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Amorphous materials transition from solid-like to liquid-like behaviour (yield) under
large stresses. Their constituent elements are caged in metastable configurations due to
their neighbours. Microscale interactions between these elements lead to a large energy
barrier to break the cages and trigger a plastic rearrangement. Thermal fluctuations can
alter the yielding point as the elements hop to new configurations in anticipation. This
work bridges the gap between molecular-scale physics and bulk rheology in thermal
amorphous materials by connecting a classical density functional theory to a thermally
activated elastoplastic model (EPM). We use a model system of solvent-free polymer-
grafted nanoparticles which show rheological characteristics similar to those of soft glassy
materials. We formulate the evolution of the free energy in a deforming array of polymer-
grafted nanoparticles to obtain the energy landscape as an input to our EPM. We examine
how the apparent yield stress depends on the shape of the energy landscape, thermal
fluctuations and the rate of deformation. Our general scaling analyses reveal different
regimes of structural relaxation governed by the applied shear rate and the inherent time
scale for thermal hops. The complex interplay between mechanical loading and thermal
fluctuations is further characterized by performing a variety of shear tests with different
deformation history. The proposed framework provides an understanding of the yielding
transition by integrating across a vast range of length and time scales.
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1. Introduction

Amorphous materials lie at the intersection of solids and liquids (Nicolas et al. 2018).
Under small stresses, amorphous materials deform elastically, whereas under large
stresses, they yield and start to flow plastically, and consequently they are also referred
to as yield stress materials (Nicolas et al. 2018; Lin et al. 2014a). In athermal amorphous
materials such as dense granular suspensions, foams and emulsions, the effects of
Brownian motion on the response of the material to deformation are negligible (Amon
et al. 2012). On the contrary, thermal fluctuations can play a key role in the dynamics
of thermal amorphous materials such as colloidal gels, colloidal glasses and metallic
glasses (Chattoraj, Caroli & Lemaitre 2010). The yielding transition has been extensively
studied for athermal materials (Ritort & Sollich 2003; Biroli & Bouchaud 2012; Lin et al.
2015; Ozawa et al. 2018). However, the origin of this transition and its connection to
molecular-level information remains poorly understood, especially in thermal systems.

Unlike crystalline solids in which plasticity is a consequence of dislocations (Hill
1998), amorphous materials are in an arrested, glassy state, and plasticity occurs through
localized rearrangements of constituent particles as they break the cages created by their
neighbours (Argon 1979; Falk & Langer 1998). More specifically, glassy materials have
a rough free energy landscape meaning that the particles are in metastable configurations
(energy wells) due to the presence of their neighbours. The particles can hop to another
energy well by thermal activation. This is the underlying physics of trap models developed
for glasses (Bouchaud 1992; Monthus & Bouchaud 1996). Following in the footsteps of
Monthus & Bouchaud (1996), Sollich et al. (1997) developed the soft glassy rheology
(SGR) model to incorporate elasticity into trap models and describe the rheology of
foams and dense emulsions (so-called soft glassy materials (Dollet & Graner 2007; Dollet,
Scagliarini & Sbragaglia 2015)). This model divides the material into mesoscopic elements
(each with a specific energy well and thus a yield threshold) and assumes that under
mechanical loading, the elements (particles) deform elastically within their energy wells.
This stored elastic energy reduces the energy barrier to hop. Since foams and emulsions are
athermal, the yielding of elements is activated by the stress redistributed by the structural
relaxation of other elements. This activation is modelled by an ad hoc noise temperature
in the SGR model (Sollich et al. 1997; Sollich 1998). Hébraud & Lequeux (1998) further
formalized the idea of dividing the material into mesoscopic elements leading to the
emergence of numerous elastoplastic models (EPMs) which consider an elastic response,
a local yield criterion, stress redistribution after yielding and a recovery of the local stress
after a plastic event (Lin et al. 2014a,b, 2015; Lin & Wyart 2016).

These models provide illuminating insights into the elasticity and the mechanical noise
generated by plasticity in amorphous materials. However, they exhibit deficiencies in two
significant regards: first, they are developed for athermal materials, while many amorphous
materials have nanoscopic elements and activated dynamics, e.g. biological tissues (Bi
et al. 2016), cytoskeleton networks in living cells (Bursac et al. 2005), calcium-protein
assembly in the casein matrix of cheese (Gillies 2019), nanofilms at fluid interfaces
(Krishnaswamy & Sood 2010), among others. An activated version of the Hébraud—
Lequeux model is proposed by Popovié et al. (2021), which shows that thermal fluctuations
change the distribution of local stress, referred to as rounding of the yielding transition.
They also proposed scaling laws for the yielding transition that were further analysed and
explained by Ferrero, Kolton & Jagla (2021). Both of these studies, however, were limited
to steady-state flows and applied stresses only slightly below the yield stress. Second, the
currently available elastoplastic modelling only connects the mesoscopic properties (such
as distribution of local stress, mechanical noise, etc.) to the bulk response while neglecting
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the molecular-level properties. This is despite the fact that the free energy landscape and
the local barriers, which are a result of molecular-level information, dictate the dynamics
of amorphous materials (Pica Ciamarra et al. 2024).

Unlike simple liquids, soft amorphous materials exhibit complex nonlinear rheology
(Goyon et al. 2008; Bonn et al. 2017; Khabaz, Cloitre & Bonnecaze 2020). Some
common rheological features of these materials are: (i) a rate-dependent stress overshoot
in the stress—strain curve of a start-up shear test depending on the initial state of the
material and direction of the shear (Derec ef al. 2003; Moorcroft, Cates & Fielding 2011);
(ii) a peak in the loss modulus and a decrease in the storage modulus in a strain sweep
test when an oscillatory shear strain is applied (Mason, Bibette & Weitz 1995; Rogers
et al. 2011; Dimitriou, Ewoldt & McKinley 2013); (iii) history-dependent behaviour
(Khabaz et al. 2021; Di Dio et al. 2022); (iv) ageing (Liu, Martens & Barrat 2018;
Parley, Fielding & Sollich 2020); (v) shear banding (Kabla, Scheibert & Debregeas 2007,
Coussot & Ovarlez 2010; Fielding 2014), among others. The SGR model can qualitatively
reproduce these rheological features for athermal amorphous materials by changing the
parameters of the model (Fielding et al. 2000, 2009). Quantitative agreement between the
model and experiments might be achieved provided that the model is linked to molecular-
level information about the material to achieve physical and meaningful values for the
parameters.

An important question is how the presence of thermal fluctuations affects this nonlinear
rheology. The first consideration when including the thermal fluctuations is the time scale
of thermally activated structural relaxations (zy,) that competes with the time scale of
mechanical loading (1/y). Further richness may arise when one considers a time scale for
plasticity (single rearrangement) (Ferrero, Martens & Barrat 2014) and a time scale for
avalanches of rearrangements (multiple plastic events which are triggered by an initial
event) (Nicolas et al. 2015). The complex interplay between mechanical loading and
thermal fluctuations might completely alter both transient and steady-state responses,
depending on the system under deformation. For example, the flow curve, indicating
the stress as a function of shear rate in steady shear, in athermal amorphous materials
usually follows a Herschel-Bulkley law (Lin et al. 2014a; Sen, Morales & Ewoldt 2020),
while at vanishing shear rates, thermal fluctuations give rise to a Newtonian stress instead
of a stress plateau in dense colloidal suspensions (Fuchs & Cates 2002). Furthermore,
molecular dynamics simulations of a two-dimensional Lennard-Jones glass (Chattoraj
et al. 2010) and thermally activated creep tests using kinetic Monte Carlo simulations on
a square lattice (Merabia & Detcheverry 2016) show that thermal fluctuations introduce a
logarithmic dependence of the steady-state stress on the shear rate. An activated version
of the Hébraud-Lequeux model also predicts a logarithmic flow curve for large stresses
just below the yield stress in the limit of small temperatures (Popovi¢ et al. 2021). Prior
studies on the role of thermal fluctuations in amorphous materials have only focused
on steady-state situations under large applied deformation. However, thermal amorphous
materials can flow over a long time scale even under very small deformation while showing
solid-like behaviour on limited time scales (Schroter & Donth 2000; Lu, Ravichandran &
Johnson 2003; Agarwal, Qi & Archer 2010; Riechers er al. 2025). A comprehensive
theoretical understanding of the intricate physics governing this complex behaviour is
yet to be established. Thus, to better understand and characterize the combined effects
of mechanical loading and thermal fluctuations on both the transient and steady-state
rheology, it is essential to have a thermally activated constitutive model. To test the model,
it would be crucial to study a well-characterized thermal amorphous material.

As a class of polymer nanocomposites and a promising thermal model material, self-
suspended polymer-grafted nanoparticles consist of hard inorganic nanocores densely
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grafted with polymer chains. Even in the absence of a dispersing medium, these polymer-
grafted nanoparticles can exhibit fluid behaviour as the grafted polymers fill the interstitial
space between the cores like an incompressible fluid (Bourlinos et al. 2005a,b; Rodriguez
et al. 2008). Strong van der Waals forces usually lead to irreversible aggregation of
nanoscale suspensions making the material properties unpredictable (Russel ef al. 1991).
However, polymer-grafted nanoparticles are a novel class of polymer nanocomposites in
which particle aggregation is suppressed since the configurational entropy of the grafted
polymers is much greater than the van der Waals interactions between the cores (Yu &
Koch 2010; Chremos et al. 2011; Yu et al. 2014).

Experiments have shown that due to the interactions of the grafted polymers, solvent-
free polymer-grafted nanoparticles exhibit rheological characteristics similar to those of
soft glassy materials, e.g. slow dynamics, yield stress, rate-dependent behaviour (Agarwal
et al. 2010; Agarwal & Archer 2011; Srivastava et al. 2012b). This stems from the
cooperation of the grafted polymers to fill the interstitial space which creates local cages
around the nanocores. More specifically, in solvent-free polymer-grafted nanoparticles,
the entropy of the space-filling grafted polymers controls the core configuration, and there
is a large energy penalty to alter this configuration. Thus, solvent-free polymer-grafted
nanoparticles are in arrested states and relax very slowly exhibiting an apparent yield
stress over extended time periods (Agarwal, Srivastava & Archer 2011; Liu ez al. 2020).
Interestingly, polymer-grafted nanoparticles can display glassy behaviour at very low core
volume fraction (¢ ~ 0.1—0.2) (Yu & Koch 2014; Srivastava et al. 2017), which allows
thermal fluctuations to relax their nanostructures towards local equilibrium states. This
is in contrast to dense colloidal suspensions in which the large particle volume fraction
prevents thermal relaxation to a local equilibrium state (Nazockdast & Morris 2012; Lu &
Weitz 2013). Understanding the complex rheology of a thermal amorphous materials like
polymer-grafted nanoparticles requires knowledge of the molecular-level physics.

Theoretical calculations (Yu & Koch 2010) and scattering experiments (Bourlinos
et al. 2005b; Agarwal et al. 2010) have shown that the grafted polymers in solvent-free
polymer-grafted nanoparticles act as an incompressible fluid, indicating that each core
and its tethered polymers must exclude exactly one neighbouring core and its tethered
polymers. This means that each particle carries its own share of the fluid attached to
it making monodisperse, solvent-free polymer-grafted nanoparticles an incompressible
single-component fluid for which the static structure factor at zero wavenumber is
theoretically zero (Yu & Koch 2010). Small angle X-ray scattering experiments on these
materials show that due to polydispersity in core size, polymer molecular weight and
grafting density, the static structure factor at zero wavenumber is slightly above zero
but still substantially smaller than that for a hard-sphere suspension with the same core
volume fraction. This means that long-range density fluctuations in solvent-free polymer-
grafted nanoparticles are suppressed, making them disordered hyperuniform materials
as the grafted polymers uniformly fill the interstitial space between the cores (Yu et al.
2014; Chremos & Douglas 2018). This cooperation between grafted polymers to fill the
space leads to a non-pairwise-additive interparticle potential, interpenetration of polymer
brushes from neighbouring particles, creation of cages around the cores and slowing-
down of the relaxation dynamics (Yu & Koch 2010; Goyal & Escobedo 2011; Chremos,
Panagiotopoulos & Koch 2012). As a result, the incompressibility constraint alters the
probability distribution of the grafted polymers and thus their free energy (Tai, Pan & Yu
2019). Generally, the probability distribution of surface-tethered polymers can be obtained
by using a self-consistent field theory (SCFT) (Park et al. 2018), polymer reference
interaction site model (Martin et al. 2018), classical density functional theory (DFT)
(Chen et al. 2015), molecular dynamics (Chang & Yu 2021) or Monte Carlo (Ohno
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et al. 2007) simulations. Among these techniques, the polymer SCFT (Matsen 2002) and
classical DFT (Yu & Koch 2013) can effectively impose the incompressibility constraint
and capture the entropic interactions between the grafted polymers. However, modelling an
incompressibility constraint with polymer SCFT is numerically challenging as it results in
solving a set of stiff integrodifferential equations, while classical DFT is more analytically
favourable (Tai et al. 2019).

