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We investigate the dynamics of small inertial particles in a two-dimensional, steady
Taylor-Green vortex flow. A classic study by Taylor (1940) showed that infinitely heavy in-
ertial point particles (having density parameter R = 1) are trapped by the flow separatrices
when the particle Stokes number St, which measures the particle’s inertia, is less than 1/4.
Here, we consider finitely heavy particles, incorporating the previously neglected effects
of added mass and the Boussinesq-Basset history force. Using linear stability analysis
near fixed points, we determine the critical parametric conditions in the St-R plane that
lead to particle trapping within vortex cells. Including the added mass effect identifies
additional fixed points beyond the traditional ones located at the vortex cell corners, and
we analyze their stability. Numerical analysis of the full nonlinear system confirms the
existence of distinct particle behaviors—trapped, diffusive, and ballistic—depending on
initial conditions, consistent with Nath et al. [Phys. Rev. Fluids 9, 014302 (2024)], with
modifications due to added mass effect. We delineate the regions in the St-R plane where
these behaviors dominate based on the prominent particle dynamics. However, when both
the history force and added mass effect are included, all particles exhibit ballistic motion
regardless of St and R.

DOI: 10.1103/jv92-2mx3

I. INTRODUCTION

The transport and dispersion of small inertial particles in fluid flow play a crucial role in
numerous physiological, environmental, and engineering applications. Examples include particulate
transport in pulmonary airways [1], blood flow in arteries [2], the dynamics of water droplets
in turbulent atmospheric clouds [3], and the movement of dust and debris in hurricanes [4].
Additionally, inertial particle transport is fundamental to various industrial processes such as spray
drying, pollution control, and slurry transport, among others [5].

Maxey and Riley [6] derived an equation of motion to describe the dynamics of a small, rigid
sphere in a nonuniform flow as

mp
dv
dt

= m f
Du
Dt

+ m f

2

(
Du
Dt

− dv
dt

)
− 6 π μ a (v − u)

− 6 a2 ρ f
√

π ν

[∫ t

t0

(
dv
dt ′ − du

dt ′

)
dt ′

√
t − t ′ + v0 − u0√

t − t0

]
, (1)

where mp and m f are the particle mass and the mass of the displaced fluid, respectively. The densities
of the particle and fluid are denoted by ρp and ρ f , respectively. The particle’s Lagrangian velocity is
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represented by v, while u is the fluid velocity sampled at the particle’s position x, where dx/dt = v.
The particle has a radius a, and the fluid properties are characterized by the dynamic viscosity μ and
the kinematic viscosity ν = μ/ρ f . The initial time is denoted by t0, with the corresponding initial
velocities of the particle and fluid given by v(t = t0) = v0 and u(t = t0) = u0, respectively. The
material derivative Du/Dt = ∂u/∂t + u ·∇ u represents the fluid acceleration. The first two terms
on the right-hand side of equation (1) correspond to inertial forces, which include the pressure
gradient force and the added mass effect. The remaining two terms are viscous forces, comprising
Stokes drag and the Boussinesq-Basset history force (or simply "history force"). In its original form,
equation (1) includes Faxén correction terms as well, which are neglected here as they become
insignificant for particles significantly smaller than the flow length scale [7,8]. We also neglect
the gravitational settling effects in the current analysis. The presence of the history force makes
the Maxey-Riley equation an integrodifferential equation, rendering its analytical solution highly
nontrivial. Additionally, numerical solutions are computationally expensive and require significant
memory resources [9,10]. To avoid these challenges, two simplified models of the Maxey-Riley
equation are widely adopted in the literature. One of these models is given (in nondimensional
form) as

dv
dt

= − 1

St
(v − u), (2)

which applies in the limit of infinitely heavy particles, where the particle-to-fluid density ratio is
very large (ρp/ρ f � 1) [8]. The Stokes number, denoted as St in equation (2), is a dimensionless
measure of a particle’s inertia, defined as the ratio of the particle relaxation time τp = mp/(6πμa) to
the relevant flow timescale. The relaxation time τp characterizes the timescale over which a particle
adjusts its velocity to match the surrounding flow velocity. The model in Eq. (2) is commonly used
to study the transport of particles and droplets in various atmospheric turbulent flows [8,11–14].
The other model is a reduced-order Maxey-Riley equation, derived by Ferry and Balachandar [15]
building on earlier work by Maxey [16] and Druzhinin [17], also known as the inertial equation [18],
given by

v = u + St

(
2 − 3R

R

)
Du
Dt

+ O(St3/2), (3)

where R = 2ρp/(2ρp + ρ f ) is the density parameter, R = 1 corresponds to the infinitely heavy parti-
cle limit (ρp � ρ f ), R = 0 corresponds to very light particles (ρp � ρ f ), and R = 2/3 corresponds
to density-matched particles (ρp = ρ f ). The inertial equation is valid in the limit St � R, implying
that the particle velocity closely follows the flow velocity with an inertial correction from fluid
acceleration. This equation is derived through asymptotic analysis under the condition St � R,
where the influence of Stokes drag and inertial forces occur at O(St) while the influence of the
history force appears only at higher-order terms. The original derivation by Ferry and Balachandar
[15] suggested that the next correction term would be of the order O(St3/2) when accounting for the
history force. However, in the absence of the history force, the correction terms are weaker, of the
order O(St2) [16–18].

The transport of inertial particles in cellular flows, such as the Taylor-Green (TG) vortex, has
been extensively investigated using various forms of the Maxey-Riley equation. One of the earliest
works by Maxey [7] demonstrated that particle inertia and density contrast critically determine
the spatial distribution of inertial particles in both cellular flows. The study showed that inertial
particles deviate from fluid streamlines, with heavy particles preferentially accumulating in high-
strain regions, such as the corners of cellular flows, and lighter particles clustering near vortex
centers. This asymmetry enables heavy particles to cross the flow separatrices and adopt nonuniform
distributions. Building on these insights, Crisanti et al. [19] and Crisanti et al. [20] investigated
particle transport in steady TG vortex flows, identifying that lighter particles migrate toward vortex
centers while heavier particles follow chaotic trajectories, resulting in inertial diffusion. Wang et al.
[21] further established that chaotic particle motion strongly depends on Stokes number (St) and
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density parameter R, with chaotic dispersion rates inversely related to mixing efficiency. Raju and
Meiburg [22] analyzed particle dynamics in vortical and extensional flows, finding that optimal
ejection and entrapment occur at intermediate Stokes numbers, with particle-to-fluid density ratio
and gravity playing significant roles. More recently, Nath et al. [23] and Nath et al. [24] explored
infinitely heavy particle dynamics in TG vortex flows, confirming classical trapping thresholds [25]
and identifying nonergodic behavior, where particles may exhibit trapped, diffusive, or ballistic
dispersion depending on initial conditions. These studies also drew analogies to soft Lorentz gas
systems [26], highlighting the irregular and sometimes discontinuous dispersion variation with
the Stokes number. It has even been shown by Nath and Roy [27] that infinitely heavy particles
in an isolated vortex, when slightly perturbed by interactions with nearby vortices, can undergo
chaotic transport. Dagan [28] derived analytical solutions for the dispersion of infinitely heavy
inertial particles in the TG vortex flow. In the limit St � 1, the authors simplified the governing
equations and obtained explicit mathematical expressions, which provide analytical insights into
particle trajectories and velocities. Despite these advances, most prior works have neglected the
history force due to its mathematical complexity. However, several studies have highlighted its
importance: Lasheras and Tio [29] showed that the history force appears as a higher-order term for
small Stokes numbers, while Druzhinin and Ostrovsky [30] and Candelier et al. [31] demonstrated
that it can significantly alter particle trajectories, particularly in separatrix crossing and ejection
from vortex centers. In turbulent flows, Daitche [32] found that the history force reduces particle
clustering by making particles behave more like tracers, though this effect diminishes for infinitely
heavy particles (R ∼ 1). Collectively, these studies illustrate the roles of particle inertia, density
ratio, and hydrodynamic forces in governing particle transport in cellular flows and motivate an
investigation into the role of the history force in such systems.

This study investigates the dynamics of inertial particles in the TG vortex by modeling their
motion using Eq. (1). The primary objective is to explore the behavior of heavy particles over a
broader range of particle-fluid density ratios and to examine the influence of inertial forces and the
often-neglected history force on their dynamics. This article is structured as follows: In Sec. II, we
discuss the flow field, outline our objectives, and list the assumptions we made while also examining
the nondimensional form of the equations of motion along with relevant nondimensional numbers.
Before we dive into the analysis of particle dynamics in the TG vortex, we first explore their behavior
near fixed points—the fundamental components of the TG vortex—using linear stability analysis
in Sec. III by linearizing the full equation of motion around the fixed points of the TG vortex to
investigate the leading-order dynamics. Furthermore, this section will address the emergence of
additional fixed points induced by inertial forces. In Sec. IV, we conduct a numerical analysis to
study particle dynamics within the fully nonlinear TG vortex flow in the absence of history force
and analyze the effects of history force on the dynamics in Sec. V. Finally, we highlight the key
findings and provide concluding remarks in Sec. VI.

II. PROBLEM FORMULATION

The TG vortex represents a 2D, steady, laminar, and incompressible flow field characterized by
the stream function

ψ∗(x∗, y∗) = U L sin

(
x∗

L

)
sin

(
y∗

L

)
. (4)

Here, ( )∗ denotes dimensional quantities. The TG flows feature doubly periodic arrays of cells
comprising four counter-rotating vortices of cell size L, arranged in an unbounded 2D space. The
points where the flow velocity vanishes are known as fixed points. For the TG vortex we have
considered, these fixed points are located at the vortex centers (n π + π/2, m π + π/2), and at the
corners of the vortex cells (n π, m π ) for integers n and m. Each vortex cell features fixed points
at its corners and center, while each cell boundary connecting the corner fixed points is a flow
separatrice. For example, n = m = 0 describes a center fixed point at (π/2, π/2), and a corner
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FIG. 1. The TG vortex flow displays streamlines. The inset provides a zoomed-in view of the flow patterns
near a stagnant point at (π, π ). Solid contour lines indicate anti-clockwise rotation, while dashed contour lines
represent clockwise rotation.

fixed point at the origin (0, 0). The maximum velocity, U , occurs along the boundaries of the
vortices. Additionally, the flow exhibits mirror symmetry and periodic repetition in both the x and y
directions. Inside every cell, fluid elements orbit along the streamlines with regular periodic motion.
The period of this motion depends on the initial positions of the fluid elements: it is 2π L/U near the
vortex center and becomes infinite near the cell boundaries. We use the characteristic flow length
scale L and velocity scale U to nondimensionalize the system. The velocity components for the
TG vortex are thus given in nondimensional form as ux = sin x cos y and uy = − cos x sin y. Here,
variables without ( )∗ represent nondimensional quantities. In Fig. 1, we illustrate the streamlines
of TG flow in the [−π, 3π ] × [−π, 3π ] nondimensional space. Fluid parcels traverse along the
flow separatrices as they approach the corner fixed points. At the same time, heavy inertial particles
(ρp > ρ f and St > 0) may cross these separatrices/cell boundaries depending on some parametric
conditions, as we will see later.

The objective of this study is to investigate the dynamics of heavy (ρp > ρ f ) inertial particles
in the TG vortex flow described by Eq. (4). We model the inertial particles as small, rigid spheres
with a radius a � L, and we assume that the particle suspension is dilute enough so that particles
do not interact with one another and the feedback effect from the particles to the fluid is minimal.
This allows us to treat the system as one-way coupled. Under this assumption, we can utilize the
Maxey-Riley equation [Eq. (1)] to model the particle motion. After rearranging the terms in Eq. (1)
and substituting the velocity field from Eq. (4), along with scaling by the characteristic flow scales
U and L, the governing equations for particle dynamics can be expressed in a nondimensional,
component form as

dvx

dt
= − R

St
(vx − sin x cos y) + 3 (1 − R) sin x cos x

− κ√
π

[
vx0 − sin x0 cos y0√

t
+

∫ t

0

1√
t − t ′

(
dvx

dt ′ − vx cos x cos y + vy sin x sin y

)
dt ′

]
,

(5a)
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dvy

dt
= − R

St
(vy + sin y cos x) + 3 (1 − R) sin y cos y

− κ√
π

[
vy0 + cos x0 sin y0√

t
+

∫ t

0

1√
t − t ′

(
dvy

dt ′ − vx sin x sin y + vy cos x cos y

)
dt ′

]
,

(5b)

with vx = dx/dt and vy = dy/dt . Here, the initial time is set to zero, i.e., t0 = 0, and the correspond-
ing variables are notated as x0, y0, vx0 and vy0 . In these equations, the variables x and y represent the
particle positions, while vx and vy denote their velocities. Together, these four variables constitute
the dynamical state of the system in a four-dimensional (4D) phase space. The governing system
involves two independent nondimensional parameters: the density parameter R and the Stokes
number St. As previously noted, the Stokes number St characterizes particle inertia, where St = 0
corresponds to inertialess particles that perfectly trace the fluid streamlines. The density parameter R
quantifies the relative density of particles with respect to the fluid. Specifically, R = 1 corresponds to
infinitely heavy particles (ρp � ρ f ), while R = 2/3 represents density-matched particles particles
(ρp = ρ f ). In contrast, R = 0 characterizes very light particles, such as bubbles (ρp � ρ f ). The
coefficient of the history force, κ , is related to the other parameters as

κ = 3

√
(1 − R)

R

1

St
. (6)

Note that our definition of the Stokes number, St, differs from that used in other studies [9,10,33].
These studies formulate St using the timescale a2/ν, representing the timescale over which momen-
tum diffuses in the fluid. In contrast, our definition expresses the particle response time τp, which is
(2ρp/9ρ f )a2/ν, characterizing how quickly the particle’s momentum adjusts to the surrounding
fluid streamlines. For our analysis, we focus on the regime 2/3 < R < 1 and 0.1 < St < 1.0,
concentrating on the dynamics of particles that are finitely heavier than the fluid and emphasizing
investigating the role of inertial and history forces on their transport features.

The governing system of Eqs. (5) consists of coupled nonlinear integrodifferential equations,
making analytical treatment highly challenging. Consequently, we resort to numerical methods to
solve for particle dynamics. However, before proceeding with numerical calculations, we predict the
particle behavior analytically by simplifying the flow field. Note that the nonlinearity of the system
originates from the nonlinear nature of the TG vortex flow, which contains key flow structures such
as fixed points of type vortex centers and stagnation regions. We study particle motion near these
structures by linearizing the flow in their vicinity to gain analytical insights. Of particular interest
are the stagnation regions, as previous studies [19,21] have shown that particles in a TG vortex flow
primarily migrate between vortex cells through the regions surrounding these points. Specifically,
infinitely heavy inertial particles (R = 1) have been found to escape vortex cells near stagnation
regions if their Stokes number exceeds a critical threshold of St = 1/4 [23,34]. In the following
sections, we analyze how the inclusion of inertial forces and the history force modifies particle
leakage near stagnation regions. We begin by discussing the dynamics of particles near fixed points,
using linearized flow approximations to extract analytical results. Subsequently, we examine how
the inherent nonlinearity of the TG flow influences particle transport and longtime dispersion.

