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In this paper, we study the disturbance velocity and density fields induced by a sphere
translating vertically in a viscous density-stratified ambient. Specifically, we consider
the limit of a vanishingly small Reynolds number (Re = ρUa/μ � 1), a small but
finite viscous Richardson number (Riv = γ a3g/μU � 1) and large Péclet number (Pe =
Ua/D � 1). Here, a is the sphere’s radius, U its translational velocity, ρ an appropriate
reference density within the framework of the Boussinesq approximation, μ the ambient
viscosity, γ the absolute value of the background density gradient, g is acceleration due to
gravity and D the diffusivity of the stratifying agent. For the scenario where buoyancy
forces first become comparable to viscous forces at large distances, corresponding to
the Stokes-stratification regime defined by Re � Ri1/3v � 1 for Pe � 1, important flow
features have been identified by Varanasi & Subramanian (J. Fluid Mech., vol. 949, 2022,
A29) – these include a vertically oriented reverse jet, and a horizontal axisymmetric wake,
on scales larger than the primary (stratification) screening length of O(aRi−1/3

v ). Here,
we study the reverse-jet region in more detail, and show that it is only the central portion
of a columnar structure with multiple annular cells concentric about the rear stagnation
streamline. In the absence of diffusion, corresponding to Pe = ∞ (β∞ = Ri1/3v Pe−1 = 0),
this columnar structure extends to downstream infinity with the number of annular cells
diverging in this limit. We provide expressions for the boundary of the structure, and
the number of cells within, as a function of the downstream distance. For small but
finite β∞, two length scales emerge in addition to the primary screening length – a
secondary screening length of O(aRi−1/2

v Pe1/2)where diffusion starts to smear out density
variations across cells, leading to exponentially decaying density and velocity fields; and
a tertiary screening length, lt ∼ O(aRi−1/2

v Pe1/2[ζ + 13
4 ln ζ + (132/42)(ln ζ/ζ )]) with

ζ = 1
2 ln(

√
πRi−1

v Pe3/2160), beyond which the columnar structure ceases to exist. The
latter causes a transition from a vertical to a predominantly horizontal flow, with the
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downstream disturbance fields reverting from an exponential to an eventual algebraic
decay, analogous to that prevalent at large distances upstream.

Key words: stratified flows, particle/fluid flow

1. Introduction

It has been suggested that the diurnal vertical migration of marine organisms (termed the
largest migration on Earth; see Martin et al. 2020) could mix the oceans and is likely as
important as the well-known energy sources due to winds and tides in contributing towards
the meridional overturning circulation (Dewar et al. 2006; Katija & Dabiri 2009; Nawroth
& Dabiri 2014; Houghton et al. 2018). This ‘biogenic mixing’ hypothesis concerns the
motion of both passive particles and active swimmers at low (e.g. bacteria) to order-unity
(e.g. copepods) Reynolds numbers (Re). Such motion results in intricate flow patterns on
scales comparable to and larger than the individual particles/swimmers, with the nature
of the patterns being governed by various factors such as their swimming characteristics,
fluid physical properties, interactions with other particles/swimmers, etc. (Katija 2012;
Houghton et al. 2018). An important element in the aforesaid hypothesis is the amount of
fluid displaced by a single entity, either active or passive. This so-called drift volume
can, in principle, act as a source of available potential energy which can then couple
to motion on scales much larger than the swimmer size. The drift volume may be
calculated by considering an initial plane of material points with the particle infinitely
far upstream to begin with. The plane gets deformed as the particle translates towards
it, and eventually to downstream infinity. For the initial plane being infinite in extent, the
volume enclosed between it and the final deformed one is defined as the ‘total drift volume’
(Darwin 1953; Lighthill 1956). For a sphere in potential flow, with a fore–aft symmetric
disturbance velocity field of O(1/r3) (r being the radial distance from the sphere’s centre;
see figure 1a), the total drift volume is half the sphere’s volume, this being equal to
the added mass divided by the fluid density (Lighthill 1956). In the opposite limit of a
viscous fluid ambient (Re = 0), the slower decaying O(1/r) disturbance velocity field (see
figure 1b) causes the total drift volume to diverge over any finite time interval. Thus,
it becomes necessary to define a ‘partial drift volume’, as the volume enclosed between
initial and final material planes of a finite spatial extent, and with the initial plane located at
a finite distance away from the sphere (Eames, Belcher & Hunt 1994; Chisholm & Khair
2018). Accounting for the effects of weak fluid inertia (see figure 1c) results in a faster
O(1/r2) source-flow-like decay of the velocity field, in almost all directions, at distances
larger than the Oseen length (lo = O(aRe−1)). However, the original O(1/r) decay persists
within a paraboloidal wake region behind the sphere, and as a result, despite there being
no finite-time divergence, the drift volume does diverge linearly in the infinite time limit
for any non-zero Re (Subramanian 2010; Chisholm & Khair 2017).

The divergence of the drift volume over a finite time interval, or for infinite time, led
to the suggestion, by Katija & Dabiri (2009), of the aforementioned diurnal migration
being a biogenic source of oceanic mixing. Although this migration is known to affect
the transport of nutrients and oxygen, and the entrapment of CO2 in the ocean interior
(Nowicki, DeVries & Siegel 2022), its contribution to oceanic mixing has been proposed
to be negligible based on various physical arguments (Visser 2007; Subramanian 2010;
Wagner et al. 2014; Shaik & Elfring 2024), with supporting evidence from numerical
simulations (Wang & Ardekani 2015). Apart from emphasizing the smallness of the scale
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Figure 1. A schematic (not to scale) of the disturbance flow fields due to a translating sphere (of radius a) in
different physical scenarios. (a) Potential flow, (b) Stokes flow, (c) in the presence of weak fluid inertia and
(d) with a weak background stratification. Here, lo = O(aRe−1), the Oseen length, is the scale at which inertial
forces become comparable to viscous ones, and lc = O(aRi−1/3

v ), the stratification screening length, is the scale
at which buoyancy forces become comparable to viscous ones (for large Pe). The focus of the current work is
the flow field beyond lc in (d). The definitions of the non-dimensional numbers Re, Ri and Pe are as given in
the fourth paragraph of § 1.

at which individual marine organisms (zooplankton) input energy, the arguments rely on
two points: (a) consideration of an active instead of a passive particle in the observations
of Katija & Dabiri (2009), and (b) neglect of the stable stratification of the oceanic
ambient by the said authors. Both of these should lead to a faster decay of the disturbance
velocity field. Within a non-interacting framework, where one superposes single-particle
contributions, this in turn should lead to a convergent drift volume. In being applicable to
both passive and active particles, the ambient stratification is a more important factor than
particle activity (Subramanian 2010).

Mixing efficiencies in stratified fluids have been found to be very low for small Péclet
numbers (Pe), corresponding to a rapidly diffusing stratifying agent; in this limit, the
energy injected by the particles/swimmers is primarily dissipated, rather than contributing
to mixing or an increase in potential energy (Visser 2007; Wagner et al. 2014). At the
other extreme, that is, for large Pe, quantifying the extent of biogenic mixing requires
a study of the drift volume mentioned above. This in turn requires an examination of
the disturbance flow field induced by a particle translating vertically in a viscous stably
stratified medium. The dominant contributions to the drift volume arise from fluid motion
at distances from the particle/swimmer that are large compared with its size (Varanasi &
Subramanian 2022), and thus, the interest is in the far-field characteristics of the
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disturbance velocity in the parameter regime relevant to the oceanic scenario (see
figure 1d).

Particle motion in a stratified fluid ambient is characterized by three non-dimensional
numbers: the Reynolds number (Re = ρUa/μ), the viscous Richardson number (Riv =
γ a3g/μU) and the Péclet number (Pe = Ua/D). Here, U is the particle translational
velocity, a is the particle size (radius), ρ is an appropriate reference fluid density, μ
is the fluid viscosity, γ is the absolute value of the background density gradient, g
is acceleration due to gravity and D may be taken as the salt diffusivity, keeping in
mind the oceanic scenario. The viscous Richardson number is related to the Froude
number (Fr = U/a

√
gγ /ρ) as Riv = Fr−2Re. In the vicinity of the particle, viscous

forces are dominant, yielding the familiar O(1/r) Stokesian decay of the flow field, as
already mentioned in the context of the drift-volume discussion above. A length scale
(lc, measured from the particle), termed the ‘stratification screening length’, can be
defined as the distance where the decaying viscous forces become comparable to buoyancy
forces (Ardekani & Stocker 2010), leading to a departure from the O(1/r) decay above.
The stratification screening lengths (lc) for small and large Pe are O(a(RivPe)−1/4) and
O(aRi−1/3

v ), respectively. These are analogous to the well-known Oseen length (lo =
O(aRe−1)), where the departure from the Stokesian rate of decay occurs due to viscous
and inertia forces becoming comparable in magnitude. The existence of both inertia and
buoyancy forces, and their competition with viscous forces, leads to two flow regimes:
(a) the ‘Stokes-stratification regime’ where lc � lo, and buoyancy effects dictate the flow
behaviour at distances of order and larger than lc, and (b) the ‘inertia-stratification regime’
where lc � lo, and inertial effects influence the flow much before buoyancy does.

For a migrating marine bacterium (for instance, Pseudoalteromonas haloplanktis), the
aforementioned non-dimensional numbers are Re ∼ O(10−4), Riv ∼ O(10−12) and Pe ∼
O(10−2) (Wagner et al. 2014), and the bacterium therefore corresponds to the small-Pe
limit of the Stokes-stratification regime. In contrast, typical zooplankton (for instance,
copepods), with Re ∼ O(10−1), Riv ∼ O(10−8) and Pe ∼ O(102) (Kunze et al. 2006;
Varanasi & Subramanian 2022, henceforth VS22), correspond to the large-Pe limit of the
inertia-stratification regime. Although both scenarios are relevant for oceanic biomass, the
latter is more important due to the abundance of zooplankton, and their participation in
the diel vertical migration (Martin et al. 2020; Wang & Ardekani 2015). In figure 2(a),
we present typical sizes and speeds of different classes of marine particulate matter and
swimming organisms considered in the previous literature, along with estimates of the
Reynolds and viscous Richardson numbers shown using blue and red contours. Figure 2(b)
displays the same information on a plot whose coordinates are the Stokes-stratification
screening length (ordinate) and the Oseen length (abscissa). In addition, in table 1, we have
organized the earlier efforts in the literature by identifying the parameter space examined
in each of these, along with the particular focus of the work. From this table, it is evident
that, while there have been numerous efforts studying particle/drop motion in stratified
fluids, the focus, especially for large-Pe, had until recently been on the drag (Zvirin &
Chadwick 1975; Mehaddi et al. 2018; Lee et al. 2019) and torque corrections (Varanasi
et al. 2022) arising from the ambient stratification; with fewer works having examined the
nature of fluid motion and the associated distortion of the isopycnals. Recent analytical
efforts (Shaik & Ardekani 2020b; Varanasi & Subramanian 2022) have studied the flow
field due to a translating particle in the large-Pe limit, in an attempt to understand the
resulting fluid drift. The current study has an analogous motivation, and again concerns the
disturbance velocity and density fields induced by a vertically translating passive particle
in the large-Pe limit of the Stokes-stratification regime (see figure 2b).
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Figure 2. (a) Typical sizes and speeds of different groups/classes of marine particulate matter:
Pseudoalteromonas haloplanktis (Wagner, Young & Lauga 2014), Chlamydomonas reinhardtii (More &
Ardekani 2020), marine snow (relevant range of values indicated by a purple box, see Turner 2002), Volvox
carteri (Drescher et al. 2009), Diaptomus minutus (Malkiel et al. 2003), Daphnia magna (Noss & Lorke 2014),
Artemia salina (Houghton et al. 2018), Euphasia pacifica (Kunze et al. 2006) and Mastigias sp. (Katija & Dabiri
2009). The blue and red lines correspond to constant Reynolds and viscous Richardson numbers, respectively.
Here, U ∝ a−1 and U ∝ a3 along the blue and red lines, respectively. Note that U and a are characteristic speed
and size, of the marine particulate matter, respectively. (b) A classification of the marine particulate matter in
(a), in dimensionless terms, on a parameter plane comprising the ratio of the stratification screening length to
particle size (lc/a) and the ratio of Oseen length scale to the particle size (lo/la); refer to third paragraph of § 1
for definitions of lc and lo.