In this paper, we first focus on thermodynamics at the molecular scale and study
how the free energy of the nanostructure evolves under deformation using a classical
DFT discussed in § 2. The outcome will be the free energy landscape of a solvent-free
polymer-grafted nanoparticle system as a function of material properties such as core
volume fraction, and molecular weight and grafting density of the polymers. In § 3, a
thermally activated SGR model is proposed which takes the free energy landscape as an
input and connects the thermodynamics to the bulk rheology of the material. In § 4, we
delve into the molecular-level information and explain that the shape of the energy well
is an outcome of the competition between the translational and configurational entropy
of the grafted polymers. In § 5, we note that depending on the energy landscape and the
rate of deformation, structural rearrangements activated by thermal hops can regulate the
macroscopic rheology. Furthermore, a detailed characterization of the interplay between
mechanical loading and thermal fluctuations is provided by modelling different shear tests
and including a deformation history.

2. A classical DFT

We model the polymer chains as beads—springs tethered to the surface of the cores and
assume linear and massless springs with zero rest length. The spring energy is defined as
Fypring = (1 /2).5,-‘)c2 where £ is the spring constant and x is the displacement of the spring
from its rest length. The spring constant is chosen to be related to the radius of gyration,
R, of an ideal, unattached linear chain as & = (kgT /2R§,), where kg is the Boltzmann
constant and T is the temperature. The spring energy models the configurational entropy of
an ideal chain. To achieve the relaxation of the core configuration, all the grafted polymers
have to move, whereas for polymer relaxation, only one polymer has to move. As a result,
we assume that polymers are at equilibrium since they can relax much faster than the
cores. Previous studies have tested the validity of these assumptions (Yu & Koch 2010;
Chremos et al. 2011; Yu et al. 2014; Tai et al. 2019). For solvent-free polymer-grafted
nanoparticles, the free energy of the grafted polymers includes the entropy of the beads and
the spring energy of the chains. Furthermore, the incompressibility condition is imposed
by requiring all the grafted polymers to uniformly fill the interstitial space. Thus, the total
free energy, F, of the polymers can be written as

F 3 Ir —rol?
o7 :./\/,/A P(r.ro)[In(P(r,ro)A;) — 1]+ P(r,r0)4—R§ dro dr

+3/ (n(r) —no)2dr.  (2.1)
2 )y

In the above formulation, P (r, r¢) is the probability density of finding a polymer bead
position r provided that it is grafted at a position rg on the particle surface. Therefore, the
integrals over r and r are integrals over volume (denoted by V') of the system and over the
surface (denoted by A) of the cores, respectively. All the lengths are non-dimensionalized
by the diameter of the cores, d. In the first integral, the first term is the ideal gas Helmholtz
free energy of the beads which models the translational entropy of the polymers where
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Ap is the thermal de Broglie wavelength of the monomer beads, and the second term
represents the spring energy of the grafted polymers which models the configurational
entropy of the polymer chains. The last term is the space-filling (incompressibility)
constraint. The number density, n(r), of the grafted polymers at every point in the void
space is given by

n(r) = f P(r, ry)dry 2.2)
A

and ng is the mean number density of the grafted polymers defined as ng = N/Vyoid,
where N is the total number of chains and V4 is the void volume in the system. We
impose the space-filling constraint as a free energy penalty term by defining a space-
filling parameter, . When o — 00, there is a very large free energy penalty for having a
number density at any point in space that differs from the mean value. This corresponds to
a solvent-free case in which the tethered polymers are modelled as an incompressible fluid.
The case o = 0 can be viewed as a system with excess implicit, theta solvent. Here, there is
no requirement for the grafted polymers to fill the void space, because we assume that the
void volume is occupied primarily by the solvent. By choosing a reference state consisting
of excess theta solvent, we omit considerations of the excluded volume interactions that
lead to extended brush heights at large polymer grafting densities (Alexander 1977; de
Gennes 1980). For intermediate values of o, we can view the energy penalty modelling
the finite compressibility of tethered polymers in a solvent-free system. This form of
the energy penalty is related to the free energy variation of a Lennard-Jones liquid of
monomer beads (Betancourt-Cardenas et al. 2008; Chremos et al. 2011) with « being
related to the ratio of the interbead potential to the thermal energy. In a typical liquid,
the attractive and repulsive potential forces maintain nearly constant molecular density so
that typical values of « are very large but not infinite. In this case, the incompressibility
constraint replaces considerations of monomer excluded volume typically included in
solvent-swollen polymer brushes (Alexander 1977; de Gennes 1980). By minimizing the
free energy, we can find the probability density of the grafted polymers at equilibrium,

8F Ir —rol?
§ =0— P(r,ro) =K(ro) exp| ———=— | exp [—a(n(r) — nop)], 2.3)
g

where K (r¢) is a normalization coefficient related to the grafting density of the polymers,
given by

0y = /VP(r, ro)dr. 2.4

Polymer-grafted nanoparticles are usually made of silica nanocores with a diameter
of d ~5—10nm and polyethylene glycol (PEG) as the grafted polymer (Agarwal et al.
2010; Srivastava et al. 2012a). A schematic of an arbitrary configuration of solvent-free
polymer-grafted nanoparticles and the bead—spring representation of the grafted polymers
are shown in figure 1(a) and 1(b), respectively. We obtain the free energy landscape by
shearing the system of nanocores and grafted polymers, and at each strain, we calculate the
free energy of the system. This requires solving a highly coupled system of equations for
the probability density and number density for every point in the space, at each strain and
for each value of the space-filling parameter. Furthermore, to study the effect of material
properties like core volume fraction, polymer molecular weight, etc., we have to repeat this
procedure. Therefore, it is computationally expensive to solve this system multiple times
for millions of polymer-grafted particles in a real sample. To ameliorate this situation,
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Figure 1. (a) A schematic of a random configuration of polymer-grafted nanoparticles. For clarity, only a few
grafted chains per nanocore are illustrated. (b) A schematic of solvent-free polymer-grafted nanoparticles with
the bead—spring model under shear deformation. (¢) The FCC arrangement assumed for the nanocores.

we consider a face-centred-cubic (FCC) arrangement of the cores, shown in figure 1(c), to
limit the calculations to a unit cell by using periodic boundary conditions. This calculation
is used to estimate the typical energy barrier to rearrange the local configuration of a
nanoparticle and its neighbours. This energy barrier can then be placed into an EPM
designed to approximately describe the rheology of amorphous materials to provide
predictions that incorporate molecular-scale information. As mentioned previously, in the
solvent-free case, each particle carries an equal amount of the grafted polymeric fluid.
This leads to a disordered structure but with equal Voronoi volumes around each particle
(Singh, Walsh & Koch 2015). The FCC lattice provides equal Voronoi volumes but in an
ordered structure.

Due to the impenetrability of the cores, we exclude the space inside the nanocores from
the volume integrals (polymers are grafted to the surface of the cores). For computational
convenience, we model the impenetrability of the cores using a soft potential such that the
integrands become zero inside the cores. As « increases, the problem becomes more stiff
and as a result is more prone to instabilities. To solve for « — oo, we use the solution for
o = 0 as an initial guess and then gradually increase « and use the solution for each « as the
initial guess for the next «. Another important point to ensure stability of the calculations
is to use under-relaxation to update the solution. It is worth mentioning that a fourth-order
accurate, six-point quadrature rule in three dimensions is used for the volume integrals
(Hughes 2003) and Lebedev quadrature rule is used for the surface integrals over the
spherical particles (Ericson & Zinoviev 2001).

3. Thermal SGR model

In the last section, we elaborated on how to obtain the free energy as a function of the
applied shear strain. The output will be the energy landscape and the corresponding energy
barrier to structural relaxation. In this section, we connect the obtained energy landscape
to the bulk rheology by introducing a thermal SGR model. Similar to the original SGR
model, we conceptually divide the material into a large number of mesoscopic elements
and assign a local scalar strain (and thus a local stress) and a local yield energy to each
element (Sollich et al. 1997; Sollich 1998). The elements are sheared with the same rate
as the macroscopic shear rate, and they store elastic energy. Mechanical loading reduces
the energy barrier thus facilitating hops out of the trap by thermal fluctuations, which we
call a thermally induced microstructural relaxation. Therefore, the energy barrier to hop
at each local strain, /, is equal to R = E — F(l), where F (I) is the locally stored elastic
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energy at strain /, and E is the local yield energy (the maximum energy barrier) both
of which are predicted by our DFT calculations. We use this energy barrier, R, as the
activation energy for an Arrhenius law to predict the rate of thermal hops. We assume
that elements mechanically yield once F (/) > E, similar to the local yield criterion in
athermal EPMs. After relaxation, whether mechanical or thermal, the elements rearrange
to a new configuration corresponding to a new energy well and zero local strain. Thus,
the probability, P(E, [, t) of having an element with a local strain / and yield energy E at
time ¢ evolves as the following:

(E.LY =—y P _ Iy exp(—i) P—-—TH(=R)P+T(t)p(E)S). (3.1)

at ol kpT

The first term on the right-hand side represents the elastic deformation with the applied
macroscopic shear rate, . The second term is the thermally activated relaxation, and I
is the attempt frequency for hopping. The third term is the mechanical relaxation. Here H
is the Heaviside function denoting that once the entire local barrier is surmounted, the
element relaxes over a time scale of 1/17,. Finally, the last term is the rearrangement of
elements after yielding to a new configuration which is unstrained and randomly chosen
from the distribution of energy wells, p(E). The prefactor is the total yielding rate which
is the average of local yielding rates:

I'(t) = (Loc) P =//P(E, I, 1) [Fo exp(—k%) +FmH(—R)} dE dl. (3.2)

The stress response of the material, o (), is the average over all the local stresses, oy,
multiplied by the number density of the particles, n., as the following:

o(t) = (ncolpc)p = f/P(E, [, 1) ncojpc dE dl. (3.3)

We take each core with its attached polymers as an element of the thermal SGR model.
Also, we calculate the local stresses as oj,c = (dF' /dl) from the locally stored elastic
energies. The thermal SGR model is connected to our free energy calculations through the
energy landscape. Since we used a FCC arrangement in our DFT calculations, the energy
landscape has only one unique energy well, and thus p(E) =§(E — Eg) with Ey being
the depth of the single energy well in the landscape. This single-well assumption allows us
to probe the effect of thermal fluctuations on the rheology as the only factor to produce a
steady-state response. We also use a Gaussian distribution of the yield energies to account
for heterogeneity in the energy landscape. A Gaussian distribution of yield energies is
assumed in polymer glasses (Hasan & Boyce 1995), supercooled liquids (Xia & Wolynes
2001), metallic glasses (Schirmacher, Ruocco & Mazzone 2015) and active cytoskeletal
networks (Woillez, Kafri & Gov 2020). Also, a Gaussian distribution of yield energies
is argued to result in stretched exponential relaxations (Monthus & Bouchaud 1996;
Xia & Wolynes 2001), which are observed experimentally in solvent-free polymer-grafted
nanoparticles (Agarwal & Archer 2011).

To achieve thermally induced structural relaxation, the particle has to diffuse some
distance to change its neighbours. The attempt frequency, Ip, for hopping that is the
inverse of the bare hopping time, 1, is calculated as Iy = D/ h?, where D is a diffusion
coefficient and /4 is the interparticle distance between the cores. The diffusion coefficient
is approximated by the Stokes—Einstein relation for a single particle diffusing through
a polymer melt with the same molecular weight as the grafted polymers. Therefore,
this formulation connects the attempt frequency to the core particle radius, the polymer
molecular weight and the core volume fraction. An increase in the polymer molecular
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weight leads to an increase in the viscosity of the polymer melt, w,, which hinders the
diffusion and thus reduces the attempt frequency. Increasing the core volume fraction
corresponds to smaller interparticle distances and consequently shorter time scales for the
particle to diffuse relative to its neighbours. Note that the actual time scale for thermally
induced rearrangements also includes the barrier as expressed by an Arrhenius law,
T =19 exp(R/kpT). All the calculations are performed assuming a temperature of 7 =
100 °C, which is above the melting point of the solvent-free polymer-grafted nanoparticles
of interest (Agarwal et al. 2010). Another time scale in the model is the mechanical relax-
ation of the stress once the barrier is removed by mechanical deformation. In this work,
we assume that this relaxation happens instantly thus eliminating I, from the model.

Equation (3.1) is solved numerically using finite volume method to discretize the strain
space for each value of E. The coupling between different values of E is achieved through
the yielding rate (3.2) which is solved separately. The discontinuity introduced by the
Dirac delta function is numerically challenging to resolve, and thus to ensure stability
and accuracy a total variation diminishing (TVD) scheme is used. In TVD schemes,
the total variation of the solution is always non-increasing in time. The TVD schemes
are usually defined for homogeneous partial differential equations. Therefore, to apply
this scheme to (3.1), which is a hyperbolic equation with a source term (thermally
induced rearrangements), we split the equation into a homogeneous hyperbolic equation
and an ordinary differential equation for the source term. In this way, we first solve
the homogeneous partial differential equation by applying the TVD scheme and using
the initial condition of the problem, and then we use the solution to this equation as
an initial condition to solve the ordinary differential equation for the source term. This
process is repeated at each time step. To update the solution in time, the second-order
explicit Runge—Kutta method is used (Toro 2013). The last two terms in (3.1) are treated as
boundary conditions. Lastly, the composite midpoint rule is used as the quadrature routine
for numerical integration.

