III. In Sec. IV, we present both experimental and
simulation results alongside a thorough discussion of the key findings of this study. Finally, we
summarize the essential insights in Sec. V.

II. APPARATUS AND EXPERIMENTAL CONDITIONS

Our experimental setup consists of an inverted T-section model with two horizontal arms con-
nected to a piston-motor assembly and a third, vertically oriented arm open to the atmosphere. The
T-section has a uniform square cross-section of 20×20 mm, forming the core of our apparatus. We
position it on the test table so that the vertical arm aligns upright when the horizontal arms rest on the
table. The horizontal arms measure 8 cm in length and connect to independent piston-motor systems,
while the vertical arm extends 12 cm. Each motor drives its piston with precise, time-periodic
motion, crucial for simulating the oscillatory flows, like breathing. As shown in Fig. 1, this apparatus
establishes a controlled environment for studying oscillatory viscous flows. By adjusting the pistons’
motion and varying flow parameters, we systematically explore fluid mechanics within oscillatory
processes, enabling us to model complex flow patterns and analyze their effects on transport
behavior.

We utilize the infuse/withdraw programmable Harvard pump 11 Elite with 0.9◦ stepping and
1/16 microstepping to drive the pistons in our experimental setup. These pumps deliver flow rates
ranging from 43.680 nl/min to 45.360 ml/min when using a 20 ml syringe. We can program the
pumps to operate with or without a computer. We connect the stepper motors as two units via
USB ports and control them with ASCII commands written in Python. This setup allows us to
rhythmically drive the pistons to infuse and withdraw fluid into the system, generating a slow,
viscous flow. We prescribe a nominal piston velocity of V0 = 1.25 mm/s to achieve sufficiently low
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FIG. 1. Schematic of the experimental setup where the central component is a T-section. Different compo-
nents of the setup are indicated in the figure.

Reynolds number, Re = 0.0025, with channel dimension of L = 20 mm and viscosity of working
fluid 10 000 CSt (ν = 0.01 m2/s), where ν is the kinematic viscosity of the working fluid (silicone
oil). The oscillation time scale, O(1), is much greater than the viscous diffusion scale, a2/ν = 0.04;
hence, the effects of temporal fluid inertia are negligible.

We introduce subperiodic variability using a parameter φ, representing the disparity in piston
velocities, as described by Tsuda et al. [19]. The velocities of the right piston, VR, and the left
piston, VL, are given by the following piecewise expression:

(VR, VL ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−V0,−V1), 0 � t < T
4 ,

(V1, V0), T
4 � t < 2T

4 ,

(V0, V1), 2T
4 � t < 3T

4 ,

(−V1,−V0), 3T
4 � t < T .

(1)

Here, V0 is the nominal velocity, and V1 = V0(sec φ − tan φ) is the adjusted velocity based on φ.
Additionally, f∗ = 1/T is defined as the dimensional oscillation frequency. Notice that the input
piston velocity is in the form of square wave where velocity remains constant during a stroke while
their direction can change during each subperiod. If φ = 0◦, then both pistons move at the same
velocity; if φ = 90◦, then one piston is stationary. At φ = 180◦, the pistons operate in opposite
directions but at equal magnitudes, infusing or withdrawing fluid. The oscillatory piston motion
is categorized as follows: (a) Symmetry (φ = 0◦): Both pistons move together with V1 = V0.
(b) Subperiodic variable (0◦ < φ < 90◦): One piston is always slower than the other, and pistons
alternate their velocities in each quadrant. (c) Partially subperiodic variable (90◦ < φ < 180◦): One
piston withdraws while the other infuses, causing less stretching to the fluid mass. (d) Reversed
symmetry (φ = 180◦): One piston always infuses while the other withdraws, minimizing fluid mass
stretching. As φ approaches 90◦, subperiodic variability peaks, while moving closer to 0◦ or 180◦
results in more symmetric behavior. An animation demonstrating the pistons’ motion across these
scenarios is available in the Supplemental Material [37] (Video 1).

We color the working fluid with oil-soluble Haksons Resin fluorescent pigment powder, ensuring
that the physical properties of dyed oil remain unchanged, and manually inject the solution through
the open vertical arm at the T-junction. We carefully draw the colored pattern (line element) much
below the free surface to minimize the impact of surface effects on flow kinematics. While injecting
the dye, we carefully place it in midplane of 3D square geometry to keep it away from the side
wall. To enhance visibility, we illuminate the test area (the T-junction area) with an identical
pair of Microspect UV lamps, each emitting light at a wavelength of 395 nm. We then capture
high-resolution images using a Canon Tamron SP Di camera, which allows us to conduct detailed
visualization and analysis of the deformation in line element observed in the experiments.
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Despite the advanced capabilities of our apparatus, it does not precisely replicate the real lung
acinus. While we capture critical aspects of alveolar flow kinematics, we simplify several complex
features of the actual biological system. The uniform cross-section of the T-section and the idealized
piston motion do not fully account for the irregular and highly variable geometry of real alveoli.
Additionally, we conduct our model under controlled laboratory conditions that do not ideally
mimic the physiological environment of the lungs, including factors such as tissue elasticity and
variable airflow resistance in different lung regions. Nonetheless, our setup offers a powerful tool
for studying the complex fluid kinematics and transport mechanisms in viscous oscillatory flows
through a bifurcating geometry and could be essential in understanding the onset of chaos leading
to efficient stirring in lung acinus. By varying the pistons’ motion and adjusting the flow parameters,
we systematically explore the key factors influencing the stirring processes within the lung acinus.
This investigation offers valuable insights into the respiratory process that can inform medical
research and applications, ultimately contributing to an improved understanding and treatment of
respiratory conditions.