The disturbance flow field due to a point force in a stratified medium was first studied by
List (1971) and later, for a point force and a point dipole, by Ardekani & Stocker (2010),
with both studies pertaining to the small-Pe limit of the Stokes-stratification regime.
The point force in List (1971) represented a momentum jet, while it was taken to be a
vertically translating particle in the latter study. In making the point-force approximation,
the studies focused on the far field and followed the Fourier transform approach pioneered
by Childress (1964) and Saffman (1965). List (1971) used contour integration to simplify
the inverse transform integral, whereas Ardekani & Stocker (2010) used a fast Fourier
transform technique for numerical integration. The resulting flow field was found to be
fore–aft symmetric with a series of horizontal recirculating cells induced by buoyancy
forces, and that acted to inhibit vertical motion of fluid parcels. In studying the stability of
the disturbance flow field of a sphere translating in a viscous stratified ambient to turbulent
fluctuations, Fouxon & Leshansky (2014) also derived expressions for the far-field velocity
disturbance at small Pe. They too used contour integration to obtain the final integral
expression for the streamfunction. Further, by solving the simplified integral along the
stagnation streamline, the authors obtained a far-field algebraic decay of O(1/|z|9).

Zhang et al. (2019) studied the drag enhancement due to stratification, on a vertically
translating sphere, using numerical simulations, and also presented a brief description
of the flow field for different Re, and for small and large Pe. Their results showed
a fore–aft asymmetry of the large-Pe flow field, caused by the convection of density
perturbations. Lee et al. (2019) considered the flow field generated by both stationary and
vertically translating spheres in a stratified ambient. For the latter case, expressions for the
disturbance fields, at small Pe, were derived based on a Lorentz-type reciprocal identity
involving an auxiliary problem where the sphere was replaced by singular forcings in
the Stokes and convection–diffusion equations. The authors also numerically computed
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streamline and isopycnal patterns, albeit over domains of a limited spatial extent. While
these patterns pertained to a range of Re, Pe and Riv (see table 2), and did show the
emergence of a fore–aft asymmetry with an increase in Pe, the latter increase was
accompanied by an analogous increase in Re, owing to the Prandtl number being fixed.
As a result, one cannot isolate the asymmetry induced due to convection of density
perturbations alone (as would be the case in the Stokes-stratification regime). Shaik &
Ardekani (2020b) examined the disturbance flow field and the partial drift volume, induced
by a vertically translating sphere and a spherical swimmer at large Pe, using the fast Fourier
transform technique originally employed in Ardekani & Stocker (2010). The disturbance
flow field again exhibited a fore–aft asymmetry, but rather surprisingly, appeared to decay
at a slower rate in the upstream direction. The partial drift volume for the passive sphere,
although finite, was found to be several times greater than the sphere’s volume.

Recently, VS22 studied features of the disturbance velocity and density fields due to a
sphere (modelled as a point force) moving vertically through a stably stratified medium,
in the absence of inertia, over a range of Pe. The authors numerically evaluated the
inverse transform integrals to obtain the streamlines and isopycnals as a function of
β∞ = Ri1/3v Pe−1, a dimensionless parameter that is the ratio of the large-Pe stratification
screening length (aRi−1/3

v ) to the convective screening length (aPe−1). The authors also
analytically examined the structure of the disturbance fields at distances much larger than
the stratification screening length, identifying both a horizontal wake (as suggested by
the recirculating cells in the earlier efforts of Zhang et al. (2019) and Shaik & Ardekani
2020b) and a vertical jet behind the sphere, directed opposite to the sphere’s motion, for
Pe = ∞. While buoyancy forces caused the velocity field to decay rapidly in almost all
directions, a much slower O(1/r) decay was observed within the jet region close to the
rear stagnation streamline. Identification of the jet led to the emergence of a new screening
length for finite Pe (termed the ‘secondary screening length’, ls ∼ O(aRi−1/2

v Pe1/2)),
beyond which density diffusion started to smear out the jet and the ‘reverse-Stokeslet’
decay above gave way to an exponential decay of the disturbance velocity and density
fields. It is worth noting that the slower decay of the disturbance velocity along the rear
stagnation streamline, until distances of O(ls), is in contrast to Shaik & Ardekani (2020b)
above, who found the decay downstream to be faster. The latter is likely due to the limited
spatial extent of the computational domain considered – figure 1(b) in Shaik & Ardekani
(2020b) shows the downstream axial velocity only until the first zero crossing (i.e. until
z/a ≈ 0.9lc); VS22 also provided estimates for the total drift volume. A discussion of the
literature considering drops, active/passive particles and the drag induced by their motion
has been provided in the recent review by More & Ardekani (2023).

While VS22 was one of the first efforts to characterize the asymptotic structure of the
far-field velocity disturbance at large Pe, herein, we show that this characterization is
nevertheless incomplete, and that the disturbance fields have a richer asymptotic structure.
The reverse jet identified in VS22 is not an isolated feature, but merely the central part of a
configuration of concentric near-vertical recirculating cells that decrease in thickness, and
increase in number, with increasing downstream distance. Identification of this columnar
structure leads to the emergence of a tertiary screening length, corresponding to the length
of the said cells. In VS22, the velocity along the rear stagnation streamline transitioned
from a Stokeslet to a reverse Stokeslet, and then to an exponential decay, for any non-zero
β∞. Herein, we show that the tertiary screening length leads to a further transition from
the exponential to an eventual algebraic (1/z7) decay; this algebraic decay being the
same as that at sufficiently long distances along the front stagnation streamline, albeit
with a different numerical prefactor. Finally, although VS22 presented streamline and
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Wake

Reverse-jet

Columnar structure

Wake

Present workVaranasi & Subramanian (2022)

Wake

ũz ∼ 1/z̃7

ũz ∼ 1/z̃7

ũz ∼ 1/z̃

ũz ∼ exp(–2z̃/ls)/z̃1/2ũz ∼ exp(–2z̃/ls)/z̃1/2

ũz ∼ 1/z̃

Wake U

a a

U

lc lc

lt

lsls

(b)(a)

Figure 3. Schematics of the flow field induced by a sphere translating vertically in a viscous density-stratified
ambient. Panel (a) is based on VS22, and (b) is based on the present study. In both figures, the primary
screening length appears as a dashed circle with radius lc ∼ O(aRi−1/3

v ), and diffusion smears out transverse
density variations, downstream of the sphere, at distances beyond the secondary screening length, ls ∼
O(aRi−1/2

v Pe1/2). The tertiary screening length, lt ∼ O(aRi−1/2
v Pe1/2[ζ + 13

4 ln ζ + (132/42)(ln ζ/ζ )]) with
ζ = 1

2 ln(
√

πRi−1
v Pe3/2160), marks the length of the columnar structure on the right.

isopycnal patterns for a range of β∞, the spatial extents of these plots were limited.
The limitation was quite severe for the smallest β∞ values, due to convergence issues
in the numerical integration technique. For example, for β∞ = 10−5, isopycnals were
only provided in a domain with dimensions of 16lc and 5lc in the vertical and horizontal
directions, respectively; the flow field for β∞ = 0 was not provided for the same reason.
As already mentioned above, the nature of the β∞ = 0 flow field at large distances is
particularly important for the drift-volume calculation. As part of the current effort, we
simplify the inverse transform integrals using contour integration, enabling us to obtain
the flow field and isopycnals over much larger distances, and over a wide range of Pe,
including Pe = ∞ (β∞ = 0). The salient features of the flow field based on the analysis of
VS22, and those emerging from the analysis in the following sections, are summarized in
the pair of schematics in figure 3. It should be noted that, with the far-field restriction, and
thence, the treatment of the translating particle as a point force at leading order, the results
of both VS22 and the current study are agnostic to particle shape. Thus, the schematics in
figure 3 remain valid for anisotropic particles, provided one replaces the velocity vector
by the (point) force vector; the two being collinear for spheres. The flow field at distances
of order the particle size is sensitive to shape anisotropy. Features of the flow field around
an arbitrarily oriented translating spheroidal particle, for small Pe, have been discussed in
Varanasi et al. (2022).

In § 2, we first provide the governing equations, and then, the (formal) integral
expressions for the velocity and density fields resulting from the linearized
Fourier-transformed governing equations. Next, we discuss the reduction of these
expressions to double integrals using contour integration, and the numerical method used
to evaluate the double integrals; the actual simplified expressions, used for evaluation
purposes, are given in Appendix A. In § 3.1, we briefly present the main results of VS22
which provide the context for the investigation here. In § 3.2, using asymptotic evaluations
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Sphere moving in a viscous, density-stratified fluid

of the integrals, valid at large distances behind the translating sphere, we move beyond the
findings of VS22 and characterize the columnar structure downstream of the translating
sphere, providing expressions for its radial extent, the number of cells within, and the
tertiary screening length (lt). The columnar structure ends at a distance of O(lt), leading to
the disturbance fields transitioning from exponential to algebraically decaying functions of
the downstream distance. The significance of the various screening lengths are illustrated
via plots of the streamlines and isco-pycnals, in the downstream region, over a range of
small β∞ values, including β∞ = 0. In § 3.3, similar to VS22, we present the streamline
and isopycnal patterns for a wide range of β∞, but over a much larger domain – the
domain extends to 25lc in the radial direction, and to max(lt, 100lc) in the vertical (axial)
direction. We present a summary of our main findings in § 4, and end with (i) a pair of
figures, each with two halves, that help contrast the streamline and isopycnal patterns for
large and small β∞; (ii) figures that show preliminary results from ongoing drift-volume
calculations based on the velocity field obtained here.

2. Governing equations and the disturbance fields

We consider a sphere of radius a settling with velocity U across a uniformly
(stably) stratified fluid, that is, with dρ/dz = −γ (γ being a positive constant in the
absence of the sphere). The non-dimensional governing equations, with the Boussinesq
approximation, are given by (Zvirin & Chadwick 1975; Ardekani & Stocker 2010; Varanasi
& Subramanian 2022)

∇ · u = 0 (2.1)

Re[u · ∇u] = −∇p + ∇2u − Rivρf ê3, (2.2)

1 − w + u · ∇ρf = 1
Pe

∇2ρf , (2.3)

in a reference frame translating with the sphere. Here, ρf is the density disturbance field,
and u is the velocity field, w being its vertical component. The length, velocity and density
scales used to non-dimensionalize the relevant variables in (2.1)–(2.3) are a, U and γ a,
respectively. The no-slip and no-flux boundary conditions are

u = 0 and n · ∇ρf = −n · ê3 at r = 1, (2.4)

and the far-field boundary conditions are

u → ê3 (w → 1), p → p∞, and ρf → 0 for r → ∞, (2.5)

where r = |x|, x is the position relative to the sphere’s centre. The non-dimensional
parameters in (2.1)–(2.3) have already been defined in the introduction section. In writing
(2.1)–(2.5), we assume a quasi-steady state to have developed in the region of interest
surrounding the translating sphere.