4, Molecular-level information

We shear the system of polymer-grafted nanoparticles in the x direction while the shear
gradient is in the z direction. Since the system under shear is a unit cell, once it is displaced
by its size, we reproduce the same configuration. The configuration with a shear strain of
y = 1 results in the most deviation from the initial configuration (y = 0) since the unit cell
is displaced by half of its size. As a result, we can detect all the possible configurations in
a shearing cycle, by shearing the unit cell only from y =0to y = 1.

Table 1 lists the dimensional and dimensionless parameters used in this work. We
assume a range of core volume fractions and two different polymer molecular weights.
The void volume per core depends on the core volume fraction as (1 — ¢.)/n. where n,
is the number density of the cores. Since the grafted polymers must be able to fill the
void volume, the number of grafted polymers is found by defining a volume per polymer
molecule as (M,/ppNa), where Ny is Avogadro’s number. As the core volume fraction
is decreased, there is more void space in the system for polymers to fill. As a result, the
number of grafted polymers (and thus the grafting density) has to increase. For a fixed
core volume fraction, increasing the molecular weight of the grafted polymers decreases
the grafting density. This stems from the fact that a higher molecular weight provides a
larger volume per polymer molecule, and thus a smaller number of polymers is needed to
fill the void space. The range of the core volume fraction and polymer molecular weights
that we use in this work lead to a range of grafting densities, o, = 0.45—2.3 chains nm~2,
which is experimentally achievable (Srivastava et al. 2017). The viscosity of molten PEG
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Parameter Value

Core particle radius, a 5nm

Core volume fraction, ¢, 0.08—-0.2

PEG molecular weight, M, 5 and 9 kDa
Ratio of PEG radius of gyration to the particle radius, R, /a 0.54 and 0.74
Viscosity of molten PEG, 1, (Hempel et al., 2020) 0.25 and 0.8 Pas
Mass density of PEG, p, (Eliassi et al., 1998) lgem™3
Grafting density, o, 0.45 — 2.3 chains nm 2
Number of PEG chains per particle, Npojymer 140 — 725

Table 1. Dimensional and dimensionless parameters used in this study. Two different polymer molecular
weights are used which lead to two different radii of gyration and viscosities of melt. A range of grafting
densities and number of polymer chains per particle is due to a range of core volume fractions and two different
molecular weights.

is also reported in table 1 for the two different molecular weights. These values will be
used in the thermal SGR model to calculate the attempt frequency as described in § 3.

4.1. Number density profiles

As shown in (2.1), a competition between the translational entropy of the polymers
(captured by the beads) and the configurational entropy of the polymers (captured by the
spring energy) in conjunction with the space-filling constraint (depending on the value of
«) determines the free energy of the polymers. Figure 2 shows the number density of the
grafted polymers in a system with a core volume fraction of ¢. = 0.1, a grafting density
of oy = 1.8 chains nm~2 and polymer molecular weight of M,, = 5000 Da. The number
densities are shown at different points in space for the solvent-free case (o« — o0) and the
case with solvent (¢ = 0) under shear deformation. The dark blue regions display the cores
where there is zero probability of finding a polymer.

For o = 0 at no shear deformation (figure 2a), the polymers are most likely found around
the grafting points as they form a cloud around each core. The number density in these
relatively thin clouds is larger than the mean number density. The green regions between
the clouds represent a mild polymer—polymer interpenetration where the polymers from
neighbouring cores meet. In regions far away from any grafting points, the number density
decreases, and only a few polymers can be found. One can assume that these regions are
filled with solvent molecules although their contribution to the free energy of the system
is not explicitly modelled. When o« = 0, there is no constraint requiring the polymers to
stretch and fill the interstitial space, and they are free to occupy interstitial space in a
manner that maximizes the sum of their translational and configurational entropies. To
fill the entire void space, the polymers have to highly stretch which causes a large spring
energy contribution to the free energy. As a result, the polymers remain near their grafting
points and avoid stretching in order to minimize their spring energy. For &« =0 under
maximum deformation (figure 2b), polymers would need to stretch and increase their
spring energy to fill the additional space along the extensional axis. Thus, the polymers
avoid filling the added volume along the extensional axis to minimize their free energy
resulting in an almost zero number density along this axis. As a result, the polymers from
neighbouring particles accumulate along the compressional axis leading to a very non-
uniform number density profile in the shear plane. Since the plane z =0 undergoes no
shear deformation, the polymers in this plane form the thin clouds around the cores which
are the hallmark of the case with o = 0 and zero applied strain (figure 2a).
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Figure 2. The number density of the grafted polymers (normalized by the mean number density) at each point
of the unit cell under shear deformation with different applied strains and different values of the space-filling
parameter: (@) e =0and y =0, (b)) o =0and y =1, (c)« > ocand y =0 and (d) « - co and y = 1. In all
of the profiles, the core volume fraction is ¢ = 0.1, the grafting density is o, = 1.8 chains nm~2, and the PEG
molecular weight is M, = 5000 Da.

When o — oo, the space-filling constraint is imposed and the polymers stretch and
uniformly fill the entire interstitial space under both minimum (figure 2¢) and maximum
(figure 2d) deformation. In this case, the polymers are not compressed as, at each point,
they have a number density equal to the mean number density corresponding to an
incompressible single-component fluid. This is corroborated by scattering experiment,
theoretical and molecular simulation results for the structure factor showing that density
fluctuations are highly suppressed in solvent-free polymer-grafted nanoparticles (Yu &
Koch 2010; Chremos et al. 2011; Yu et al. 2014). This situation corresponds to many-
body interactions between the cores as their grafted polymers cooperate to fill the void
space. Although filling the entire void space is accompanied by a large spring energy, the
penalty for not filling the entire space is much larger than the spring energy when o — .
Therefore, to minimize their free energy, the polymers have to satisfy the space-filling
constraint and consequently n(r) ~ ng at any point in the void space (the number density
profiles of figure 2¢ and 2d). The origin of the slow dynamics of solvent-free polymer-
grafted nanoparticles can be found in the space-filling constraint and will be discussed in
depth in § 4.2 and § 4.3. This observation is supported by experiments (Agarwal et al. 2010,
2011) and molecular dynamics simulations (Midya et al. 2020) on solvent-free polymer-
grafted nanoparticles indicating a high degree of polymer interpenetration in the system
and formation of cages around the cores which slow down the relaxation. To understand
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Figure 3. (a) The changes in the free energy of the polymers as a function of the space-filling parameter
relative to the values at o« =0 (open symbols, y = 0; filled symbols, y = 1). (b) The evolution of the total
free energy and different contributions to the free energy with shear strain relative to the values at y =0
(open symbols, o = 0; filled symbols, « — 00). The core volume fraction is ¢. = 0.1, the grafting density is
0g = 1.8 chains nm~2, and the PEG molecular weight is M,, = 5000 Da.

how the system evolves under shear from figure 2(a) and 2(c), to figure 2(b) and 2(d),
respectively, we quantitatively demonstrate the different contributions to the free energy
along with the effects of the space-filling penalty in a cycle of shear.

4.2. Free energy and entropy of the grafted polymers

Figure 3 illustrates how the free energy of the polymers grafted on a single core changes
with respect to the shear deformation and the space-filling parameter in a system with
a core volume fraction of ¢. =0.1, a grafting density of o, = 1.8 chains nm~2 and a
PEG molecular weight of M,, =5000Da. Since the entropic free energy is —T AS,
where S is the entropy, figure 3 also shows how the translational entropy of the beads
changes with respect to the space-filling parameter and shear deformation. Positive
changes in the entropic free energy correspond to negative changes in the translational
entropy of the beads and vice versa. Increasing «, regardless of the value of the shear
strain, monotonically increases the total free energy of the polymers (figure 3a) and the
translational entropy of the beads until they reach a plateau. For « > 0.4, the state of the
system appears to be insensitive to the value of «, implying that the space-filling constraint
is satisfied. This can be regarded as the solvent-free case, i.e. « — 0.

The polymers always choose the configurations that minimize their free energy. In the
absence of the space-filling constraint, all the configurations are allowed corresponding to
a large configurational entropy for the chains. The configurations that lead to a small spring
energy are preferred due to the free energy minimization. Thus, the polymers choose the
configurations that avoid stretching as much as possible, shown in figure 2(a) and 2(b).
However, these configurations lead to a small translational entropy since the probabilities
of finding the polymers in the void space are highly inhomogeneous. On the other hand,
when the space-filling constraint is imposed, the polymers are forced to choose only
between the configurations that result in a relatively large stretch. This reduces the number
of allowed configurations for the chains and greatly suppresses their configurational
entropy. In this case, the chains are ‘frustrated’ because their conformational space is
extremely limited. This entropic frustration of the chain configurations, which is a unique
characteristic of solvent-free polymer-grafted nanoparticles (Agarwal, Kim & Archer
2012; Yu et al. 2014), manifests itself here through the drastic increase in the spring
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energy as the space-filling constraint is enforced (figure 3a). However, satisfying the
space-filling constraint brings about an advantage for the translational entropy. In this
situation, the number density (and thus the probability distribution) of the polymers is
uniform in the void space (figure 2¢ and 2d) correlating with a large translational entropy
for the polymers. Therefore, the role of the space-filling parameter in the configurational
entropy of the polymers (spring energy) and in the translational entropy of the polymers
can be interpreted as unfavourable and favourable, respectively. Since the effects on the
configurational entropy are more pronounced, the total free energy increases with «.

The free energy penalty is zero when o =0 and also when the polymers uniformly
fill the interstitial space since n(r) ~ng at any point (see (2.1)). However, one should
note that changing o alters the probabilities and thus the free energy and entropy, as
described earlier and evidenced by figure 3 and number density profiles in figure 2. An
interesting observation is the non-zero values of the free energy penalty for small, non-
zero values of «. Since « is small, the space-filling constraint is mildly enforced and
thus the number density at each point still deviates from the mean value. This can be
considered as a compressible system in which the thermal energy of the polymers can
cause variations in their number density. However, large variations are not allowed as
they lead to a large free energy penalty. In this case, the polymers have more freedom in
choosing different configurations compared with when o — oo. Therefore, decreasing o
(increasing the compressibility of the system) releases the entropic frustration of the chain
configurations.

Figure 3(b) shows that by starting from the initial configuration, the free energy and
the translational entropy change with shear strain until they reach a maximum difference
(at y = 1) where the cores experience the most deviation from their initial configuration.
The core configuration has mirror symmetry about the zy plane such that shearing beyond
y =1 yields configurations in which strain of 1 4 §y is the mirror image (with equal free
energy) of that with strain of 1 — §y.

Figure 3(b) indicates that, at o« = 0, the spring energy decreases under shear deformation
corresponding to the polymers being less stretched as they leave the extensional axis.
Since shearing in this case leads to even less homogeneous probabilities (transition from
figure 2a to 2b), the translational entropy of the polymers decreases under deformation.
Thus, at @ = 0, shearing the unit cell is favourable to the configurational entropy (spring
energy) but unfavourable to the translational entropy. As a result, a free energy barrier
emerges in this situation due to the limited translational entropy of the polymers. For
the solvent-free system, shear deformation will further stretch the polymers filling the
space near the extensional axis and reduce the number of allowed configurations for the
chains compared with the unstrained system. This creates a large free-energy barrier due
to limited configurational entropy of the polymers. Noticeably, this barrier is lowered by
the increased translational entropy of the polymers under shear. Figure 3(b) shows that
shear deformation is favourable to the translational entropy of the polymers when o — o0.
This can be explained by the probability density of finding the polymer bead within the
shear plane conditioned on the grafting location being along the extensional axis, shown
in figure 4. Although shearing the solvent-free system does not alter the number density
profile (see figure 2¢ and 2d), it stretches the polymers grafted on the points along the
extensional axis. Thus, the transition from figure 4(a) to figure 4(b) due to the applied
shear, creates a more uniform probability distribution for the polymers over a large volume
which correlates with an increase in their translational entropy.

Although we focused on a fixed core volume fraction, polymer molecular weight
and grafting density, our findings are applicable to other parameter sets in solvent-
free polymer-grafted nanoparticle systems, as demonstrated in the subsequent section.
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Figure 4. The probability density of finding the polymer bead within the shear plane conditioned on the
grafting location being along the extensional axis for solvent-free polymer-grafted nanoparticles at (a) y =0
and (b) y = 1.

Similarly, for each set of parameters, the polymer configuration will be determined based
on the amount of the void space around each core and the polymer length. The distinction
between mushroom and brush configurations for polymers does not apply to the solvent-
free systems we consider. This distinction applies to polymer brushes in a good solvent
where there is a competition between the configurational entropy of the chain (favouring
the mushroom state) and the enthalpic interactions of the chains with the solvent or
effective excluded volume of the monomers in the chain (favouring an extended brush).
Here, the effective excluded volume is zero as the polymer brush sees a melt of polymers
of the same species and they act as ideal chains which we model with a linear spring. The
changes in polymer configuration are then governed by the requirement that the chains
from all cores collectively preserve the melt state throughout the interstitial space.

4.3. Energy well and mechanical yield stress

We demonstrated that the interplay between the configurational and translational entropy
of the polymers, which is strongly influenced by the space-filling parameter, determines
the shape of the energy well depicted in figure 3(b). In this section, we generalize our
findings for solvent-free polymer-grafted nanoparticles to explore the effects of the core
volume fraction, grafting density and molecular weight of the polymers on the energy well
and consequently the mechanical yield stress.