III. PARTICLE DYNAMICS NEAR FIXED POINTS

Before analyzing the full nonlinear system of the TG flow, we first examine particle dynamics
near the fixed points analytically. Initially, we only consider the effects of Stokes drag and inertial
forces, neglecting the history force. We then incorporate the history force to evaluate its impact on
particle transport behavior. The equations of motion for an inertial particle in the TG vortex flow, in
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the absence of the history force, can be derived from Eq. (5) by omitting the terms multiplying by
κ , as

ẋ = vx, v̇x = − R

St
(vx − sin x cos y) + 3 (1 − R) sin x cos x, (7a)

ẏ = vy, v̇y = − R

St
(vy + sin y cos x) + 3 (1 − R) sin y cos y. (7b)

These equations are coupled and nonlinear but remain ordinary differential equations. They can be
rewritten by defining a modified effective flow field that incorporates the modifications introduced
by the fluid inertia term, allowing it to be absorbed into the Stokes drag as

ẋ = vx, v̇x = − 1

Stm
(vx − uxe), (8a)

ẏ = vy, v̇y = − 1

Stm
(vy − uye), (8b)

where the modified effective flow field is defined as

uxe = sin x (cos y + γ −1 cos x), uye = sin y (− cos x + γ −1 cos y). (9)

The relevant dimensionless parameters are defined as

Stm = St

R
, Stcp = R

3(1 − R)
, γ = Stcp

St
. (10)

The significance of this critical Stokes number, Stcp , will become evident later. The modified flow
field differs significantly from the conventional TG vortex flow due to its dependence on St and
R, meaning that different particles, depending on their size and density, can experience different
effective flow fields. Interestingly, the modified flow field ue = [uxe, uye]T is compressible, with a
nonzero divergence given by ∇ · ue = γ −1(cos 2x + cos 2y). Notice the similarity of Eqs. (8) and
(2); i.e., in the absence of history force, the motion of inertial particles with Stokes number St and
a finite density ratio R in a flow u is equivalent to the motion of infinitely heavy particles with an
effective Stokes number Stm in a modified flow ue. In the infinitely heavy particle limit (R → 1),
the modified flow field becomes the usual TG vortex flow, Stm reduces to St, and the modified
equations of motion [Eqs. (8a) and (8b)] simplify to the simplified Maxey–Riley equation [Eq. (2)]
for TG vortex flow. The same idea applies to any general flow field u, for which a corresponding
modified flow field can be defined as

ue = u + γ −1 Du
Dt

. (11)

It is important to distinguish between the effective flow field defined in Eq. (11) and the reduced
particle velocity field given in Eq. (3). Although both are written in terms of the flow velocity u and
its material derivative Du/Dt , they differ in the values of their coefficients and, more importantly,
in what they represent. The effective flow field in Eq. (11) describes a modified version of the fluid
flow, while Eq. (3) approximates the velocity of an inertial particle. This reduced particle velocity
is a valid approximation only when the Stokes number is much smaller than the density ratio, i.e.,
St � R. In contrast, the effective flow field in equation (11) provides an exact formulation that
remains valid for any finite values of St and R. Furthermore, if we expand the particle velocity Eqs.
(8) in the limit Stm � 1 using the method of Ferry and Balachandar [15] (which corresponds to
Eq. (3) with R = 1 and St = Stm), then we obtain v = ue − Stm Due/Dt + O(St3/2

m ). Substituting
ue from Eq. (11) into this expansion recovers the expression in Eq. (3), as given by Ferry and
Balachandar [15], which is valid for arbitrary values of R.

By setting ẋ = 0, ẏ = 0, v̇x = 0, and v̇y = 0 in Eqs. (7) or (8), we determine the fixed points of
particles in this effective flow field. Here, trivially the solution gives vx = vy = 0. Apart from the
fixed points located at the centers of the flow cells (x, y) = (n π + π/2, m π + π/2) and at the
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FIG. 2. (a) Locations of corner and center fixed points and the typical streamline pattern within a represen-
tative vortex cell of the Taylor–Green vortex flow. (b), (c) Flow pattern and fixed points of the effective velocity
field ue (corresponding to TG vortex), shown for different parameter combinations: (b) R = 0.67 and St = 1.0;
(c) R = 0.67 and St = 0.3. Dot markers indicate the corner or center fixed points, while star markers indicate
edge fixed points. Note that in panel (c), the edge fixed points are absent because St < Stcp .

corners (x, y) =(n π, m π )—which, as noted earlier [see Figs. 1 or 2(a)], coincide with the fixed
points of the flow—we also find additional fixed points. These new points lie on the flow separatrices
and are located at (x, y) =(n π, cos−1[(−1)n γ ]) and (cos−1[(−1)m+1 γ ], m π ), for any integers n
and m. Since these additional fixed points appear along the separatrices or the boundaries between
flow cells, we refer to them as edge fixed points (EFPs), and the fixed points at the cell corners are
termed corner fixed points (CFPs) for distinguishing. For instance, in the basic vortex cell bounded
by the separatrices at x = 0, x = π, y = 0 and y = π , four additional fixed points appear apart from
the vortex center and the four CFPs, as shown in Fig. 2(b). These EFPs are located at (0, cos−1[γ ]),
(π, cos−1[−γ ]), (cos−1[γ ], π ), and (cos−1[−γ ], 0). Notably, these additional fixed points fall on
the flow separatrices, but their exact location depends on γ , meaning their locations vary based on
particle size and density. The existence of these fixed points is restricted to cases where γ < 1,
which corresponds to St > Stcp ; for e.g., as shown in Fig. 2(c), the EFPs disappear when St =
0.3 < Stcp at R = 0.67. In Figs. 2(b) and 2(c), we show the streamline patterns of the effective flow
field to depict the emergence and disappearance of EFPs visually. It is important to note that these
streamline patterns do not convey the actual behavior of particles in the flow field. Also note that we
have selected a R = 0.67 for this illustration as EFPs appear at lower values of St for this specific R
while maintaining conditions relevant to moderately heavy particle scenarios. In the infinitely heavy
particle limit (R → 1), where Stcp → ∞, no particle with a finite Stokes number would experience
these EFPs. However, for any finite density ratio (R < 1), there exists a critical Stokes number Stcp

beyond which these additional fixed points emerge. Kinematically, EFPs, when they exist, behave
like saddles. CFPs, however, behave as saddles before the EFPs appear, but transition to sources
once the EFPs emerge, as explained in Appendix A.

In the following sections, we study the dynamics of inertial particles near a typical CFP and
EFP by linearizing Eqs. (7) around those points. For the fixed point at the center of the cell, the
surrounding flow behaves like solid-body rotation, where the velocity components are approxi-
mately ux 
 −y and uy 
 x. Candelier et al. [31] used experiments and simulations to examine
the dynamics of inertial particles in such a flow. They showed that even with the history force
included, moderately heavy particles (R > 2/3) tend to get centrifuged out of the vortex center,
while lighter particles (R < 2/3) tend to get trapped there, consistent with the prediction by Ref.
[16]. Even though, for completeness, We have also included the detailed linear stability analysis of
inertial particles near a typical vortex center in the absence of history force and further analyzed the
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significance of history on their dynamics in Appendix B. The results show that in the absence of the
history force, the vortex center behaves like a "2-spiral source" when R > 2/3, and like a "2-spiral
sink" when R < 2/3, leading respectively to the centrifuging or accumulation of particles at the
vortex center. While the qualitative nature of these fixed points remains unchanged upon including
the history force, its presence reduces the migration rate of particles in both scenarios.

A. Particle dynamics near a corner fixed point of the TG vortex flow—Without history force

Each CFP in the TG vortex flow lies at the intersection of four neighboring vortices, as shown
in Fig. 1. The flow near these points resembles a linear extensional flow, as illustrated in the inset
of Fig. 1. For example, near the origin, the leading-order approximation of the velocity field gives
ux ≈ x and uy ≈ −y, indicating that the flow stretches along the x axis (extensional) and compresses
along the y axis (compressional). Although this form approximates the velocity field near the
fixed point at the origin, the same form applies near any CFP in the TG vortex flow, provided
we adjust for the location and identify the correct stretching and compressing directions. Without
loss of generality, focusing on the CFP at the origin, and ignoring the history force, the governing
equation [Eq. (5)] simplifies to

1

R
ẍ + 1

St
ẋ − x

(
3(1 − R)

R
+ 1

St

)
= 0, (12a)

1

R
ÿ + 1

St
ẏ − y

(
3(1 − R)

R
− 1

St

)
= 0. (12b)

Here ˙( ) represents time derivative d/dt . Since the Eqs. (12a) and (12b) form a set of two decoupled
dynamical systems, the solution for the extensional (x) and compressional (y) directions can be
determined separately as

x = C1 eλ+
e t + C2 eλ−

e t , with λ±
e = 1

2

⎛
⎝− R

St
±

√(
R

St

)2

+ 4
R

St
+ 12(1 − R)

⎞
⎠, (13a)

y = C3 eλ+
c t + C4 eλ−

c t , with λ±
c = 1

2

⎛
⎝− R

St
±

√(
R

St

)2

− 4
R

St
+ 12(1 − R)

⎞
⎠, (13b)

The constants C1,C2,C3, and C4 are integration constants and depend on the initial conditions
[see Eq. (C1)]. Here λ±

e and λ±
c are the eigenvalues of the system of Eqs. (12) when treated

as a linear dynamical system. The colormap in Fig. 3 visualizes the real and imaginary parts
of these eigenvalues across the St-R parametric plane. The nature of particle trajectories can be
inferred from the eigenvalue set (λ+

e , λ−
e , λ+

c , λ−
c ), particularly from their signature. It is evident

that eigenvalues λ±
e are always real since the discriminant D1 = (R/St)2 + 4(R/St) + 12(1 − R)

remains positive for all physically relevant values of R < 1. Consequently, λ+
e is always a positive

real number, while λ−
e is always negative, as shown in Figs. 3(a), 3(b), 3(e), and 3(f). The solution

form in equation (13a) thus indicates that particles will move exponentially away along the x axis
(or, more generally, along the extensional axis). This motion makes it unlikely for particles to
move across the compressional axis and cross the associated separatrix (x = 0), unless their initial
momentum is set in a way that forces such a crossing (see details in Appendix C). In contrast,
the eigenvalues λ±

c can be either real or complex, depending on parameter values, as shown in
Figs. 3(c), 3(d), 3(g), and 3(h). When λ±

c are complex conjugates, the solution in equation (13b)
shows that particle trajectories will exhibit oscillatory behavior along the y axis (or, in general,
along the compressional axis). As a result, particles may be able to cross the extensional separatrix
axis (y = 0) in finite time. To determine when λ±

c becomes complex, we consider the discriminant
D2 = (R/St)2 − 4(R/St) + 12(1 − R). The eigenvalues become complex if the Stokes number lies

104304-8



TRAPPING AND TRANSPORT OF INERTIAL PARTICLES …

Im Im Im Im

Im

Re Re Re Re

R
e

FIG. 3. The real (Re) and imaginary (Im) parts of the eigenvalues λ±
e and λ±

c are presented as colored
contour plots in the St-R parametric plane. Zero contour lines are highlighted in black dashed in subplot (c).

within the range St+c < St < St−c , where the critical Stokes numbers are given by

St±c = R

2(1 ± √
3R − 2)

. (14)

For St ∈ (St+c , St−c ), the oscillatory motion allows particles to cross the extensional axis without
requiring additional conditions. For the Stokes numbers beyond this critical range, where particle
trajectories in phase space become purely exponential, separatrix crossing can only occur under
specific initial conditions, which we discuss in Appendix C. For instance, in the infinitely heavy
particle limit (R = 1), these reduce to St+c = 1/4 and St−c → ∞, consistent with earlier studies
[23,25,35].

We identify different dynamical regimes in the St-R parameter space based on the behavior of
the eigenvalues, as shown in Fig. 4(a). We also show how the eigenvalues (λ±

e , λ±
c ) change as

the Stokes number St increases from 0.1 to 1.0 for a fixed density ratio R = 0.70 in Figs. 4(b)
and 4(c); this trend remains qualitatively similar for any R ∈ (2/3, 1). Regions A and C manifest
similar dynamical behavior, characterized by the property that all eigenvalues (λ+

e , λ−
e , λ+

c , λ−
c ) are

real, displaying signatures (+,−,−,−), as shown in Figs. 4(b) and 4(c), which correspond to a "3:1
saddle" fixed point in the 4D phase space. Conversely, the region delineated by St+c and St−c , referred
to as region B, exhibits a distinct nature of the eigenvalues, as not all are purely real. While the real
parts maintain the signature (+,−,−,−), the imaginary parts assume signatures (0, 0,+,−), as
shown in Figs. 4(b) and 4(c), signifying a “spiral 3:1 saddle” in the 4D phase space. Beyond the
critical Stokes number Stcp , the real part of λ+

c transitions its sign from negative to positive, as can
be seen in Fig. 4(b). The region extending beyond Stcp , indicated as region D in Figs. 4(a), has all
real eigenvalues, which, however, exhibit distinct signature from those in regions A, B or C, with two
eigenvalues being positive and the other two negative (+,−,+,−). This configuration corresponds
to a "2:2 saddle" fixed point in the 4D phase space, following the classification nomenclature
referenced in Ref. [36]. The distinction between saddle and spiral–saddle fixed points is important.
Since the particle dynamics evolve in a 4D phase space, the nature of the fixed points—whether
they have purely real eigenvalues (simple saddles) or include some complex conjugate eigenvalues
(spiral–saddles)—significantly affects the local trajectory behavior. For simple saddles, trajectories
near the fixed point do not exhibit oscillatory behavior, whereas spiral-saddles introduce a spiralling
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FIG. 4. (a) Different regimes of particle dynamics near a corner fixed point of TG vortex, without history
force, are shown in the St-R plane. The critical curves corresponding to St+c (solid line), St−c (dashed line), and
Stcp (dotted line) mark the boundaries between regions A, B,C, and D. (b) and (c) show the evolution of the
real and imaginary parts, respectively, of the four eigenvalues λ±

e and λ±
c as functions of St at R = 0.70.

motion due to the complex eigenvalues. This spiralling appears as oscillations of trajectories, which
can increase the likelihood of trajectories crossing nearby separatrix lines.