Our primary focus is on large Pe in the inertialess limit (Re = 0). For Pe → ∞, the
diffusive term in (2.3) is asymptotically small compared with the convective one. Hence,
using u · ∇ρf ∼ (1 − w), along with the Stokes equations, the large-Pe stratification
screening length can be derived as lc ∼ O(aRi−1/3

v ). Using this as the characteristic length
scale, and further, restricting our attention to the far-field (the outer region) where the
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sphere appears as a point force, (2.1)–(2.3) can be written in the form

∇̃ · ũ = 0, (2.6)

−α∞
∂ũ
∂ z̃

= −∇̃p̃ + ∇̃2ũ − [ρ̃f + 6πδ(r̃)]ê3, (2.7)

−ê3 · ũ + ∂ρ̃f

∂ z̃
= β∞∇̃2ρ̃f . (2.8)

Here, r̃ = Ri1/3v r is the outer-region coordinate, ũ = Ri−1/3
v (u − ê3), p̃ = Ri−2/3

v ( p − p∞)
and ρ̃f = ρf . The delta-function forcing on the right-hand side of (2.7) replaces the
no-slip condition above, and the system (2.6)–(2.8) is only required to satisfy far-field
decay conditions. There are three screening lengths associated with the dimensionless
parameters in (2.1)–(2.3) – the inertial screening length aRe−1, the stratification screening
length aRi−1/3

v and the screening length aPe−1 associated with the convection of density
perturbations (for small Pe). The ratios of these taken pairwise, viz. α∞ = Re/Ri1/3v and
β∞ = Ri1/3v /Pe, are the parameters in (2.6)–(2.8). We study the nature of the disturbance
flow field and isopycnals, as a function of β∞, assuming α∞ = 0.

Fourier transforming (2.6)–(2.8), one obtains the disturbance fields in terms of the
following Fourier integrals:

ũ(r̃) = −3
4π2

∫ (ik3 + β∞k2)k2
(

ê3 − k3k
k2

)
(ik3 + β∞k2)k4 + k2

t
eik·r̃ dk, (2.9)

ρ̃f (r̃) = −3
4π2

∫
k2

t

(ik3 + β∞k2)k4 + k2
t

eik·r̃ dk. (2.10)

Here, k2 = k2
1 + k2

2 + k2
3 and k2

t = k2
1 + k2

2. Exploiting axisymmetry with respect to the
vertical direction (the direction of particle translation) in physical space and the absence
of a swirl, one may define a Stokes streamfunction ψ̃s, with the radial (ũr) and axial (ũz)
velocity components related to ψ̃s as ũr = −(1/r̃t)(∂ψ̃s/∂ z̃) and ũz = (1/r̃t)(∂ψ̃s/∂ r̃t) in
cylindrical coordinates (r̃t,z̃). The expression for the Stokes streamfunction can then be
written as

ψ̃s(r̃) = 3r̃ti
4π2

∫
(ik3 + β∞k2)k2

(ik3 + β∞k2)k4 + k2
t

eik·r̃ dk. (2.11)

The triple integrals in k in (2.9)–(2.11) are first reduced to double integrals, which
can then be evaluated numerically to obtain the velocity (or Stokes streamfunction) and
density fields. This is done using spherical polar coordinates (k, θ, φ) in Fourier space
with the polar axis along ê3. VS22 first evaluated the integral over φ, but this led to an
integrand with an oscillatory dependence on k, in turn leading to numerical difficulties.
To circumvent this issue, we first evaluate the k-integral using contour integration. The
resulting double integral over θ and φ has finite integration limits, and the associated
integrand is easier to evaluate. The detailed expressions for ψ̃s and density ρ̃f , obtained in
this manner, are given in Appendix A. We perform the numerical integrations appearing
in these expressions ((A11), (A13), (A21) and (A23)) using the in-built integration routine
‘Clenshaw–Curtis rule’ in Mathematica, and vary the ‘Working Precision’ option to obtain
the desired precision of the result. Because of the smallness of the result at large z̃, the
variable precision arithmetic in Mathematica is well suited to this problem.
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Sphere moving in a viscous, density-stratified fluid

3. Towards a complete flow picture

In this section, we first present the important results of VS22 (in § 3.1), which helps set the
stage for reporting our findings starting from § 3.2. In § 3.2, we derive expressions for the
boundary of, and the number of recirculating cells within, the vertical columnar structure
that arises behind the translating sphere in the non-diffusive (β∞ = 0) limit. Next, for
non-zero β∞, we identify an additional length scale, the tertiary screening length, beyond
which the columnar structure ceases to exist. In § 3.3, we put together the complete picture
using streamline and isopycnal patterns as a function of β∞.

3.1. Varanasi & Subramanian (2022)

For Re � Ri1/3v and Pe � 1, corresponding to the large-Pe limit of the Stokes-stratification
regime, VS22 evaluated the φ-integral in (2.10) and (2.11) to obtain the following double
integrals for the Stokes streamfunction and density fields (see VS22-3.4 and VS22-3.2):

ψ̃s = −3r̃2
t

4
√

r̃2
t + z̃2

+ 3r̃t

2π

∫ ∞

0
dk
∫ π

0
dθ

sin4 θJ1 (kr̃t sin θ) exp(ikz̃ cos θ)

k
(
ik3 cos θ + β∞k4 + sin2 θ

) , (3.1)

ρ̃f = −3
2π

∫ ∞

0
dk
∫ π

0
dθ

k2 sin3 θJ0 (kr̃t sin θ) exp(ikz̃ cos θ)(
ik3 cos θ + β∞k4 + sin2 θ

) . (3.2)

The first term in (3.1) is the Stokeslet contribution written out separately to facilitate
numerical integration of the second term. The integrands in (3.1) (second term) and (3.2)
decay as 1/k11/2 and 1/k5/2 for k → ∞, for any non-zero β∞; the slower decay of the
density integrand increases the difficulty of evaluation at larger spatial distances. The
presence of r̃t and z̃ in the arguments of the Bessel and complex exponential functions
implies an increasingly oscillatory integrand at large spatial distances, again contributing
to an increased difficulty of calculation.

The need to retain the full complex exponential in the integrands of (3.1) and (3.2) is
consistent with a fore–aft asymmetry of the disturbance fields. This was evident in the
different numbers of recirculating cells in front of, and behind the translating sphere,
in the streamline and isopycnal patterns obtained from numerically evaluating (3.1) and
(3.2) – refer to figure 2 of VS22, and to figures 6 and 8 below. Since the method used
made numerical integration difficult at large distances, the authors also conducted an
asymptotic analysis of the disturbance fields on scales larger than O(aRi−1/3

v ). In the
wake region where the flow is predominantly horizontal, the approximation kt � k3 was
used (see (2.10) and (2.11)), rendering one of the integrals readily evaluable via contour
integration. The remaining one-dimensional (1-D) integral revealed a self-similar wake
structure with a width that grows as z̃ ∼ r̃2/5

t . Evaluating this integral led to a quantitative
characterization of the fore–aft asymmetry, and in particular, the different rates of decay
of the disturbance fields in the upstream and downstream regions outside the wake; these
algebraic asymptotes have been given in table 2.

The authors used the complementary approximation of the flow being predominantly
vertical, corresponding to kt � k3, to examine what they termed the ‘reverse jet’
behind the sphere. The resulting 1-D integral permitted analytical evaluation only along
the rear stagnation streamline (r̃t = 0, z̃ > 0), giving the axial velocity and density
disturbance fields in terms of modified Bessel functions of the second kind, of orders
1 (ũz ≈ 3β1/2

∞ K1[2β1/2
∞ z̃]) and 0 (ρ̃f ≈ −3K0[2β1/2

∞ z̃]), respectively. The small-argument
limiting form of K1 gave rise to the reverse-Stokeslet decay (ũz ∼ 3/2z̃), with its
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z̃ ũr ũz ρ̃f

+ve 11 340/r̃11/5
t η̃8 3240/r̃14/5

t η̃7 −540/r̃12/5
t η̃6

−ve −7560/r̃11/5
t η̃8 −2160/r̃14/5

t η̃7 360/r̃12/5
t η̃6

Table 2. The large-Pe wake region asymptotes; the wake region has a self-similar structure with the
similarity variable defined by η̃ = z̃/r̃2/5

t .

large-argument limiting form leading to an exponentially decaying velocity field (ũz ∼
exp(−2β1/2

∞ z̃)/z̃1/2). The transition between these decay regimes occurred at z̃ ∼
O(β−1/2

∞ ) which, in dimensional terms, corresponds to the secondary screening length
ls ∼ O(aRi−1/2

v Pe1/2). While the large-argument form of K0 again led to an exponential
decay of the density field (ρ̃f ∼ exp(−2β1/2

∞ z̃)/z̃1/2), interestingly, the small-argument
limit revealed a logarithmic behaviour; the density disturbance is logarithmically singular
along the rear stagnation streamline for β∞ = 0. The exponential decay for both ũz and ρ̃f
arises from diffusive effects that start to smear out the jet.

3.2. The vertical columnar structure behind the translating sphere
As mentioned in the previous subsection, VS22 obtained analytical forms for the
disturbance fields along the rear stagnation streamline, allowing them to infer contrasting
behaviour on either side of the secondary screening length. For non-zero r̃t and z̃ > 0, the
1-D integrals for the Stokes streamfunction and the density field, with the aforementioned
jet approximation (kt � k3), are given by

ψ̃s = 3r̃t

∫ ∞

0
dk

J1(kr̃t) exp(−z̃(β∞k2
t + 1/k2

t ))

k4 , (3.3)

ρ̃f = −3
∫ ∞

0
dk

J0(kr̃t) exp(−z̃(β∞k2
t + 1/k2

t ))

k
. (3.4)

While the structure of the flow field away from the rear stagnation streamline can
be understood from numerically evaluating (3.3), as was done in VS22 (see figure 7
therein), important features are better understood using an analytical expression. The
integral in (3.3) can be evaluated in closed form for β∞ = 0, and for r̃t z̃1/2 � 1, using
a steepest-descent method (Bender & Orszag 2013); details of this calculation are given in
Appendix B.1. One obtains the following expression for the Stokes streamfunction:

ψ̃s|β∞=0 = 3r̃t

∫ ∞

0
dk

J1(kr̃t)e−z̃/k2

k4 , (3.5)

≈
√

3
3√2

(
r̃4/3

t z̃−4/3
)

exp
(

− 3

2 3√4

(
r̃t z̃1/2

)2/3
)

sin

(
3
√

3

2 3√4

(
r̃t z̃1/2

)2/3 + π

3

)
.

(3.6)

The sinusoidal term in (3.6) is indicative of a cellular structure with the flow direction
alternating between adjacent cells, and with the exponential pre-factor determining the
manner of decay of these oscillations from the central to the peripheral cells. The cell
widths may be correlated to the distance between successive zero crossings of the sine,
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and therefore scale as z̃−1/2. The argument, (r̃t z̃1/2)2/3, of the sine implies that, at a fixed
z̃, the cell widths, when projected onto the horizontal plane, increase with increasing r̃t; on
the other hand, a given cell becomes increasingly columnar (that is, approaches a vertical
orientation) with increasing z̃. Only the central portion of the above columnar structure,
corresponding to radial distances less than that of the first zero crossing, was identified in
VS22 as the reverse jet. Although formally valid only for r̃t z̃1/2 � 1, the location of the
first zero crossing obtained from (3.6), given by r̃t z̃1/2 = (10π

3√4/9
√

3)3/2, nevertheless
gives a good approximation for the reverse-jet boundary.