An estimate of the mechanical yield stress of the material is possible based on the energy
landscape. We can define the mechanical yield stress as the minimum stress necessary
to continually deform the periodic array, i.e. oy = (d/dy)(AF/V)|max, where V is the
volume of an element or a typical rearrangement in the system. This definition does not
take into account the thermal fluctuations of the cores, and thus we refer to it as the
mechanical yield stress. This is a crude estimate of the mechanical yield stress of the
material since it does not include amorphous structures, and it assumes that the elements
are independent. Figure 5 displays how the depth of the energy well and the mechanical
yield stress change with the polymer molecular weight and the core volume fraction.
Similar trends are observed for the depth of the energy well and the mechanical yield stress
as a function of the core volume fraction and polymer molecular weight as expected based
on the definition of the mechanical yield stress. Interestingly, decreasing the core volume
fraction increases the depth of the energy well and consequently the mechanical yield
stress. This seems counterintuitive since in dense colloidal suspensions, the yield stress

1027 A32-14


https://doi.org/10.1017/jfm.2025.11095

https://doi.org/10.1017/jfm.2025.11095 Published online by Cambridge University Press

Journal of Fluid Mechanics

(a) (b)
140 : : : : : : : : . .
—-= M, =5kDa 150 —a M, =5kDa ||
120 + —— M,=9kDa || —— M, =9kDa
1001 125 ¢
% 80 | = 100 ¢
'ﬁ [
S 60 \é 75
©
40 + ] 50 ]
20 '\-\-\‘\Hh’; 25l -\-\'\I\.\._. |
0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.08 0.10 0.12 0.14 0.16 0.18 0.20
be be

Figure 5. (a) The depth of the energy well (energy barrier) and (b) the mechanical yield stress as a function of
the core volume fraction for different molecular weights of the grafted polymers in solvent-free polymer-grafted
nanoparticles.

increases as the system becomes more packed with particles (Petekidis, Vlassopoulos &
Pusey 2004). In those systems, as the volume fraction of colloidal particles increases,
the particles become more strongly confined in cages formed by their neighbours, and
the system becomes dynamically arrested above the packing volume fraction (Bonn et al.
2017). However, solvent-free grafted nanoparticles exhibit glassy behaviour even at low
core volume fractions, and increasing the core volume fraction is favourable for the grafted
polymers. In § 4.2, we interpreted the difficulty of filling the space by grafted polymers as
the entropic frustration of the chain configuration and observed that more frustrated chains
have a much larger free energy. Increasing the core volume fraction leads to a smaller
void volume for the grafted polymers to fill. Thus, the polymers are less stretched, and
their conformational space is less limited as they can choose between a larger number
of allowed configurations. As a result, the energy barrier and the mechanical yield stress
decrease with increased core volume fraction. We anticipate this trend to be valid up to
a maximum volume fraction, ¢,,, beyond which there are no pathways for the nanocores
to rearrange. In this situation, all the mobilized parts of the polymer chains are replaced
by the nanocores, and there is only a thin layer of immobilized polymers around each
nanocore which prevents the particle aggregation. Due to the immobilized polymers, we
expect that ¢, < ¢ = 0.58, where ¢, corresponds to the transition from a supercooled
liquid to a glass in colloidal systems (Hunter & Weeks 2012).

Another interesting observation is a decline in the energy barrier and the mechanical
yield stress upon increasing the molecular weight of the grafted polymers. The reason
again lies in the requirement for the grafted polymers to fill the space. At a fixed core
volume fraction (fixed void volume between the cores), longer polymers, compared with
shorter chains, can fill the void space more easily as they undergo less stretch to do so.
Thus, increasing the molecular weight of the grafted polymers facilitates space filling
and releases the entropic frustration of the polymers. Experimental results show that
increasing the polymer molecular weight decreases the loss modulus maximum at yielding
which in turn is connected to the cage breakage (Agrawal ef al. 2015; Srivastava et al.
2017). The observed peak in the loss modulus in strain-sweep oscillatory shear test on
soft glassy materials manifests an enhanced energy dissipation due to continuous cage
breakage and rearrangements of particles. A less pronounced peak is associated with less
energy dissipation resulting from smaller locally stored energies before the cage breakage.
Therefore, we would expect that increasing the polymer molecular weight leads to smaller
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values of the elastic modulus as the capacity of cages to store elastic energy decreases.
Another experimental observation is the decrease in the yield strain with increasing the
core volume fraction which can be related to the space-filling constraint (Liu et al. 2020).

The trends in figure 5 will remain the same if, for a fixed core volume fraction, both
the core radius and polymer radius of gyration change in the same proportion. This stems
from the fact that in solvent-free polymer-grafted nanoparticles, the free energy of the
polymers is determined by the requirement to fill the void space. As long as the void
volume remains constant, only the ratio of the polymer radius of gyration to the core
radius is important. It is worth mentioning that changing both the core radius and polymer
radius of gyration in the same proportion while keeping the core volume fraction fixed
will result in a slightly different number of polymer chains per particle and thus a slightly
different free energy. One can fix the number of polymer chains per particle by fixing the
volume per polymer molecule through using a different linear polymer (with a different
mass density). Therefore, our theory is applicable to all linear polymers, a wide range of
particle sizes and a wide range polymer radii of gyration.

5. Macroscopic rheology

In this section, we use the energy profiles obtained from our DFT calculations to predict
the macroscopic response of the material to different rheological tests. Our thermal version
of the SGR model (3.1) allows an examination of the effects of thermal fluctuations of the
cores and the rate of deformation on the transient and nonlinear rheology. This includes
an apparent yield stress that may differ from the mechanical yield stress derived in §4
when experiments are performed over time periods shorter than the very large terminal
relaxation time of the material. For the sake of brevity, unless otherwise stated, the
results shown in this section belong to solvent-free grafted nanoparticles with a polymer
molecular weight of M,, =5 kDa and a core volume fraction of ¢. = 0.2. However, we
obtain the yield stress values for all the samples (different core volume fraction and
polymer molecular weight) and perform scaling analysis based on the energy well and
the attempt frequency for hopping that are applicable to all thermal amorphous materials.

5.1. Start-up shear test

Applying a constant shear rate is a simple and yet highly informative rheological probe as
it allows us to monitor the evolution of the macroscopic stress versus strain (or time) in
both linear and nonlinear regimes and determine the effects of the rate of deformation on
the structural relaxations. In this section, we assume that the material has been at rest for
a long time prior to performing the test. This corresponds to no history of deformation as
all the elements start from zero local stress. We later address the effects of the history of
deformation on the stress—strain curve.

Figures 6(a) to 6(c) show the stress—strain curves for different applied shear rates. For
very small deformation, the stress increases linearly with strain as the material behaves
like an elastic solid. However, for large deformation, the material flows like a liquid, and
the stress is no longer a function of the applied strain but the applied rate of strain. The
transition from solid-like to liquid-like behaviour, which is the hallmark of amorphous
materials, is highly dependent on the rate of deformation. The sample in this section has
a local energy barrier of around Eg =~ 20 kpT. When the energy barrier is large compared
with kpT, activation by thermal fluctuations requires either a significant amount of time
or a considerable decrease in the energy barrier. For very small shear rates (figure 6a),
at short times (small strains), the thermal hops do not result in local yielding as the
activation energy is still large, and the mechanical relaxation is also not achieved since
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Figure 6. The stress—strain curve for applied shear rates of (@) y =107%s7!, (b)) y =107*s~! and (¢) y =

1072 s ! in the start-up shear test. (d) The steady-state probability distribution of the local strain (scaled by the
maximum local strain).

the deformation of the elements is very small. As a result, the elements deform elastically
and accumulate stress in their cages. As time progresses, more thermally induced attempts
at relaxation occur and also a larger proportion of those attempts are successful owing to
the decrease in the remaining energy barrier resulting from the work done on the system.
Thus, after a short time of no structural relaxation, a few elements hop and relax their
local stresses. The number of thermally induced structural relaxations increases over time
based on the above argument. Thus, the stress—strain curve deviates from linearity, and
this deviation increases over time as the number of thermally induced relaxations increase.
When the build up of the local stress by shear is faster than stress relaxation by thermal
fluctuations, an overshoot appears in the stress—strain curve. After the overshoot, the
stress decreases due to continuous plastic events. Thus, the stress overshoot in the stress—
strain curve can be regarded as a measure of the material’s static yield stress (Balmforth,
Frigaard & Ovarlez 2014). At the steady state the stress plateaus, corresponding to plastic
flow with a constant rate of plastic rearrangements in the system. In this situation, the
rate of stress increase in the system due to the applied shear is equal to the rate of stress
relaxation.

The emergence of a stress overshoot followed by a monotonic decrease and then a
plateau at steady state is experimentally observed in soft glassy materials at all shear
rates (Bonn er al. 2017). However, in the stress—strain curves of figure 6, the decrease
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in the stress from the overshoot to the steady state is not monotonic and is followed
by a number of oscillations, especially at larger shear rates (figure 60 and 6¢). In the
stress—strain curves of figure 6, all the elements start from zero local stress, they are
all in the same energy well, and they have the same elasticity. As a result, they are all
sheared together and have the same evolution of the local stress in the elastic regime. We
refer to this situation as having ‘synchronized’ elements. At higher shear rates, there is a
smaller chance for thermal relaxation since the time scale of the shear deformation (1/y) is
smaller than the time scale for thermal relaxation. However, shear deformation reduces the
time scale for thermally induced relaxation. Thus, all the elements build-up stress in their
cages with little chance for thermally induced plastic events and then release this stress
through thermal relaxations once the system is sheared enough so the activation energy
is reduced. In other words, thermally induced plastic events start to occur once the time
scale of mechanical relaxation and thermal relaxation become comparable. The number of
thermally induced relaxations increases upon further shear due to further reduction in the
local energy barriers. Since the evolution of the free energy is the same in all the elements,
the stress relaxation is almost synchronized as thermally induced structural relaxations
occur over a short time scale. This corresponds to a sudden decrease in the stress after the
overshoot. Since at this state, many elements start from zero local stress in the same energy
well, they are again synchronized leading to the same pattern. Each structural relaxation
by thermal hops desynchronizes the free energy evolution and thus the yielding events.
Thus, the oscillations in the stress die down over time due to thermal relaxations leading
to a constant steady-state stress. Increasing the shear rate shrinks the time scale over which
the thermally induced relaxations occur leading to more oscillations before reaching the
steady state due to more synchronized elements.

Two time scales are associated with these transient stress oscillations. The first time
scale is the interval between two consecutive peaks of the oscillations, 7,, while the
second time scale corresponds to the inverse of the rate at which the oscillation amplitude
decays, 74. In the start-up shear test on identical elements starting from rest and in the
absence of thermal fluctuations, the stress will elastically increase up to a maximum value
(local yield stress) and then will suddenly relax to zero, and this pattern keeps repeating.
Thus, 17, is the time scale of stress build up between two consecutive synchronized
yielding events. This time scale shrinks (the stress build up occurs faster) as y increases.
In this case, the oscillations will continue forever. However, introducing thermal hops
dampens the oscillations as seen in figure 6(a) to 6(c). As a result, 74 originates from
the variability of the local strains caused by thermally induced structural relaxations
and it is the time scale over which the elements dissipate their stored energies (elastic
stresses) to reach their steady-state energies (stresses). Increasing the shear rate reduces
the local energy barriers (R = E — F(l)) and thus decreases 74. The situations where
numerous oscillations occur correspond to 7, < 74 as the stress builds up faster than the
desynchronization by thermally induced relaxations. The ratio 7;/7, increases with shear
rate leading to a greater number of oscillations prior to the steady state. Both these time
scales increase with E/kpT as the stress build up and relaxation become slower. For
a fixed shear rate, the ratio 7;4/7, increases (more pronounced oscillations) as E/kgT
increases.

The stress oscillations are usually not observed in experiments since the local elements
are not synchronized due to several reasons: (i) the elements have different initial
conditions due to a history of deformation; (ii) there is a distribution of the energy barriers
in the material; (iii) each local yielding event redistributes the stress and affects other
elements based on their distance from the event; (iv) the element might not fully relax to
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its new equilibrium state resulting in a non-zero local stress after yielding. We study the
effects of the first two factors on the stress response of the material.

The steady-state probability distribution of the local strains is shown in figure 6(d) for
different applied shear rates. From the local strain of the elements, /, we can define a new
strain variable, [ = (I, —[)/l,y, where [,, =1 is the maximum local strain of the energy
well which is obtained from our DFT calculations. Thus, / is a measure of the distance to
the local free energy maximum as it ranges from / = 0 (at the local free energy maximum)
to / =1 (no mechanical deformation or the local free energy minimum). Negative values
of [ are not physical as the element transitions to a new energy well after [ =/,,. Also,
[ > 1 is not achieved since the material is sheared in the positive direction.