III. DETAILS ON NUMERICAL SIMULATIONS

We utilize COMSOL Multiphysics to conduct simulations that analyze the viscous pulsating fluid
kinematics within the T-section model. In the simulation, we use a two-dimensional representation
of our experimental setup, featuring a T-section with a width of 20 mm. The vertical arm of
the T-section measures 12 cm in length, while each horizontal arm extends 8 cm. We employ
the physics-controlled finer mesh feature of COMSOL to ensure the accurate representation of
the intricate details inherent in fluid flow phenomena. Utilizing the Creeping Flow module, we
model the low-Reynolds number flow (Re � 0.0025) in the system and set the fluid properties to
correspond with those of the silicone oil used in our experiments. We prescribe a pulsating velocity
profile as a boundary condition for the horizontal arms, allowing them to move according to the
specified velocities described by (1). A zero-pressure boundary condition is applied to the vertical
arm of the T-section, while the remaining walls are rigid and adhere to no-slip wall boundary
conditions. By extracting Eulerian flow data at regular intervals from COMSOL, we perform cubic
interpolation in space and linear interpolation in time to calculate the Lagrangian fluid trajectories
using the following equation:

dx
dt

= u(x, t ), (2)

where x represents the Lagrangian fluid position and u(x, t ) is the interpolated flow field function
within the T-section domain. Notice that we use three-dimensional geometry in the experiments
wherein the velocity field exhibits a variation along the depth direction. Specifically, the highest
velocity occurs at the midplane, while the front and back walls exhibit zero velocity due to the
no-slip boundary condition. In contrast, the two-dimensional simulations do not account for this
variation and only represent the kinematics at the midplane. Let us denote the midplane centerline
velocity in the experimental setup as Uc. This velocity relates to the average piston velocity, Ūexp,
according to the relationship [38,39]

Uc

Ūexp
= 3

2

⎛
⎝1 + 4�∞

k=1
(−1)ksechαk

α3
k

1 − 6�∞
k=1

tanh αk

α5
k

⎞
⎠, (3)

where αk = (2 k − 1)π/2. For a two-dimensional channel flow scenario, the centerline velocity
equals 3/2 of the average velocity. It becomes necessary to adjust the average piston velocity in the
simulation to reconcile the velocity profile in the two-dimensional simulation with that observed at
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FIG. 2. Experimental visuals at (a) N = 0 and (b) N = 100 for φ = 0◦, N is number of oscillation cycle.

the midplane in the experimental framework. Thus, we find that

Ūsim =
⎛
⎝1 + 4�∞

k=1
(−1)ksechαk

α3
k

1 − 6�∞
k=1

tanh αk

α5
k

⎞
⎠ Ūexp ≈ 1.39 Ūexp, (4)

where Ūsim is the average velocity in two-dimensional simulation. This adjustment must be in-
corporated into the boundary conditions within the two-dimensional simulation to ensure that the
simulation results align satisfactorily with the experimental data. By implementing this modifica-
tion, the motion of the pistons can be accurately governed by the specified velocities as delineated
in equation (1), augmented with the correction factor of 1.39.

IV. RESULTS AND DISCUSSION

The current study focuses on two key parameters: the subperiodic variable parameter φ and the
normalized oscillation frequency, f. We normalize the frequency using the inverse flow time-scale
V0/L, where L = 20 mm (the channel dimension), and V0 is the nominal piston speed, both of which
remain constant. We vary φ from 0◦ to 180◦ and adjust f from 0.25 to 1 to explore the transition
to chaotic stirring. We aim to observe how these variables influence fluid trajectories, explicitly
investigating whether they lead to orderly or chaotic stirring patterns. During the experiments, we
capture high-resolution images at intervals of one oscillation cycle, which we call phase-locked
images. Additionally, we record real-time video to analyze dye deformation in various scenarios. In
this study, we denote the number of oscillation cycles as N .

A. Experimental observations

Consider a scenario of a oscillation with φ = 0◦, in which the pistons move with equal velocities.
The inverted U-shaped material line introduced at the T-junction displays a regular and repeatable
pattern. During each oscillation, the dye pattern stretches and compresses equally in both arms
without significant folding, consistently returning to its initial configuration at the end of each
cycle. This repeated restoration to the original state exemplifies well-ordered, periodic motion
that does not result in stirring. The phase-locked images remain nearly identical even after 100
cycles; we do not observe any significant deformation in the line element, as shown in Fig. 2.
This observation illustrates that fluid parcels follow the same paths without any stirring. The
phenomenon, characterized by unchanged phase-locked images, indicates that the trajectories are
time-periodic, suggesting that particles move along predictable, cyclic paths without disruption or
blending. Notably, this nonstirring and time-periodic behavior is consistent across all values of f,
as long as φ remains fixed at either 0◦ or 180◦. We have included supplemental experimental video
(Video 2) that presents a series of phase-locked images to illustrate this no stirring case. This video
corresponds to the case where φ = 0◦ and f = 0.5 [37].
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FIG. 3. The Poincaré maps of experimental images at N = 1, 3, 10, and 50. Panels (a)–(d) correspond to
the case of φ = 10◦ at f = 0.5 and panels (e)–(h) correspond to φ = 90◦ at f = 0.5. The white color pattern in
panels (a), (b), (e), and ( f ) represent results from numerical simulation of the corresponding case.