In figure 4(a), the axial velocity field obtained from the steepest-descent approximation,
(3.6), is compared with a numerical evaluation of the original inverse transform integral
in (A8) using (A13) for β∞ = 0. The comparison is as a function of z̃ for different r̃t,
starting from z̃ = 100. The latter choice ensures that r̃t z̃1/2 remains large for the chosen
non-zero r̃t values, and (3.6) therefore remains valid; for r̃t = 0, (3.6) remains inapplicable
regardless of z̃, but the decay is known to have a reverse-Stokeslet character in this case.
The numerical results, for non-zero r̃t, are seen to agree with the analytical prediction
up to a critical z̃ (that decreases with increasing r̃t), there being a subsequent departure
due to the numerical results transitioning to an algebraic decay for larger z̃ (implying the
absence of recirculating cells at these distances). This algebraic decay is the same as the
far-field asymptote obtained using the wake approximation, and is independent of r̃t –
see table 2. In other words, for a given r̃t /= 0, the disturbance velocity field shifts from
the oscillatory behaviour given by the jet approximation in (3.6), to an algebraic decay
given by the far-field asymptote (ũz = 3240/z̃7) in table 2. Interestingly, the sum of the
aforementioned approximations turns out to match very well with the numerical results
over the entire range of z̃, and we exploit this fact to find the boundary of the columnar
structure comprising the recirculating cells. This boundary is where the flow changes from
being predominantly vertical (for smaller z̃) to predominantly horizontal (for larger z̃),
and is identified by equating the amplitude of the oscillations in (3.6) to the algebraic
asymptote. That is,

1620r̃2
t

z̃7 =
√

3
3√2

(r̃t z̃1/2)4/3

z̃2 exp
(

− 3

2 3√4
(r̃t z̃1/2)2/3

)
. (3.7)

The critical r̃t corresponding to the boundary can be obtained by solving (3.7)
perturbatively, in the limit r̃t z̃1/2 � 1, after taking a logarithm on both sides. One obtains
(see Appendix B.2 for details)

r̃J = 1√
z̃A3

[
ln(z̃6/B)− ln

(
1
A

(
ln(z̃6/B)

))]3/2

, (3.8)

to second order in the perturbation expansion, with A = 3/2 3√4 and B = 1620 3√2/
√

3.
The radial distance to the boundary (∝ z̃−1/2(ln z̃)3/2 at leading logarithmic order), at
a fixed downstream distance, is seen to be logarithmically larger than the width of an
individual cell (∝ z̃−1/2), which points to the number of recirculating cells N(z̃) being a
logarithmically increasing function of z̃. Here, N can be obtained by equating the argument
of the sinusoidal term in (3.6) to (N + 1)π, recognizing that the number of zero crossings
is one more than the cell number. Substituting r̃J from (3.8) leads to

N(z̃) =
√

3

π
√

A

[
ln(z̃6/B)− ln

(
1
A

ln(z̃6/B)
)]3/2

− 2
3
, (3.9)

again to second order in the logarithmic expansion. As expected, (3.9) increases
logarithmically with downstream distance.
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Blue lines - Streamlines (from complete numerical integration of exp. 2.11)
Black lines - Zero-crossings (exp. 3.10)
Red line - Columnar structure boundary (exp. 3.8)
Dashed green lines - Lines corresponding to |ũz| vs z̃ plot in figure 4(a)

7 8

r̃z

z̃

z̃

(b)(a)

Figure 4. The downstream axial velocity disturbance (ũz) and streamline pattern for β∞ = 0. Panel (a) shows
|ũz| plotted as a function of z̃ (>0). The numerical results (bright-coloured solid curves), obtained from
evaluating the inverse transform integral in (2.11), are compared withthe asymptotic approximation derived
from (3.6) (pale-coloured dashed curves with dots added for better differentiation) for different non-zero r̃t.
The reverse-Stokeslet decay for r̃t = 0 is shown as a solid grey line, while the (common) algebraic asymptote,
3240/z̃7, appears as a dashed grey line. Panel (b) shows the streamline pattern for z̃ > 1, depicting the columnar
structure behind the translating sphere. The boundary of the columnar structure, which is the red curve
connecting the ends of the cell boundaries (black curves) above the wake region (z̃ � 100), is given by (3.8).

Expressions (3.8) and (3.9) serve to characterize the columnar structure downstream
that, despite narrowing down with increasing z̃, nevertheless encloses an increasing
number of recirculating cells. This is depicted via the downstream portion of the streamline
pattern (for z̃ � 1) for β∞ = 0 in figure 4(b), again obtained from a numerical integration
of (2.11) using (A8) and (A13). The red curve in this figure corresponds to (3.8), and
evidently demarcates the columnar structure from the predominantly horizontal streamline
pattern outside. The black curves in the figure correspond to the zero crossings of the sine
function in (3.6), obtained by equating its argument to (m + 1)π (m = 1, 2, 3, . . .); this
leads to r̃t z̃1/2 = [(mπ + 2π/3)(2 3√4/3

√
3)]3/2.

For β∞ = 0, the axial velocity along the rear stagnation streamline exhibits the
reverse-Stokeslet behaviour for all distances (much) greater than the primary screening
length (z̃ � 1), and this is indicated by the solid grey line in figure 4(a). For any non-zero
r̃t, however, there is an eventual transition to the O(1/z̃7) wake asymptote, corresponding
to the dashed grey line in the said figure. In contrast, for β∞ /= 0, the axial velocity along
the rear stagnation streamline changes from the reverse-Stokeslet decay to an exponential
decay beyond the secondary screening length (z̃ ∼ β

−1/2
∞ ), and then at still larger distances,

reverts to the aforementioned wake asymptote. The plot of the axial velocity along the
rear stagnation streamline in figure 5(a) shows the aforementioned pair of transitions for
different small β∞. If we take the second transition to define a tertiary screening length (lt),
then the exponential decay is essentially an intermediate asymptotic regime acting to
connect the O(1/z̃)-asymptote at distances smaller than ls, to the O(1/z̃7)-asymptote at
distances larger than lt. An estimate of lt can be obtained by equating the large-argument
form of K1(2β

1/2
∞ z̃), that characterizes the exponential decay phase, to the algebraic

wake asymptote. That is, 3β1/2
∞ K1(2β

1/2
∞ z̃t) = 3240/z̃7

t with z̃tβ
1/2
∞ � 1, β∞ � 1; here,

z̃t = lt/lc is the axial location corresponding to the tertiary screening length in units
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Figure 5. The absolute value of the axial velocity (|ũz|) (a) along the rear stagnation streamline; and (b) along
the third (continuous), fifth (dashed) and seventh (dotted) zero crossings (of the Stokes streamfunction), for
different β∞, including β∞ = 0. For all non-zero β∞, the plots depict the transition from a reverse-Stokeslet
decay (3/2z̃) to the far-field asymptote (3240/z̃7) at large z̃. The secondary and tertiary screening lengths,
marking the beginning and end of the exponential decay phase, are shown for each β∞.

of lc. Using limz̃tβ
1/2
∞ �1 K1(2β

1/2
∞ z̃t) = √

π exp(−2β1/2
∞ z̃)/(4β1/2

∞ z̃)1/2, one may solve the
resulting transcendental equation in a manner similar to r̃J above, by taking logarithms on
both sides. This gives

lt = lcβ
−1/2
∞

(
ζ + 13

4
ln ζ + 132

42
ln ζ
ζ

)
, (3.10)

to third order in the small parameter ζ−1, where ζ = 1
2 ln(

√
π/2160β3∞) � 1; see

Appendix C. Using the original dimensionless parameters with lc = aRi−1/3
v , one has

lt ∼ O(aRi−1/2
v Pe1/2 ln[

√
πRi−1

v Pe3/2160]) to leading logarithmic order. We have verified
that the three-term expansion in (3.10) is necessary for a precise estimate of the
second exponential-to-algebraic transition mentioned above; the first term alone leads
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to a significant underestimate. In figure 5(a), the tertiary screening lengths, obtained
from (3.10), are indicated by (vertical) dashed grey lines, and correlate very well with
the transition from an intermediate exponential to the eventual algebraic decay. The
secondary screening lengths, given by ls = 0.5623β−1/2

∞ lc and marking the beginning
of the exponential decay phase, are also shown. The numerical prefactor in the said
expression is obtained by finding the difference between the axial velocities for non-zero
β∞ and β∞ = 0, along the rear-stagnation streamline. This difference increases with z̃ to
begin with, owing to the onset of diffusion effects, attains a maximum and then decreases.
The latter decrease is because the behaviour for large z̃ is dictated by the reverse-Stokeslet
decay for β∞ = 0, the contribution due to the non-zero β∞ becoming exponentially small.
The location of the aforementioned maximum gives the numerical prefactor.

Figure 5(b) shows the behaviour of the axial velocity field, as a function of distance,
along curves corresponding to the third, fifth and seventh zero crossings of ψs; this is done
for different small β∞, including β∞ = 0. In the latter case, the loci of the zero crossings
are the black curves shown earlier in figure 4(b). The first zero crossing corresponds
to the rear stagnation streamline which serves as the axis of the downstream columnar
structure. The flow within the columnar structure reverses direction from one cell to the
next, and the zero crossing numbers above correspond therefore to the ‘centrelines’ of
every alternate cell, starting from the central reverse jet, with flow directed away from the
sphere. Interestingly, for a given β∞, the decay has a similar character for the different
cells, although its nature is essentially different for zero and non-zero β∞. For β∞ = 0,
ũz decays as the inverse of the distance along the centreline for all three cells shown,
although with smaller numerical pre-factors for the peripheral ones. For β∞ /= 0, the
inverse-centreline-distance decay only occurs until the secondary screening length, and
an exponential decay ensues thereafter. Note that all curves in figure 5(b) start from
a finite downstream distance, with this distance being larger for the peripheral cells –
this is consistent with the nature of the columnar structure for β∞ = 0 as evident from
the streamline pattern in figure 4(b) above; and for non-zero β∞ as shown in § 3.3 (see
figures 5 and 7 below). Note also that all the curves for non-zero β∞ terminate at the
tertiary screening length, as must be the case. Since the latter length scale diverges for
β∞ → 0, all three black lines in figure 5(b) continue to z̃ = ∞.

3.3. The complete streamline and isopycnal patterns
Although different flow features at large distances from the sphere have been predicted
using asymptotic methods, as illustrated in § 3.2, the extent to which these approximations
are applicable can only be ascertained by a full numerical integration. Towards this end, we
now present the complete streamline and isopycnal patterns from a numerical evaluation
of the original inverse transform integrals in (2.9) and (2.10) using (A8) and (A16).

