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Fields have been used implicitly ever since the discovery of addition,
subtraction, multiplication and division. Cardano’s formula dating
16th century used Q,R,C.
Lagrange used the field of rational functions in n variables in his study
of roots of polynomials in 1770.
The first truly abstract notion of field is due to Dedekind. In 1877, he
gave the following definition: “I call a system A of numbers (not all
zero) a field when the sum, difference, product and quotient of any
two numbers in A also belong to A."
This is not completely general for the numbers in this definition are
all complex.
In fact in 1893, his student Weber gave the first fully abstract
definition of field which we use today.
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Definition. A binary operation denoted by ‘∗’ on a set A is given by a
function from A× A into A mapping (a, b) to a ∗ b. A non-empty set G
with a binary operation ‘∗’ is said to be a group1 with respect to ‘∗’ if the
following three conditions are satisfied for all a, b, c belonging to G :
(i) a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity),
(ii) there exists an element e ∈ G , such that a ∗ e = a = e ∗ a (existence

of identity),
(iii) for every a ∈ G , there exists an element a′ ∈ G such that

a ∗ a′ = e = a′ ∗ a (existence of inverse).
Further G is called commutative/abelian2 if a ∗ b = b ∗ a for all a, b ∈ G .

1The abstract form of the definition of a group, which we use today, was built up
slowly over the course of 19th century, with suggested definitions by Cayley, Kronecker,
Weber, Burnside, and Pierpont. The axioms of associativity, identity element and
inverse were first stated in their present form by Pierpont.

2The term abelian is derived from the name of Norwegian Mathematician Niels
Henrik Abel (1802-1829) who showed the importance of such groups in the theory of
equations.
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Definition. A set R with two binary operations denoted by ‘+’ and ‘·’ is
said to be a ring if
(i) (R,+) is a commutative group,
(ii) Multiplication is associative, i.e., a.(b.c) = (a.b).c for every

a, b, c ∈ R,
(iii) Distributive laws hold: a.(b + c) = a.b + a.c and

(b + c).a = b.a + c.a for every a, b, c ∈ R.

Definition. A non-empty set F with two binary operations denoted by ‘+’
and ‘·’ is said to be a field if the following axioms are satisfied:
(i) (F ,+) is a commutative group (with identity element to be denoted by
0).
(ii) (F \ {0}, ·) is a commutative group (with identity element to be
denoted by 1).
(iii) Distributive laws hold, i.e., a.(b + c) = a.b + a.c and
(b + c).a = b.a + c.a for every a, b, c ∈ F .
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Examples.
(i). Q,R and C are fields with respect to ordinary addition and

multiplication.
(ii). The set {a + b

√
2 | a, b ∈ Q} is a field with respect to the usual

addition and multiplication.
(iii). Let n be a positive integer. For a, b belonging to Z, we write

a ≡ b (mod n) and say a is congruent to b modulo n if n divides
a − b. This is an equivalence relation on Z. The equivalence class of
an integer m for this equivalence relation is denoted by [m]. The set
Z/nZ = {[m] | m = 0, 1, . . . , n − 1} is a ring with respect to the
operations [i ] + [j] = [i + j] and [i ] · [j] = [ij]. The ring Z/nZ is a field
if and only if n is a prime.

(iv). In what follows, x will stand for an indeterminate and F [x ] will
denote the set of all polynomials in x with coefficients from F .
It is a ring with respect to the usual addition and multiplication of
polynomials. Its quotient field to be denoted by F (x) is the field of
rational functions in x over F . Similarly one can define the field of
rational functions F (x1, x2, . . . , xn) in n indeterminates.
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Definition. A non-empty subset E of a field F is said to be a subfield of F
if E is a field under the induced addition and multiplication operations on
F . If a subfield E of F is not equal to F , we shall say that E is a proper
subfield of F . If E is a subfield of F , then F is said to be an overfield of E .

Remark. If {Ei}i∈I is a family of subfields of a field F , then so is
E =

⋂
i∈I

Ei .

Definition. Let F be a field. By the prime subfield of F we mean the
smallest subfield of F . It is the intersection of all subfields of F .

Definition. Let F be a field and K be a field containing F as a subfield.
Then K is called an extension of F or K/F is called a field extension. K
can be regarded as a vector space over F . A basis of this vector space is
called a basis of the extension K/F and its dimension is called the degree
of the extension K/F , which will be denoted by [K : F ].
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Let K/F be a field extension. Then K is said to be finite or infinite
extension of F according as the degree of K/F is finite or infinite.