However, an increase in φ beyond 0◦ leads to a significant shift in the system’s behavior.
The line element begins to deform, disrupting the formerly periodic time behavior, even though
the piston motion exhibits a time-periodic motion. Under our experimental conditions, the line
element shows finite deformation when φ � 5◦ before it starts to diffuse. These deviations be-
come more pronounced, and the fluid exhibits significant aperiodic deformations on increasing
the φ. Figure 3 illustrates phase-locked images that demonstrate the deformation of line el-
ements at φ = 10◦ and φ = 70◦ with f = 0.5. These images identify two distinct behavioral
regimes based on the value of φ, highlighting how varying φ affect the deformation and stir-
ring of the line elements over successive oscillation cycles (N). As shown in Figs. 3(a)–3(d),
the stretch-fold mechanism at φ = 10◦ leads to a regular and ordered structure. Even after first
oscillation (N = 1) the dye pattern differs significantly from the initial pattern at N = 0, as
shown in Fig. 3(a). As the oscillations continue, regular folding begins to occur, as illustrated
in the Fig. 3(b) at N = 3, where the line element folds in a structured manner with minimal
irregularity. By N = 10, the line element has developed well-defined, periodic layers, indicating
that the oscillatory motion produces a regular, laminar and slow stirring of the dye, as shown in
Fig. 3(c). The final stirred state at N = 50 resembles a stratified structure with distinct layers of
dye separated by narrow gaps, as shown in Fig. 3(d). This organized laminar configuration indicates
that at lower nonzero values of φ, the system maintains regularity with fluid stretching and folding
that lead to fluid stirring. The layered structure resembles classic laminar flow, where different fluid
layers slide past each other with minimal interaction, thus preserving the separation between dyed
and undyed regions. The Supplemental Material, specifically Videos 3 and 4 [37], elucidate the
deformation of the line element under continuous and phase-locked configurations, respectively, for
the parameters set at φ = 10◦ and f = 0.5 [37].

At a higher level of subperiodic variable, specifically φ = 90◦, the sequencial stretch-fold
mechanism, illustrated in Figs. 3(e)–3(h), results in a significantly different and much more chaotic
state. The stirred state at N = 1 is more pronounced than φ = 10◦ case as shown in Fig. 3(e). By
the third cycle (N = 3), the pattern has already begun to deviate considerably from the smooth,
orderly layered structure (see Fig. 3(f)) seen at φ = 10◦. At this point, the layers overlap, twisting
and deforming. As shown in Fig. 3(g), the stirred structure intensifies by N = 10 as the dye layers
become increasingly entangled, showing a lack of the structured regularity that was present at lower
φ values. As shown in Fig. 3(h), the stirred structure at N = 50 attains a completely homogeneous
state, with no clear boundaries or separation between layers. This chaotic intermingling suggests
that the oscillations introduce significant disturbances at higher φ, leading to complex and irregular
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FIG. 4. Deformation of the material line (experimental visuals) at different angles φ = 50◦ and φ = 70◦

with varying f: (a) for φ = 50◦, f = 2; (b) for φ = 50◦, f = 0.5; (c) for φ = 70◦, f = 1; and (d) for φ = 70◦,
f = 0.5. Images captured at N = 20.

deformations that enhance stirring throughout the observation field. The line element no longer
maintains a stable structure; instead, it reflects a transition to a chaotic state. The continuous
disruption of flow accelerates the breakdown of order, promoting stirring across the entire region.
The Supplemental Material, particularly Videos 5 and 6 [37], provide a detailed elucidation of the
emergence of fine-scale patterns smaller than the flow length scale, resulting in chaotic stirring phe-
nomena under both continuous and phase-locked configurations. These observations were derived
from experimental parameters set at φ = 90◦ and f = 0.5 [37].

These experimental observations highlight the importance of φ as a critical factor in controlling
the fluid stiring in oscillatory flows. When φ remains below a certain threshold, the system sustains a
regular, laminar state that minimizes stirring, which can be advantageous for applications requiring
structured flow patterns. However, as φ exceeds this threshold, the flow shifts to a chaotic state, en-
hancing stirring efficiency—a valuable characteristic for processes that demand rapid and thorough
stirring. This transition from regular to chaotic stiring as φ increases underscores the sensitivity of
fluid flows to subperiodic variability and provides insights into managing stirring processes across
various applications.