Figure 6 shows the streamline patterns around the translating sphere (a point force at
the origin) over a range of β∞, from the diffusion-dominant limit (β∞ = 10; figure 6a) up
until the convection-dominant one (β∞ = 10−4; figure 6f ); black arrows attached to select
streamlines in each pattern indicate the flow direction. The portions of the patterns in
the rather limited central rectangular region, demarcated by black dashed lines in each of
figures 6(a)–6( f ), were the ones obtained earlier by VS22 (see figures 8 and 9 therein). The
increasing importance of convective effects, accompanying a decrease in β∞, leads to a
progressive departure from the fore–aft symmetry that characterizes the streamline pattern
in the limit β∞ → ∞. One manifestation of this asymmetry is a significant reduction in the
number of horizontal recirculating cells upstream of the translating sphere (corresponding
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Figure 6. Streamline patterns in an axial (half) plane for β∞ = (a) 10, (b) 1, (c) 10−1, (d) 10−2, (e) 10−3

and ( f ) 10−4. The sphere is located at (r̃t, z̃) ≡ (0, 0), with r̃t and z̃ being scaled by the primary screening
length lc = O(aRi−1/3

v ). Here, the dense blue bands mark the zero crossings of the Stokes streamfunction. The
streamline patterns within the central regions, enclosed by the black dashed rectangles, are those originally
obtained by VS22. The black continuous curves in (a, f ) are wake boundaries corresponding to the small- and
large−Pe similarity solutions, respectively.

to negative z̃) – from 7 for β∞ = 10, to 3 for β∞ = 1, to 1 for β∞ < O(10−2). The radial
extent of all streamline patterns shown is 25aRi−1/3

v which is sufficient for β∞ � 10−1 in
the sense that the number of (horizontal) recirculating cells should remain unchanged for
r̃t � 25. This constancy of cell number is consistent with the self-similar structure of the
large-Pe horizontal wake at these radial distances; the wake grows as z̃ ∝ r̃2/5

t for large Pe,
as shown in VS22, with its structure being a function of the similarity variable z̃/r̃2/5

t . For
β∞ � 10−1, the number of recirculating cells at larger distances therefore corresponds to
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the (fixed) number of zero crossings of the similarity solution, when plotted as a function
of the similarity variable above. Further, the far-field asymptotes of the large-Pe similarity
solution, given in table 2, give the decay rates outside of the wake recirculating cells, in
both the upstream and downstream directions; for the Stokes streamfunction, the upstream
and downstream asymptotes are given by 1620r̃2

t /z̃
7 and −1080r̃2

t /z̃
7, respectively.

The wake grows differently for small Pe, as z̃ ∝ r̃1/3
t for distances larger than

a(RivPe)−1/4. An implication of the different screening lengths in the small and large-Pe
limits, for the streamline patterns in figure 6, is that, for a fixed r̃t, the effective size of
the domain decreases as β−1/4

∞ for β∞ > 1 (β1/4
∞ being the ratio of the two screening

lengths). As a result, for a given choice of the maximum r̃t, the domain will become small
enough for sufficiently large β∞, in the sense of the numerically generated streamline
pattern not connecting to the pattern consistent with the far-field wake-similarity solution.
This insufficiency is starting to be evident in figure 6(a), for β∞ = 10, where the black
curves (z̃ ∝ r̃1/3

t ) denoting the self-similar growth of the small-Pe wake are seen to depart
noticeably from the contours that mark the final zero crossings in the upstream and
downstream directions. The analogous curves for large Pe (z̃ ∝ r̃2/5

t ) exhibit a better match
with the zero crossing contours in figure 6( f ).

Starting from β∞ = 10−2, corresponding to figure 6(d), one sees the emergence of an
additional set of nearly vertical recirculating cells behind the sphere. Only a limited portion
of the central cell in figure 6( f ), for β∞ = 10−4, falls within the domain accessed in
VS22 (the dashed black rectangle, as mentioned above), which gave the impression of
an isolated rearward jet-like structure. The larger domains in figures 6(d)–6( f ) make it
evident that this reverse jet is only the central portion of an ensemble of concentrically
arranged nearly vertical cells. With a decrease in β∞ from 10−2 to 10−4, the number of
vertical recirculating cells in the columnar structure increases from 4 to 8 over the axial
extent (100lc) of the domain examined.

To better understand the structure and spatial extent of the downstream columnar
structure in figures 6(d)–6( f ), we focus next on the streamline patterns for the smaller
β∞ values (=10−3, 10−4, 10−5 and 0), and on a much longer region downstream of the
sphere (z̃ extending up to 104). The depiction of the patterns in figures 7(a)–7(d) is now
via a semi-log plot, with the z̃-axis on a logarithmic scale. For z̃ � 20, the streamline
patterns in figures 7(a)–7(d) show a largely identical pattern of horizontal recirculating
cells, implying that the wake structure has converged to its limiting form for β∞ → 0. In
contrast, the emergence of vertical recirculating cells with increasing z̃, and the associated
pattern of streamlines, continues to be sensitively dependent on β∞ even in the said limit.
Figure 7(d), for β∞ = 0, shows a continuous increase in the number of recirculating cells
with increasing z̃. The radial extents of the individual cells decrease as z̃−1/2, with the
number of cells increasing in a manner consistent with the prediction given by (3.9) –
from 11 cells at z̃ = 100 to 24 cells at z̃ = 104. For non-zero β∞, as the effects of density
diffusion start to become important at the secondary screening length, ls = O(lcβ

−1/2
∞ ),

the recirculating cell boundaries begin to deviate from those for β∞ = 0, with the cells,
especially the ones closer to the rear stagnation streamline, becoming vertical and having
a nearly constant width at larger distances. This change due to density diffusion occurs at a
smaller downstream distance for the larger β∞ values, as a result of which the recirculating
cells are wider in these cases. All the recirculating cells for non-zero β∞ end at z̃ ∼ O(lt)
with lt given by (3.10). It is worth reiterating that both the secondary and tertiary screening
lengths diverge in the non-diffusive limit (β∞ = 0). Figure 7(e) superposes the columnar
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Figure 7. Streamline patterns in an axial (half) plane, and over an extended downstream region (1 < z̃ <
104), showing the columnar structure for β∞ = (a) 10−3, (b) 10−4, (c) 10−5 and (d) 0. The sphere is at
(r̃t, z̃) ≡ (0, 0), with r̃t and z̃ being scaled using the primary screening length lc = O(aRi−1/3

v ). The dense blue
bands mark the zero crossings of the Stokes streamfunction; the region enclosed by black dashed rectangles
correspond to the downstream patterns accessed in VS22. The inset in (b) is a zoomed-in version of the
red dashed rectangle, showing fixed points at the end of recirculating cells that enable the transition from
the cellular to a largely horizontal flow with increasing downstream distance. (e) Features of the columnar
structures, for different non-zero β∞, compared with the limiting case of β∞ = 0; horizontal dashed and
dot-dashed lines indicate secondary(ls) and tertiary (lt) screening lengths, respectively.
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Figure 8. Isopycnal patterns in an axial (half) plane at β∞ = (a) 10, (b) 1, (c) 10−1, (d) 10−2, (e) 10−2 and
( f ) 10−3. The sphere is located at the origin (r̃t, z̃) = (0, 0). Here, r̃t and z̃ are non-dimensionalized using the
primary screening length lc = O(aRi−1/3

v ), and the dense bands correspond to the zero crossings (i.e. ρ̃f = 0)
of the density. The portions of the patterns in the region enclosed by the black dashed rectangles correspond to
those obtained by VS22.

structures for different β∞, validating the aforementioned significance of the secondary
and tertiary screening lengths.

Figure 8 shows colour plots (in red) of the perturbation density (ρ̃f ), on which are
superimposed blue isopycnal contours. The isopycnal patterns correspond to the same β∞
1002 A44-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1182


Sphere moving in a viscous, density-stratified fluid

values as in figure 6 and have the same spatial extents; dashed black rectangles again mark
out the domains accessed previously in VS22, with the size of these regions reducing
starting from β∞ = 10−2, owing to numerical convergence issues already mentioned in
the introduction. Similar to the streamline patterns, there exists a set of horizontal cells
comprising the wake region in each of figures 8(a)–8( f ), that is largely insensitive to
β∞ in the limit β∞ → 0 (compare figure 8e–f ); and a set of vertical cells comprising
the downstream columnar structure that emerge for β∞ � O(10−2), and that continue to
lengthen and increase in number even as β∞ decreases to zero. The decay of the density
perturbation outside the aforementioned cellular regions is algebraic, and given in table 2.
The colour plots in figure 8 also help identify the buoyant envelope of fluid (bright red) that
surrounds the sphere (the point force at the origin). While this envelope remains localized
for larger β∞ (see figure 8a–c), it starts to get stretched out in the downstream direction
with decreasing β∞, indicative of the sphere dragging along a column of buoyant fluid
behind it.

The structure of the buoyant tail mentioned above is better seen in figures 9(a)–9(d)
where, on account of the domain extending until the tertiary screening length in the
downstream direction, one can also see the columnar structure that surrounds the buoyant
tail, in its entirety, down until β∞ = 10−5; features of this structure are analogous to
those seen in the streamline patterns in figure 7. The elongated buoyant tail above, with
a length of O(ls) is one of the most important manifestations of the fore–aft asymmetry
that develops in the isopycnal patterns with decreasing β∞. Further, as mentioned earlier,
the maximum negative value of density in this region should diverge logarithmically
along the entire rear stagnation streamline for β∞ → 0, as may also be inferred
from the expression for the density field obtained within the jet approximation (ρ̃f =
−3K0[2β1/2

∞ z̃]; see VS22).

4. Conclusions

In this paper, we have considered the disturbance flow field due to a sphere
translating vertically in a viscous stratified fluid ambient, the emphasis being on the
convection-dominant limit (Pe � 1) within the Stokes-stratification regime; the latter
regime is where buoyancy forces are dominant over inertial forces, and therefore first
balance viscous forces beyond a (primary) screening length (aRi−1/3

v ). VS22 showed
that the flow field in this limit, at large distances from the sphere, consists of a set of
horizontal recirculating cells (the wake) surrounding the sphere in the equatorial plane,
and a vertical jet in the rear, directed opposite to the sphere’s translation. Interestingly,
the authors speculated on the existence of additional recirculating cells in the region
downstream, and the possibility of the reverse jet being part of a more elaborate structure
behind the translating sphere (see bottom of p. 18 in VS22). Our results, both analytical
and numerical, confirm this speculation, and help quantitatively characterize this more
elaborate columnar structure downstream of the sphere. We show that, although this
structure extends to downstream infinity in the absence of diffusion (β∞ = 0), for any
non-zero β∞, it has a finite length, which we term the tertiary screening length, and
that is O[Ri−1/2

v Pe1/2 ln(Ri−1
v Pe3)] to leading logarithmic order. The analysis in VS22

revealed an exponential decay of the disturbance fields for any non-zero β∞ that, at
sufficiently large distances, would have led to the downstream influence of the sphere
being smaller than its upstream influence; a feature that defies intuition (at least one based
on homogeneous fluids at finite Reynolds numbers). However, the aforementioned tertiary
screening mechanism intervenes, so to speak, at the right distance, the result being that
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Figure 9. Isopycnal patterns in an axial half (plane) (and positive z̃) showing the downstream columnar
structure at β∞ = (a) 10−3, (b) 10−4, (c) 10−5 and (d) 0. The sphere is located at the origin (r̃t, z̃) = (0, 0).
Both r̃t and z̃ are non-dimensionalized using the primary screening length lc = O(aRi−1/3

v ). Here, the dense
bands correspond to the zero crossings of perturbation density (i.e. ρ̃f = 0). The isopycnal patterns in the
regions enclosed by the black dashed rectangles are those obtained by VS22. (e) The columnar structures at
various non-zero β∞, compared with the case of β∞ = 0. The horizontal dashed and dot-dashed lines indicate
secondary (ls) and tertiary (ls) screening lengths for different β∞.
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the aforementioned exponential decay transitions to an algebraic one at larger distances.
Further, the rate of algebraic decay is the same as that upstream, albeit with a larger
numerical prefactor (3240 as opposed to 2160). Thus, the resulting downstream influence
is still larger than that upstream, although the difference between the two is only a constant
of order unity (the ratio 3240/2160 = 1.5). A more profound upstream–downstream
asymmetry will have to await consideration of inertial forces.