In region B, unlike regions A, C, and D, the eigenvalues are complex conjugates, which gives
the particle trajectories a spiral shape in phase space. These spirals are attracting because the
eigenvalues have negative real parts and nonzero imaginary parts. At the same time, the presence
of other real eigenvalues gives the system a saddle-like nature. This combination allows particles
to cross the separatrix, a behavior not seen in regions A, C, and D. Still, particles in those regions
may also cross the separatrices (along the extensional or compressional axes) if they start with
large enough momentum in the right direction (see Appendix C). Also, unlike in regions A and C,
where three of the eigenvalues are negative and only one is positive—causing particle trajectories to
converge toward the extensional axis over time—in region D, two of the eigenvalues are positive. As
a result, this convergence does not occur. Instead, particles tend to move away from the extensional
separatrix axis (y = 0). This kind of diverging behavior was previously reported by Raju and
Meiburg [22], who referred to it as "unphysical." However, we suggest that this change in behavior
near the CFPs is actually due to the appearance of EFPs once St > Stcp . In this parameter range,
particles may be more likely to cross the extensional separatrix, depending on their initial conditions.
We explore the eigenvalue behavior of EFPs in detail in Sec. III B. To gain further insight into
particle dynamics near the CFPs under different parametric regimes and initial conditions, we
present analytically computed particle trajectories in linearized TG vortex flow in the physical x-y
plane. Particles are initially positioned at (x, y) = (0.1, 1) in the linearized TG vortex flow (here,
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FIG. 5. Particle trajectories representative of each parametric regime are shown for two cases: (a) zero
initial slip velocity and (b) zero initial particle velocity. In both cases, particles are initialized near the stagnation
point at the origin, specifically at the coordinate location (0.1, 1). The following parameter sets are used to
illustrate each regime: region A with R = 0.8, St = 0.2; region B with R = 0.85, St = 0.5; region C with
R = 0.67, St = 0.45; and region D with R = 0.7, St = 1.0. Insets show zoomed-in views to better visualize
the separatrix crossings at the longtime limit.

there is a CFP at the origin). We consider two initial velocity conditions: (i) the particle velocity is
set equal to the local fluid velocity—referred to as the zero slip velocity condition (i.e., v = u); and
(ii) the particle starts from rest (i.e., zero initial velocity). Henceforth, "zero slip velocity" denotes
that the particle velocity matches the local fluid velocity at the initial instant. Figures 5(a) and 5(b)
show the particle trajectories for the zero slip and zero velocity initializations, respectively. As
seen in Fig. 5(a), the trajectory in regime A does not cross the extensional separatrix axis (y = 0),
consistent with the 3:1 saddle nature of the CFP. In contrast, in regime B, the transition of the CFP
to a spiral-3:1 saddle facilitates the particles to move across the separatrix line in a finite time.
Interestingly, in regime C, the trajectory also intersects the separatrix, albeit at long times (t � 1)
[see Fig. 5(a)], despite the eigenvalue characteristics of the fixed point being similar to regime
A. This confirms that particle crossing of the separatrix can occur without oscillatory behavior,
depending on the appropriate initial conditions and parameter values, as discussed in Appendix C.
In regime D, again the particle trajectory is able to cross the extensional separatrix line, aided by
the appropriate initialization. Here, the CFP exhibits 2:2 saddle characteristics, and thus, after the
crossing, the trajectory is advected away from the separatrix due to two positive eigenvalues. This
contrasts with regimes A, B, and C, where particle trajectories—whether they cross the separatrix
or not—eventually align with it in the long time limit.

In the second scenario where particles are initially at rest (i.e., with zero initial velocity), the
trajectories corresponding to regimes A and B display similar qualitative behaviors as before:
particles in regime A remain confined, exhibiting trapping behavior, whereas those in regime B
cross the extensional separatrix line (y = 0), as shown in Fig. 5(b). In this case, the trajectories
associated with regime C no longer intersect the separatrix, consistent with the underlying eigen-
value characteristics. However, this behavior contrasts with the zero slip velocity case in Fig. 5(a),
where particles from regime C were able to cross the separatrix at long times (t � 1) due to their
sufficient initial momentum, which is absent in the setup here. Furthermore, particles from regime
D now move against the flow direction and fail to cross the extensional separatrix line, again due
to the lack of appropriately directed initial momentum (see Appendix C). As before, trajectories
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in regimes A, B, and C asymptotically align with the extensional separatrix axis at long times. In
contrast, the trajectory from regime D aligns along a different direction, governed by the presence
of two positive eigenvalues that direct the particle away from the separatrix.

Note that we have discussed extensively whether particle trajectories can cross the separatrix
lines in this section, and we will continue to explore this in subsequent sections. Understanding
whether particles cross separatrix lines near fixed points is crucial, as such crossings indicate leakage
from the initial vortex cell into neighboring ones, ultimately leading to enhanced particle dispersion
in the full TG vortex flow. In a more general context, the deposition and transport patterns governed
by separatrix crossing are fundamental to a range of applications, including aircraft icing, aerosol
transport, and microfluidic particle sorting. The influence of separatrix crossing plays a pivotal role
in determining particle or droplet deposition in fluid flows around immersed bodies. The possibility
of droplets crossing these separatrices and impacting the surface is central to predicting ice accretion
patterns on aircraft wings [25]. Crucially, identifying the critical parametric threshold—often
characterized by a critical Stokes number—delineates the regimes of particle capture and escape
near a bluff body and is highly sensitive to both the underlying flow topology and particle inertia
[37]. In this direction, expressions for the critical Stokes number required for separatrix crossing
have been established in earlier studies (see, e.g., Refs. [25,37–41]). Recall that our analysis in this
section focuses on particle dynamics in the vicinity of fixed points in the TG vortex flow, where we
approximate the flow as a simple stagnation flow through linearization. Consequently, we should
ideally consider small values of x and y. However, as shown in the insets of Figs. 5(a) and 5(b),
the use of large values (e.g., on the order of 102) extends beyond this intended context. These large
values are primarily included to illustrate the behavior of particles in an unbounded straining flow.
In the context of the TG vortex flow, by the time particles are predicted to cross the separatrix axes,
they may already be sufficiently far from the fixed point such that the nonlinearity of the TG vortex
flow can no longer be neglected. Consequently, the predictions may differ when accounting for this
nonlinearity. Furthermore, once a particle crosses a separatrix of the TG vortex flow, the nonlinear
flow in the adjacent vortex cell may carry it further away from the fixed point, with nonlinear effects
ultimately governing its subsequent dynamics—potentially guiding it toward another fixed point.

B. Particle dynamics near an edge fixed point of the TG vortex flow—Without history force

The effective flow field is merely a construct that represents the modified flow perceived
by an inertial particle. Despite this representation, inertial particles will behave differently from
streamlines in this effective flow field due to their finite inertia. To completely understand inertial
particle dynamics, one must linearize the full governing system of equations, such as Eqs. (7) or
(8), about the fixed points in the phase space. Once the EFPs exist, the local flow field in their
vicinity resembles that of a linear extensional flow, consistent with their kinematic saddle-type
nature, as demonstrated in Appendix A. Consequently, they possess extensional and compressional
axes, which would be appropriately switched for other EFPs. Therefore, without loss of generality,
as in Sec. III A, we can focus on one of the EFPs, let us say the one at (cos−1[−γ ], 0) in the basic
vortex cell. We linearize Eqs. (8a) and (8b) about this fixed point, yielding the following simplified
governing equations:

St

R
ẍ + ẋ − (γ − γ −1) x = 0, (15a)

St

R
ÿ + ẏ − (γ + γ −1) y = 0. (15b)

As expected for an inertial particle in any saddle-like flow field, the system reduces to two
independent linear harmonic oscillators. Consequently, the solution can be expressed as a linear
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combination of exponential functions, similar to Eqs. (13), albeit with different eigenvalues and
integration constants. The eigenvalues in this case are

λ±
1 = 1

2 St
[−R ±

√
R (R + 4 St (γ − γ −1))], (16a)

λ±
2 = 1

2 St
[−R ±

√
R (R + 4 St (γ + γ −1))]. (16b)

Similar to the case of corner fixed points in Sec. III A, here, the eigenvalues corresponding to the
EFPs also exhibit a transition in behavior in the parametric plane. The eigenvalues λ±

2 remain purely
real for all relevant parameter regimes, with λ+

2 always positive and λ−
2 always negative. However,

the eigenvalues λ±
1 can be purely real and negative for certain parameter regimes but transition into

complex conjugate pairs with a negative real part when the Stokes number exceeds a critical value.
This critical Stokes number can be determined by setting the discriminant of λ±

1 in Eq. (16a) to zero,
yielding R + 4 St (γ − γ −1) = 0. Solving for St, we obtain the critical Stokes number as

Stc2 = R
√

7 − 3 R

6 (1 − R)
. (17)

Consequently, the nature of inertial particle trajectories near the EFPs in phase space corresponds to
a 3:1 saddle when St < Stc2 , transitioning to a spiral-3:1 saddle when St > Stc2 . It is also important
to note that these EFPs exist only if St > Stcp . Similar to the case of CFPs, the emergence of spiral
characteristics in the phase-space trajectories shows enhanced particle leakage in the vicinity of
these EFPs when St > Stc2 .

In Fig. 6(a), the magenta dashed-dotted curve represents the critical line Stcp = R/{3 (1 − R)} in
the St-R parametric plane, marking the threshold above which EFPs emerge. This region coincides
with region D in Fig. 4(a), where the behavior of the CFPs transition from 3:1 saddle to 2:2
saddle. This region is further divided into two subregions, D1 and D2, by the cyan dashed curve
corresponding to Stc2 . As previously discussed, in region D1, the trajectories of inertial particles
near the EFPs in the 4D phase space exhibit a 3:1 saddle behavior, characterized by real eigenvalues
with signatures (+, −, −, −), as shown in Fig. 6(b). In region D2, as illustrated in Fig. 6(a),
the nature of the edge fixed points transitions to a spiral-3:1 saddle configuration, due to one
pair of complex conjugate eigenvalues λ±

1 , while the real parts of all eigenvalues retain the same
signature as in region D1. Figures 6(b) and 6(c) show the typical variation of both the real and
imaginary components of these eigenvalues with the Stokes number for R = 0.67. In fact, these
plots simultaneously represent all four eigenvalues associated with both a typical EFP and CFP. As
indicated, the EFPs emerge only for St > Stcp , whereas the CFPs persist throughout the entire range
of St.

Although our primary interest lies in the range R ∈ (2/3, 1), the parametric plot in Fig. 6(a) has
been extended to the broader range R ∈ (0, 1) to illustrate the generality of our results. The regions
A and C merge into a single domain for lighter particles (R < 2/3). As discussed earlier, the CFPs
display a 3:1 saddle behavior as long as the Stokes number stays below the threshold Stcp . When
the Stokes number exceeds Stcp , the dynamics of CFPs shift to a 2:2 saddle configuration with
eigenvalue signatures (+, −, +, −) while the EFPs exhibit 3:1 saddle behavior with eigenvalue
signatures (+, −, −, −) as shown in Figs. 6(a)–6(c). Figure 6(a) illustrates this behavior in the
St-R parameter space, where the grey color marks the critical boundaries corresponding to the
CFPs. For lighter particles as well, the EFPs continue to exist for Stokes numbers greater than
Stcp , showcasing 3:1 saddle characteristics in regime D1. As the Stokes number increases beyond
Stc2 , the characteristics of EFPs transition to a spiral 3:1 saddle configuration. Meanwhile, the CFPs
retain their 2:2 saddle behavior throughout this parameter regime.

At St = Stcp , an EFP emerges from a CFP, marking a transition in the CFP’s nature from a 3:1
saddle to a 2:2 saddle. This transition corresponds to a saddle-node bifurcation, as the product
of eigenvalues becomes zero [42]. At a different critical value St = Stc2 , the behavior of EFP
transitions from a 3:1 saddle to a spiral 3:1 saddle, while the CFP continues to exhibit 2:2 saddle

104304-13



KUMAR, NATH, PANCHAGNULA, AND ROY

ImR
e

FIG. 6. (a) Different regimes of particle dynamics near an edge fixed point of the TG vortex, without the
history force, are shown in the St-R plane. The magenta, dash-dotted curve corresponds to the critical line
Stcp , marking the threshold above which region D emerges, where edge fixed points exist. The cyan dashed
curve, corresponding to Stc2 , further divides this region into subregions D1 and D2. For comparison, the other
critical curves—associated with corner fixed points—that separate regions A, B, and C from D are also shown
in grey in the background. (b) and (c) show the evolution of the real and imaginary parts, respectively, of the
eigenvalues λ1± and λ±

2 associated with the edge fixed points, as functions of St at R = 0.67. For comparison,
the eigenvalues λ±

e and λ±
c associated with corner fixed points are also included.

behavior. Since this change involves only a modification in the dynamical nature of the EFP and not
the appearance or disappearance of fixed points, it is not classified as a bifurcation. These transitions
are best illustrated in Fig. 7, where dots and stars denote the eigenvalues of CFPs and EFPs, respec-
tively. In Fig. 7(a), for St < Stcp , only CFPs are present with eigenvalue signature (+, −, −, −),
indicating 3:1 saddle behavior. In Fig. 7(b), just beyond Stcp , EFPs emerge with eigenvalue signature
(−, −, +, −), while the CFP signature changes to (+, −, +, −), confirming the occurrence of
a saddle-node bifurcation. As St approaches Stc2 , the eigenvalues associated with the CFP remain
qualitatively unchanged, while the two real eigenvalues of the EFP coalesce and transition into a
pair of complex conjugates, leading to their spiral 3:1 saddle behavior, as shown in Figs. 7(c) and
7(d).