In athermal systems, the local elements are sheared until a local yielding point (a
maximum local strain) and undergo rearrangement through a sharp transition. On the
other hand, thermally induced relaxations occur over a range of local strains which can
be much below the maximum local strain. Therefore, in thermal systems, the yielding
transition becomes rounded, and the elements might not access the entire local strain
space due to thermal hops. In figure 6(d), we observe that the peak of the probability
density is at / =0 (or [ = 1) due to the incoming flux of the rearranged elements. As /
decreases from [ =1 to [ =0, the local energy barrier declines, and thus there is a higher
chance for thermally induced plastic events. The shape of the probability distribution of the
local strain depends on the applied rate of deformation. At low shear rates, the dynamics
are slow, and thermally induced relaxations occur before the elements are significantly
sheared. As a result, we observe zero probability densities for even moderately large values
of the local strain. However, at higher shear rates, the local strains increase rapidly before
the thermally activated rearrangements take place. Therefore, almost no thermally induced
plastic event happens over a relatively wide region of local strain values leading to a
uniform probability distribution. Larger shear rates broaden this uniform distribution as the
mechanical deformation dominates over thermal fluctuations. This distribution is followed
by a rounded transition where the local strains become large and increase the number
of thermally induced plastic events. We can deduce that the regime of pure mechanical
relaxations can be achieved when y — oo. This corresponds to a very short time scale
for mechanical relaxation which dominates over the relatively large time scale for thermal
relaxation. In this situation, we recover our DFT predictions of the mechanical yield stress.

Figure 7 shows the maximum stress and the corresponding strain in the start-up shear
tests for different samples subjected to a wide range of shear rates. The maximum stress
corresponds to the point where plastic events occur most frequently. Thus, this point
signifies the transition from solid-like to liquid-like behaviour in the start-up shear test
and can be a measure of the material’s apparent yield stress. We showed that when
the stress builds up faster than relaxation by thermal fluctuations, a stress overshoot is
observed as the maximum stress. As explained in the following, in some cases, thermal
fluctuations completely dominate over mechanical loading. In these situations, the stress
does not overshoot, and thus the maximum stress will be equal to the steady-state value.
Figure 7 shows that how the maximum stress or apparent yield stress deviates from the
mechanical yield stresses predicted by our DFT calculations depending on the applied rate
of deformation. This apparent yield stress is consistent with that from other sources such
as the oscillatory shear test and is observed over limited time scales. In § 5.3, we will
show that thermal amorphous materials do not have a true yield stress, and even under
very small deformation, they will flow over very long time scales due to thermally driven
structural rearrangements.

In figure 7(a) and 7(b), thermal fluctuations play a minor role in samples with small
core volume fraction since the activation energy is very large compared with kpT (see
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Figure 7. The maximum stress and the corresponding strain in start-up shear tests for a range of core volume
fractions and rates of deformation. Panels (a) and (b) are for polymer molecular weights of M,, =5kDa,
and panels (c) and (d) for polymer molecular weights of M,, =9kDa. The square symbols are the purely
mechanical results predicted by the DFT calculations for different samples.

figure 5a). In these samples, in order to observe the effects of thermal fluctuations,
one has to wait for a very long time. Thus, these materials are essentially athermal
over experimental time scales and, under deformation, all the elements reach their
maximum local stress before they rearrange. Therefore, the maximum stress (and the
corresponding strain) is not affected by the thermal fluctuations. In this case, the apparent
yield stresses predicted by the thermal SGR model converge to the mechanical yield
stresses obtained from the DFT calculations. Note that in this work, we only focus on the
interplay between mechanical deformation and thermal fluctuations to probe the effects
of thermal fluctuations on the rheology. When thermal fluctuations are inactive, the yield
stress becomes independent of the shear rate as there will be no competing time scales
in the model. Therefore, for the athermal limit, we encourage the readers to follow
athermal EPMs (Nicolas et al. 2018). It is worth mentioning that even in the samples
with very large energy barriers, the thermal fluctuations will eventually cause structural
rearrangements and change the maximum stress if the material is sheared extremely slowly
(even smaller than the smallest shear rate 7 = 1073 s~! shown in figure 7). However, these
shear rates are beyond the time scales of usual rheological characterizations and are not
studied here.

A decline in the energy barrier (with increasing core volume fraction and/or the polymer
molecular weight), leads to more pronounced effects of the thermal fluctuations on the
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maximum stress (figure 7). The yield stress decreases when the thermal fluctuations are
active, since the elements hop in anticipation before reaching the mechanical yielding
point. For a fixed shear rate, in systems with larger energy barriers, the elements need to
store more elastic energy before being activated by the thermal hops. Thus, the elements
with larger barriers hop at a larger local strain (stress). In systems with larger energy
barriers, this point is reached at a larger local stress resulting in a larger maximum stress.
The effects of the shear rate on the maximum stress are more noticeable for samples
with smaller energy barriers. This stems from the fact that smaller barriers favour the
thermal hops which in turn affect the interplay between mechanical loading and thermal
relaxations and consequently the rheology. In figure 6, we observed that slowly shearing
the system provides more time for thermal activations. As a result, the elements rearrange
at a much smaller local stress if they are sheared more slowly. This corresponds to a drastic
decrease in the maximum stress by decreasing the applied shear rate. On the other hand, if
the system is sheared very fast, by the time that thermal hops trigger a rearrangement, the
elements have stored a considerable amount of elastic energy (local stress). As a result, at
high shear rates, the maximum stress approaches the mechanical limit which corresponds
to the maximum stored elastic energy at the time of the local rearrangement.

Based on figure 5(a), polymer-grafted nanoparticles with a core volume fraction of
¢.=0.16 and a polymer molecular weight of M,, =5kDa (sample 1) have almost
the same energy barrier as the ones with a core volume fraction of ¢.=0.08 and
a polymer molecular weight of M,, =9kDa (sample 2). However, interestingly, they
show a noticeably different maximum stress at various shear rates (figure 7a and 7c).
Although these two samples have almost the same local energy barrier, they have
different local hopping rates due to different attempt frequencies. As explained in § 3,
the attempt frequency increases with increasing core volume fraction and decreasing
polymer molecular weight. Thus, the sample with a larger core volume fraction and smaller
molecular weight can hop over the same barrier more easily. This is illustrated in the
results of figures 7a and 7¢. The maximum stress in sample 1 shows a noticeable decrease
due to activated hops as the shear rate is reduced, while in sample 2, the maximum stress
remains almost constant for the range of studied shear rates. This indicates that the thermal
fluctuations are weaker in sample 2, and to observe their effects on the dynamics, we need
to reduce the shear rate even further.

The obtained results suggest that based on the energy well, the attempt frequency and
the applied shear rate, the thermal SGR model can show a broad spectrum of behaviour
from glassy regimes with slow dynamics and high apparent yield stresses to flow regimes
with very low or no apparent yield stresses. To characterize this behaviour, we perform
scaling analyses in the following.

5.2. Scaling analysis for the potential energy landscape and the relaxation time

To study how the stress response is scaled, we first need to understand how the local
free energy and the relaxation time scale as the material is sheared. In EPMs, linear
elasticity is assumed corresponding to a parabolic shape of the energy well. In this case,
the potential energy landscape is ‘cuspy’ as it results from concatenation of parabolic
energy wells. In a cuspy or parabolic potential, the interparticle force is discontinuous
at the yielding transition. However, it has been shown that in molecular systems under
mechanical deformation, the yielding transition is smooth resulting in a smooth potential
energy landscape (Maloney & Lacks 2006). Both potentials scale quadratically near
the local free energy minima, and they deviate close to the local free energy maxima.
Previous studies in mean field suggest that the flow exponent in athermal amorphous
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Figure 8. (a) The shape of the energy profile predicted by DFT fitted with smooth and parabolic potentials.
(b) The local free energy scaled by the maximum free energy as a function of the distance to the free energy
maximum for smooth and parabolic potentials. (¢) The hopping time as a function of the distance to the free
energy maximum for smooth and parabolic potentials.

materials depends on the shape of the potential since different shapes of the potential
result in different local free energies especially when the elements reach the local free
energy maxima (Jagla 2017; Aguirre & Jagla 2018). To the best of our knowledge, such a
characterization of the flow curve has not being reported for thermal amorphous materials.

Figure 8(a) illustrates that our DFT predicts a smooth potential for solvent-free polymer-
grafted nanoparticles. The results show a quadratic scaling of the potential near the free
energy minima corresponding to linear elastic behaviour for local elements under small
to moderate deformation. However, linear elasticity is not valid for large deformation
since the evolution of the free energy deviates from a parabolic potential. Thus, the
assumption of linear elasticity in the original SGR model might not be valid for soft
glassy materials such as polymer-grafted nanoparticles. The elements mechanically yield
around / ~ (0.5 where there is a continuous change in the sign of the curvature of the
potential. The parabolic potential overpredicts the value of the yield stress and yield strain
due to the assumption that the elements deform perfectly linear up until the transition to
the next energy well (rearrangement). It is worth mentioning that, in a smooth potential,
the element is still in its current energy well even after the mechanical yield point, and
although it is mechanically unstable, it is smoothly transitioning to a new energy well. In
a parabolic potential, on the other hand, the element abruptly transitions to a new state
at the mechanical yield point, unless one specifies a time required for this transition to
be completed. In the presence of thermal fluctuations, the yielding transition occurs in
anticipation before reaching the maximum local free energy. Depending on the energy
barrier, the attempt frequency and the rate of deformation, activation by thermal hops
is achieved at different local strain values. If the element hops out of the trap before
the inflection point of the potential, the choice of smooth or parabolic potential does
not make much difference. However, if the element is mechanically driven beyond this
point, a parabolic potential overestimates the amount of stored elastic energy. Note that
this argument is valid in the absence of any interactions between elements. If one includes
such interactions, a more complex analysis is needed based on the type of the stress
redistribution after yielding.

Figure 8(b) shows the free energy as a function of the distance to the free energy
maximum. This can be regarded as the distance to the next energy well (residual load
needed for transitioning to the next configuration) in the absence of thermal hops. As
expected, a parabolic potential assumes that the barrier height linearly depends on the
residual load, near the local free energy maxima. On the contrary, our DFT calculations
predict a quadratic dependence. The smooth potential predicted in this work and the
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corresponding scaling near the free energy maximum are a result of the periodic structure
considered in the DFT calculations. This is in contrast to the smooth potential in
amorphous structures for which a scaling of F(I)/Eq~1!7 is predicted by molecular
simulations (Maloney & Lacks 2006). Although the DFT calculations can capture the
smooth transition, the exponent depends on the structure of the particles. We expect that
for an amorphous structure in DFT calculations, the predicted scaling will be close to
~ 113, Using the scaling in figure 8(b), we can scale the hopping time as a function
of the distance to the local free energy maximum (figure 8c). At the undeformed state
(!l =1), thermal fluctuations have to overcome the maximum energy barrier and thus
T =19 exp(Eo/kpT). In the limit of vanishing residual load (/ — 0), the barrier vanishes
and thus 7 — 179 = Fo_l. Near the top of the energy well, the logarithm of the hopping
time scales linearly and quadratically with the distance to the free energy maximum for
the parabolic and smooth potentials, respectively. At the same residual load, thermally
induced relaxation is achieved much faster in a smooth potential compared with a parabolic
potential. The reason is that at the same residual load, the barrier is much smaller in the
smooth potential compared with the parabolic one.

5.3. Scaling analysis for the steady-state stress

We demonstrated that the time scale for the activation by thermal hops depends on the
local free energy barrier, which in turn depends on the amount of locally stored elastic
energy. Based on figures 6 and 7, the applied shear rate changes the interplay between
mechanical loading and thermal fluctuations, resulting in a wide range of macroscopic
responses. The time scale for mechanical deformation is given by the applied shear rate
(1/y). To achieve mechanical yielding, the element must reach its maximum local strain
(maximum local free energy). Thus, we can define the time scale for mechanical relaxation
as T, =y —1/y) = (Al/y) which depends on the current local strain of the element.
Larger local strains lead to a shorter time needed to achieve mechanical yielding. The
competing time scale for relaxation is the one for thermally activated hops, given as 1y =
(I e~ E=FU)/ksTy=1 which also depends on the local strain through the local free energy.
Larger local strains correspond to larger local free energies and thus shorter time scale for
the activation by thermal hops. Therefore, the applied shear rate not only determines the
time scale of mechanical deformation but also changes the time scale of thermal relaxation
as it determines the amount of locally stored energy, F(/), at each time. For a thermal
amorphous material, depending on the value of the applied shear rate, we propose three
different regimes of relaxation as thermal, thermal-mechanical and mechanical. In the
following, we characterize each regime and provide scalings for the steady-state response
in each regime.

5.3.1. Purely thermal relaxation

Purely thermal relaxation occurs when the elements hop out of their energy wells before
they are noticeably sheared. As a result, the stored elastic energy is almost zero (F (/) =~ 0),
and the elements have to overcome their maximum local barrier to hop. This situation is
achieved when the time scale for thermal relaxation is much smaller than the time scale
of the applied shear deformation. Thus, purely thermal relaxation requires small y such
that

1 . —F
L~ — y<LIpexpl—)- 5.
Y kBT
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The rate of change of the local strain between thermally induced plastic events is very
small since / = y. Therefore, the elements hop from their current configuration with a
very small local strain to a new configuration with zero local strain. In other words, the
elements are negligibly sheared before activation by thermal hops (for a time ¢ = 7y,), and
thus the local strain scales as

v

—-E
Iy exp kB_T

In this situation, the elements are always near the bottom of their local energy wells where
the free energy scales quadratically with the local strain. Assuming F (/) = (1 /Z)klz,
where k is the local spring constant or shear modulus of the element, the macroscopic
stress scales as

IL~yTy~ < 1. (5.2)

k

Oss ~ kl ~ ——E))’ (5.3)
Iy exp| —
oo )
corresponding to a Newtonian response with a constant viscosity
k E (5.4)
~ — X — 1, .
Nth I p kT

which is linked to the molecular-level information of the material. In this regime, the
viscosity of the material depends on three different material-specific parameters. The local
energy barrier, E, can be interpreted as the resistance to flow, the attempt frequency, I,
as the ability of the material to flow, and the local shear modulus, &, as the stiffness of
the material under shear deformation. The Newtonian regime is a high-viscous flow which
requires a long time scale. Our scaling analysis sheds lights on the origin of the Newtonian
fluid behaviour observed experimentally in polymer-grafted nanoparticles under extremely
small applied shear rates (Agarwal et al. 2010; Wen, Schaefer & Archer 2015).