The aforementioned results set up the groundwork for a detailed drift-volume
calculation, the significance of which was highlighted in the introduction. The more
rapid decay of the velocity field induced by stratification implies that the drift volume
is finite. VS22 argued that the drift volume must be O(a3Ri−2/3

v ) for Riv → 0 in
the Stokes-stratification regime, although determining the numerical prefactor requires
a detailed calculation. The calculation methodology is depicted via the schematic in
figure 10(a) (see also Varanasi 2022) where, instead of initializing the material plane
far upstream of the sphere, we choose it to be the plane z = 0 containing the sphere’s
centre. The pathlines of different material points are then obtained by integrating
backward (over the interval [0,−T]) and forward (over the interval [0, T]) in time,
until a time T large enough for the displacement to converge to a finite value. For a
sufficiently dense ensemble of initial material points, one may use the drift displacements
to determine the volume enclosed between the initial and final material planes for
the forward (backward) integration, which is termed the ‘downstream (upstream) drift
volume’. The total drift volume is the sum of upstream and downstream drift components.
Figures 10(c) and 10(d) showcase the contrasting nature of drift displacements, as a
function of time, for two points whose initial locations are identified in figure 10(b):
(a) point 1 is a material element initially at (r̃t, z) ≡ (0.13, 0), and that traverses the
downstream columnar structure on its way past the sphere; (b) point 2 is a material
element at (r̃t, 0) = (10, 0) which only encounters the wake region. In the backward
integration, both material points encounter only the rapidly decaying flow in the upstream
wake, leading to a quick saturation of the drift displacements (the blue curves in
figure 10c,d). In the forward integration, point 2 passes through a longer sequence of
recirculating cells in the downstream wake, leading to an oscillatory response of the drift
displacement prior to saturation (the red curve in figure 10d). Point 1, when traversing
the columnar structure, experiences the reverse-Stokeslet-like (1/z̃) decay close to the
rear stagnation streamline (see figure 5), which leads to a logarithmic increase in the
drift displacement (the red curve in figure 10c). This increase results in an eventual
change in sign of the drift displacement (relative to the homogeneous case), leading
to a contribution that has the character of a reflux. Our preliminary results for the
drift volume show that the upstream and downstream components conform to the VS22
estimate above, but the total drift volume is smaller owing to cancellation induced by the
reflux nature of the downstream component. A detailed study of the drift displacement
characteristics, and the drift-volume calculation, will be presented in a separate
communication.

It is worth ending our investigation with figures 11(a) and 11(b) – the first one containing
streamline patterns and the second one containing isopycnals – that help contrast the
structure of the disturbance fields in the diffusion-dominant and convection-dominant
limits. This contrast is achieved by having each of these figures consist of two halves,
one corresponding to β∞ � 1, and the other to β∞ � 1. It should be noted that
the diffusion-dominant halves in the said figures differ from the versions presented
earlier (figures 6a and 8a) because, in the interest of a fair comparison, the length scale
used in figures 11(a) and 11(b) is now the small-Pe screening length of O[a(RivPe)−1/4];
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Figure 10. (a) Schematic of the drift-volume calculation methodology, illustrating the total drift-volume
evaluation as the sum of upstream and downstream components. (b) The initial locations of two material
points (black stars) superimposed on the streamline pattern for β∞ = 0; the red lines indicate the
disturbance flow field encountered by these points during the sphere’s translation. The non-dimensional drift
displacements (z/a) of (c) point 1 and (d) point 2, plotted as a function of time (tU/a), for Riv = 10−4. The red
curve is the downstream drift displacement resulting from the forward integration, and the blue curve denotes
the upstream displacement resulting from the backward integration; the corresponding dashed curves are the
drift displacements in the absence of stratification. Black dashed lines mark the time when the points cross the
stratification screening length lc.

the ratio of this length scale to aRi−1/3
v is β1/4

∞ , and the large-β∞ halves in figures 11(a)
and 11(b) are rescaled versions of figures 6(a) and 8(a), obtained by multiplying the axes
with β1/4

∞ .
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Figure 11. (a) Streamline and (b) isopycnal patterns in an axial (half) plane for β∞ = 10−5 (for −14 < r̃t < 0)
and 10 (for 0 < r̄t < 14); only the downstream region, corresponding to z̃ > 1, is shown. Please note that
the radial and axial coordinates for β∞ = 10−5 are scaled by the large-Pe stratification screening length of
O[a(Riv)−1/3], whereas those for β∞ = 10 are scaled by the small-Pe screening length of O[a(RivPe)−1/4].

Appendix A. Simplification of the disturbance flow and density fields

A.1. The Stokes streamfunction
The expression for the Stokes streamfunction, obtained via an inverse Fourier transform,
is as given in (2.11). For the sake of continuity, it is repeated here

ψ̃s(r̃) = 3r̃ti
4π2

∫
(ik3 + β∞k2)k2

(ik3 + β∞k2)k4 + k2
t

eik·r̃ dk. (A1)
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For ease of numerical evaluation, the Stokeslet contribution can be separated out first in a
manner similar to (3.4) of VS22, in which case (A1) takes the form

ψ̃s(r̃) = 3r̃ti
4π2

∫ (
k2

k4 − k2
t k2

(ik3 + β∞k2)k4 + k2
t

)
eik·r̃ dk. (A2)

Here, the first term within brackets corresponds to the Stokeslet contribution and can
be evaluated analytically. The three-dimensional integral in the second term needs to be
evaluated numerically; however, it can first be reduced to a two-dimensional integral by a
series of simplifications. Using spherical polar coordinates (k, θ, φ) in Fourier space for
the second term, with the polar axis along 13, (A2) can be written as

ψ̃s(r̃t, z̃) = − 3r̃2
t

4
√

r̃2
t + z̃2

− 3r̃ti
4π2

∫ π

0
dθ
∫ π

−π

dφ
∫ ∞

0
dk

sin4 θ sinφ exp(ikδ̄1)

k
(
ik3 cos θ + β∞k4 + sin2 θ

) ,
(A3)

where kt =
√

k2
1 + k2

2 = k sin θ , k3 = k cos θ , k2 = k sin θ sinφ and δ̄1 = r̃t sin θ sinφ +
z̃ cos θ . Here, the first term is the Stokeslet contribution in physical space. The second
term can be simplified further based on angular symmetry, resulting in

ψ̃s = − 3r̃2
t

4
√

r̃2
t + z̃2

− 3r̃ti
2π2

∫ π/2

0
dθ
∫ π/2

0
dφ

×
∫ ∞

−∞
dk

sin4 θ sinφ
(
exp(ikδ̄1)− exp(−ikδ1)

)
k
(
ik3 cos θ + β∞k4 + sin2 θ

) , (A4)

with δ1 = r̃t sin θ sinφ − z̃ cos θ .
As mentioned in § 2, we first evaluate the k-integral in (A4) using contour integration.

However, the contour should be carefully chosen considering the signs of δ1 and δ̄1 in the
arguments of the exponentials, so as to satisfy Jordan’s lemma. Here, we present the steps
for positive z̃; the expressions for negative z̃ can be derived similarly. For positive z̃, δ̄1 in
(A4) is always positive, whereas δ1 can be either positive for θ < θc or negative for θ > θc;
θc(= arctan(z̃/r̃t sinφ)) being the critical polar angle at which δ1 = 0. So, for the term
involving the first exponential and for the term involving the second exponential when δ1 <
0, a contour in the upper half of the complex−k plane, as shown in figure 12(a) (‘case I’),
should be chosen. When δ1 > 0, the contour for the term involving the second exponential
should be chosen in the lower half of the complex−k plane, as shown in figure 12(b) (‘case
II’). Therefore, one can write

∫ ∞

−∞
dk I = lim

R→∞,ε→0

(∫
CL1

+
∫

CL2

)
I = lim

R→∞,ε→0

⎛
⎜⎝∮

I
−
∫

CR1

−
�

�
���

0∫
CR2

⎞
⎟⎠ I, (A5)

where the left-hand side denotes the integral corresponding to case I in (A4). The integral
along the curve CR2 has been set to zero due to Jordan’s lemma (see Lemma 4.2.2
in Ablowitz & Fokas 2003). For case II, CL1,CL2,CR1,CR2 and I in (A5) should be
replaced by CL3,CL4,CR3,CR4 and II, respectively. Also, note that the signs of the
contour integrals (

∮
I or

∮
II), and the integrals along the curves CR1 and CR3, depend

on sense (clockwise/anticlockwise) in which the contours/curves are traversed; see
figures 12(a) and 12(b). The contribution from the curves CR1 and CR3 can be evaluated
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Figure 12. Contours of integration used in solving the k-integral in (A4). Here, (a) shows a contour in the
upper half of the complex−k plane, used when the argument of the complex exponentials in (A4) is positive
(case I), whereas (b) shows a contour in the lower half of the complex−k plane used when the argument of the
complex exponentials in (A4) is negative (case II). The parameters CL1 − CL4 are integrals along the real line,
R is the radius of the curves CR2 and CR4 and ε is the radius of curves CR1 and CR3. Here, κ0 to κ4 are zeros of
the denominator in the integrand of (A4).

(using theorem 4.3.1 in Ablowitz & Fokas 2003) to be −iπ sin2 θ sinφ and iπ sin2 θ sinφ,
respectively.

To evaluate the contour integral that remains, the residues at the simple poles of the
integrand need to be calculated (see (4.1.10) in Ablowitz & Fokas 2003). These correspond
to the zeros of the denominator of the integrand excluding the origin, and therefore, to
the four roots of the quartic polynomial β∞k4 + ik3 cos θ + sin2 θ . Figure 13 shows the
behaviour of the roots in the complex−k plane, as a function of θ (0 � θ � π/2), for
various β∞. Two roots exist in the upper half of the complex−k plane and are located
symmetrically on either side of the positive imaginary axis. The remaining two roots
exist in the lower half of the complex−k plane; they can be purely imaginary or can lie
symmetrically on either side of the negative imaginary axis, depending on θ ; note that
one of the roots starts at −β−1∞ i at θ = 0, as shown in figure 13(b). We number the roots
κ1 − κ4 in an anticlockwise sense, so roots κ1 and κ2 lie in the upper half, while κ3 and κ4
lie in the lower half of the complex−k plane.