C. Particle dynamics near a corner fixed point of the TG vortex flow—With history force

Here, as an extension of the previous subsection Sec. III A, we consider particle motion near a
typical CFP of the TG vortex flow while accounting for the history force. As before, the governing
Eqs. (5) can be simplified in the vicinity of the CFP. Without loss of generality, we focus on the

104304-14



TRAPPING AND TRANSPORT OF INERTIAL PARTICLES …

Im

Re Re Re Re

FIG. 7. Evolution of eigenvalues associated with corner and edge fixed points in the complex plane (real
versus imaginary plane) as the Stokes number varies across critical values, at fixed R = 0.67: (a) St < Stcp , (b)
St > Stcp , (c) St < Stc2 , and (d) St > Stc2 . Blue dots and orange stars mark the eigenvalues associated with the
corner fixed points and the edge fixed points, respectively.

fixed point at the origin of the TG vortex flow, and retaining the history force, yielding the linear
version of the governing equations as

ẍ + R

St
ẋ − x

(
3 (1 − R) + R

St

)
= − κ√

π

[
ẋ0 − x0√

t
+

∫ t

0

1√
t − t ′

(
d2x

dt ′2 − dx

dt ′

)
dt ′

]
, (18a)

ÿ + R

St
ẏ − y

(
3 (1 − R) − R

St

)
= − κ√

π

[
ẏ0 + y0√

t
+

∫ t

0

1√
t − t ′

(
d2y

dt ′2 + dy

dt ′

)
dt ′

]
. (18b)

Recall that x0, y0, ẋ0, and ẏ0 denote the initial positions and velocities of the particles, respectively.
These equations are integrodifferential in nature and do not represent a simple dynamical system,
like Eqs. (12). Although the left-hand sides of both systems remain identical, the right-hand sides
differ due to forcing terms associated with the memory effect of the particle’s dynamical history.
Here, this memory term appears as an integral. In the infinitely heavy particle limit (R → 1), both
systems exhibit similar dynamical behavior since the coefficient of the history term, κ , defined in
Eq. (6), approaches zero. Despite these complexities, the system in Eqs. (18) remains linear, and the
dynamics in the x and y directions remain decoupled, allowing analytical solutions through methods
such as the classical Laplace transform. The solutions to Eqs. (18) in the Laplace domain are
given by

x̂ = 1∏4
i=1(

√
s − μxi )

(
s x0 + κ

√
s x0 + R

St
x0 + ẋ0

)
, (19a)

ŷ = 1∏4
i=1(

√
s − μyi )

(
s y0 + κ

√
s y0 + R

St
y0 + ẏ0

)
. (19b)

Here, x̂ and ŷ are the Laplace transforms of the variables x and y, respectively, while μxi and μyi

are the roots of the quartic polynomials P1(ξ ) = ξ 4 + κ ξ 3 + (R/St) ξ 2 − κ ξ − [R/St + 3(1 − R)]
and P2(ξ ) = ξ 4 + κ ξ 3 + (R/St) ξ 2 + κ ξ − [3(1 − R) − R/St], respectively. The roots μxi and μyi

are independent of initial conditions and can be uniquely determined for given values of St and R.
Applying partial fraction decomposition and performing the inverse Laplace transform on Eqs. (19),
we obtain the general solutions for the particle trajectories x and y as

x(t ) = �4
i=1Axiμxi exp

(
μ2

xi
t
)
erfc(−μxi

√
t ), (20a)

y(t ) = �4
i=1Ayiμyi exp

(
μ2

yi
t
)
erfc(−μyi

√
t ). (20b)

104304-15



KUMAR, NATH, PANCHAGNULA, AND ROY

FIG. 8. (a) Typical particle trajectories near a corner fixed point (at the origin) under the influence of the
history force. Particles are initialized at location (0.1, 1) with zero initial slip velocity for different parameter
combinations: region A with R = 0.8, St = 0.2; region B with R = 0.85, St = 0.5; region C with R = 0.67,
St = 0.45; and region D with R = 0.7, St = 1.0. The zoomed-in inset shows particle trajectories at t � 1 for
regions A and C. (b) Colored contour plot of first crossing time tcr associated with a particle initialized at
(0.1, 1) with zero slip velocity, is shown in the St–R parameter space, accounting for the history force. The
inset plot of panel (b) compares the variations of tcr with St − Stc under scenarios both with and without the
influence of the history force. The resultant curve obtained in the absence of history force exhibits a power law
scaling behavior characterized by the singular relationship (St − Stc )−1/2.

The coefficients Axi and Ayi depend on the initial conditions, the roots μxi and μyi , as well as the
parameters St and R. They are given by

Axi = x0
(
μ2

xi
+ κμxi

) + R
St x0 + ẋ0∏ j=4

j 
=i, j=1

(
μxi − μx j

) ; �4
i=1Axi = 0, (21a)

Ayi = y0
(
μ2

yi
+ κμyi

) + R
St y0 + ẏ0∏ j=4

j 
=i, j=1

(
μyi − μy j

) ; �4
i=1Ayi = 0. (21b)

The complementary error function (erfc) in the general solution, along with the exponential terms,
captures the influence of the history force. Analyzing the roots of the characteristic polynomials
P1(ξ ) and P2(ξ ) provides insights into particle trajectories, though this can be complex. For long
times (t � 1), particle trajectories generally tend toward the extensional axis (here, y = 0) at a rate
of t−1/2, unless the real parts of the roots μyi are significantly large and positive. This implies that,
compared to cases without history effects, particles approach the extensional separatrix line (y = 0)
at a slower rate. However, whether the trajectories cross this line remains uncertain and requires
further analysis. Determining this would involve solving Eq. (20b) for the time at which y(t ) = 0,
but this is analytically challenging and is not pursued here. Instead, a numerical investigation
of this aspect is presented later in this section. To examine the effect of the history force on
particle trajectories, we present representative trajectories for different parameter combinations, all
initialized at location (x, y) = (0.1, 1) near the stagnation zone with zero initial slip velocity, as
shown in Fig. 8(a). The parameter combinations used here are the same as in Fig. 5, but only the zero
initial slip velocity case is considered. The selected trajectories correspond to the typical parametric
conditions from distinct regions A, B, C, and D of the St-R parameter space, as discussed in the
previous section. Particles originating from all distinct dynamical regions A, B, C, and D cross the
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extensional separatrix axis (y = 0 line) in finite time and eventually align parallel to this axis at
long times, as illustrated in Fig. 8(a). Notably, particles from region D, which failed to align in the
absence of history force [see Fig. 5(a)], now exhibit this aligning behavior when the history force
is included. Here, the history force counteracts the misalignment introduced by the added mass and
pressure gradient effects. Additionally, an important difference here is observed in region A: with
the history force, particles cross the extensional separatrix line, a phenomenon not seen when the
history force is absent.

As discussed in the previous subsections, particles to cross the compressional separatrix (x = 0
line) remain challenging and typically require them to possess specific initial momentum. In con-
trast, the oscillatory nature of particle trajectories more easily enables them to cross the extensional
separatrix (y = 0 line). To investigate whether particles do so under the influence of the history
force, we employ a numerical root-finding method to solve for y(t ) = 0, as finding an explicit
analytical solution for the crossing time from Eq. (20b) is nontrivial. Using the analytical expression
in Eq. (20b), we track the trajectory of a particle initialized at y0 = 1 with zero slip velocity, and
numerically find the time at which the trajectory crosses the y = 0 line. To accomplish this, we detect
a change in the sign of y(t ) by employing Brent’s method implemented via the "brentq" function in
Python’s SciPy library. The first occurrence of such a crossing is recorded and defined as the "first
crossing time," tcr. This process is repeated for a range of parameter combinations, and the results
are presented as a colored contour plot in the St-R plane in Fig. 8(b). The results show that for
all parameter combinations considered, particles with history force eventually cross the extensional
axis in a finite time, indicating that the history effect removes the critical threshold required for
particles to cross separatrix lines, in agreement with earlier findings by Druzhinin and Ostrovsky
[30]. However, tcr varies with St and R, with shorter crossing times in some regions (indicated by
blue) and longer crossing times in others (yellow). Specifically, particles with low St values and R
close to 0.67 take significantly longer to cross the separatrix compared to those with high St values
and R near 1, as evident from Fig. 8(b). Additionally, as R → 1, this first crossing time is large
for St < 1/4 but reduces for St > 1/4, consistent with results in the absence of the history force.
Notably, unlike the case without history effects, no subregions within the parameter space indicate
permanent trapping of particles near the fixed point when the history force is considered.

Near a stagnation region, as we have seen in this section, particles that cross the separatrices may
eventually align along the extensional axis over long timescales. However, in the full TG vortex
flow—which is spatially nonlinear—such particles are typically advected away from the stagnation
region due to the influence of neighboring vortical structures and flow nonlinearities. Therefore,
the first crossing time (tcr) serves as a useful measure of how rapidly particles escape from the
entrainment zone enclosed by the flow separatrices.

As the Stokes number approaches the critical value Stc, defined in Eq. (14), at a given R, the
first crossing time diverges in the absence of history force. Conversely, the curve representing
the critical crossing time (tcr) manifests a smooth variation in the presence of the history force. The
inset in Fig. 8(b) illustrates a comparison of the tcr curve as it varies with the difference (St − Stc),
both with and without the consideration of history force. It is observed that the divergence of tcr in
the absence of history force near the critical Stokes number Stc adheres to a −1/2 scaling law with
respect to (St − Stc), assuming that the particles are initialized with zero slip velocity.

IV. PARTICLE DYNAMICS IN THE FULL NONLINEAR TG VORTEX FLOW—WITHOUT
HISTORY FORCE

In Sec. III, we have analyzed the dynamics of inertial particles near the fixed points of the TG
vortex flow and examined the critical criteria associated with particle leakage across flow sepa-
ratrices. The governing dynamical equations became linear since the flow field was locally linear
near these fixed points, making the analysis analytically tractable and relatively straightforward.
We have even explained the longtime dynamics of particles in these linearized flow structures.
However, once particles leak across the flow separatrices, they traverse the nonlinear TG vortex flow
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structures before encountering another fixed point/stagnation region. Hence, a comprehensive study
of the full nonlinear system is necessary to understand the complete particle dynamics in the TG
vortex flow. Due to the nonlinear nature of the governing equations, an analytical approach becomes
challenging, necessitating numerical methods. In this section, we investigate the dynamics of inertial
particles in the TG vortex flow without history force effects, while considering the pressure gradient
force and added mass effects, by numerically solving the governing equations [Eqs. (7)]. As these
equations form a set of coupled, nonlinear ordinary differential equations, we employ a fourth-order
Runge–Kutta scheme for numerical integration.

To utilize the periodic nature of the flow field, we seed 104 particles uniformly within the
basic vortex cell (0, π ) × (0, π ) and track their trajectories by integrating the governing equa-
tions [Eqs. (7a) and (7b)] from t = 0 to t = 104 nondimensional time units. This study specifically
focuses on the dynamics of heavier particles rather than lighter ones. Consequently, the density
parameter R is varied within the range 2/3 to 1, while the Stokes number is restricted to values
less than or equal to 1 for simplicity. To characterize the dispersion behavior of the particles, we
compute the mean (averaged over all particle trajectories) square displacement (MSD), defined as

MSD = 〈 ‖x(t ) − x0‖2 〉, (22)

Here, 〈 · 〉 denotes the average over all particle trajectories x(t ), each originating from an initial
position x(t = 0) = x0, while ‖ · ‖ represents the 2-norm. The longtime scaling behavior of MSD
with time, given by MSD ∼ t n, characterizes the mean particle dispersion. If particle dispersion is
dominated by diffusion, then the exponent is n = 1; if ballistic motion dominates, then n = 2; and
if particles exhibit limited dispersion due to trapping, then n = 0. This MSD-based classification
also provides a way to distinguish between regular (nonchaotic) and chaotic particle dynamics.
Following earlier studies by Wang et al. [21] and Nath et al. [23,24], we can consider both trapped
(n = 0) and ballistic (n = 2) behaviors to be indicative of regular motion, as the corresponding
trajectories are typically structured and predictable, like limit cycles or periodic open trajectories. In
contrast, the diffusive regime (n = 1)—arising from irregular, random-walk-like transitions across
separatrices and vortex cells—is in general associated with chaotic dynamics. The study by Wang
et al. [21] examined the dynamics of inertial particles in the TG vortex flow, excluding history
effects, and identified regions of regular and chaotic motion in the St-R parameter space. However,
in their analysis, they employed an older form of the added mass term, similar to that in the original
Maxey-Riley equation [6], which effectively introduces an additional term, (1 − R) (v − u) · ∇u to
the equations of motion in Eq. (1), thereby altering the form of Eqs. (7). The authors considered
particles with St � 12 and R in the range (0.8,0.975), reporting that particles with higher St and
lower R exhibit diffusive dispersion at long times due to chaotic (random walk-like) trajectories
(n ≈ 1). Conversely, particles in other regimes display regular motion, leading to either open (n ≈ 2)
or closed trajectories (n ≈ 0), which correspond to ballistic or trapped dispersion, respectively. To
assess the influence of the correct form of the added mass term on particle dynamics and dispersion,
we first reproduce the results of Wang et al. [21] using our corrected governing equations [Eqs. (7)]
for the TG vortex flow. This allows us to examine the impact of the proper added mass formulation
on longtime particle dispersion. For direct comparison, we also transform their results to align with
the parameter definitions of R and St used in this study.

Wang et al. [21] numerically obtained the boundary separating regular and chaotic regimes
in the parametric plot. We have digitized this boundary from their Fig. 3 and included it as a
blue continuous curve here in Fig. 9. Additionally, Fig. 9 presents a color-coded representation
distinguishing regions of regular and chaotic particle dynamics based on the corrected added mass
term from our study. To achieve this, we track the dynamics of 104 particles that we seed uniformly
within the basic vortex cell: (0, π ) × (0, π ). We initialize each particle with zero slip velocity.
The simulations are performed over a 26 × 54 discretized grid in the R-St parameter space, where
R ranges from 0.67 to 1 and St ranges from 1 to 12. We compute the MSD for each case and
extract the corresponding average scaling exponent n. The resulting contour plot of n in Fig. 9
shows that the boundary separating regular and chaotic regions now differs significantly from the

104304-18



TRAPPING AND TRANSPORT OF INERTIAL PARTICLES …

FIG. 9. The regions for chaotic (diffusive) and regular (ballistic) particle motion in the St-R parameter
space are demarcated by the blue curve, following the study of Wang et al. [21]. Region (I) corresponds to
chaotic particle motion, while Region (II) corresponds to regular particle motion. However, as evident from the
contour plot, the boundary identified in their study (blue curve) differs from our results.

blue curve reported by Wang et al. [21]. Furthermore, this new boundary appears highly irregular.
The figure also suggests that the earlier study by Wang et al. [21] underestimated the extent of
the chaotic region for lower R values (∼ 2/3), as we observe chaotic motion even for lower St
values (e.g., St < 2) in this regime. In the limit R → 1, as expected the results obtained using
the old and corrected forms of the added mass term are almost identical, as the additional term
(1 − R) (v − u) · ∇u from the old formulation becomes negligible, and even the added mass effect
itself diminishes.