We observed that when fluid motion loses periodicity at a nonzero (φ), a further decreasing (f)
enhances irregularities in line element deformation, leading to chaotic behavior. Figure 4 shows
the experimental images captured at N = 20 to emphasize the impact of f on the stirring. In
Figs. 4(a) and 4(b), we compare the line element deformations for f = 2 and f = 0.5 at φ = 50◦.
The deformation at the lower f value of 0.5 exhibits chaotic characteristics, presenting irregular and
complex shapes. Conversely, the deformation at the higher f value of 2 is more regular and ordered,
indicating a nonchaotic nature.

Figures 4(c) and 4(d) illustrate the deformation of line elements at f = 1 and f = 0.5 for an
increased angle of φ = 70◦. Even at this elevated φ, the pattern remains nonchaotic at the higher
f = 1. At the same time, certain features hint at possible chaos when f = 1; these indications are
not sufficiently pronounced to result in full chaotic behavior. Our experimental results indicate
that synchronized oscillation at φ = 0◦ or φ = 180◦ leads to time-periodic deformations in the
line element, which reverse after each oscillation. Interestingly, even the bifurcating arms do
not contribute to the overall deformation. A nonzero φ is essential for disrupting these periodic
deformations. At a given f, φ values close to 0◦ or 180◦ result in regular deformations that promote
slower stirring. Conversely, an optimal φ near 90◦ produces irregular deformations that enhance
stirring.

The following section will quantitatively assess stirring by analyzing simulation data. This
analysis provides a detailed measure of the stirring process and its dependence on f and φ. By taking
this quantitative approach, we can better understand the conditions that lead to chaotic stirring and
effectively characterize the stirring process.

B. Flow topology in bifurcating network—Blinking Moffatt eddies

The T-section exhibits various flow topologies even under steady conditions depending on the
boundary conditions applied at each inlet/outlet. To investigate these behaviors, we consider three
distinct boundary condition scenarios: (i) both horizontal arms (I and II) infuse flow into the
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FIG. 5. Streamline patterns of Stokes flow in bifurcating network with different boundary conditions.
(a) Schematic of simple bifurcating network T-section, (b) scenario (i) I—inflow boundary condition, II—
inflow boundary condition, (c) scenario (ii) I—inflow boundary condition, II—outflow boundary condition,
and (d) scenario (iii) I—inflow boundary condition, II—closed (impermeable) boundary condition. In this
analysis, the boundary condition III is always an open outlet.

domain, (ii) the left arm infuses flow while the right arm withdraws, and (iii) the left arm infuses
flow while the right arm remains closed. The vertical arm (III) is kept open in each scenario. In
all of the scenarios, flow conditions are uniform with equal magnitude. In scenario (i), with arms
I and II infusing flow at equal velocities, the two incoming streams converge at the T-junction and
flow upwards into the third arm. Due to symmetry, a separatrix forms along the midline of the
vertical arm with open streamlines on either side. This configuration, shown in Fig. 5(b), results in a
stable, symmetric flow distribution along the T-section, with streamlines diverging smoothly into the
vertical arm without recirculation. In scenario (ii), the left boundary infuses while the right boundary
withdraws. This configuration produces a duct flow pattern, with an open region in the middle where
the primary flow stream shears the fluid in the vertical channel. As a result, eddies emerge in the
vertical arm, as shown in Fig. 5(c). This is akin to an array of Moffatt eddies [40] that form in lid-
driven cavity flows of higher aspect ratio [41,42]. In scenario (iii), we set the left arm to infuse flow
at a uniform velocity while the right arm remains closed (impermeable boundary). The streamlines
turn into the third (vertical) arm, shearing the fluid in the right arm. This shearing action generates
a series of Moffatt eddies in the right arm, as depicted in Fig. 5(d). These results demonstrate that
even a simple bifurcating network like the T-section can yield diverse streamline topologies based
on the inlet and outlet boundary conditions, producing open or closed streamline patterns.

C. Effects of time perturbation on streamlines

In this section, we analyze the effects of time modulation on the three scenarios considered in
Sec. IV B. In scenario (i), switching the direction of the inflow boundary conditions does not change
the streamline topology; it merely reverses the flow direction due to the symmetric boundary setup.
Swapping the boundary conditions in scenario (ii) reverses the direction of the duct flow, and the
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FIG. 6. Streamline patterns for φ = 0◦ and f = 0.5 at (a) t = 0, (b) t = T/4, (c) t = 2T/4, and (d) 3T/4.

eddies in the vertical arm rotate in the opposite sense. Scenario (iii) behaves differently: switching
the boundary conditions significantly alters the flow kinematics. Each alteration replaces the closed
streamlines with open ones, reversing the circulation within the eddies. The closed eddies in scenario
(iii) exhibit whorl-like structures, while the open trajectories resemble tendrils, as described by
Chaiken et al. [24] and Khakhar et al. [26]. In viscous flow, tendrils enhance fluid stretching,
while whorls cause fluid folding. This periodic alternation between open and closed streamline
patterns in scenario (iii) can produce chaotic fluid trajectories if the boundary conditions switch
at the appropriate frequency. However, while open and closed streamline patterns are necessary
conditions for chaotic stirring, they are not sufficient to guarantee it. As we will discuss further,
these three flow scenarios reoccur within the system under varying φ.