After contour integration, the integral involving the fist exponential, in (A4), can be
written as

3r̃t

2π

∫ π/2

0
dθ
∫ π/2

0
dφ

[
2

2∑
m=1

sin4 θ sinφ exp(iκmδ̄1)

κ3
m(3i cos θ + 4β∞κm)

+ sin2 θ sinφ

]
, (A6)

where the first term in the brackets is due to the residues associated with κ1 and κ2, and the
second term is due to the integral along CR1. The integral in (A4), involving the second
exponential, can be written as

− 3r̃t

2π

∫ π/2

0
dφ

(∫ θc

0
dθ

2∑
m=1

−
∫ π/2

θc

dθ
4∑

m=3

)
2 sin4 θ sinφ exp(−iκmδ1)

κ3
m(3i cos θ + 4β∞κm)

− 3r̃t

2π

∫ π/2

0
dφ

(∫ θc

0
dθ −

∫ π/2

θc

dθ

)
sin2 θ sinφ, (A7)
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Figure 13. The behaviour of (a) first and second roots, and (b) third and fourth roots of the quartic polynomial
(β∞k4 + ik3 cos θ + sin2 θ ), as a function of θ and for various β∞, in the complex−k plane. Here, θ varies
from 0 to π/2 and increases in the direction shown by the arrows. The continuous and dashed lines correspond
to root 1 (3) and 2 (4) in panel (a) (panel b), respectively.

where the first term is due to the roots of the quartic polynomial, and the second term
is due to the integral along CR1 and CR3. The integrals corresponding to CR1 and CR3
have been given above, and taken together, will cancel the Stokeslet contribution in (A4).
Finally, one can express the Stokes streamfunction as

ψ̃s = 3r̃t

2π
(Tψ1 + Tψ2), (A8)

where, for z̃ > 0,

Tψ1(r̃t, z̃) =
∫ π/2

0
dφ

[∫ π/2

0
dθ

2∑
m=1

2 sin4 θ sinφ exp(iκmδ̄1)

κ3
m(3i cos θ + 4β∞κm)

]

Tψ2(r̃t, z̃) = −
∫ π/2

0
dφ

[(∫ θc

0
dθ

2∑
m=1

−
∫ π/2

θc

dθ
4∑

m=3

)
2 sin4 θ sinφ exp(−iκmδ1)

κ3
m(3i cos θ + 4β∞κm)

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A9)
Using similar arguments as above, the expressions for z̃ < 0 can also be written as

Tψ1(r̃t, z̃) =
∫ π/2

0
dφ

[∫ π/2

0
dθ

4∑
m=3

2 sin4 θ sinφ exp(−iκmδ1)

κ3
m(3i cos θ + 4β∞κm)

]

Tψ2(r̃t, z̃) = −
∫ π/2

0
dφ

[(∫ θc

0
dθ

4∑
m=3

−
∫ π/2

θc

dθ
2∑

m=1

)
2 sin4 θ sinφ exp(iκmδ̄1)

κ3
m(3i cos θ + 4β∞κm)

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A10)
The φ-integral in the above expressions can be evaluated analytically only for those terms
with the θ -integral limits independent of φ i.e. for Tψ1 in (A9) and in (A10), leading in
these cases to a single θ−integral in terms of Bessel and Struve functions as given in
(A11). Finally, by using the variables (x, y) = (sinφ, sin θ), expressions (A9)–(A10) can
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be written as

Tψ1(r̃t, z̃) = π

∫ 1

0
dy(1−y2)3/2

p+1∑
m=p

(
isJ1(r̃tκm

√
1−y2)+ H−1(r̃tκm

√
1−y2)

)
eiκmz̃y

κ3
m(3iy + 4β∞κm)

,

Tψ2(r̃t, z̃) = 2
∫ 1

0
dx

⎡
⎣∫ yc

0
dy

q+1∑
m=q

−
∫ 1

yc

dy
p+1∑
m=p

⎤
⎦ (1 − y2)3/2e−iκmδ

κ3
m(3iy + 4β∞κm)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A11)

with δ = sr̃t
√

1 − x2
√

1 − y2 − z̃y and yc = r̃t
√

1 − x2
/√

z̃2 + r̃2
t (1 − x2). Here, J1 and

H−1 in (A11) are, respectively, the Bessel and Struve functions of the first kind and of
orders 1 and −1 (Abramowitz & Stegun 1968). The indices, that appear in the summations
in (A11), are defined as ( p, q, s) ≡ (1, 3, 1) for z̃ > 0 and ( p, q, s) ≡ (3, 1,−1) for z̃ < 0;
the indices number the roots in terms of their position in the complex−k plane, taken in
an anticlockwise manner starting from the first quadrant.

The limit β∞ → 0 is a singular one when the quartic polynomial in k degenerates to a
cubic one, with one of the aforementioned four roots receding to infinity. As mentioned
earlier, root κ4(θ = 0) = −β−1∞ i. Therefore, for β∞ → 0, κ4 approaches −∞i, making the
evaluation of the residue at κ4 difficult. So, we set β∞ = 0 in (A4), reducing the order of
the polynomial in the denominator by one. The resulting expression can be simplified as

ψ̃s = − 3r̃2
t

4
√

r̃2
t + z̃2

+ 3r̃t

π2

∫ π/2

0
dθ
∫ π/2

0
dφ
∫ ∞

0
dk

× sin4 θ sinφ
(
sin2 θ(sin kδ̄1 + sin kδ1)− k3 cos θ(cos kδ̄1 − cos kδ1)

)
k(k6 cos2 θ + sin4 θ)

. (A12)

In evaluating the k-integral for the terms including sin kδ̄1 and sin kδ1, we use identity
(3.738.1) from Gradshteyn & Ryzhik (2007). For the terms including cos kδ̄1 and cos kδ1,
we use identity (3.738.2). Please note that the said identities are applicable only when the
arguments of sin kδ̄1 (or sin kδ1) and cos kδ̄1 (or cos kδ1) are positive. Therefore, when δ1
(δ̄1) is negative, for positive (negative) z̃, it should be replaced with −|δ1| (−|δ̄1|). So one
obtains, for example, sin kδ1 = sin(−k|δ1|) = − sin k|δ1| and cos kδ1 = cos(−k|δ1|) =
cos k|δ1|. Subsequent simplifications lead to the following alternate expressions for Tψ1,
and Tψ2 for β∞ = 0:

Tψ1(r̃t, z̃) = 1
3

∫ 1

0
dx
∫ 1

0
dy
√

1 − y2
(
3 − Ψ1(δ̄)Θ(z̃)− Ψ2(δ)Θ(−z̃)

)
,

Tψ2(r̃t, z̃) = 1
3

∫ 1

0
dx

[∫ yc

0
dy
√

1 − y2
(
3 − Ψ1(δ̄)Θ(−z̃)− Ψ2(δ)Θ(z̃)

)

−
∫ 1

yc

dy
√

1 − y2
(
3 − Ψ1(δ)Θ(z̃)− Ψ2(|δ̄|)Θ(−z̃)

)]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A13)
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where

Ψ1(Δ) = 4 exp

⎛
⎝−Δ

2
3

√
1 − y2

y2

⎞
⎠ cos

⎛
⎝Δ√

3
2

3

√
1 − y2

y2

⎞
⎠ ,

Ψ2(Δ) = 2 exp

⎛
⎝−Δ 3

√
1 − y2

y2

⎞
⎠

δ̄ = sr̃t

√
1 − x2

√
1 − y2 + z̃y, δ = sr̃t

√
1 − x2

√
1 − y2 − z̃y,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A14)

and Θ(z̃) is the Heaviside function. Other variables, including s in particular, have the
same definitions as in (A11).

A.2. The density disturbance field
For arbitrary β∞, the inverse Fourier transform integral for the density perturbation is
given in (2.10)

ρ̃f (r̃) = −3
4π2

∫
k2

t

(ik3 + β∞k2)k4 + k2
t

eik·r̃ dk. (A15)

Again, use of spherical polar coordinates in Fourier space leads to

ρ̃f = − 3
2π2

∫ π/2

0
dθ
∫ π/2

0
dφ
∫ ∞

−∞
dk

sin3 θk2 (exp(ikδ̄1)+ exp(−ikδ1)
)

(
ik3 cos θ + β∞k4 + sin2 θ

)
= − 3

2π
(Tρ1 + Tρ2). (A16)

The k-integral here can be performed using contour integration similar to the earlier
subsection. An important difference is that the contour need not be indented to exclude
the origin, i.e. the small semi-circular curve (CR1 and CR3), as there is no pole at k = 0.
Therefore, the integration contour is a semi-circle either in the upper quadrants or the
lower quadrants, depending on the sign of δ1 and δ̄1. For z̃ > 0, after the k−integration,
one obtains

Tρ1(r̃t, z̃) = 2i
∫ π/2

0
dθ
∫ π/2

0
dφ

2∑
m=1

sin3 θ exp(iκmδ̄1)

(3i cos θ + 4β∞κm)
, (A17)

Tρ2(r̃t, z̃) = 2i
∫ π/2

0
dφ

[∫ θc

0
dθ

2∑
m=1

−
∫ π/2

θc

dθ
4∑

m=3

]
sin3 θ exp(−iκmδ1)

(3i cos θ + 4β∞κm)
. (A18)

For z̃ < 0,

Tρ1(r̃t, z̃) = −2i
∫ π/2

0
dθ
∫ π/2

0
dφ

4∑
m=3

sin3 θ exp(−iκmδ1)

(3i cos θ + 4β∞κm)
, (A19)

Tρ2(r̃t, z̃) = −2i
∫ π/2

0
dφ

[∫ θc

0
dθ

4∑
m=3

−
∫ π/2

θc

dθ
2∑

m=1

]
sin3 θ exp(iκmδ̄1)

(3i cos θ + 4β∞, κm)
. (A20)

Similar to the case for the Stokes streamfunction, the φ-integral in (A17) and (A19) can
be evaluated in terms of Bessel and Struve functions. Finally, with a change of variables
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from (θ, φ) to (x, y) = (sin θ, sinφ), one obtains

Tρ1(r̃t, z̃) = πi
∫ 1

0
dy(1−y2)

p+1∑
m=p

⎡
⎣
[
sJ0(κmr̃t

√
1−y2)+ iH0(κmr̃t

√
1−y2)

]
eiκmz̃y

3iy + 4βκm

⎤
⎦ ,

Tρ2(r̃t, z̃) = 2i
∫ 1

0

dx√
1 − x2

⎡
⎣−

∫ yc

0
dy

q+1∑
m=q

+
∫ 1

yc

dy
p+1∑
m=p

⎤
⎦ s(1 − y2)e−iκmδ

3iy + 4βκm
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A21)
Here, J0 and H0 are, respectively, the Bessel and Struve functions of the first kind and
order 0 (Abramowitz & Stegun 1968). The definitions for different variables (δ, yc, κm)
and indices (p, q, s) are as given in (A21). For β∞ = 0, as mentioned in the previous
subsection, we set β∞ to zero in (A16) and write

ρ̃f = − 3
π2

∫ π/2

0
dθ
∫ π/2

0
dφ
∫ ∞

0
dk k2 sin3 θ

× sin2 θ(cos kδ̄1 + cos kδ1)+ k3 cos θ(sin kδ̄1 − sin kδ1)

k6 cos2 θ + sin4 θ
. (A22)

The k-integral is then evaluated using identities (3.738.1) and (3.738.2) from Gradshteyn
& Ryzhik (2007), as done in the previous subsection. Finally, one can write

Tρ1(r̃t, z̃) = 1
3

∫ 1

0
dx
∫ 1

0
dy
(1 − y2)

y
√

1 − x2

(
Ψ1(δ̄)Θ(z̃)− Ψ2(δ)Θ(−z̃)

)
,

Tρ2(r̃t, z̃) = 1
3

∫ 1

0
dx
[∫ yc

0
dy
(1 − y2)

y
√

1 − x2

(
Ψ1(δ̄)Θ(−z̃)− Ψ2(δ)Θ(z̃)

)

+
∫ 1

yc

dy
(1 − y2)

y
√

1 − x2

(
Ψ1(δ)Θ(z̃)− Ψ2(|δ̄|)Θ(−z̃)

)]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A23)

where the definitions for variables Ψ1, Ψ2,Θ, δ and δ̄ are as described in (A13).