In Fig. 10(a), we present a contour plot of n in the St-R parameter space, similar to Fig. 9, but
extended to focus on the St < 1 range, where more interesting particle dynamics are observed. We
identify three distinct regimes in the parameter space, each corresponding to different longtime
particle behaviors based on the scaling of MSD with time. The region I in this parametric plot
is an extension of the region I in Fig. 9, representing a diffusive regime where particles exhibit
chaotic, random-walk-like dispersion (n ≈ 1). This regime is less pronounced in Fig. 10(a), as it is
mostly confined to R � 0.75 and St � 0.7, but it becomes more dominant over a broader St range
in Fig. 9. Similarly, region II in Fig. 10(a) extends region II from Fig. 9, where particle motion is
dominantly ballistic (n ≈ 2). We numerically identify the boundary separating region I (diffusive
motion) from region II (ballistic motion), which closely follows the critical Stokes number curve
Stcp described in Sec. III. This agreement highlights a direct connection between the onset of EFPs
and the transition in longtime dispersion behavior. Interestingly, such connection between local flow
structures and global transport behavior is well-studied in the context of Lorentz gas [26], and in
flows containing periodic arrays of obstacles or stagnation points [43–45], where the interaction of
particles with each individual structure—affecting their escape time—can accumulate over repeated
encounters, ultimately leading to anomalous global transport behavior. Below the Stcp curve, EFPs
are absent, and particles exhibit regular ballistic motion. Above it, the appearance of EFPs coincides
with the onset of chaotic trajectories and diffusive dispersion—a link we suspect to be significant,
though not yet fully understood. This transition illustrates how linear stability analysis near fixed
points, though inherently local, can capture global dispersion regimes in nonlinear flows. However,
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FIG. 10. (a) Regions of diffusive (I), ballistic (II), and trapped (IIIa and IIIb) particle motion are demarcated
in the St-R parametric plot, using the colored contour plot of n. The solid black curve denotes the critical Stokes
number St+c , above which particle trajectories exhibit oscillatory behavior. The yellow dash-dotted line repre-
sents Stcq , the threshold below which these oscillations decay eventually. The white dotted curve corresponds
to Stcp , marking the onset of EFPs and aligning well with the numerically observed boundary between ballistic
and diffusive regimes. (b) MSD versus time plot corresponding to typical parameter combinations from regions
I (R = 0.67, 0.9), II (R = 0.7, 0.95), IIIa (R = 0.99, 0.7), and IIIb (R = 0.7, 0.1).

unlike in Fig. 9, Fig. 10(a) identifies an additional region, denoted as region III, where particle
dispersion is limited, resulting in n ≈ 0. This region signifies particles that either remain confined
by flow separatrices and stagnation regions or are trapped in periodic limit cycle trajectories, as
indicated in Ref. [24]. The curve corresponds to St+c divides region III into two subregions. The
lower part, the region IIIb, is the same as region A in Fig. 4(a), where particles remain trapped within
their initial vortex cell, constrained by separatrices and stagnation regions. Conversely, in the upper
part—region IIIa—particles may escape from their initial vortex cell, and subsequently become
trapped by the separatrices or stagnation regions of neighboring vortex cells. Particles in region
IIIa escape their initial vortex cell through oscillatory motion, but the oscillation amplitude—thus
their kinetic energy—diminishes continuously if their Stokes number is below a critical value Stcq ,
given by

Stcq = 3 R

2 (1 + √
10 − 9 R)

. (23)

The derivation of Eq. (23) is detailed in Appendix D. The resulting critical threshold, Stcq , shown
as a yellow dash-dotted curve in Fig. 10(a), aligns well with the numerically observed boundary
separating region IIIa (trapping in a distant vortex cells) from region II (unbounded trajectories).
For St > Stcq , the increasing oscillation amplitudes eventually lead to unbounded particle motion
at long times. Alternatively, particles near the boundary curve may evolve into periodic limit
cycles, confining them to specific bounded, closed curves. The discrepancy between the numerically
observed and analytically derived boundary separating regions II and IIIa may be attributed to the
approximations made in Appendix D, particularly the omission of these limit-cycle trajectories from
the analysis. In either case—trapped in a limit cycle or trapped by CFPs—the MSD of particles in
region IIIa eventually saturates at long times.

Note that Fig. 9 revisits the analysis of Wang et al. [21], focusing on how the correct form
of the added mass term affects the boundary between regular and chaotic particle motion in the
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St-R space. In contrast, Fig. 10(a) extends this by exploring a broader range of particle behaviors,
especially when St < 1, delineating regions of trapped, ballistic, and diffusive motion. Thus, while
both figures examine transitions between different dynamical regimes, their scopes and aims differ.
Figure 10(b) presents the MSD for representative St and R values corresponding to these different
regimes. The MSD for region I scales as t , characteristic of diffusive motion, while in region II, it
scales as t2, indicating ballistic transport. In contrast, MSD in regions IIIa and IIIb saturates, though
the saturation value is higher in region IIIa, suggesting that particles travel farther from the initial
vortex cell before becoming trapped.

Our findings differ from those of Wang et al. [21] in two key ways. They reported that in
TG vortex flow, diffusion of particles due to their chaotic motion happens only for St > 2 with
R ∈ (0.8, 1), whereas we find diffusion starting at St > 0.7 even when R ≈ 0.67. Also, while they
observed a relatively smooth boundary between regular and chaotic regimes in the parametric space,
we find these boundaries to be highly irregular. These differences may be due to their use of a
different form of added mass term, which could have affected the results. Another reason could be
the limited numerical support and the smaller parameter space they explored. Our study also focuses
only on heavier particles and explores the parameter range R ∈ (2/3, 1). It is possible that similar
interesting particle dynamics occur in the regime R ∈ (0, 2/3), which we have not investigated
in this study. We also find that the boundary between region II (ballistic) and region III (trapped)
approaches 0.77 as R → 1, consistent with recent findings by Nath et al. [24]. Beyond this threshold,
particle trajectories transition from a bounded state to an unbounded one for infinitely heavy inertial
particles.

When analyzing individual particle trajectories for a given R and St, particularly in region
II, we found that some particles initialized within the basic vortex cell exhibit diffusive motion
at long times, even though the MSD—the average behavior—identifies this regime as ballistic.
This pattern also appears in other regions, where MSD predicts a dominant behavior, but not
all particles follow the same longtime dynamics. Instead, some particles exhibit other behaviors,
depending on their initial positions and velocities. For instance, even if MSD suggests that particle
dispersion should be ballistic for a given St and R in region II, not all particles in the basic vortex
cell with these parameter values will necessarily exhibit ballistic motion. When ballistic particles
are present, the MSD includes averaging over them, suppressing the contributions of particles
following subdominant dynamics (diffusive or trapped), making them less apparent. This suggests
that MSD only captures the dominant mean behavior, whereas individual particles may follow
different dynamics/dispersion. Note that the scaling of MSD with time tends to be dominated
by the fastest-moving particles, which may, however, represent only a small fraction of the total
population—as will be evident later in Fig. 11. Such behavior indicates the nonergodic nature of
the system, similar to the observation reported by Nath et al. [24] for infinitely heavy inertial
particles in a TG vortex flow. Our study confirms their findings and extends them to moderately
heavy particles. In an ergodic system, a single particle’s dynamics and its average over time would
match the system’s mean behavior over space, allowing mean dynamical studies to be sufficient.
However, the absence of ergodicity here means that individual particle dynamics cannot be fully
described by MSD alone. Instead, single-particle squared displacement (SD) must be examined to
determine how it scales with time at long times.

Following the classification approach of Nath et al. [24], for a given St and R, we categorize
particles—uniformly initialized at various locations within the basic vortex cell, with zero initial slip
velocity—into trapped, diffusive, and ballistic groups based on their long time dispersion behavior,
particularly by analyzing the scaling relation SD ∼ t n as t � 1. The fractions of each category are
shown as contour plots in the St-R parameter space in Figs. 11(a)–11(c). Figure 11(a) indicates
that diffusive particles are primarily dominant in region I, with some isolated patches elsewhere.
Figure 11(b) shows that ballistic particles dominate region II, though its lower boundary is highly
irregular. Figure 11(c) reveals that most trapped particles belong to the region III, though some also
appear in regions I and II. Notably, a narrow strip of trapped particles exists in region II, particularly
near its lower boundary.
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FIG. 11. Fraction of particles exhibiting different types of dynamics: (a) diffusive, (b) ballistic, and
(c) trapped, shown as colored contour plots in the St-R parameter space. A total of 104 particles are uniformly
initialized within the basic vortex cell with zero initial slip velocity, for every St-R combination. Their
single-particle SD is evaluated, and its longtime scaling is used to classify the particle behavior and determine
the corresponding fractions.

V. EFFECT OF THE HISTORY FORCE ON PARTICLE DYNAMICS
IN THE FULLY NONLINEAR TG VORTEX FLOW

In Secs. III A and III B we examined the dynamics of inertial particles near fixed points in the
TG vortex flow through linearization. In contrast, the full TG vortex flow without history effects
was analyzed in Sec. IV. The influence of the history force on particles only near CFPs in the
TG vortex flow (or a general stagnation flow) was considered in Sec. III C. In this section, we
conduct a detailed investigation of the effect of the history force on inertial particle dynamics in
the fully nonlinear TG vortex flow. Specifically, we explore how the particle dynamics observed
in Sec. IV are modified when the history force term is included. To achieve this, we solve the
full system of equations [Eqs. (5)]. Since an analytical approach as in Sec. III C is not feasible
because of the nonlinearity, we employ numerical methods for this analysis. Including the history
force introduces several challenges, even in the numerical integration of the full Maxey–Riley
equation. These challenges stem from the singularity of the history kernel 1/

√
t − t ′, at the upper

limit of integration (t ′ = t), and the substantial memory demands due to the history dependence of
the integration process. Over the past few decades, researchers have developed various numerical
algorithms to address these issues when integrating the Maxey–Riley equation with the history force
[5,9,10,33,46–49]. In this section, we numerically integrate our governing equations [Eqs. (5)] using
the algorithm proposed in Ref. [49]. In Sec. IV, we identified regions of different particle dynamics
in the St-R parameter space in the absence of the history force, as illustrated in Fig. 10(a). Here, we
analyze the influence of the history force on particle dynamics in these regions. Figure 12 presents a
comparative study, where the central subfigure outlines the different regimes identified in Fig. 10(a),
while Figs. 12(a)–12(f) depict single-particle trajectories for representative values of St and R from
these regions. Each case includes trajectories both with and without the history force for direct
comparison. In all cases, the particles are initialized at identical positions (0.8, 0.8) with the same
initial velocities, which is zero slip velocity. Figures 12(a)–12(c) correspond to particles that are
slightly heavier than the fluid, whereas Figs. 12(d)–12(f) represent cases where the particles are
significantly heavier.

For R = 0.7 and St = 0.2, as predicted in Sec. III A, the particle is unable to cross the separatrices
and confined within the initial vortex cell when the history force is absent. However, upon including
the history force, the particle is no longer confined, and is able to cross the separatrices, migrating
into neighboring vortex cells, as shown in Fig. 12(c). This behavior is consistent with our findings
in Sec. III C, where the inclusion of the history force was shown to eliminate the critical criterion
for particle leakage. For R = 0.7 and St = 0.5, both with and without the history force, the
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FIG. 12. Typical particle trajectories in the presence of the history force (blue, continuous) are compared
with those in the absence of history force (magenta, dashed), for different combinations of St and R. For all
the cases, the particles are initialized at the same position (0.8, 0.8) with zero slip initial velocity in the TG
vortex flow. The subfigure at the center marks all parametric combinations considered in the St-R plane, which
also highlights dynamical regime boundaries (in the absence of the history force) identified in Fig. 10. Panels
(a)–(f) compare particle trajectories with and without the history force for the typical parameter combinations
in these regimes: (a) R = 0.7, St = 0.9, (b) R = 0.7, St = 0.5, (c) R = 0.7, St = 0.2, (d) R = 0.95, St = 0.98,
(e) R = 0.9, St = 0.4, and (f) R = 0.9, St = 0.2. Arrows at the trajectory endpoints indicate continuing motion,
while square markers denote particles that have been stopped at those locations.

particle escapes the vortex cell and exhibits ballistic motion at long times, as seen in Fig. 12(b).
However, despite identical initial conditions, the two trajectories diverge: the trajectory without the
history force follows an average direction of 45◦, whereas the trajectory with the history force is
directed toward −45◦, with the horizontal. This deviation arises due to the history force, which we
hypothesize gets amplified when the particle traverses stagnation regions. For R = 0.7 and St = 0.9,
particles without the history force escape the vortex cell and follow chaotic, random-walk-like
trajectories, whereas the inclusion of the history force results in regular ballistic motion, as shown
in Fig. 12(a).
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FIG. 13. MSD versus time plot for a few representative combinations of St and R, with history effects
included. All particles are initially distributed uniformly within the basic vortex cell with zero initial slip
velocity.

Next, we consider the case where particles are significantly heavier than the fluid (R � 0.9).
When R = 0.9 and St = 0.2, a particle without the history force remains trapped in the vortex cell.
However, in the presence of the history force, it escapes, as seen in Fig. 12(f). This behavior is
similar to that in Fig. 12(c), even though the influence of the history force is minimal here in the
limit of infinitely heavy particles (R ≈ 1). Also, the spiral part of the trajectory is wider here due to
the increased density ratio, even though the Stokes number—and hence the particle inertia—remains
the same. For R = 0.9 and St = 0.4, a particle without the history force exits its initial vortex cell but
becomes trapped in another vortex cell. In contrast, when the history force is included, the particle
continues to move without confinement across many vortex cells, as illustrated in Fig. 12(e). Finally,
for R = 0.95 and St = 0.98, both cases (with and without history) exhibit regular ballistic motion,
with trajectories traversing multiple vortex cells, as shown in Fig. 12(d). These ballistic trajectories
have the same mean angles from the horizontal, while trajectories with a history force approach the
fixed points more closely than those without it.

We report that the inclusion of the history force significantly alters particle dynamics. In this case,
particle trapping by flow separatrices no longer occurs, as predicted in Sec. III C. Additionally, all
particles exhibit ballistic motion in the longtime limit, irrespective of St, R, or their initial locations.
This behavior has been verified for two cases of initial particle velocity: (i) zero initial velocity, and
(ii) zero initial slip velocity. For further clarification, Fig. 13 presents the MSD computed over 104

particle trajectories, initially distributed within the basic vortex cell with zero initial slip velocity, for
a few representative cases of St and R as a function of time. All MSD curves asymptotically follow
a t2 scaling at long times, confirming the presence of longtime ballistic motion. For verification,
we also generated a contour plot of the exponent n, as in Fig. 10(a), but incorporating history
effects. However, the plot is not included here, as it displayed a uniform color, indicating that the
numerically computed n values were close to 2 for all cases, with slight deviations. We attribute
these deviations to the finite simulation time, which was restricted to t = 104. If the simulations
were extended to much larger times, then we expect that n would asymptotically approach 2. From
Fig. 13, it can also be seen that while the MSD asymptotically approaches a ballistic regime at long
times, some parametric cases exhibit transient trapped behavior at intermediate times (e.g., see the
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blue curve). This shows a residual influence of the dynamics observed in the absence of the history
force.