First, we analyze the flow streamline patterns for φ = 0◦ across different quadrants of an oscil-
lation cycle. In the Figs. 6(a)–6(d), the phases t = 0, t = T/4, t = 2T/4, and t = 3T/4 correspond
to distinct quadrants within a single oscillation cycle. When the piston velocities are equal, a
flow separatrix forms along the midline of the vertical arm, remaining stationary throughout the
oscillation cycle, as shown in Fig. 6. Although the flow direction changes in each quadrant based on
the time-dependent inflow and outflow boundary conditions, the separatrix maintains its position, as
a result streamlines from different phases do not overlap over each other. Consequently, we observe
time-periodic fluid trajectories.

Due to the differences in velocity between the piston movements for 0◦ < φ < 180◦, the flow
separatrix shifts away from the midline of the vertical arm, aligning toward the low-flow stream.
This shift occurs rapidly because of the step function nature of the input velocity.

Figures 7(a)–7(d) illustrate the streamline patterns for φ = 50◦ and f = 0.5, highlighting the
time-dependent behavior of fluid flow with a repetitive shift in the separation line (separatrix)
corresponding to the changing piston velocities.

The streamline patterns in each quadrant demonstrate a notable shift in the separatrix away
from the midline of the vertical arm, aligning toward the piston with a lower velocity. This
shift in the separatrix occurs at twice the oscillation frequency. The half-cycle periodic move-
ment of the separatrix is crucial, as it breaks the time-periodicity of fluid trajectories. As
the separatrix shifts with each half-cycle, fluid particles on one side can cross over to the
other side, leading to a phenomenon known as “streamline crossing” [27,28]. This feature is
absent when φ = 0◦ or φ = 180◦. Consequently, fluid parcels do not follow repetitive paths,

FIG. 7. Streamline patterns for φ = 50◦ and f = 0.5 at (a) t = 0, (b) t = T/4, (c) t = 2T/4, and (d) 3T/4.
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FIG. 8. Streamlines pattern (a) when left piston withdraws at a constant speed with right-side piston held
stationary and (b) when right-side piston infuses at a constant speed with left-side piston held stationary. The
color bar shows the velocity magnitude normalized with its maximum.

breaking the time-periodicity and resulting in the deformation of the line elements. This phe-
nomenon exemplifies how asymmetry in the driving forces, such as the disparity in piston velocities,
can fundamentally transform the flow structure, producing intricate, nonperiodic trajectories.

The time-modulated input velocities to the pistons differ fundamentally at φ = 90◦ compared to
other φ values. In this situation, only one piston moves at a time while the other remains stationary,
preventing the formation of a separation line. However, this leads to an interesting flow feature. The
flow bends toward the right when the right piston withdraws fluid in the first quadrant as shown
in Fig. 8(a). This action shears the fluid layer in the left arm and creates closed eddy structures
known as Moffatt eddies [40]. These structures trap fluid parcels in circulating paths, characterized
by regions where streamlines loop back on themselves. Conversely, when the left piston infuses
fluid in the second quadrant, a flow emerges that shears against the stationary fluid in the right
arm, similarly generating Moffatt eddies and regions of closed streamlines on that side, as shown in
Fig. 8(b). The similar flow structures emerge during the remaining two quadrants of oscillation, as
shown in Figs. 8(c) and 8(d), indicating the emergence and periodic shift of these eddies with open
streamlines.

The periodic transition between open and closed streamlines creates a stretch-and-fold action
on fluid parcels, resulting in chaotic trajectories. It is important to note that even in steady flow
conditions, open and closed streamlines can coexist. However, the trajectories remain nonchaotic
when these streamlines do not switch positions. In this context, we highlight the significance of a
bifurcating network in generating both open and closed streamlines and the importance of optimal
time modulation to facilitate the transition of these streamlines to induce chaos.

Further analysis indicates that Moffatt eddies exist for various φ values other than 90◦, although
they remain hidden behind the predominant open streamlines. To visualize these eddies, we compute
the residual velocity field u′(x, t ; φ) by subtracting the velocity field at φ = 0◦ from that at a nonzero
φ:

u′(x, t ; φ) = u(x, t ; φ) − u(x, t ; φ = 0◦). (5)

We illustrate u′(x, t ; φ) for φ = 10◦, φ = 70◦, and φ = 90◦ at f = 0.5 in Fig. 9. Introducing a
velocity differential between the two pistons leads to the formation of Moffatt eddies due to the
interactions between low and high flow streams, peaking at φ = 90◦. In our case, the coexistence
and periodic switching of open and closed streamlines contribute to stirring. However, the strength
of the eddies (which depends on φ) and the residence time of fluid parcels within these eddies (which
depends on f) determine the transition to chaotic stirring. Combining an optimal φ and lower f shows
that stirring can be chaotic; otherwise, the stirring is slow and nonchaotic.

D. Irreversible stirring

We performed a numerical simulation to investigate the stirring behavior when reversing the flow
direction. We emphasized the differences between nonchaotic and chaotic stirring regimes, which
depend on the parameters φ and f. We selected two sets of parameters that correspond to these
distinct stirring regimes.
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FIG. 9. Residual velocity field u′(x, t ; φ) at f = 0.5 corresponding to (a) φ = 10◦, (b) φ = 70◦, and
(c) φ = 90◦.