Example. With operations of usual addition and multiplication, C is an
extension of R of degree two and R is an infinite extension of Q because R
is uncountable and Q is countable.

In 1894, Dedekind developed the theory of field extensions that included
the concept of degree. He formulated the proof of Tower theorem stated
below.

Tower Theorem. If K is a finite extension of F and L is a finite extension
of K , then L is a finite extension of F and [L : F ] = [L : K ][K : F ].
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Proof of Tower Theorem.
Let {e1, e2, . . . , em} be a basis of K/F and {f1, f2, . . . , fn} be a basis
of L/K .
We claim that {ei fj | 1 6 i 6 m, 1 6 j 6 n} is a basis of L/F .
Let α be any element of L. Write α =

∑
j
bj fj , bj ∈ K and

bj =
∑

i
λijei , λij ∈ F .

Then
α =

∑
j

(∑
i
λijei

)
fj =

∑
i ,j
λijei fj .

This shows that the set {ei fj | 1 6 i 6 m, 1 6 j 6 n} generates the
vector space L over F .
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Proof Contd....
To prove its linear independence over F , suppose that

∑
i ,j
µijei fj = 0

for some µij ∈ F .
Then ∑

j

(∑
i
µijei

)
fj = 0.

As {f1, f2, . . . , fn} is linearly independent over K , it follows that∑
i
µijei = 0 for all j .

Since {e1, e2, . . . , em} is linearly independent over F , µij = 0 for all
i ,j .
Thus {ei fj , 1 6 i 6 m, 1 6 j 6 n} is a basis of the vector space L
over F consisting of mn elements.
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Definition. Let F and F ′ be fields.
A mapping f from F to F ′ is called an isomorphism (of fields) if (i) f
is 1-1, (ii) f (a + b) = f (a) + f (b), f (ab) = f (a)f (b) for all a, b ∈ F .
Two fields F and F ′ are said to be isomorphic if there exists an
isomorphism from one onto the other.
An isomorphism from F onto itself is called an automorphism of F .
It can be easily checked that if F0 is the prime subfield of a field F ,
then F0 is isomorphic to either Q or Z/pZ for some prime p.
A field with p elements will be denoted by Fp.

Definition. The characteristic of a field F is defined to be 0 or p according
as the prime subfield of F is isomorphic to Q or Z/pZ, where p is a prime.
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Remark. Let F and F ′ be fields.
If F is a finite field of characteristic p, then F can be regarded as an
extension of Fp = Z/pZ and if {w1, . . . ,wm} is a basis of the
extension F/Fp, then clearly F has exactly pm elements, because each
element of F can be uniquely writtten as a1w1 + · · ·+ amwm with ai ’s
in Fp.
We shall prove later that given a prime p and any number m ≥ 1,
there exists a finite field with pm elements which is “unique" in some
sense.

Definition. Let K/F be an extension of fields and S ⊆ K . The smallest
subfield of K containing F

⋃
S is called the subfield generated by S over F

and is denoted by F (S).
In fact F (S) is the intersection of all the subfields of K containing F

⋃
S.

If S = {α1 . . . , αn} is a finite set, then we say that F (S) is finitely
generated over F and write F (S) as F (α1, . . . , αn).
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Definition. An extension K/F is called a simple extension if K/F is
generated by a single element, i.e., K = F (α) for some α ∈ K ; such an
element α is called a primitive element for the extension K/F .

Example. Any extension of prime degree is a simple extension.

Definition. Let K/F be an extension of fields and {α1 . . . , αn} be a subset
of K . The smallest subring of K containing F and α1, . . . , αn will be
denoted by F [α1, . . . , αn].
It consists of all polynomial expressions in α1, . . . , αn with coefficients
from F .
Note that F (α1, . . . , αn) is quotient field of F [α1, . . . , αn].

Given a field extension K/F and elements α1 = α, . . . , αn in K , it would
be interesting to know when is F (α) = F [α] or more generally when is
F (α1, . . . , αn) = F [α1, . . . , αn]. These questions are related to algebraic
extensions introduced below.