5.3.2. Purely mechanical relaxation

To achieve purely mechanical relaxation, the local strain of the element has to exceed its
maximum local strain. This regime is attainable if the element is sheared close to the top
of the energy well where there is almost no local barrier, i.e. E — F () ® kgT, and thus
the time scale for thermal relaxation is approximately 7, & Fo_l. The criterion for purely
mechanical relaxation follows

T Lt — ¥ >IoAl, (5.5)

stating that the element has to mechanically yield and transition to the new configuration
before it has time to hop over the barrier. Equation (5.5) indicates a minimum shear
rate to reach purely mechanical relaxation implying that this regime requires extremely
large applied shear rates. However, adopting a criterion based on the distance to yielding
is rather vague. Figure 8b and 8c reveal that depending on the shape of the potential
(parabolic or smooth), the free energy scales linearly or quadratically with the distance
to yielding, Al, near the local free energy maximum. We first focus on the parabolic
potential, i.e. F(I) = (1/2)ki?. At the top of the energy well, the free energy scales linearly
with the distance to yielding which gives kAl ~ kpT. The local spring constant, k, is of
the order of the local energy barrier, and thus we have Al ~kpT/E. A similar argument
can be deployed for the smooth potential used in this study. Since the barrier scales
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quadratically with the distance to the free energy maxima, we have Al ~ (kgT/E)'/%.

We can summarize the criteria for purely mechanical relaxation as follows:

) kgT \*
y > I - ) (5.6)

where ¢ =1 in parabolic potential and ¢ = 0.5 in smooth potential for a periodic array.
Since in amorphous materials E > kgT, (5.6) shows that in a parabolic potential, the
regime of purely mechanical relaxation can be achieved more easily (at a smaller shear
rate) than in a smooth potential. This is another manifestation of the fact that a smooth
potential is more favourable to activation by thermal hops in comparison with a parabolic
potential. In this regime, the macroscopic stress approaches the value predicted by the
DFT calculations, and thus we have

oss~kl~E, (5.7

which states that the steady-state stress is independent of applied shear rate once it is above
the criteria mentioned in (5.6). This is an outcome of the fact that the thermal SGR model
in its current form (3.1) does not distinguish between different applied shear rates in the
athermal limit. All the elements are sheared, and they instantly yield once the local free
energy is greater than the energy barrier.

5.3.3. Thermal-mechanical relaxation
Based on (5.1) and (5.6), we can define characteristic shear rates for purely thermal
relaxation, 6, and purely mechanical relaxation, O, aS

—F
ch—Fo exp k T

kT
E

where ¢ depends on the potential as explained earlier. These characteristic values depend
on the molecular level information such as the energy landscape and the bare hopping
time which are a function of the material properties (e.g. the core volume fraction,
polymer molecular weight, grafting density, solvent, etc., in polymer-grafted nanoparticles
of interest in this work). The interpretation of these characteristic shear rates is as follows:
for shear rates much below 6;,, we expect the structural relaxations to be purely thermal.
In other words, the mechanical loading becomes important once the applied shear rate is
comparable to or greater than 6,. On the other hand, for shear rates much larger than 6,,,,
the relaxations are purely mechanical, and thermal fluctuations become unimportant. For
all other values of the applied shear rate, the response is in the thermal-mechanical regime,
where both mechanical loading and thermal fluctuations are important. We can summarize
the mentioned argument in the criterion for thermal-mechanical regime of relaxation as
follows:

(5.8)

0 SV S Om, (5.9

which, in general, we expect to be valid for a wide range of shear rates accessible in
experiments.

In the thermal-mechanical regime, the steady state is the outcome of the balance
between the applied mechanical loading (1/y) and the hopping time (z;;,). Balancing the
flux of the applied mechanical loading and the flux of the thermally induced plastic events,
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_(E—F FU) E ;
y ~To exp<%) N K(T)NI@_THI](%)' (5.10)

This regime corresponds to relaxation at moderate local strain values. Thus, at steady
state, the local strain is 0 < [ < /,,,. Based on figure 8(a), we can still expect similar results
for both parabolic and smooth potentials as they deviate dramatically near the top of the
energy well. Thus, for the sake of simplicity, we assume F () & (1/2)ki? leading to

. 12
2<ln(%> +E/kBT>
[~ 0 (5.11)

k/ksT ’

we have

which can be referred to as the steady-state local strain at which most of the thermally
induced relaxations occur. This clearly shows that at the steady state, as the shear rate
increases, most of the thermally induced relaxations are achieved at a larger local strain.
For small shear rates (y & 0y,), it takes a long time for the local strain to increase and
during this time, thermally induced attempts at relaxation occur. Thus, for small shear
rates, the activation by thermal hops occurs at small strains. However, increasing the shear
rate pushes the elements up their energy landscape faster which leads to a larger local
strain at the time of hopping. Finally, the steady-state stress in this regime scales as

y 1/2
2(n( ) + 51r)
O ~ kI ~k 0 , (5.12)
k/kgT

indicating a logarithmic flow curve of the form o ~ (In(y) + C )03 where the constant

C depends on the energy barrier, local shear modulus, attempt frequency for hopping and
temperature.

5.3.4. Steady-state flow curve and viscosity

Based on the mentioned scaling analysis, the steady-state flow curve includes three
different regimes depending on the applied rate of deformation. Figure 9(a) outlines the
scaling of the flow curve in the three regimes, and figure 9(b) shows the steady-state
flow curve and viscosity predicted by the thermal SGR model for solvent-free polymer-
grafted nanoparticles with a core volume fraction of ¢, =0.2 and polymer molecular
weight of M, =5 kDa. Each point in the graph is the steady state of a start-up shear test.
The dotted and dashed lines are fits based on our scaling analysis. As mentioned, at very
small shear rates, the response of the material is entirely governed by thermal fluctuations
which result in a Newtonian flow. The effects of mechanical loading become noticeable as
the shear rate is increased leading to the emergence of the thermal-mechanical regime
with a logarithmic flow curve. Finally, at very large shear rates, mechanical loading
dominates over thermal fluctuations. It is worth mentioning that solvent-free polymer-
grafted nanoparticles with other core volume fractions and polymer molecular weights
also qualitatively follow the same flow curve as figure 9. However, the values will be
different since different samples have quantitatively different energy landscapes and bare
hopping times as shown earlier. Although the scaling analysis is performed for a unique
energy well in the energy landscape, it can be also extended to the case with a Gaussian
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Figure 9. (a) A schematic of scaling analysis for the flow curve and () the flow curve and viscosity of solvent-
free polymer-grafted nanoparticles with a core volume fraction of ¢, = 0.2 and polymer molecular weight of
M,, =5 kDa predicted by the thermal SGR model.

distribution of energy barriers. In the presence of a distribution of energy barriers,
the purely thermal regime of relaxation is achieved when most of the relaxations across the
system are entirely driven by thermal fluctuations rather than mechanical loading. Whereas
the purely mechanical regime of relaxation corresponds to very fast applied shear rates
such that the time scale of mechanical yielding is smaller than most of the thermally
mechanically activated hopping times across the sample. Consequently, for a Gaussian
distribution of energy barriers centred at the single-well energy barrier, the characteristic
shear rate, 8y, will be smaller while 6,, will be larger, compared with the single-well
scenario. Therefore, the thermal-mechanical regime of relaxation spans a larger range
of shear rates compared with the single-well case.

The flow curve in athermal amorphous materials usually follows a Herschel-Bulkley
law which predicts a stress plateau (considered as the yield stress) at small shear rates.
The presence of thermal fluctuations has led to a variety of non-Herschel-Bulkley flow
curves. For example, in molecular dynamics simulations of a two-dimensional Lennard-
Jones glass (Chattoraj et al. 2010), kinetic Monte Carlo simulations of thermal amorphous
materials on a square lattice (Merabia & Detcheverry 2016) and Hamiltonian description
of the yielding transition (Ferrero et al. 2021), a logarithmic dependence on the shear rate
emerges in the flow curve with different exponents depending on the details of the model.
Here we observed that the thermal SGR model predicts a thermally activated, Newtonian
flow prior to the emergence of the logarithmic flow curve. This interesting observation
which is in complete agreement with experiments on polymer-grafted nanoparticles
(Agarwal et al. 2010; Wen et al. 2015) is the outcome of the observable (although relatively
long) time scale of thermal flow in such systems. This behaviour might not be observable
over time scales of usual rheological characterization in many other amorphous materials
such as molecular and metallic glasses. Thus, in those systems, in order to observe a flow,
one has to apply a considerable amount of load on the material so that the thermal—
mechanical regime of relaxation in the flow curve can be accessed. This results in the
absence of observable flow at small shear rates suggesting the presence of a yield stress.
On the other hand, figure 9 shows that solvent-free polymer-grafted nanoparticles flow
even at very small applied shear rates. However, these materials show characteristics of a
yield stress (e.g. the overshoot in the start-up shear test or the peak in the viscous modulus
accompanied by a decrease in the storage modulus in strain-sweep oscillatory shear test
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which will be studied below). We refer to this yield stress as an apparent yield stress,
depending on the time scale of observation.

We can calculate the steady-state viscosity based on the flow curve (figure 9b). As
expected from the scaling analysis, in the limit of small shear rates, the thermal SGR
model predicts a Newtonian viscosity. The very large value of the viscosity is due to
the large energy barrier (5.4), resembling glassy-like behaviour (Mauro et al. 2009). In
glassy materials, this behaviour usually emerges from the jammed packing of the particles.
Interestingly, in solvent-free polymer-grafted nanoparticles, glassy behaviour is observed
at very low particle volume fractions (¢. ~ 0.1 —0.2) as it originates from the space-
filling constraint for the grafted polymers rather than packing of the particles. As a result,
the interparticle distance is large allowing Brownian relaxation to equilibrium on an
observable time scale. Increasing the applied rate of deformation facilitates the thermally
induced relaxation by reducing the barrier. Thus, the material flows more easily as the
mechanical loading increases, which can be the origin of the shear-thinning behaviour
observed here and in experiments (Agarwal et al. 2010; Wen et al. 2015).

5.4. Effects of the history of deformation

In thixotropic yield stress materials, the history of deformation becomes important since it
determines the initial microstructure of the system and hence affects the rheology (Bonn
et al. 2017). As a result, before performing each experimental measurement, one has to
create a new history for the sample (based on a prescribed cycle of preshear) which is
known and reproducible. The first step is to remove any unknown, previous history of
the material for example by applying steady shear (imposing a constant y = yp to reach a
steady state, point S shown in figure 10a). A common approach to create a new history in
shear-rate controlled experiments with athermal systems is to suddenly stop the flow and
set the applied shear rate to zero. This causes a sudden relaxation of the stress to some
residual value. This state can be used as the initial microstructure of the system to perform
various rheological tests (Bonn et al. 2017). However, in the flow-cessation experiment
with thermal materials, the stress relaxes to zero instead of a non-zero residual stress
observed in athermal materials. The relaxation process predicted by the thermal SGR
model is shown in figure 10(), in which the stress eventually almost relaxes to zero (point
R in the figure). The relaxation process in figure 10(b) can be explained by the activated
dynamics due to thermal hops. The shear rate before the stress relaxation in figure 10(b)
is set to yp = 107> s~!. Upon flow cessation (y = 0), the dynamics is purely governed
by thermal hops. The elements with higher locally stored elastic energies (smaller energy
barriers) have a shorter time scale for thermally induced relaxation. As a result, they relax
relatively fast compared with other elements which have a larger remaining energy barrier.
This results in a drastic stress relaxation over a relatively short time scale corresponding
to a high yielding rate of structural rearrangements. For elements with lower stored elastic
energies, thermally induced relaxations require a larger time scale since the barrier is much
larger than kpT. Thus, after the sudden stress relaxation, thermally induced relaxations
occur slowly over a long time interval (very low yielding rate) and the stress decays over a
very long time scale.

A broad distribution of relaxation times is observed in a vast range of soft matter
systems, including but not limited to colloidal glasses and suspensions, gels and biological
networks (Song, Holten-Andersen & McKinley 2023). However, its origin is poorly
understood. Here, we observed that a distribution of local strain (or stress) prior to the
relaxation results in a wide distribution of relaxation times. The distribution of local
strain (or stress) corresponds to a distribution of local free energy and thus a spectrum
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Figure 10. (@) The imposed shear rate during the loading phase and the relaxation process. (b) The stress
relaxation predicted by the thermal SGR model for y = 107> s~! which follows a stretched exponential form
(o(t) =00 exp[—(t/ 7.)#]). The inset represents the same plot on a log—log scale. (¢) Stress relaxation as a
function of non-dimensionalized time for different applied yy. (d) The characteristic relaxation time and the
stretching exponent as a function of yyp.

of relaxation times across the system. Here, since all the elements are in the same energy
well, the only factor to create a distribution of relaxation times is the distribution of local
stress prior to relaxation. However, in a thermal soft glassy system, even in an unstrained
condition, the material has an inherent distribution of relaxation times due to the energy
landscape having many different local minima. Furthermore, each plastic event triggers a
redistribution of the stress in the system changing the relaxation time of other elements.
We expect that these complexities might change the distribution of relaxation times both
quantitatively and qualitatively depending on the soft matter system and the history of
deformation prior to relaxation.