We started the investigation with two distinct initial patterns: a rectangle and a triangle. We
tracked the positions of fluid particles over 30 cycles. After this, we reversed the flow direction and
continued for another 30 cycles in the backwards direction. We used the final deformed patterns
from the forward simulation as the initial conditions for the reversed simulation.

For the simulation, we select parameters (φ = 10◦, f = 1) for the nonchaotic case and
(φ = 90◦, f = 1/3) for the chaotic case. In Fig. 10, we show the initial and deformed patterns
corresponding to both cases. We observe that the deformation and stirring during the forward flow
direction are more pronounced in chaotic cases than in nonchaotic ones. Furthermore, we can undo
the deformation in the nonchaotic case by reversing the flow direction, but this is not possible in
the chaotic stirring scenario. Additionally, the final mixed state in the chaotic case remains almost
identical when we reverse the flow direction, regardless of the initial patterns.

FIG. 10. The forward and reverse mapping of tracers over 30 cycles illustrates the distinction between
nonchaotic and chaotic advection. Panel (a) shows the initial positions of fluid parcels arranged in two different
configurations: a rectangle and a triangle. Panels (b) and (c) illustrate the forward and backwards maps of
nonchaotic advection, respectively. In contrast, panels (d) and (e) depict the forward and backwards maps of
tracer advection in the chaotic case. The initial conditions for the backwards simulation are the final positions
from the forward simulation, with identical starting positions for both cases at N = 0.
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FIG. 11. (a) Evolution of line length for different φ at f = 0.5 as a function of N , (b) evolution of line
length for different f at φ = 70◦ as a function of N . N represents the oscillation cycle number.

E. Line length growth

We measure the line length of deformed patterns using numerical simulation data, as directly
measuring growth rates from experimental images is challenging due to the complex overlap
and continuity of the line element deformations. To address this issue, we initialize thousands
of particles in an inverted U-shaped pattern at the T-junction, similar to the initial configuration
used in experiments at time N = 0. We then track the future positions of these particles by
solving the governing equations of fluid motion [Eq. (2)] and utilizing the flow field computed
from the numerical calculations. In Figs. 3(a) and 3(b) and Figs. 3(e) and 3(f), we compare the
phase-locked stirred state obtained from our numerical simulations with the experimental results
for the nonchaotic case (φ = 10◦, f = 0.5) and the chaotic case (φ = 90◦, f = 0.5), respectively.
As illustrated in Figs. 3(a), 3(b), 3(e)), and 3(f), our numerical simulations effectively capture the
stirring features observed in the experiments.

To evaluate how the line element evolves over time, which serves as a measure of stirring, we
calculate the interparticle distances and determine the total length of the particle line using the
following formula:

L(t ) =
i=n∑
i=0

||xi+1(t ) − xi(t )||. (6)

In this formula, n represents the number of particles, while || · || denotes the L2 norm, which
measures the Euclidean distance between the positions of the particles. As time progresses, the
growth rate of the distances between particles, denoted by L(t ), indicates the degree of stirring.

We investigate how line lengths change in relation to N under two different scenarios to isolate
the effects of φ and f: (i) by keeping f constant at 0.5 while varying φ, and (ii) by maintaining φ

at 70◦ while varying f. In both scenarios, the line elements increase with N and eventually plateau
at a maximum length determined by the confinement. However, the time taken to reach this plateau
varies depending on the parameters.

In the first scenario, the line length grows exponentially for the intermediate φ values, as shown
in Fig. 11(a). The line length growth corresponding to φ = 130◦ is the fastest while the growth is
slowest corresponding to φ = 10◦. The critical φ for the fastest and the exponential growth depends
on f. Therefore, for a given f, the optimal φ values exhibit exponential growth in the line element,
although this is not the case for all values, as illustrated in Fig. 11(a).
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FIG. 12. (a) Initialization of particle locations in the uniform grids at the T-junction, (b) tagged (i, j)th
particle and the neighboring particles at t = t0, and (c) location of neighboring particles of tagged (i, j)th
particle at t = T .

In the second scenario where φ = 70◦, the line length increases exponentially for smaller f

values, as illustrated in Fig. 11(b), suggesting that reducing f enhances stirring. Similar to the
previous scenario, not all f values display exponential growth; only those below a critical value
for a given φ exhibit this characteristic.

F. Finite-time Lyapunov exponent (FTLE) field

To further illustrate the chaotic behavior resulting from the exponential growth in line length, we
identify the most influential material lines where the stretching or shrinking is at its maximum. The
FTLE (σ ) quantifies this stretch or shrinkage, as described by the following equation [43,44]:

σ T
t0 (x) = 1

|T | ln
√

λmax(	), (7)

where 	 = [∇FT
t0 ]′∇FT

t0 is the right Cauchy-Green deformation tensor. Here, FT
t0 denotes the La-

grangian description of fluid motion, known as a flow map, which indicates the final state (x, T ) at a
specific time T given an initial state (x0, t0). The symbol ( ′ ) represents the transpose of the matrix,
while λmax(	) is the maximum eigenvalue of 	, representing the maximum stretching occurring
over the time interval T .