Dr. Anuj Jakhar Lecture 1-4 2021



Definition. Let K/F be a field extension.
An element α ∈ K is called algebraic over F if it satisfies a non-zero
polynomial with coefficients from F .
An element of K which is not algebraic over F is called
transcendental over F .
If every element of K is algebraic over F , then we say that K/F is an
algebraic extension.
An extension which is not algebraic is called a transcendental
extension.

A complex number α is called an algebraic number if it is algebraic
over Q, otherwise it is called a transcendental number.
It was in 1853 that the existence of transcendental numbers was
proved by Joseph Liouville.
Charles Hermite proved that e is a transcendental number in 1873
and Lindemann showed that π is a transcendental number in 1882.
To this day, it is not known whether e + π is transcendental or not. It
is difficult to prove that a given complex number is transcendental, it
is easy that the set of all transcendental numbers is uncountable.
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Definition. Let K/F be an extension of fields.
If α belonging to K is algebraic over F , then the monic polynomial
g(x) of smallest degree over F satisfied by α is called the minimal
polynomial of α over F .
It can be easily seen that g(x) is irreducible over F .

Examples.
The minimal polynomial of 1 +

√
3 over Q is x2 − 2x − 2.

The minimal polynomial of 201/3 over Q is x3 − 20 in view of
Eisenstein irreducibility criterion.
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Proposition 1. Let K/F be an extension of fields. Suppose α ∈ K is
algebraic over F with minimal polynomial g(x) over F of degree n. Then
F (α) is an extension of degree n of F . Indeed we have

F (α) = {a0 + a1α + . . .+ an−1α
n−1 | ai ∈ F for 0 ≤ i ≤ n − 1} = F [α].

Note.
It may be pointed out that Abel was the first to notice that
F (α) = F [α] when α is algebraic over F .
The converse of this result is also true because if F (α) = F [α], then
1/α = g(α) for some polynomial g(x) ∈ F [x ]. So α satisfies the
non-zero polynomial xg(x)− 1 and hence α is algebraic over F .
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Corollary 2. If F (α1, α2, . . . , αr ) is a finitely generated extension of F with
each αi algebraic over F , then F (α1, α2, . . . , αr )/F is a finite extension
and F (α1, α2, . . . , αr ) = F [α1, α2, . . . , αr ].

Proposition 3. Every finite extension is algebraic.

Proof.
uppose that K/F is a finite extension of degree n.
Let α ∈ K . Then the n + 1 elements 1, α, . . . , αn are linearly
dependent over F as [K : F ] = n.
Hence there exist a0, a1, . . . , an ∈ F , not all zero such that
a0 + a1α + . . .+ anα

n = 0.
This implies that α is algebraic over F .

Dr. Anuj Jakhar Lecture 1-4 2021



Remark.
Converse of the above proposition is not true.
Let A denote the set of all complex numbers which are algebraic over
Q. Then A is a subfield of C in view of Theorem 5.
Using Eisenstein irreducibility criterion, one can verify that A/Q is an
infinite extension.

Theorem 4. (Transitive property of algebraic extensions) If K/F and L/K
are algebraic extensions, then so is L/F .

Theorem 5. Let K/F be an extension of fields. The set E of all elements
of K which are algebraic over F is a subfield of K containing F .
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Theorem 6. Let K/F be a finite simple extension with K = F (α) and
g(x) be the minimal polynomial of α over F . Let 〈g(x)〉 denote the ideal
generated by g(x) in F [x ]. Then F [x ]/ 〈g(x)〉 is isomorphic to
F (α) = F [α].

Proof of Theorem 6.
Consider the map ψ : F [x ]→ F [α] defined by ψ(h(x)) = h(α),
h(x) ∈ F [x ].
Clearly ψ is an onto ring homomorphism with ker(ψ) = 〈g(x)〉.
The theorem now follows from the first isomorphism theorem of rings.

Cauchy’s observation in 1847 that R[x ]/
〈
x2 + 1

〉
is a field that

contains a zero of x2 + 1 paved the way for the next sweeping
generalization proved by Kronecker in 1887.
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Theorem 7. (Kronecker) If g(x) is a polynomial of degree n > 1 with
coefficients in field F and is irreducible over F , then there is an extension
K of F with [K : F ] = n in which g(x) has a root.