Appendix B. Calculating the boundary of the downstream columnar structure

In order to find an expression for the boundary of the columnar structure, we first derive a
closed-form expression for the Stokes streamfunction under the jet approximation, that is,
the limit k3 � kt, corresponding to nearly vertical flow. In this limit, (A1) simplifies to

ψ̃s = 3r̃ti
4π2

∫
(ik3 + β∞k2

t )k2

(ik3 + β∞k2
t )k4

t + k2
t

eik·r̃ dk. (B1)

Using cylindrical coordinates in Fourier space – (kt, φ, k3) facilitates the evaluation of
the k3-integral using contour integration (VS22). Subsequently, performing the φ-integral
results in the following 1-D integral in terms of kt:

ψ̃s = 3r̃t

∫ ∞

0
dkt

J1(r̃tkt) exp(−z(β∞k2
t + 1/k2

t ))

k4
t

. (B2)

We now evaluate this integral in closed form in the non-diffusive limit (β∞ = 0).
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B.1. Steepest-descent method for the far-field jet approximation integral
For β∞ = 0, using a change of variables λ = √

z/kt, the integral in (B2) can be written as

3r̃t

z̃3/2

∫ ∞

0
dλ λ2J1

(
r̃t z̃1/2

λ

)
exp(−λ2). (B3)

In the limit r̃t z̃1/2 � 1, the dominant contribution to the integral comes from λ ∼ O(1),
owing to the decaying exponential in the integrand. Therefore, (r̃t z̃1/2)/λ� 1, and
one can approximate the Bessel function in terms of its large-argument trigonometric
representation J1(x) = (sin x − cos x)/

√
πx, whence (B3) simplifies to

3(1 + i)(r̃t z̃1/2)1/2

2
√

πz̃2

∫ ∞

−∞
dλ λ5/2 exp

(
−λ2 + i

r̃t z̃1/2

λ

)
. (B4)

A further change in variables, λ̂ = λ(r̃t z̃1/2)−1/3, leads to

3(1 + i)r̃t z̃1/2

2
√

πz̃2

∫ ∞

−∞
dλ̂ λ̂5/2 exp

(
(r̃t z̃1/2)2/3g(λ̂)

)
, where g(λ̂) =

(
−λ̂2 + i

λ̂

)
. (B5)

This integral can be determined using the steepest-descent method, with the large
parameter being (r̃t z̃1/2)2/3. Accordingly, the integration path along the real axis is
deformed onto the appropriate constant phase contour (Im(g(λ̂)) is a constant) in the
complex-λ̂ plane. Next, the saddle points on this steepest-descent contour are identified.
These points correspond to Re(g(λ̂)) attaining a maximum, and for r̃t z̃1/2 � 1, the
dominant contribution to the integral arises from the neighbourhood of the saddle point
(Bender & Orszag 2013). Substituting λ̂ = λ̂r + iλ̂i in g(λ̂) above and writing the real and
imaginary parts separately yields

g(λ̂r, λ̂i) =
(

−λ̂2
r + λ̂2

i + λ̂i

λ̂2
r + λ̂2

i

)
+ i

(
λ̂r

λ̂2
r + λ̂2

i

− 2λ̂rλ̂i

)
, (B6)

where the constant phase curves are given by

Im(g(λ̂r, λ̂i)) =
(
λ̂r

λ̂2
r + λ̂2

i

− 2λ̂rλ̂i

)
= const. (B7)

The saddle points corresponding to dg(λ̂)/dλ̂ = 0 are given by

λ̂n = 1
3√2

exp
(−iπ

3

(
1
2

+ 2n
))

, where n ∈ [0, 1, 2]. (B8)

The constant phase curves that pass through the saddle points can now be drawn by
replacing the const. in (B5) with Im(g(λ̂n)). That is,(

λ̂r

λ̂2
r + λ̂2

i

− 2λ̂rλ̂i

)
= Im(g(λ̂n)), where n ∈ [0, 1, 2], (B9)

which are depicted in figure 14. We only consider the red and blue curves (corresponding
to saddle points 1 and 2) to deform the original integration path (i.e. λ̂ ∈ [−∞,∞]) into;
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Saddle point 1Saddle point 2
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4 5

λ̂r

λ̂i

Figure 14. Constant phase curves in the complex-λ̂ plane from expression (B7). The blue, red and green curves
(both dashed and continuous) correspond to saddle points 1, 2 and 3, respectively; however, we consider only
the continuous curves. The red and blue continuous curves are the steepest-descent curves, whereas the green
curve is the steepest-ascent curve.

the green curve that passes through saddle point 3 is a steepest-ascent curve, and hence,
cannot be used. In other words,

∫ ∞

−∞
dλ̂ λ̂5/2 exp

(
(r̃t z̃1/2)2/3g(λ̂)

)
=
[∫

R
+
∫

B

]
dλ̂ λ̂5/2 exp

(
(r̃t z̃1/2)2/3g(λ̂)

)
, (B10)

where R and B indicate the red and blue steepest-descent contours, respectively. Next,
the integrals are approximated close to saddle points 1 and 2, respectively; as already
mentioned, these regions will have the largest contribution. This is done by substituting
λ̂ = λ̂n +Λ and doing a Taylor series expansion of the integrand, for small Λ, whence
one obtains (

exp((r̃t z̃1/2)2/3g(λ̂1))λ̂
5/2
1 + exp((r̃t z̃1/2)2/3g(λ̂2))λ̂

5/2
2

)
×
∫ ∞

−∞
dΛ exp

(
−3(r̃t z̃1/2)2/3Λ2

)
, (B11)

at the leading order in Λ. Evaluating the Gaussian integral above yields

(
exp((r̃t z̃1/2)2/3g(λ̂1))λ̂

5/2
1 + exp((r̃t z̃1/2)2/3g(λ̂2))λ̂

5/2
2

)√ π

3
(
r̃t z̃1/2

)2/3 . (B12)

Substituting λ̂1 and λ̂2 in the expression above, one obtains the Stokes streamfunction in
the limit of r̃t z̃1/2 � 1, as given in (3.6).
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B.2. Boundary of the columnar structure
As described in § 3.2, the boundary separating the columnar structure, and the far-field
region described by the algebraic wake asymptote, is given by (see (3.8))

1620r̃2
t

z̃7 =
√

3
3√2

(r̃J z̃1/2)4/3

z̃2 exp
(

− 3

2 3√4
(r̃J z̃1/2)2/3

)
. (B13)

This can be written as
B
z̃6 = exp (−Aξ)

ξ
, (B14)

where A = 3/2 3√4, B = 1620 3√2/
√

3 are constants and ξ = (r̃J z̃1/2)2/3. Taking a
logarithm on both sides gives

ln
(

z̃6/B
)

= Aξ + ln ξ. (B15)

For the columnar structure z̃ � 1, and the left-hand side in (B15) is a logarithmically large
quantity. Assuming ξ � 1 in anticipation, the first term on the right-hand side is dominant
over the second. Therefore, at leading (logarithmic) order, one obtains

ξ ∼ L1 := 1
A

[
ln
(

z̃6

B

)]
. (B16)

In order to obtain a better approximation, one writes ξ = L1 + L2, where L1 is given in
(B16) and the correction L2 � L1. Substituting ξ = L1 + L2 in (B15) gives

ln
(

z̃6

B

)
= AL1 + AL2 + ln(L1 + L2). (B17)

The first term in the right-hand side cancels the left-hand side due to (B16). Next, the third
term in (B17) can be written as ln(L1 + L2) = ln L1 + ln(1 + L2/L1) ≈ ln L1 + L2/L1.
Therefore, (B17) simplifies to

AL2 = − ln L1 − L2

L1
. (B18)

Since L2/L1 � L2, one obtains

L2 = − 1
A

ln (L1) . (B19)

Using L1 and L2 from (B16) and (B19), one obtains

ξ = L1 + L2 = 1
A

[
ln
(

z̃6

B

)
− ln

(
1
A

ln
(

z̃6

B

))]
, (B20)

to second order. Substituting A,B and ξ in (B20) results in an explicit expression for
the radial extent of the columnar structure boundary (r̃J) in terms of z̃, given in (3.8).
Figure 15(a) shows a comparison of the boundary calculated from L1 alone (red curve),
and using L1 + L2 (black dashed curve), with that obtained from the streamline plot (blue
curve). The two-term approximation is better than the single-term one, and shows an exact
match with the numerically obtained boundary.
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Columnar structure boundary
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ξ = L1 + L2

Numerical sol. (C1)
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χ = M1 + M2

χ = M1 + M2 + M3

(b)(a)

r̃t

Figure 15. (a) Comparison of the columnar structure boundary obtained in Appendix B.2 with the boundary
drawn from ends of different recirculating cells in the streamline plot of β∞ = 0 (blue curve). The red and
black dashed curves are from the single and two term asymptotic solution from (B16) and (B20), respectively.
(b) Comparison of the tertiary screening length obtained in Appendix C and that from numerically solving (C1)
(blue curve). The red, green and black curves are from the single-, two- and three-termasymptotic solutions
given in (C4), (C6) and (C7), respectively.

Appendix C. Tertiary screening length

As described in § 3.2, we equate the large-argument form of the modified Bessel function
expression of the axial velocity (along the rear stagnation streamline) with the expected
far-field decay asymptote to obtain

3β1/2
∞
√

π

2

exp
(
−2β1/2

∞ z̃t

)
(
−2β1/2

∞ z̃t

)1/2 = 3240
z̃7

t
. (C1)

This equation can be simplified by setting χ = β
1/2
∞ z̃ and C = 2160β3∞/

√
π, so (C1) takes

the form

exp(−2χ) = C
χ13/2 . (C2)

Taking a logarithm on both sides of (C2) gives

ln
(

1
C

)
= 2χ − 13

2
ln(χ). (C3)

In the convection-dominant limit (β∞ � 1), the left-hand side of (C3) is a logarithmically
large quantity. Assuming χ � 1 therefore, one finds that the first term in the right-hand
side is dominant over the second; a reasonable assumption the secondary screening length
is given by ls ∼ O(alcβ

−1/2
∞ ), and χ � 1 implies that the tertiary screening length is

asymptotically larger in relation. Therefore, one obtains, to the leading (logarithmic) order,

χ ∼ M1 := 1
2

ln
(

1
C

)
. (C4)
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Similar to Appendix B.2, a correction to χ can be found by substituting χ = M1 + M2,
where M1 is given by (C4), in (C3). Grouping terms of the same order yields(

ln
(

1
C

)
− 2M1

)
=
(

2M2 − 13
2

ln M1

)
− 13

2
M2

M1
. (C5)

In obtaining the expression above, ln(M1 + M2) due to the second term in (C3) is written
as ln M1 + ln(1 + M2/M1) ≈ ln M1 + M2/M1. One then finds

M2 = 13
4 ln M1. (C6)

Figure 15(b) shows a comparison of the tertiary screening length calculated from M1
alone (red curve), and using M1 + M2 (green curve), with that obtained from numerically
solving (C1) (blue curve). In contrast to r̃J above, there is a small deviation from the
numerical results even relative to the two-term approximation. A better approximation
is therefore obtained by considering χ = M1 + M2 + M3 and substituting in (C2). This
results in(

ln
(

1
C

)
− 2M1

)
=
(

2M2 − 13
2

ln M1

)
+ 2M3 − 13

2
ln
(

1 + M2 + M3

M1

)
. (C7)

Again, the left-hand side and the first two terms in the right-hand side cancel due to (C4)
and (C6), respectively. Further, noticing that M3/M1 � M3, one finds

M3 = 13
4

M2

M1
. (C8)

Finally, substituting M1, M2 and M3, yields

χ = M1 + M2 + M3 =

⎛
⎜⎜⎝1

2
ln
(

1
C

)
+ 13

4
ln
(

1
2

ln
(

1
C

))
+ 169

16

ln
(

1
2

ln
(

1
C

))
1
2

ln
(

1
C

)
⎞
⎟⎟⎠ .
(C9)

The tertiary screening length calculated from the expression above (black dashed curve)
matches well with that from numerically solving (C1) (blue curve), as shown in
figure 15(b).
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