We utilize computer simulations to compute the FTLE, offering a quantitative measure of the rate
at which infinitesimally close trajectories diverge, thus revealing regions of significant stretching
and stirring in the flow. Initially, we set up a grid of particles at the T-junction with uniform spacing
of 
x = 0.1 and 
y = 0.1 in the horizontal and vertical directions, respectively, as depicted in
Fig. 12(a). Figure 12(b) shows the tagged (i, j)th particle along with its neighboring particles at
time t = t0. Inset (c) illustrates the separation of the (i, j)th particle from its neighbors after a time
T . This setup enables us to track the motion of each particle within the fluid flow over time.

Next, we determine the trajectory of each particle over a time interval of 10 oscillation cycles
using the following differential equation (2). We record the final positions of all particles after 10
oscillation cycles, creating a flow map FT

t0 . This map links the initial position of a particle x0 at time
t0 to its position x(T ; t0, x0) at time T .

We create auxiliary particle grids to compute the gradient of the flow map over the 10 cycles, po-
sitioning them at small perturbations (δx, δy) from the (i, j)th particle [43,45]. These perturbations
enable us to approximate the spatial derivatives of the flow map, which are crucial for calculating
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the gradient. We express the gradient of the flow map as follows:

∇Ft
t0 (x0) =

⎛
⎜⎜⎜⎝


11

2|δx|

12

2|δy|

13

2|δx|

22

2|δy|

⎞
⎟⎟⎟⎠, (8)

where 
11 = x1(T ; t0, x0 + δx ) − x1(T ; t0, x0 − δx ), 
12 = x1(T ; t0, x0 + δy) − x1(T ; t0, x0 − δy),

21 = x2(t ; t0, x0 + δx ) − x2(t ; t0, x0 − δx ) and 
22 = x2(t ; t0, x0 + δy) − x2(t ; t0, x0 − δy).

Once we have calculated the flow map gradient ∇FT
t0 , we compute the Cauchy-Green strain tensor

CT
t0 (x0), defined as

CT
t0 (x0) = [∇FT

t0

]′∇Ft0 . (9)

This tensor reveals information about the deformation of fluid elements and identifies the directions
and magnitudes of stretching and compression. The eigenvectors of CT

t0 (x0) align with the most
influential stretching and compressing material elements initially located at x0. Finally, we compute
the FTLE field σ T

t0 (x0) using the maximum eigenvalues λ related to the eigenvectors of the Cauchy-
Green strain tensor CT

t0 :

σ T
t0 (x0) = 1

2(T − t0)
log λ(x0). (10)

The FTLE field uncovers regions of significant stretching and stirring within the fluid flow, pro-
viding valuable insights into the underlying dynamics of the system. This analysis enhances our
understanding of the complex interactions within the flow.

G. Extraction of Lagrangian coherent structures

Once we calculate the eigenvalues λi(x0) and eigenvectors ζi(x0) associated with CT
t0 (x0) at x0,

where i = 1, 2, we can identify the Lagrangian coherent structures (LCSs), these structures are
critical for understanding flow kinematics and material transport within the fluid, we compute tensor
lines that are tangent to the eigenvector field ζ1(x), which is associated with the maximum eigen-
value λ1(x), these tensor lines represent repelling LCSs, indicating regions where fluid particles
diverge over time, thus reflecting zones of maximum stretching. Similarly, the tensor lines tangent
to the eigenvector field ζ2(x), related to the second eigenvalue λ2(x), represent attracting LCSs.
Fluid parcels converge over time in these regions, signifying zones of maximum compression.

We analyze the flow map of fluid trajectories from t = 0 to t = 10 T in our simulations to
compute the FTLE field at t = 0, initialized over a grid at the T-junction. Figure 13 displays
the FTLE fields for both the nonchaotic case (f = 0.5 and φ = 10◦) and the chaotic case (f =
0.5 and φ = 70◦). In the chaotic scenario, the maximum stretch rate is approximately an order
of magnitude higher than in the nonchaotic case. We identify sharp ridges in the FTLE fields
as potential Lagrangian coherent structures (LCSs), which act as transport barriers in the flow.
Utilizing variational theory [46], we extract LCSs associated with chaotic advection by computing
tensor lines. The tensor lines that align with the eigenvector field of the maximum eigenvalue of the
strain-rate tensor 	 define repelling LCSs. Conversely, those aligned with the minimum eigenvalue
represent attracting LCSs. In Fig. 13(b), we highlight the most prominent repelling LCSs with a
dotted line and the attracting LCSs with a dashed line, illustrating their roles in driving chaotic flow
dynamics.

H. Regime map

We create a regime map on the f-φ parameter plane to identify regions that exhibit different
stretch-fold behaviors and to highlight areas where chaos occurs. By combining experimental results
with numerical simulations, we confirm the stretching behavior in various regions, distinguishing
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FIG. 13. Finite-time Lyapunov exponent (FTLE) fields showing (left) nonchaotic stirring at f = 0.5 and
φ = 10◦ and (right) chaotic stirring at f = 0.5 and φ = 70◦. In the chaotic stirring field (right), the red dotted
line represents the repelling Lagrangian coherent structure (LCS), while the magenta dashed line indicates the
attracting LCS.

regions of chaotic line element deformations. As shown in Fig. 14, this map illustrates how the
subperiodic variable φ and the normalized frequency f jointly influence fluid behavior.