The original SGR model which is primarily developed for athermal systems such as
foams and emulsions, predicts a power-law decay of the stress during relaxation in both
its scalar (Fielding, Sollich & Cates 2000) and tensorial descriptions (Cates & Sollich
2004). However, for either flow cessation after steady shear or relaxation after a step
strain, a variety of amorphous materials such as glasses (Phillips 1996), polymer-grafted
nanoparticles (Agarwal & Archer 2011), tissues (Chaudhuri er al. 2016), gels (Erk &
Douglas 2012) and surfactants (Cates & Candau 1990) exhibit a stretched exponential
relaxation of the Kohlrausch—Williams—Watts form, i.e. o(¢#) =09 exp[—(t/ 7)1,
where ¢ is the elapsed time after the step or steady shear, og is the zero time value of
the stress, 7, is a characteristic relaxation time of the material and S, is the stretching
exponent. We observe that unlike the power-law decay predicted by the original SGR
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model, our thermal SGR model predicts a stretched exponential relaxation function (figure
10b). The original SGR model assumes an exponential distribution of the energy wells.
However, the stretched exponential relaxation is associated with a Gaussian distribution of
barriers. The thermal SGR model in this work assumes only a single energy well. This is
similar to a Gaussian distribution with a very small standard deviation. We envision that
a wide range of amorphous materials might possess a Gaussian distribution of barriers in
the energy landscape. Furthermore, our results show that given the right set of conditions,
the SGR framework is able to predict either a power-law or a stretched exponential decay
of the stress in relaxation experiments.

Figure 10(c) illustrates that the stretched exponential relaxation occurs for different
values of the steady shear rate applied prior to the relaxation. To provide a meaningful
comparison between the relaxation dynamics after different applied steady shear rates, the
time in the relaxation process is non-dimensionalized by the respective values of steady
shear rate. This shows that for different initial microstructure in the material, the shape of
the relaxation is consistent.

Increasing the load before the relaxation leads to a larger initial stress at the beginning
of the relaxation process. These observations are in agreement with the original SGR
model (Cates & Sollich 2004) and also experiments on polymer-grafted nanoparticles
(Agarwal & Archer 2011). The parameters predicted by the Kohlrausch—Williams—Watts
fits for different applied shear rates are plotted in figure 10(d). The values of the shear rate
in the loading process, yy, are chosen to access both the thermal and thermal-mechanical
regimes of steady state prior to the relaxation process. In figure 9, we observed that at very
low shear rates, the dynamics are purely governed by thermal hops. When yo < 1077 s~
(for the sample of interest here which has a core volume fraction of ¢ = 0.2 and a polymer
molecular weight of M,, = 5kDa), the steady state lies in the thermal regime. Therefore,
in this situation, the elements are near their local free energy minima at the beginning of
the relaxation process leading to R & E in (3.1). As aresult, the relaxation dynamics in the
thermal regime is exponential (8, = 1) with an almost constant characteristic relaxation
time of 7, ~ 19 exp(E/kpT), where tp is the bare hopping time. This characteristic
relaxation time can simply be approximated by the inherent relaxation time of the material
due to thermal fluctuations. As expected, in the thermal-mechanical regime, increasing
1o makes the subsequent relaxation process faster. This stems from the fact that increasing
the amount of load results in larger local stresses at the steady state of the loading
process (or beginning of the relaxation process, point S in figure 10a). Thus, the elements
have larger local free energies (smaller barriers) which lead to shorter relaxation times.
Equivalently, this can also be viewed in terms of the accumulated strain during the loading
process before the onset of relaxation. Based on figure 6, higher shear rates lead to larger
locally stored elastic strains which in turn accelerate the relaxation process. The deviation
from the thermal regime is also evident in the stretching exponent whose deviation
from B, =1 grows as the rate of the previous deformation increases. We can further
characterize the relationship between the applied shear rate in the loading process and the
relaxation time in the relaxation process. The relaxation time follows the time scale for
thermal relaxation which scales as 7, ~ ty, ~exp((E — (1 /2)klz) /kpT) with the local
strain. Based on our scaling analysis (§ 5.3), the local strain in the thermal-mechanical
regime of relaxation follows (5.10), resulting in a power-law behaviour between 7, and
1/y0. This is apparent in figure 10(d), which confirms the strain accelerated dynamics in
thermal amorphous materials (Agarwal & Archer 2011).

As mentioned earlier, one approach to create a history of deformation is to impose
zero shear rate, wait for the material to relax the stress to a constant value and then
perform the rheological test from the reproducible microstructure achieved in this manner.
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Figure 11. (a) The imposed shear rate during the loading phase and the unloading phase. (b) The stress
response in a loading—unloading cycle with a constant shear rate yg. The insets show the probability distribution
of local strains (normalized by the maximum local strain) at different stages.

However, we observed that in thermal amorphous materials, this approach might not be
very practical. Although the material relaxes to a constant stress (which is zero due to
thermal relaxations), this process happens over a large time scale. Thus, reproducing this
microstructure might be highly time-consuming in experiments. As an alternative, one
could interrupt the relaxation at a certain time. However, this introduces ageing effects
based on the finite waiting time which will add to the complexity of the analysis. In this
work, we will not focus on ageing effects in thermal amorphous materials. Instead, we
propose a different approach to create a known initial microstructure. Following a steady
state with an imposed non-zero y = yy, we instantly reverse the direction of the load (y =
—70), which we refer to as unloading. This procedure is shown in figure 11(a). Starting
from point A where all the elements have zero local stress, a start-up shear test with
y =107*s7! is performed to reach a steady state (point B). This process was previously
explained in detail in § 5.1. Then, the direction of the applied shear rate is reversed. This
can be regarded as a similar start-up shear test, but with a different initial microstructure
(point B). Since [ = y < 0, the elements are sheared in the negative direction, and the local
stresses decrease. This results in a distribution of negative and positive local stresses in the
system. The elements that had zero or small local stress before shear reversal now have a
negative local stress, and the ones that had large initial local stress find a smaller positive
local stress. At some point (point C), this distribution of positive and negative local stresses
leads to zero macroscopic (average) stress. Continuing the shear in the negative direction,
the macroscopic stress becomes negative, and the material eventually reaches a new steady
state (point D). This new steady state is exactly the opposite of the previous steady state
since both tests are performed with the same shear rate but in different directions. However,
the transient processes are distinct. The reason lies in the initial microstructure. Although
both cases (shearing from point A to point B versus shearing from point C to point D)
have zero initial macroscopic stress, the initial distribution of local stresses are strikingly
different as shown in the insets of figure 11(b), resulting in different transient dynamics. As
explained in § 5.1, since at point A the elements are synchronized, the transient response is
accompanied by noticeable oscillations in the stress. In contrast, at point C, the elements
are quite desynchronized leading to a substantial decrease in the number of oscillations.
We consider the preshear cycle from point A to point C in figure 11. This creates a
known and reproducible history of deformation with zero macroscopic stress to facilitate
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Figure 12. (a) The distribution of local strain at the end of the preshear cycle with two different shear rates.
Materials with these initial states are sheared with y = 10~* s~ in positive and negative directions leading to
the stress responses shown in (b). PS denotes pre-shear and SS denotes steady-state shear.

probing the elasticity of the material. We choose two different values for the preshear
rate, yp, to study the effects of the initial microstructure on the macroscopic response.
Figure 12(a) shows the distribution of the local strain at the end of the preshear cycle
with two different shear rates. These two distributions correspond to a point equivalent
to point C in figure 11(b). The results can be interpreted based on our arguments in
§ 5.3 regarding the interplay between mechanical loading and thermal fluctuations. The
mechanical loading is more dominant in the preshear cycle with yy = 1072 s~! compared
with the one with yp = 10*s~! which pushes the elements towards larger local strains
both in the loading and unloading processes. The peaks on the left-hand side of both
distributions are due to the elements with zero local strain at the steady state of the loading
process (e.g. point B in figure 115), which are sheared to negative strains in the unloading
process. A smaller yp results in a larger number of elements with zero local strain at
the steady state of the loading process which in turn leads to a more pronounced peak
at the end of the preshear cycle. Zero local strain correlates with zero local free energy,
and thus when the material is sheared in the negative direction, the elements with zero
local strain (at the steady state of the loading process) have to overcome a large barrier to
hop in the unloading process. Thus, their stress relaxation by thermal hops takes a long
time. Over time, due to shear from the steady state in the loading process to the end of
the preshear cycle in the unloading process, the free energy of these elements increases,
and this reduces the time scale of thermally induced relaxations. However, the time scale
associated with the transition from the previous steady state to the end of the preshear
cycle is relatively short, as shown in figure 11, thereby not allowing for many thermally
induced relaxations to occur during the unloading process. This time scale is determined
by yp. Larger preshear rates lead to a shorter time for the activation by thermal hops.
The secondary peak in the distribution obtained by yo = 10~* s~! results from the small
number of elements which have hopped during the unloading process. For this small shear
rate, the flux of thermally induced relaxations is a bit larger than the flux of mechanical
shear, resulting in a minor peak at zero strain. Since at yp = 10"2s~!, the dynamics is
faster and mechanical loading is stronger, such a secondary peak does not emerge.

Now, we use the distributions in figure 12(a) as the initial distributions to perform start-
up shear tests. Having the two initial states (two different yg), the material is sheared
in either the positive or negative direction. Figure 12(b) summarizes the results of the
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stress—strain curve. These results can be compared with figure 6(b) in which the initial state
corresponds to all the elements with zero local strain. We observe that having a history of
deformation leads to a substantial decrease in the oscillations observed in the stress—strain
curve. These oscillations are due to synchronization of the elements. In figure 12, many
elements are initially desynchronized while in figure 6(b), all the elements are initially
synchronized. We attribute the small oscillations in figure 12(b) to the facts that there is
still a single unique energy well, there is no redistribution of stress after yielding, and all
the elements are reset to zero local stress after yielding. All these factors lead to moderate
synchronization and thus oscillations in the stress—strain curve. Although in all the tests in
figure 12(b) we observe the same steady state due to the same magnitude of applied shear
rate, the transient responses are very different due to different initial states. In addition,
we observe that even with the same initial state, shearing in the positive and negative
directions lead to different transient responses, especially for yp = 10~ s~!. This stems
from the fact that the initial state of the system in this case is highly anisotropic, causing
direction-dependent behaviour in the transient stress response. On the other hand, for an
isotropic initial state, the stress response is not a function of the direction of the shear
(e.g. shearing from point A in figure 11 to positive and negative directions yields the same
results). These interesting observations are also seen in experiments on soft particle glasses
(Di Dio et al. 2022). Furthermore, we observe that a history of deformation considerably
changes the stress overshoot in the start-up shear test. This implies that the yield stress is
a function of the history of deformation, a result which is observed in thixotropic yield
stress materials such as polymer gels (Mgller ef al. 2008), attractive glasses (Moller et al.
2009), soft colloidal glasses (Bonn et al. 2002) and hard-sphere colloidal glasses (Mgller
et al. 2009).

5.5. Oscillatory shear test

A well-known rheological characterization involves performing an oscillatory cycle of
shear, calculating the elastic (storage) and viscous (loss) moduli of the material, and
observing the transition from solid-like to liquid-like behaviour (Donley et al. 2019).
To model this test, we prescribe an applied strain of y =y cos(wt), where yq is the
strain amplitude and w is the frequency of the oscillations. Then, by solving the thermal
SGR model ((3.1)—(3.3)), the macroscopic stress response of the material is calculated
and the elastic and viscous moduli are extracted. Figure 13(a) represents the steady-state
strain-sweep oscillatory tests performed at a frequency of @ = 10~* rad s~!. The specific
evolution of the elastic and viscous moduli shown in figure 13(a), is one of the hallmarks
of soft glassy materials. For small shear strain amplitudes, both moduli are constant with
the elastic modulus being much larger than the viscous modulus indicating solid-like
behaviour. Increasing the strain amplitude triggers a decrease in the elastic modulus and
a pronounced peak in the viscous modulus which is followed by the viscous modulus
dominating over the elastic modulus (liquid-like behaviour).

The transition from linear elastic behaviour to nonlinear flow behaviour is a sign of
macroscopic yielding. This transition is also clearly evident in the stress amplitude as a
function of the strain amplitude, shown in blue symbols in figure 13(a). The apparent
yield stress predicted by this test is of the same order of magnitude as the experimental
yield stress measured for polymer-grafted nanoparticles of interest (Agarwal et al. 2010).
However, the apparent yield stress is observed over a limited time scale which is governed
by the competition between thermally induced structural relaxations and the applied rate
of deformation. As mentioned in § 5.3, the material flows and does not show a yield stress
when probed over long time scales. Therefore, when subjected to the same strain-sweep
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Figure 13. Oscillatory shear test results. (a) Strain-sweep performed at a frequency of w=10"%rads™!.
The left-hand y-axis shows the elastic and viscous moduli, and the right-hand y-axis shows the stress
amplitude as a function of the strain amplitude. (b) Strain-sweep performed at a frequency of w = 107% rad s
(c) Frequency-sweep oscillatory test performed for small amplitude oscillatory shear. The blue and green lines
are guides to the eye which show the scalings at very small frequencies.

oscillatory test at a much smaller frequency, the material acts as a viscoelastic fluid with
no yield stress, as shown in figure 13(b).