It is interesting to observe that the inclusion of history force into the dynamics eliminates the
presence of trapped and diffusive dynamical states, resulting in a transition to a ballistic state at
longtime across all parametric conditions examined in this study. To comprehend this behavior,
we analyze particle motion in the limit of St � R, expressing particle velocity as the sum of
fluid velocity and its higher-order derivatives up to O(St3/2), thereby accounting for the effects of
history force as proposed by Ferry and Balachandar [15]. We identify the history along the particle
trajectory by integrating the particle velocity at the leading orders initialized near the separatrix. As
particles approach the stagnation point, the history force directs out of the vortex cell, facilitating
particle intercell jumping, which is consistent with the earlier findings of Druzhinin and Ostrovsky
[30]. As the particle reaches the next stagnation point following the initial jump, the components
of its history reverse their signs while still maintaining their outward direction from the cell. This
alternating sign change in the history force leads the particle to exhibit a zigzag motion, resulting
in ballistic movement over a long time. For further details, readers may refer to Appendix E.
While a complete understanding remains open, our results suggest that the history force suppresses
particle trapping near separatrices (as discussed in Sec. III C), thereby allowing particles to leak
more easily across successive vortex cells. This leads to open trajectories and the disappearance
of limit cycles or confined motion. The system is inherently sensitive, so even small perturbations
introduced by the history term can result in large changes in trajectories, particularly near stagnation
zones, as illustrated in Fig. 12. However, the diffusive trajectories—typically associated with chaotic
intercell transitions—being completely absent is less straightforward to interpret and may point
to an unexpectedly coherent transport mechanism driven by the history term. A more thorough
investigation into this transition remains an intriguing direction for future work.

This study is dedicated to highlighting the effects of the history force on particle dynamics and
how they differ from cases where only inertial forces (pressure gradient and added mass effects) are
considered along with Stokes drag. However, the earlier sections mainly focus on particle dynamics
in the absence of the history force, as these cases are also relevant in certain physical scenarios and
cannot simply be dismissed as oversimplified approximations. In our analysis, we have employed
a specific form of the history force corresponding to the Boussinesq-Basset history kernel, which
decays as O(t−1/2) with time. Our findings indicate that this force significantly influences particle
dynamics. In particular, it allows particles to cross flow separatrices even at low St, R, in finite time.
Furthermore, at asymptotically long times, the presence of this history force results in ballistic
transport for all particles, irrespective of values of St, R, or initial conditions. However, these
modifications due to the history force must be interpreted with caution. The Boussinesq-Basset
kernel is valid in the limit of Re = 0. For any finite but small Reynolds number (Re � 1), more
appropriate history kernels exist [50–52], which exhibit a much faster decay, such as O(t−2). If
such kernels were used, then the longtime ballistic behavior observed in this section would not be
an accurate representation of the true dynamics. Instead, at sufficiently long times, the influence of
the history force would diminish relative to other inertial forces, making the dynamical behaviors
described in the previous sections (Secs. III A, III B, and IV, where the history force was neglected
purposely) more appropriate. Nevertheless, for short times, the history force remains relevant and
should not be excluded from consideration.

VI. SUMMARY AND CONCLUSIONS

We investigated the dynamics of inertial particles that are heavier than the fluid in a 2D steady TG
vortex flow, characterized by an infinite array of vortices. Tracers remain confined within the vortical
cells, following the closed streamlines of the flow. Conversely, finitely heavier inertial particles with
St 
= 0 and R > 2/3 exhibit the potential to cross streamlines and traverse through these vortical
structures, depending on the specific values of St and R. Previous studies [24,25,34] have reported
that under the infinitely heavy particle limit, where R = 1, inertial particles remain trapped within
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a vortex cell if the Stokes number satisfies the condition St < Stc = 1/4, assuming that the impacts
of inertial and history forces are negligible.

We derived a general expression for the critical Stokes number Stc by employing linear stability
analysis to examine particle dynamics in the vicinity of corner fixed points (stagnation points) of
TG vortex flow. We categorized the distinct regions of dynamical behavior on the St-R parameter
plane based on the characteristics of the eigenvalues. In region A, situated below the critical Stokes
number line St+c , particles exhibited nonoscillatory trajectories as the fixed points showed 3:1 saddle
features. As a result, the particles are restricted from moving across the flow separatrices, leading
to their confinement. Notably, this trapping dynamics remained consistent irrespective of whether
the particles were initialized with zero velocity or zero slip. In region B, bounded by the curves St+c
and St−c , the nature of the saddle fixed points transition to a spiral-3:1 saddle configuration. Here,
the oscillatory nature of particle trajectories allows particles to move across the flow separatrices
and lead them to neighboring vortex cells. Region C, delineated by St−c and Stcp , shared similarities
in fixed point features with region A. Finally, the region D, located beyond Stcp , was characterized
by particle trajectories that will not align with separatrix axes at the long time limit. Here, the
fixed point has a 2:2 saddle nature in the phase space. Even though the particle trajectories do not
have an oscillatory nature in regions A, C, and D, appropriate initial velocity/momentum can make
them cross the flow separatrices as described in Appendix C. At large values of Stokes number, we
presented an analysis regarding the emergence of additional fixed points in the flow field, attributing
these to the influence of inertial forces (added mass and pressure gradient forces). We linearized the
flow field in proximity to these edge fixed points, and also analyzed the corresponding dynamics
of the particles, as well as the trajectory equations. Notably, these newly identified fixed points
only exist in the region D of the parametric space. We also examined the eigenvalue characteristics
to delineate region D into two subregions: D1, where these edge fixed points exhibited 3:1 saddle
behavior alongside already existing corner fixed points which are 2:2 saddles; and D2, where the
behavior of the edge fixed points transitioned to a spiral-3:1 saddle nature, while the corner fixed
points remained as 2:2 saddles.

In the absence of a history force, the critical time tcr required for the particles to first cross
the separatrix axis the flow field exhibits a singular scaling (St − Stc)−1/2 as the Stokes number
approached the critical value Stc for a given density parameter R. Conversely, in the presence of
a history force, the tcr curve demonstrated a smooth variation with St, indicating that particles are
able to cross the separatrix lines, irrespective of the values of St and R, provided they are initialized
with zero slip velocity. For zero initial velocity of the particles, we also expect qualitatively the
same behavior to exist. We have also found that particles with lower St and R values required a
longer duration to cross the extensional axis, whereas particles with higher St and R values required
comparatively less time for crossing the separatrix line.

We numerically investigated particle dynamics in the fully nonlinear TG vortex flow, focusing
particularly on longtime dispersion behavior, which we quantified using MSD. We identified and
delineated parameter regimes in the St-R plane, where trapped, diffusive, and ballistic particle
dynamics emerged at the long time limit. Our analysis revealed two distinct trapped regions in
the parameter space: the first corresponded to particles remaining confined within their initial
vortex cell, the same as the trapping zone observed in the linearized flow cases, while the second
corresponded to particles becoming trapped in a different vortex cell after crossing the initial one.

For a given parametric combination of St and R, we tracked individual particle trajectories and
identified their dynamical nature based on the scaling of their single-particle squared displacement
with time. This scaling gave us insight into individual particle dispersion behavior, going beyond the
mean trend indicated by the MSD. Our analysis revealed that while the MSD reflected the dominant
behavior of particles initialized within the vortex cell, not all particles exhibited the same dynamics.
Even when the MSD indicated ballistic behavior, a fraction of particles displayed subdominant
diffusive or trapped dispersion. Accordingly, we quantified and reported the fractions of particles
demonstrating ballistic, diffusive, and trapped behavior. This observation aligned with a previous
study by Nath et al. [24] for infinitely heavy particles.
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In the presence of the history force, our investigation identified modifications to particle dy-
namics in the nonlinear TG vortex flow. We concentrated our analysis on the restricted parameter
regime: St ∈ (0.1, 1) and R ∈ (2/3, 1). The introduction of the history force led to the disappearance
of the previously identified trapped and diffusive regions in the St-R parametric space. Notably, even
particles with low values of St and R were able to escape their initial vortex cells without becoming
trapped anywhere. At long times, we observed that the MSD, as well as the single-particle SD of
individual particles, became indistinguishable, both exhibiting a quadratic scaling with time. This
behavior signifies that all particles show ballistic dispersion, irrespective of variations in St, R, or
their initial positions.

To conclude, we have systematically explored the dynamics of inertial particles in a two-
dimensional steady Taylor-Green vortex flow, focusing on analyzing the roles of hydrodynamic
forces such as added mass, pressure gradient, and history forces. By employing linear stability
analysis and nonlinear simulations, we have mapped out the parametric regimes in St-R plane
that govern particle trapping, separatrix crossing, and long-term dispersion behaviors. Our results
identified that, in the absence of the history force, particle motion is highly sensitive to particle
inertia, density ratio, and initial conditions, leading to a wide variety of dynamical regimes,
including trapping, diffusive, and ballistic transport. Remarkably, the inclusion of the history force
erases these boundaries, universally promoting ballistic motion regardless of particle parameters or
initial locations. These insights advance our fundamental understanding of inertial particle transport
in structured flows and offer predictive tools for a wide range of applications in environmental and
engineering contexts.

While our study provides a detailed characterization of inertial particle dynamics in a steady TG
vortex flow, several limitations and open questions remain. First, the analysis is confined to ideal-
ized, two-dimensional, and steady flow conditions; real-world flows are often three-dimensional,
time-dependent, and may involve turbulence or additional forces such as gravity and Brownian
motion. For instance, a recent report by Kumar et al. [53] emphasizes the impact of unsteadiness
on particle dynamics, showing that periodic switching of stagnation points and vortices can lead
to chaotic particle trajectories, even for tracer particles. Furthermore, the sensitivity of particle
trajectories to initial conditions and the inherently nonergodic nature of their transport imply that
even small perturbations—arising from turbulence, boundaries, or particle–particle interactions—
could significantly influence the dynamics. Although we find that the history force facilitates
particle crossing of flow separatrices and promotes ballistic dispersion, its influence may vary if a
different kernel is used. Future research could extend our framework to unsteady or turbulent flows,
investigate the role of finite particle sizes and shapes, incorporate stochastic forcing, or examine
the consequences of symmetry breaking in the flow field. Such efforts would not only test the
generality of our findings but also help bridge the gap between idealized theoretical models and
complex real-world systems.
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APPENDIX A: KINEMATICS OF THE MODIFIED FLOW

In this Appendix, we analyze the kinematic equations governing the modified flow field perceived
by inertial particles in a TG vortex. We derive the stability and nature of fixed points through
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linearization and eigenvalue analysis, elucidating their role in shaping streamline topology. The
effective flow field, incorporating inertial forces (added mass and pressure gradient), is described by

ẋ = sin x (cos y + γ −1 cos x), (A1a)

ẏ = sin y (− cos x + γ −1 cos y), (A1b)

where ẋ and ẏ represent the velocities of tracers along the x and y directions, respectively, and
γ = Stcp/St is a parameter defined in Sec. III. Unlike the classical incompressible TG vortex–in
Eq. (4), this modified flow is compressible, which fundamentally alters the nature of the fixed points
and corresponding flow kinematics. To understand the local behavior near these fixed points, we
perform a linearization of the governing equations.

A formal linearization of Eq. (A1) near a CFP, say (0, 0), yields the following:[
ẋ
ẏ

]
=

[
1 + γ −1 0

0 −1 + γ −1

][
x
y

]
. (A2)

The eigenvalues of the linearized Eq. (A2) are given by

λ±
kc

= γ −1 ± 1. (A3)

Based on the eigenvalue λ±
kc

characteristics, the corner fixed point indicates a saddle-type behavior
when γ −1 < 1 or (St < Stcp ), recall γ is defined as Stcp/St in Sec. III. The behavior transition
to source-type when γ −1 > 1 or (St > Stcp ). The source-type behavior of corner fixed points is
possible here because of the compressible nature of the effective flow field. As discussed in Sec. III,
when St > Stcp , the EFPs emerge. Linearizing the kinematic equations [Eqs. (A1)] about a EFP, say
(cos−1 [−γ ], 0) yields the following:[

ẋ
ẏ

]
=

[
γ − γ −1 0

0 γ + γ −1

][
x
y

]
. (A4)

We get the following eigenvalues corresponding to Eqs. (A4)

λ±
kn

= γ ± γ −1. (A5)

Hence, the edge fixed points exhibit a saddle-type behavior. The linearized equations near to the cell
center (π/2, π/2) are as follows: [

ẋ
ẏ

]
=

[−γ −1 −1
1 −γ −1

][
x
y

]
. (A6)

The eigenvalues associated with Eqs. (A6) are as follows:

λ±
ks

= −γ −1 ± i. (A7)

The eigenvalue λ±
ks

signify a spiral attractor behavior of cell center when γ −1 
= 0. It is important
to note that these eigenvalues and the associated fixed point classifications describe the nature of
streamlines in the effective flow field near their vicinity, which aligns well with the examples in
Fig. 2.

APPENDIX B: PARTICLE DYNAMICS NEAR A CENTER FIXED POINT OF TG VORTEX FLOW

In this Appendix, we analyze the particle dynamics in the vicinity of the cell center of TG vortex
flows. The flow field near the center fixed point, located at, say, (π/2, π/2), closely approximates
a solid-body rotation. To leading order, the velocity components can be expressed as

ux ≈ −y, (B1a)

uy ≈ x, (B1b)

104304-28



TRAPPING AND TRANSPORT OF INERTIAL PARTICLES …
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FIG. 14. (a) Contour plot of the real part eigenvalue with the highest real part (λm ) in the St-R parametric
plane. The evolution of (b) real and (c) imaginary parts of eigenvalues at St = 0.5 with R. The dark dotted lines
represent R = 2/3, above which particles are heavier than the fluid.

which describes a counterclockwise rotational flow about the cell center. Adopting a dynamical
systems approach, we first analyze the effects of Stokes drag and inertial forces while excluding the
history force. Subsequently, we incorporate the history force to examine its influence on the particle
dynamics.