At the extremes of the φ axis (φ = 0◦ and φ = 180◦), the trajectories display time-periodic
behavior, regardless of the f values. These cases correspond to synchronized oscillations, indicating
no net line deformation. In contrast, nonzero values of φ can lead to either nonchaotic or chaotic
deformations of the line element, depending on the f value. For any nonzero value of φ, decreasing

FIG. 14. Regime plot in f-φ parametric plane indicates the regions of nonchaotic and chaotic fluid tra-
jectories. Here, the • symbol represents the time-periodic trajectories, the � symbol represents nonchaotic
trajectories, and ∗ indicates chaotic trajectories. The red dashed line is the separating boundary of chaotic and
nonchaotic regions. (a) Evolution of α with N for a nonchaotic case (φ = 10◦, f = 0.5), (b) evolution of α

with N for a chaotic case (φ = 70◦, f = 0.5), (c) experimental visuals of nonchaotic case (φ = 10◦, f = 0.5)
at N = 10, and (d) experimental visuals of chaotic case (φ = 70◦, f = 0.5) at N = 10.
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f can lead the system into chaos. Moreover, at a fixed f, specific optimal values of φ are more
conducive to chaotic stirring. Additionally, as f decreases, the range of these optimal φ values
expands.

We selected two representative cases from the regime map shown in Fig. 14: one from the
nonchaotic region (f = 0.5, φ = 10◦) and another from the chaotic region (f = 0.5, φ = 70◦). For
each case, we extracted the parameter α, defined as the ratio of the difference in line length (
L) to
the difference in cycle number (
N), normalized by the current line length. We calculated it using
the following formula:

α = 1

L

(

L


N

)
.

When we consider how α evolves with N , if the line length grows according to a power law, such that
L ∼ Ne, then 
L/
N ∼ eNe−1. We can express this as (1/L)(
L/
N ) ∼ eN−1. Thus, for power-
law growth, α scales inversely with N . This scaling behavior appears in the nonchaotic case, as
shown in Fig. 14(a). This power-law behavior reflects the limited ability to stretch and fold material
lines, resulting in weak stirring. In contrast, when we examine exponential growth in line length,
where L ∼ exp (λt ), we find that 
L/
N ∼ λ exp (λt ), suggesting that α approaches a constant
value, λ, which we observe in the chaotic case, as indicated in Fig. 14(b). The exponential growth
of material lines characterizes chaotic stirring, where fluid elements undergo rapid stretching and
folding. Additionally, the experimental visuals in Figs. 14(c) and 14(d) correspond to the nonchaotic
and chaotic stirring cases, respectively. They demonstrate the distinct stirring features that align with
power-law and exponential scaling.

V. CONCLUSION

We conducted experimental and simulation studies to investigate the onset of chaos in a slow,
viscous oscillatory flow through a bifurcating geometry. Specifically, we analyze the effects of
subperiodic variable oscillations (defined by parameter φ) and oscillation frequency (f) on the
stretch-fold mechanism of the fluid element leading to chaos. We generated the oscillatory flows
using a simple bifurcating network—a T-section equipped with a piston, cylinder, and motor as-
sembly. Our primary goal was to delineate a boundary on the f-φ parameter plane that differentiates
chaotic from nonchaotic stirring. In the case of symmetric oscillations (φ = 0◦ and φ = 180◦),
the fluid trajectories exhibited time-periodic behavior, leading to zero net deformation and no
stirring, irrespective of the f value. Conversely, in subperiodically variable scenarios, disparities
in piston velocities result in the coexistence of open and closed streamlines, which resemble the
characteristics of “tendrils” and “whorls,” leading to the stretching and folding of line elements.
Closed streamlines are generated due to the interaction between the flow streams of unequal
magnitudes at the T-junction, subsequently creating Moffatt eddies in the arm with the weaker flow.

We delineate the region of chaotic stirring on the f-φ parametric plane and highlight how f and
φ interact to initiate stirring and facilitate the transition to a chaotic state. Our findings show that
fluid stirring can occur for 0◦ < φ < 180◦ at a given f, but only a select few optimal φ values
lead to chaos, resulting in efficient stirring. We identify this through the exponential growth of
line elements, accompanied by a maximal stretching rate observed in the FTLE field. However,
as f decreases, the optimal range of φ that induces chaotic stirring expands, suggesting that a
combination of optimal φ values and lower f levels promotes chaos.

This study utilized a simple bifurcating network to facilitate different flow behaviors by mod-
ulating the inlet conditions. These findings have significant practical implications, with potential
applications in micromixer design and a deeper understanding of complex fluid dynamics in
physiological and biological systems. However, further research is necessary to explore the fluid
kinematics with more complex geometries and different time modulation protocols of the inlet
boundary conditions, which would more closely approximate practical scenarios.
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