Proof of Theorem 7.
Since g(x) is irreducible over F , the ideal I = 〈g(x)〉 in the principal
ideal domain F [x ] is a maximal ideal and hence F [x ]/I is a field.
Denote F [x ]/I by K .
The mapping from F into K defined by a 7→ I + a is an isomorphism
of F onto its image F ′ contained in K .
Identifying F with F ′, we can consider K as an extension of F .
Note that the element I + x belonging to K is a root of the
polynomial g(X ), because g(I + x) = I + g(x) = I as g(x) ∈ I.
It can be easily checked that I + 1, I + x , . . . , I + xn−1 form a basis of
K=F [x ]/I over F .
So [K : F ] = n.
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The corollary stated below follows quickly from Theorem 7.

Corollary 8. If h(x) is a polynomial with coefficients in a field F , then
there is a finite extension K of F in which h(x) has a root. Moreover
[K : F ] 6 deg h(x).

Theorem 9. Let h(x) be a polynomial of degree n > 1 with coefficients in
a field F . Then there is an extension K of F of degree at most n! in which
h(x) has n roots.

Definition. Let h(x) belonging to F [x ] be a polynomial of degree n. An
extension K/F is called a splitting field of h(x) over F if K contains n
roots α1, α2, . . . , αn of h(x) and K = F (α1, α2, . . . , αn).

The following corollary is an immediate consequence of Theorem 9.

Corollary 10. Let h(x) be a polynomial of degree n > 1 with coefficients in
a field F . Then h(x) has a splitting field L and [L : F ] 6 n!.

Dr. Anuj Jakhar Lecture 1-4 2021



Examples.

(i). The splitting field contained in C of the polynomial x3 − 2 over Q is
Q(21/3, ω) where ω 6= 1 is a cube root of unity.

(ii). The splitting field contained in C of x4 − 2 over Q is Q(21/4,
√
−1).

(iii). A splitting field of x2 + x + 1̄ over Z/2Z consists of 0̄, 1̄, α, 1̄ + α
where α2 + α + 1̄ = 0. It provides an example of a field having
exactly four elements.

(iv). Let α be a root of the polynomial x2 + 1̄ with coefficients in
F3 = Z/3Z in an extension of Z/3Z. Then K = F3(α) is a splitting
field of x2 + 1̄. By Proposition ??, K = {a + bα | a, b ∈ F3} is a field
of nine elements.
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Definition. Let K and K ′ be extensions of a field F . A field isomorphism
from K into K ′ which is identity on F is called an F -isomorphism of K into
K ′. An F -isomorphism of K onto itself is called an F -automorphism of K .

The next theorem tells us that if L1 and L2 are splitting fields of a
polynomial h(x) over F , then there is an F -isomorphism from L1 onto L2.

Theorem 11. Let σ : F → F ′ be an isomorphism of a field F onto a field
F ′. Let h(x) =

∑
aix i be a polynomial belonging to F [x ] and

hσ(x) =
∑
σ(ai )x i be its image polynomial. Let K and K ′ be splitting

fields of h(x) and hσ(x) over F , F ′ respectively. Then there exists an
isomorphism σ̄ from K onto K ′ such that σ̄|F = σ.
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The following corollary follows immediately from Theorem 11.

Corollary 12. A splitting field of a polynomial over a field F is unique upto
F -isomorphism.

Corollary 13. Any two finite fields having the same number of elements are
isomorphic.

Proof.
Let K be a finite field with q = pm elements.
Since K× is a group of order q − 1, for any element α ∈ K×,
αq−1 = 1 by Lagrange’s theorem for finite groups.
So each element of K is a root of the polynomial xq − x which can
have at most q roots.
Thus K is a splitting field of xq − x over Fp.
The result now follows from Corollary 12.
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Definition. A field F is called algebraically closed if it has no proper
algebraic extension, i.e., if K is an algebraic extension of F , then K = F .

Remark. In 1799, Gauss at the age of 22, proved that C is algebraically
closed. This result was then considered so important that it was called
“The Fundamental Theorem of Algebra". Over a period of fifty years,
Gauss gave four different proofs of this theorem.