1. Without history force

In the vicinity of the cell center, and excluding the history force, the governing equations [Eq. (5)]
reduce to

1

R
ẍ + 1

St
ẋ + 3(1 − R)

R
x + 1

St
y = 0, (B2a)

1

R
ÿ + 1

St
ẏ + 3(1 − R)

R
y − 1

St
x = 0. (B2b)

Unlike Eqs. (12), which remain decoupled, Eqs. (B2) form a set of coupled second-order differential
equations. Introducing a complex variable z = x + i y, where i2 = −1, we can combine Eqs. (B2)
into the following single complex equation:

1

R
z̈ + 1

St
ż +

[
3(1 − R)

R
− 1

St
i

]
z = 0. (B3)

We express the solution for z as

z = Cr1 exp (λ+
r t ) + Cr2 exp (λ−

r t ) with λ±
r = 1

2

⎛
⎝− R

St
±

√(
R

St

)2

+ 4R

St
i + 12(R − 1)

⎞
⎠,

(B4)

where Cr1 and Cr1 are the integration constants which depend on initial conditions (Z0 = X0 +
i Y0, ż0 = ẋ0 + i ẏ0) and the eigenvalues (λ±

r ). We determine them as

Cr1 = Z0λ
−
r − ż0

λ−
r − λ+

r

, Cr2 = ż0 − Z0λ
+
r

λ−
r − λ+

r

. (B5)

Note that the eigenvalues (λ±
r ) are inherently complex, which signifies oscillatory or spiralling

particle trajectories in the vicinity of the center fixed point. To further elucidate the local behavior
of particle dynamics near the vortex center of TG vortex flows, we present the contour of the real
part of the dominant eigenvalue, denoted as λm, in Fig. 14(a). As illustrated in Fig. 14(a), the real
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part of λm is positive for R > 2/3, indicating that heavier particles are centrifuged outward from
the vortex center. In contrast, lighter particles asymptotically approach the vortex center due to the
negative real part of λm. To characterize this transition more clearly, we plot the variation of the
real and imaginary parts of the eigenvalues with respect to R at a fixed St = 0.50 in Figs. 14(b) and
14(c). These plots identify a transition in the sign of the real part at R = 2/3, while the imaginary
parts remain nonzero throughout, signifying a shift in the dynamics from a spiral sink to a spiral
source.

2. With history force

When we account for the effects of the history force, the governing equations [Eqs. (5)] in the
vicinity of the cell center simplify to

ẍ + R

St
ẋ + 3(1 − R) x + R

St
y = − κ√

π

[
ẋ0 + y0√

t
+

∫ t

0

1√
t − t ′ (ẍ + ẏ)dt ′

]
, (B6a)

ÿ + R

St
ẏ + 3(1 − R) y − R

St
x = − κ√

π

[
ẏ0 − x0√

t
+

∫ t

0

1√
t − t ′ (ÿ − ẋ)dt ′

]
. (B6b)

As before, we observe that Eqs. (B6a) and (B6b) form a coupled system. To simplify the analysis,
we introduce the complex variable z = x + i y and recast the equations as follows:

z̈ + R

St
ż +

{
3(1 − R) − R

St
i

}
z = − κ√

π

[
ż0 − z0 i√

t
+

∫ t

0

1√
t − t ′ (z̈ − ż i)dt ′

]
. (B7)

Similar to the analysis in Sec. III C, we apply the Laplace transform to Eq. (B7), converting it into
the Laplace domain as follows:

ẑ = 1∏4
i=1

√
s − μzi

(
s z0 + √

s κ z0 + R

St
z0 + ż0

)
. (B8)

Here, ẑ denotes the variable in the Laplace domain, corresponding to z in the physical domain. The
terms μzi represent the roots of the quartic polynomial, pz(ζ ) = ζ 4 + κ ζ 3 + (R/St) ζ 2 − κ i ζ +
[3(1 − R) − (R/St) i]. We obtain the general solution for the particle trajectory z(t ) in the complex
plane by performing partial fraction decomposition followed by the inverse Laplace transform on
Eq. (B8):

z(t ) = �4
i=1Aziμzi exp

(
μ2

zi
t
)
erfc(−μzi

√
t ). (B9)

The coefficient Azi is given by

Azi = z0
(
μ2

Zi
+ κ μzi

) + R
St z0 + ż0∏ j=4

j 
=i, j=i

(
μzi − μz j

) �4
i=1Azi = 0. (B10)

The coefficient Azi depends on the parameters (St and R), the initial conditions, and the correspond-
ing root μzi .

To analyze the influence of the history force on particle dynamics, we compare analytically
computed typical particle trajectories with and without the history force. Particles are initialized at
(x = 0.01, 0.01) with zero slip velocity, using parameters (R = 0.4, St = 0.1) for light particles
and (R = 0.8, St = 0.1) for heavy particles. For the light particle case, we observe that particles
asymptotically approach the cell center in both scenarios. However, the rate of approach is sig-
nificantly reduced when the history force is considered, as shown in Fig. 15(a). However, heavy
particles move away from the cell center in both the presence and absence of the history force.
However, in the presence of history force, their outward migration occurs at a slower rate, as shown
in Fig. 15(b). These results align with the earlier work of Candelier et al. [31]. They investigated
the effects of the history force in solid-body rotational flows using experimental observations and
theoretical analysis.
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FIG. 15. Particle trajectories computed without (dashed line) and with (solid line) the history force for (a) a
light particle (R = 0.4, St = 0.1) and (b) a heavy particle (R = 0.8, St = 0.1). In both scenarios, particles
are initialized at (x = 0.01, y = 0.01), indicated with a star (∗) symbol, with zero slip velocity. Symbol +
indicates the location of the cell center.

APPENDIX C: EFFECTS OF INITIAL CONDITIONS ON SEPARATRIX CROSSING

The integration constants C1,C2,C3, and C4 corresponding to Eq. (13) depends on the initial
conditions as follows:

C1 = vx0 − x0 λ−
e

λ+
e − λ−

e

, C2 = −vx0 + x0 λ+
e

λ+
e − λ−

e

, C3 = vy0 − y0 λ−
c

λ+
c − λ−

c

, and C4 = −vy0 + y0 λ+
c

λ+
c − λ−

c

, (C1)

where x(t = 0) = x0, y(t = 0) = y0, vx(t = 0) = vx0 , and vy(t = 0) = vy0 . Let us first focus on
the special case discussed in Sec. III A, where particles can cross extensional separatrix even
when their trajectories are nonoscillatory—as seen in regions A, C, and D—provided that suitable
initial conditions are satisfied. Intuitively, one may expect that an inertial particle needs sufficient
momentum in the direction normal to a barrier to cross it. The same principle applies here: crossing
the separatrix requires adequate initial momentum oriented across the extensional axis. Although
the solution in Eq. (13b) is nonoscillatory when both eigenvalues λ+

c and λ−
c are real, it is still

possible for the particle trajectory to reach y = 0 line at a finite time—implying a potential crossing
of the extensional axis. The condition for such a crossing can be obtained by solving for y = 0 using
Eq. (13b), which gives the first crossing time as

tcr = ln(−C4/C3)

(λ+
c − λ−

c )
= 2 St√

R2 − 4 R St + 12 (1 − R) St2

× tanh−1

[
−

√
R2 − 4 R St + 12 (1 − R) St2

R + 2 St
vy0
y0

]
. (C2)

For tcr to be real, positive, and finite, the following conditions must be satisfied: When both λ+
c and

λ−
c are real, the particle trajectory can cross the extensional separatrix axis only if (i) for y0 > 0, the

initial velocity satisfies vy0 < y0 λ−
c , and (ii) for y0 < 0, it satisfies vy0 > y0 λ−

c . That is, for particles
in regions A, C, and D to cross the extensional separatrix (which is y = 0 when considering the
CFP near the origin, without loss of generality), the component of the initial velocity normal to
the axis (here vy0 ) must meet the above criteria. Note that if the extensional axis is instead aligned
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along x = 0, the same condition and the expression for tcr in equation (C2) still apply, with the
substitutions y0 → x0 and vy0 → vx0 .

In region B, however, the eigenvalues λ±
c form a complex conjugate pair, leading to oscillatory

particle trajectories about the extensional axis. As a result, particles are expected to cross the
extensional separatrix regardless of their initial conditions. This is evident from the expression for
the first crossing time, appropriately modified from Eq. (C2), given as

tcr = 2 St√
−R2 + 4 R St − 12 (1 − R) St2

{
π − tan−1

[√
−R2 + 4 R St − 12 (1 − R) St2

R + 2 St
vy0
y0

]}
. (C3)

Note that, irrespective of the values of y0 or vy0 , the crossing time tcr can still be a real, positive
quantity, implying that the particle can cross the extensional separatrix within a finite time.

In a similar manner, particle trajectories can also cross the compressional separatrix line (here,
x = 0) under suitable initial conditions. Since the eigenvalues λ+

e and λ−
e are real across all regions

A, B, C, and D, crossing the compressional separatrix axis is only possible through appropriate
initial conditions only—unlike in region B, where oscillatory trajectories enable extensional axis
crossing. Applying the same approach as before, but now using Eq. (13a), one can determine the
conditions under which x = 0 is reached at a real, finite time. This yields an expression for the first
crossing time analogous to Eq. (C2), given as

tcr = ln(−C2/C1)

(λ+
e − λ−

e )
= 2 St√

R2 + 4 R St + 12 (1 − R) St2
tanh−1

[
−

√
R2 + 4 R St + 12 (1 − R) St2

R + 2 St
vx0
x0

]
.

(C4)

Accordingly, the criterion for crossing the compressional separatrix (here, x = 0) becomes: the
particle trajectory can intersect this axis only if (i) for x0 > 0, the initial velocity satisfy vx0 < x0 λ−

e ;
and (ii) for x0 < 0, the condition is vx0 > x0 λ−

e . As mentioned earlier, this condition, along with
expression (C4), applies not only to regions A, C, and D, but also to region B, as the trajectories are
not oscillatory here. If the compressional separatrix is instead is y = 0 line, then the same expression
and conditions remain valid upon substituting x0 with y0, and vx0 with vy0 .

APPENDIX D: TRAPPING OF ESCAPED PARTICLES IN DISTANT VORTEX CELLS

In Sec. IV, we observed that particles that escape from their initial vortex cell can later become
trapped in a distant vortex cell. This behavior is characteristic of the parameter regime identified
as region IIIa in Fig. 10(a). Notably, this region lies within region B in Fig. 4(a), where the
corresponding CFPs are spiral 3:1 saddles. As a result, particle trajectories in this regime exhibit
oscillatory behavior and can, in principle, cross separatrices regardless of their momentum near
the fixed points as per the findings in Appendix C. However, despite their ability to cross the
separatrices and escape their initial vortex cell, particles in region IIIa often become confined after
traversing a few neighboring cells. In contrast, particles in region II—also part of the region B—do
not exhibit such confinement and continue to migrate unboundedly across multiple vortex cells. In
this Appendix, we aim to investigate and explain the reason behind this selective trapping behavior
observed in region IIIa.

The key difference we identified in region IIIa is that, although particles escape their initial
vortex cell, their closest distance from the CFPs of subsequent cells tends to decrease over time—
suggesting a gradual loss of kinetic energy. Eventually, in a distant cell, the particle passes extremely
close to its CFP, significantly closer than it ever was in the initial cell. Once this distance falls
below the numerical precision threshold (typically around 10−14), the particle is effectively treated
as having reached the fixed point and is numerically considered trapped. In contrast, particles
in region II display a different behavior. Each time they traverse near a CFP, they tend to gain
kinetic energy, allowing them to move farther from the CFP in the next cell. Although this distance
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FIG. 16. The kinetic energy, given by (vx (t )2 + vy(t )2)/2, is plotted against time for representative particle
trajectories in regions IIIa and II, shown in panels (a) and (b), respectively. Particles are initialized within the
basic vortex cell at (x, y) = (0.1, 0.1) with zero initial slip velocity. The parameters used are: (a) St = 0.3,
R = 0.8; and (b) St = 0.5, R = 0.8.

eventually saturates, it remains sufficient to avoid numerical trapping. As a result, these particles
continue along open trajectories across multiple vortex cells without confinement. Whether such
trajectories are ultimately ballistic or diffusive is a separate question, beyond the scope of the current
discussion. To illustrate this distinction, we plot the evolution of the kinetic energy, computed as
(vx(t )2 + vy(t )2)/2, for representative particle trajectories from regions IIIa and II in Fig. 16. As
shown in Fig. 16(a), the kinetic energy of a particle in region IIIa exhibits an oscillatory pattern.
The kinetic energy peaks when the particle is escaping from a CFP and dips when it approaches
the CFP, where it slows down. While the maximum values remain of order unity, the minimum
values decrease progressively with each cycle, eventually reaching magnitudes as low as 10−28.
This corresponds to particle velocities and distances from the fixed point on the order of 10−14,
below the numerical precision threshold, and is thus effectively treated as zero. As a result, the
particle is considered to have been captured by the corresponding CFP. In contrast, for a particle in
region II, as shown in Fig. 16(b), the kinetic energy also oscillates, with peak values remaining of
order unity. However, while the minima initially decrease, they eventually saturate at a finite value.
This indicates that the particle retains sufficient energy to continue its motion indefinitely, traversing
multiple vortex cells without becoming trapped.

The remaining task is to derive a critical criterion that can predict whether a particle will
eventually become trapped or continue escaping through multiple vortex cells. For this, we consider
the schematic representations in Fig. 17, which illustrate typical oscillatory trajectory segments
of a particle in a TG vortex cell. In Fig. 17(a), the particle reaches near the CFP located at the
bottom-left corner, with an initial velocity approximately vertical, i.e., vy0 is finite while vx0 ≈ 0, and
it is horizontally offset from the CFP by the positive distance x0. The trajectory then evolves along
a path that stays close to the extensional separatrix line (though exaggerated here for visibility),
reaching near the bottom-right CFP with an almost horizontal velocity vx1 (i.e., vy1 ≈ 0), and a
vertical offset of positive value y1 from the CFP. A similar sequence occurs in Fig. 17(b), with
the primary distinction being that the particle arrives at the next CFP with a negative offset, i.e.,
y1 < 0, due to an extra/less oscillation in the trajectory. Once the particle reaches this point, its
subsequent motion may be viewed as starting from y1 with velocity vx1 , and evolving along the
compressional separatrix—essentially repeating a topologically similar trajectory segment with the
roles of the x and y axes interchanged. This process continues iteratively across successive vortex
cells. Our objective is to determine whether the particle’s separation from the nearest CFP decreases
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FIG. 17. The schematic illustrates typical trajectory segments of particles in region B as they traverse near
CFPs. The solid (undashed) portion of the trajectory continues qualitatively beyond the shown segment (as
dashed parts), with the roles of the extensional and compressional axes interchanged. As in (a), if the segment
exhibits an even number of zero crossings, then it terminates at a positive distance from the CFP, indicating
the possibility of a closed trajectory. As in (b), an odd number of zero crossings causes the segment to end at a
negative distance from the CFP, suggesting the likelihood of an open trajectory.

or increases after each such segment. That is, we examine whether |y1| is less than or greater than x0.
If |y1| < x0, then the particle’s kinetic energy diminishes after each passage near a CFP, eventually
reducing its distance from the CFP below the numerical precision threshold and causing it to be
interpreted as captured. Conversely, if |y1| > x0, then the particle retains sufficient energy to avoid
being trapped and continues its motion across multiple cells.