Another useful characterization based on this test is studying the evolution of the moduli
as a function of frequency for a fixed amplitude of oscillation. Figure 13(c) shows our
predictions in the limit of small amplitude oscillatory shear. A transition from liquid-like to
solid-like behaviour is also depicted in this test. For low frequencies, the viscous modulus
dominates over the elastic modulus while for higher frequencies, this trend is reversed.
We observe that at very low frequencies, the elastic modulus scales with G’ ~ w?, and the
viscous modulus scales with G” ~ w, suggesting a crossover to Maxwellian viscoelastic
fluid behaviour in this limit. We can extract a characteristic relaxation time predicted by
the Maxwell model as Tyqywenr = limg, o G’ /(G” ). Based on our calculations, we obtain
a relaxation time of Taygewen = 10° s, which is equal to the relaxation time predicted by our
flow-cessation tests in the thermal regime of relaxations (figure 10d). This result suggests
that at the limit of very low frequencies and strain amplitudes, the material flows like a
viscoelastic fluid. However, this flow is associated with a very large viscosity and is a
result of thermally activated structural relaxations in the system.

Although in this section we reported a single relaxation time for the material, in reality
thermal amorphous materials like polymer-grafted nanoparticles have many different
relaxation times due to the history of deformation (as shown in § 5.4) and the heterogeneity
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in the energy landscape (which will be discussed in the next section). The single relaxation
time reported here is obtained by assuming a single energy well in the system. This
corresponds to a relaxation time of 7, ~ 19 exp(E/kpT) which is approximately 7, ~
10° s for the sample chosen for this test. In the case of a distribution of different energy
barriers, the material has a distribution of relaxation times with an average relaxation time,

Tavg, given by
E—-F(
Tavg = T()//CXP(]{B—T()> P(E, l) d/ dE. (513)

The linear viscoelastic regime lies in the purely thermal regime of relaxations and thus we
can neglect the dependence on the local strain (§ 5.3.1) and therefore

o E
Tavg, th ~ tof exp| —= | p(E) dE. (5.14)
0 kgT

For a Gaussian distribution of energy barriers, p(E)=(1/+2ms2)exp
(—(E — Ey, g)2 / 2s2), where Eyg is the mean energy barrier and s is the standard
deviation, the integral in (5.14) converges as the Gaussian distribution decays faster than
exp(E/kpT). Therefore, in this case, the average relaxation time is finite, although it
might be extremely large. Consequently, the material will reach equilibrium over long
time scales due to thermal fluctuations. For an exponential distribution of barriers,
p(E)=exp(—E/Eo.), where Ey . is an energy constant, the integral in (5.14) converges
if Eg . < kpT and diverges if Ey . > kpT. As aresult, the average relaxation time is finite
and thermal fluctuations can lead to equilibrium only when Ey ., < kgT. However, if the
energy distribution is cut off above a maximum energy barrier, the average relaxation
time is finite regardless of the distribution of energy barriers below the cutoff.

When the average relaxation time is finite, the dynamic modulus can be obtained as an
average over Maxwell modes with different relaxation times. In order to access this regime,
the frequency of oscillations has to be much smaller than the average relaxation rate,
ra_vi,’ - to allow for thermally driven structural rearrangements. Experiments on polymer-
grafted nanoparticles have also shown a Maxwell-like behaviour over long time scales
suggesting a Gaussian distribution of barriers in the material (Wen et al. 2015). In § 5.4,
we demonstrated how stress relaxation tests can provide insights into the distribution of
energy barriers in the system. Here, we observed that the linear viscoelastic response can
also be used to extract information about the energy landscape. However, this regime is
associated with very long time scales and might not be accessible experimentally.

5.6. Effects of the distribution of energy barriers

All the results presented thus far assume that the energy landscape has only one unique
energy well. This assumption was made to simplify the analyses and provide insight into
the complex interplay between mechanical loading and thermal fluctuations in thermal
amorphous materials. However, the energy landscape in amorphous materials has many
local minima, and a single energy well cannot represent the entire landscape. As addressed
in § 5.4, the energy barriers in many amorphous materials possess a Gaussian distribution.
Therefore, in this section, we assume a Gaussian distribution for the energy barriers with
a mean value equal to the single energy barrier obtained previously, Ey, and a standard
deviation of 0.2E(. We assume that the shape of the energy well remains fixed, and we
only scale up/down the energy profiles based on the value of the energy barrier compared
with the mean value. Thus, this landscape is a simplification based on the shape of the
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Figure 14. (a) Stress—strain curve in the start-up shear test with y = 10™* s~! assuming a Gaussian energy
distribution. (b) The probability distribution of local strain and energy barrier at steady state.

single energy well obtained from our DFT calculations. Predicting the details of the entire
landscape based on the molecular-level information is beyond the scope of this work.

Figure 14(a) shows the stress—strain curve with an applied shear rate of y = 10™*s~!
assuming the mentioned Gaussian distribution for the energy barriers. Comparing this
plot with figure 6(b), we clearly observe that the oscillations in the stress—strain curve are
due to the synchronization of the elements. A distribution of the barriers desynchronizes
the yielding events since: (i) the elements are initially in different energy wells and thus
desynchronized, and (ii) every time an element yields, it randomly chooses a new energy
well from the Gaussian distribution instead of being reborn in the same energy well. This
desynchronization eliminates the oscillations in the stress—strain curve. It is evident that
further broadening the distribution of energy barriers leads to more desynchronization.
Although a broad distribution of barriers might completely eliminate the oscillations at
low shear rates, we expect to observe some oscillations at higher shear rates. We attribute
the small oscillations after the overshoot to the absence of interactions between different
elements in the system. A redistribution of the stress after yielding further desynchronizes
the elements as they receive positive and negative random stress kicks (Nicolas et al. 2018).

Figure 14(b) displays the probability distribution, P (E, [), of the elements being trapped
in an energy well, E, and possessing a local strain, , at the steady state for y = 10~#s~!.
Since the distribution of E, i.e. p(FE), is Gaussian, most of the elements have an energy
well around the mean value. More specifically, the probability distribution, P(E, ), is
Gaussian with respect to E for very small / (near the free energy minima). However, for
larger local strains, the number of elements trapped in small barriers diminishes. When the
barrier is small, the elements easily hop out of the trap, while thermal fluctuations cannot
overcome larger energy barriers. As a result, these elements get sheared more, access larger
local strains and contain a larger portion of the global stress. However, even for the largest
trap assumed, the elements hop before reaching the maximum local strain. Increasing the
shear rate will lead to accessing larger local strains, as discussed in figure 6(d).

As mentioned earlier in this section, here the shape of the energy wells is assumed to
follow the shape obtained from our DFT calculations for a periodic array of particles. This
results in the same mechanical yield strain for different energy wells in the landscape.
However, in amorphous materials, the distribution of local environments would likely
lead to different yield strains as well as different energy barriers. Having a distribution
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of yield strains as well as energy barriers would lead to a qualitative change in the results.
The distribution of yield strains would help to reduce the oscillations of stress even at large
shear rates whereas the distribution of energy barriers only does this at lower shear rates.
We expect that changes in the shape of the free energy profile in other ways would be more
a matter of quantitative changes of behaviour rather than qualitative.

6. Conclusion

In this work, we proposed an innovative approach to connect molecular-level information
to the bulk rheology of thermal amorphous materials. Our results demonstrate the
ability of classical DFT to predict the energy landscape of amorphous materials. This
energy landscape can be integrated into mesoscopic models to bridge the gap between
the molecular-level structure and the macroscopic response and accurately explain the
complex behaviour of these materials across a vast range of length and time scales. The
findings in this study shed light on the underlying physics of deformation in thermal
amorphous materials and on the role of thermal fluctuations in the rheology. We tested our
framework with a model thermal elastoplastic material consisting of solvent-free polymer-
grafted nanoparticles. We showed that the wide range of complex rheological behaviours
exhibited by this material can be understood in terms of the interplay between the time
scale of mechanical deformation and the time scale of thermally induced structural
relaxations. This interplay is mainly governed by the energy landscape and attempt
frequency for hops.

In the first part of the paper, we studied the molecular-level physics of solvent-free
polymer-grafted nanoparticles using a classical DFT. We used a bead—spring model to
represent the grafted polymers and demonstrated that the free energy of the polymers is
determined by the competition between the configurational and translational entropy of
the grafted polymers. The absence of a solvent forces the grafted polymers to fill the void
space between the nanocores leading to a significant loss in the configurational entropy of
the polymers. As a result, strong cages are created around each nanocore strongly retarding
structural relaxations. Interestingly, these cages are found to be particularly strong at small
core volume fractions and polymer molecular weights leading to especially slow dynamics
for cases that exhibit small stresses and rapid relaxation in the absence of polymer tether-
ing. This molecular-scale information is encoded in the energy landscape of the material.

Our thermally activated EPM, which we refer to as the thermal SGR model, draws upon
concepts from Bouchaud’s trap model for glasses (Bouchaud 1992; Monthus & Bouchaud
1996) and the phenomenological SGR model developed for athermal soft glassy materials
(Sollich et al. 1997; Sollich 1998). The thermal SGR model facilitates incorporation of
molecular-level information by allowing any functional form for the energy landscape,
e.g. smooth or parabolic, and it replaces the non-physical noise temperature in the original
SGR model with the thermodynamic temperature. Even in its simplest form, i.e. with all
elements possessing the same energy well and no elastic interactions among the elements
in the system, the thermal SGR model can accurately explain and reproduce a variety of
rheological experiments based solely on the interplay between mechanical loading and
thermal fluctuations.

The thermal SGR model predicts a soft glassy behaviour with an apparent yield stress
when probed over limited time scales. The presence of thermal fluctuations reduces the
stress overshoot in the stress—strain curve or the apparent yield stress of the material since
the elements hop out of their traps in anticipation. The apparent yield stress strongly
depends on the history of deformation and the applied shear rate since both alter the
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dynamics of relaxation by thermal hops. Although we did not focus on ageing, we
anticipate that the thermal SGR model would predict ageing behaviour characterized by an
increase in the stress overshoot as a function of the waiting time as the elements hop into
deeper traps over time. These history-dependent behaviours are signatures of thixotropy
in soft glassy materials (Agarwal et al. 2021; Bhattacharyya et al. 2023). In contrast to
athermal amorphous materials, thermal amorphous materials can flow and act like a liquid
with no yield stress over sufficiently long times. Based on our scaling analyses, for small
shear rates at steady state, our model reveals a thermal regime of relaxations which results
in Newtonian flow over long time scales with a high viscosity. For intermediate shear rates
however, a logarithmic flow curve emerges due to thermal-mechanical relaxations.

As suggested by the typical molecular-level structure of amorphous materials, we
assumed a Gaussian distribution for energy barriers and showed that, in this case, the
thermal SGR model predicts a stretched exponential relaxation of the kind observed
experimentally in many amorphous materials. On the other hand, the original SGR model
assumes an exponential distribution of barriers and predicts a power-law stress relaxation,
which is also observed for some amorphous materials. This confirms that once informed by
the molecular-scale physics, the SGR framework in general can capture the complexities
of a wide range of amorphous materials under shear deformation.

In this work, we focused on amorphous materials that can relax towards equilibrium
states due to thermal fluctuations. Such a behaviour has been observed in polymer-grafted
nanoparticles (Agarwal et al. 2010; Agarwal & Archer 2011), supercooled glass-forming
liquids (Laughlin & Uhlmann 1972; Schroter & Donth 2000) and metallic glasses
(Kawamura, Nakamura & Inoue 1998; Lu et al. 2003; Riechers et al. 2025). We expect that
the creep flow associated with the solid-like behaviour in these systems will be eventually
followed by fluidization and a steady-state flow. For stresses just below the yield stress,
prior theoretical (Popovic et al. 2021) and experimental (Grenard et al. 2014) studies show
that the time scale over which the material behaves as a solid decreases exponentially with
increasing applied stress. For very small stresses, this time scale will become quite large
and thus might not be accessible within the time window of experiments and simulations.
The flow in this situation is entirely driven by thermal fluctuations. As supported by
our scaling analysis and oscillatory shear tests, this indicates that the average relaxation
time of the material is finite, although it might be extremely large. Therefore, non-
equilibrium behaviours become important over limited time scales while the material
reaches equilibrium over long time scales. A glassy behaviour here refers to exhibiting
an apparent yield stress over extended time periods and is different from the true glassy
behaviour of systems with no equilibrium states.

Extending our free energy calculations to account for an amorphous structure will
provide illuminating insights on the energy landscape in amorphous materials. This is a
challenging task as it involves a system with millions of particles, many-body interactions
and intrinsic disorder. Although promising, the thermal SGR model in its current form
has some limitations. The model assumes independent elements while in amorphous
materials, the elements are highly coupled through stress redistribution after local yielding
events (Nicolas et al. 2018). Furthermore, a tensorial description of the energy landscape
along with the local and macroscopic stresses would be valuable.
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