To determine this criterion precisely, we consider solving the system of equations (7) with the
initial conditions: x(t = 0) = x0, vx(t = 0) = 0, y(t = 0) = 0 and vy(t = 0) = vy0 , for some finite
values of x0 and vy0 . Here we choose x0 > 0 and vy0 < 0 without loss of generality. Note that x0

can be chosen as an arbitrarily small positive quantity in theory without affecting the qualitative
dynamics. The integration is carried out until a time t1, defined such that x(t = t1) = π , and
the corresponding vertical separation is y(t = t1) = y1 from the nearest CFP. The key diagnostic
quantity is then the ratio |y1|/x0, and whether it is less than or greater than unity determines the
outcome. Particularly, under what conditions on the parameters and initializations does the ratio
|y1|/x0 exactly equal one? This would represent the critical condition separating confined and
unbounded particle dynamics. However, since the system (7) is nonlinear, obtaining an analytical
solution is generally infeasible, and we must rely on numerical integration. To make analytical
progress and derive an approximate criterion, we propose to linearize the system under specific
assumptions. In the following, we introduce a two-level approximation strategy to achieve this.

First, observe that for sufficiently small values of x0 and vy0 , the resulting trajectory segment
remains close to the extensional separatrix axis. In this regime, the vertical displacement remains
small throughout the motion, i.e., |y(t )| � 1. This observation allows us to apply a first-level
approximation to equations (7), where we linearize the trigonometric functions as sin y ≈ y, and
cos y ≈ 1. Substituting these approximations into the governing equations yields a weakly nonlinear
system of the form as

ẍ = − R

St
(ẋ − sin x) + 3 (1 − R) sin x cos x, (D1a)

ÿ = − R

St
(ẏ + y cos x) + 3 (1 − R) y. (D1b)

Note that despite the linearization in y, the system remains nonlinear in x, as x(t ) spans a relatively
large range—from x0 to π—during the particle’s evolution. Therefore, a simple Taylor expansion is
insufficient to eliminate the nonlinearity in x. However, drawing inspiration from the work of Nath
et al. [24], who demonstrated that the dynamical richness observed in the TG vortex flow can also
be captured using a synthetic flow composed of piecewise linear functions, we can adopt a similar
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strategy here. In their study, the sine function was approximated using a triangular wave function,
preserving the essential dynamical features of the system. Following this idea, we approximate the
functions in the weakly nonlinear system (D1) by replacing sin x with Trw(x), and cos x with its
derivative Trw′(x), where

Trw(x) =
{

x if x ∈ [0, π/2]

π − x if x ∈ [π/2, π ]
, and Trw′(x) =

{
1 if x ∈ [0, π/2]

−1 if x ∈ (π/2, π ]
. (D2)

Note that, for our purposes, the triangular wave approximation is only required in the interval
x ∈ [0, π ], where the dynamics occur. However, in general, to ensure a consistent replacement for
sin x and cos x, the function must be extended over the entire domain. Specifically, the triangular
wave function should be extended anti-periodically over the interval x ∈ [π, 2π ], and then continued
periodically beyond, with an overall period of 2π to match the periodicity of the original sine
function. After introducing these triangular wave approximations, we substitute them into the
weakly nonlinear system (D1). This results in a simplification of the governing equations, which
now reduce to a linear system of the form:

ẍ + R

St
ẋ − x

(
R

St
+ 3 (1 − R)

)
= 0

ÿ + R

St
ẏ + y

(
R

St
− 3 (1 − R)

)
= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

if x ∈
[
0,

π

2

]
, (D3)

and

ẍ + R

St
ẋ + x

(
R

St
− 3 (1 − R)

)
= π

(
R

St
− 3 (1 − R)

)

ÿ + R

St
ẏ − y

(
R

St
+ 3 (1 − R)

)
= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

if x ∈
[π

2
, π

]
. (D4)

We first solve the governing equations from Eq. (D3) with the initial conditions: x(t = 0) = x0,
ẋ(t = 0) = 0, y(t = 0) = 0, ẏ(t = 0) = vy0 , up to a time t1/2 such that x(t = t1/2) = π/2. The
corresponding solution is given by

x(t ) = x0 exp

(
− R t

2 St

) {
cosh

(
α t

2 St

)
+ R

α
sinh

(
α t

2 St

)}
, (D5a)

y(t ) = vy0

2 St

β
exp

(
− R t

2 St

)
sin

(
β t

2 St

)
. (D5b)

Here, α =
√

R2 + 4 R St + 12 (1 − R) St2, and β =
√

−R2 + 4 R St − 12 (1 − R) St2, both of
which are real-valued in region B. To determine the time t1/2, we must solve for t such that
x(t ) = π/2, using the expression (D5a). However, solving this exactly is nontrivial. To proceed,
we approximate the expression in Eq. (D5a) under the assumption α t1/2/(2 St) � 1, which allows
the hyperbolic functions to be approximated as half of exponential as cosh(z) ≈ sinh(z) ≈ 1

2 ez.
Using this, the equation for x(t ) simplifies significantly, and we obtain the following reduced form
to solve:

x0

2
exp

(
− R t

2 St

) {
exp

(
α t

2 St

)
+ R

α
exp

(
α t

2 St

)}
≈ π

2
. (D6)

The solution that gives the half-time as

t1/2 ≈ 2 St

α − R
ln

[
π α

x0 (α + R)

]
. (D7)
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Using this expression for t1/2, we can now evaluate the particle’s position and velocity components
at this time as

ẋ(t = t1/2) ≈ π (R + 3 St (1 − R))

α + R
, (D8a)

y(t = t1/2) ≈ vy0

2 St

β

(
x0 (α + R)

π α

)R/(α−R)

sin

(
β

(α − R)
ln

[
π α

x0 (α + R)

])
, (D8b)

ẏ(t = t1/2) ≈ vy0

√
R2 + β2

β

(
x0 (α + R)

π α

)R/(α−R)

cos

(
β

(α − R)
ln

[
π α

x0 (α + R)

]
+ tan−1 R

β

)
.

(D8c)

Along with these approximations, the value x(t = t1/2) = π/2 can now serve as the initial con-
ditions to determine the remaining portion of the trajectory segment by solving the governing
equations (D4) over the interval t ∈ [t1/2, t1], during which x(t ) evolves from π/2 to π . The
corresponding solution is

x(t ) = π − π

2 β

√
(2 R − α)2 + β2 exp

(
− R t ′

2 St

)
cos

(
β t ′

2 St
− tan−1

[
2 R − α

β

])
, (D9a)

y(t ) = 2 St vy0

(
x0 (α + R)

π α

)R/(α−R)

exp

(
− R t ′

2 St

){
1

α
cos

(
β

(α − R)
ln

[
π α

x0 (α + R)

])

× sinh

(
α t ′

2 St

)
+ 1

β
sin

(
β

(α − R)
ln

[
π α

x0 (α + R)

])
cosh

(
α t ′

2 St

)}
, (D9b)

where t ′ = t − t1/2. To determine the time at which this segment of the trajectory terminates, i.e.,
t = t1, one can solve for x(t ) = π using Eq. (D9a), and obtain

t1 = t1/2 + 2 St

β

{
π − tan−1

[
β

2 R − α

]}
. (D10)

Substituting this time into Eq. (D9b), we obtain y(t = t1) = y1 as

y1 = 2 St vy0

(
x0 (α + R)

π α

)R/(α−R)

exp

{
−R

β

(
π − tan−1

[
β

2 R − α

])}

×
[

1

α
cos

(
β

(α − R)
ln

[
π α

x0 (α + R)

])
sinh

{
α

β

(
π − tan−1

[
β

2 R − α

])}

+ 1

β
sin

(
β

(α − R)
ln

[
π α

x0 (α + R)

])
cosh

{
α

β

(
π − tan−1

[
β

2 R − α

])}]
. (D11)

Note that this is an approximate expression, owing to the various approximations and linearizations
employed in reaching here. Now, to determine the condition under which |y1| becomes smaller than
x0 (which, without loss of generality, we have taken as positive), we evaluate the ratio |y1|/x0. We
find that this ratio depends on the initial conditions as

|y1|
x0

∝ |vy0 | x(2 R−α)/(α−R)
0 , (D12)

where, not that there is an additional dependence on x0, appearing within the sinusoidal functions—
as evident from Eq. (D11), which is omitted here. Now, considering the asymptotic limit where
x0 � 1 (i.e., the particle starts very close to the CFP), for |y1|/x0 to decrease for any finite vy0 ,
the necessary condition is that the exponent of x0 must be positive; that is, (2 R − α)/(α − R) > 0.
Solving this yields the critical condition that St < Stcq , the expression for Stcq is given in Eq. (23).
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The dependence of x0 inside the sinusoidal terms, which is omitted here, does not affect the
outcome since sine and cosine functions are bounded by unity. This implies that in region B, even
if a particle escapes its initial vortex cell, as long as its St < Stcq , it will eventually lose its kinetic
energy while traversing near CFPs, and numerically, it will end up getting captured by one—thus
classified under region IIIa. However, if St > Stcq , then the particle can gain kinetic energy, resulting
in unbounded motion (classified as region II). The critical curve corresponding to Stcq is shown in
Fig. 10(a) as a yellow, dash-dotted line. This curve aligns quite well with the numerically identified
boundary separating regions II and IIIa. For R = 1, the critical value we got here is Stcq = 0.75,
which closely matches the previously reported value of 0.77 by Nath et al. [24]. However, the
actual boundary is rather irregular, and the deviation may be attributed to: (i) the linearizations
and approximations involved in our derivation here, and (ii) as discussed in the main text, near
this boundary, particles can also become trapped in closed, periodic limit-cycle trajectories, de-
pending on the choice of parameters and initial conditions—in addition to getting captured by
CFPs. These limit cycles have not been incorporated into our present model. We anticipate that
including them could yield a more accurate prediction of the boundary than what is obtained in this
Appendix.

APPENDIX E: ROLE OF HISTORY FORCE ON PARTICLE LEAKAGE FROM VORTEX
CELLS AND THEIR LONGTIME BALLISTIC DYNAMICS

We have shown in Secs. III C and V that in the presence of a history force, particles cross
the separatrix line regardless of parametric and initial conditions and exhibit longtime ballistic
dynamics. In this Appendix, we analyze the contribution of the history force close to the stagnation
zones and separatrices to understand the underlying mechanism behind this crossing. We write the
reduced order particle velocity as the summation of flow velocity and correction terms due to the
particle inertia, added mass, and history effects, which appear in terms of fluid acceleration using
the approach of Ferry and Balachandar [15]. The reduced order particle velocity in the limit St � R
reads as follows:

dx

dt
= sin x cos y − St

(
3R − 2

2R

)
sin 2x + St3/2 κ√

π

(
3R − 2

R

)
Fx, (E1a)

dy

dt
= − sin y cos x − St

(
3R − 2

2R

)
sin 2y + St3/2 κ√

π

(
3R − 2

R

)
Fy, (E1b)

where

Fx =
∫ t

−∞

dt ′
√

t − t ′ sin x′ cos y′ cos 2x′, (E2a)

Fy = −
∫ t

−∞

dt ′
√

t − t ′ sin y′ cos x′ cos 2y′ (E2b)

are the contribution from the history force. Following the approach of Druzhinin and Ostrovsky [30],
we consider the particle motion in the vicinity of a horizontal separatrix (see trajectory segment AB
in Fig. 18), say y 
 εy and 0 � x � π . To the leading order, the particle motion is described by the
following equation:

dx

dt
= sin x, (E3)

where εy is a vanishingly small positive quantity. We integrate the Eq. (E3) with initial condition
x(t → −∞) = 0 to get the particle trajectory of the following form:

x(t ) = 2 tan−1(et ). (E4)
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FIG. 18. Typical particle trajectory in the presence of the history force. Points A, B, and C mark locations
where the trajectory crosses the separatrix, each situated near a stagnation point.

The solution gives the asymptotic condition x(t → ∞) = π . Thus, a particle that starts near the
stagnation point (0,0) travels close to the horizontal separatrix and, in the longtime limit, reaches
the stagnation point at (0, π ). We now evaluate the contribution of history integrals in Eq. (E2) along
the leading order trajectory defined by Eqs. (E4) as

Fx ≈
∫ t

−∞

dt ′
√

t − t ′ sin x′ cos 2x′ =
∫ t

−∞

dt ′
√

t − t ′ sin (2 tan−1(et ′
)) cos (4 tan−1(et ′

)), (E5a)

Fy ≈ −εy

∫ t

−∞

dt ′
√

t − t ′ cos x′ = −εy

∫ t

−∞

dt ′
√

t − t ′ cos (2 tan−1(et ′
)). (E5b)

In the limit t → ∞, as the particle approaches near stagnation point at (0, π ), Fx approaches
a positive value and Fy approaches a very large negative value (for positive εy), which acts on
the particles to push them out of the cell I . Now we consider the trajectory segment BC, close to
the vertical separatrix line associated with the next cell J with x 
 π + εx and 0 � y � π , where
the equations of particle motion at the leading order are the following:

dy

dt
= sin y. (E6)

We integrate the Eq. (E6) with the initial condition y(t → −∞) = 0 to get the particle trajectory of
the following form as early as

y(t ) = 2 tan−1(et ). (E7)

Here as well, in the longtime limit, y(t → ∞) = π , meaning the particle moves from near the
stagnation point at (π, 0) toward the vicinity of the stagnation point at (π, π ), close to the vertical
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separatrix, taking an infinite amount of time to reach it. As earlier, we now evaluate the history force
along this segment of the trajectory, defined by Eq. (E7), using Eqs. (E2) as

Fx ≈
∫ t

−∞

dt ′
√

t − t ′ sin x′ cos y′ = −εx

∫ t

−∞

dt ′
√

t − t ′ cos (2 tan−1(et ′
)), (E8a)

Fy ≈
∫ t

−∞

dt ′
√

t − t ′ sin y′ cos 2y′ =
∫ t

−∞

dt ′
√

t − t ′ sin (2 tan−1(et ′
)) cos (4 tan−1(et ′

)). (E8b)

Here, in the limit t → ∞, the force component Fx becomes a very large negative value (for positive
εx), while Fy approaches a positive value. Here also both components act to push the particle out of
the vortex cell J , thereby facilitating cross-cell transport. This supports the earlier observation by
Druzhinin and Ostrovsky [30] that the history force can cause heavy particles with nonzero inertia to
leak out of vortex cells without requiring a critical Stokes number threshold. In addition, our analysis
demonstrates that the history force near the fixed points is nonzero and contributes significantly to
displacing the particle out of the cell. Interestingly, along both trajectory segments, the components
of the history force alternate in sign. This alternating behavior leads to a zigzag-like motion of the
particles close to the separatrix lines as shown in Fig. 18. Over time, this repeated zigzag motion
results in a directed motion on average, ultimately causing the particle dynamics to become ballistic
at long times.
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