Example.
Let A denote the set of all those complex numbers which are algebraic
over Q. In view of Theorem 5, A is a subfield of C and is called the
field of algebraic numbers. Assuming that C is algebraically closed we
show that A is algebraically closed. Let ξ be an element of an
overfield of A which is algebraic over A, then ξ being algebraic over C
belongs to C. Since ξ satisfies a polynomial xn + a1xn−1 + · · ·+ an
for some ai ’s belonging to A, it follows that ξ is algebraic over the
finite extension Q(a1, a2, . . . , an) of Q and hence ξ is algebraic over Q
in view of Theorem 4. This proves that ξ belongs to A.
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Definition. An extension F̂ of a field F is called an algebraic closure of F if
F̂/F is an algebraic extension and F̂ is an algebraically closed field.

Example. The field A of algebraic numbers is an algebraic closure of Q.

Remark. In 1910, Ernst Steinitz proved that every field F has an algebraic
closure which is unique upto F -isomorphism, i.e., if F̂1 and F̂2 are two
algebraic closures of F , then there exists an isomorphism from F̂1 onto F̂2
which is identity on F .
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Separable Extensions.
Definition. Let g(x) belonging to F [x ] be an irreducible polynomial. g(x)
is called a separable polynomial if all its roots in its splitting field are
distinct, otherwise it is called inseparable.

Definition.
Let K/F be an extension of fields. An element α ∈ K is called
separable over F if it is algebraic over F and its minimal polynomial
over F is a separable polynomial, otherwise α is called inseparable
over F .
An extension K/F is called separable if it is algebraic and every
α ∈ K is separable over F .

Examples.
(i). 31/5 is separable over Q. In fact a1/n is separable over Q for any

integer a.
(ii). Let F = Fp(t) where t is an indeterminate. Then α = t1/p is not

separable over F .
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Using Taylor’s expansion of a polynomial, the following proposition can be
easily proved.

Proposition 14. Let h(x) belonging to F [x ] be a non-constant polynomial.
A root α of h(x) in some extension field is a repeated root of h(x) if and
only if h′(α) = 0.

Proposition 15. A monic irreducible polynomial g(x) over a field F has a
repeated root if and only if g ′(x) is the zero polynomial.

Proof. If g(x) has a repeated root, say α in an extension of F , then by the
above proposition g ′(α) = 0.

But g(x) being the minimal polynomial of α over F divides every
other polynomial h(x) ∈ F [x ] with h(α) = 0.
So in particular g(x) divides g ′(x).
Since deg g ′(x) < deg g(x), we conclude that g ′(x) is identically zero.
Conversely suppose that g ′(x) is the zero polynomial. Then by
Proposition 14, every root of g(x) is a repeated root.
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Corollary 16. Each irreducible polynomial over a field of characteristic zero
is separable.

Corollary 17. An irreducible polynomial g(x) ∈ F [x ] is inseparable if and
only if the field F is of characteristic p > 0 and g(x) is a polynomial in xp.

Proof.
In view of Proposition 15, a monic irreducible polynomial g(x)
belonging to F [x ] is inseparable if and only if g ′(x) is the zero
polynomial.
On writing g(x) as g(x) =

∑
aix i , we see that g ′(x) is the zero

polynomial if and only if characteristic of F is a prime p and ai = 0 for
each index i not divisible by p, i.e., g(x) = a0 + apxp + a2px2p + . . ..
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Definition. A field F is called perfect if all finite extensions of F are
separable.

Note.
It is immediate from Corollary 16 that every field of characteristic
zero is a perfect field.
Note that if F is a field of characteristic p > 0, then
F p = {ap | a ∈ F} is a subfield of F .
The following theorem asserts that F p = F if and only if F is perfect.

Theorem 18.
Let F be a field of characteristic p > 0. Then F is perfect if and only if
every element of F has a pth root in F , i.e., for every a ∈ F , there exists
b ∈ F with bp = a.
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Corollary 19. Any finite field is perfect.

Proof.
Let F be a finite field of characteristic p > 0.
The mapping a 7→ ap defined from F into F is 1-1 and hence onto.
Therefore the corollary follows from Theorem 18.

Definition.
Let K1, K2 be subfields of a field L. The smallest subfield of L containing
K1 and K2 is called the compositum (composite) of K1 and K2 and is
denoted by K1K2 or by K1 · K2.
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Note.

If K1,K2 are algebraic extensions of field F which are subfields of a
field L, then we show that the compositum K1K2 consists of all finite
sums of the type

∑
αiβi where αi ’s ∈ K1, βi ’s ∈ K2.

This is so because the inverse of an element of the type
k∑

i=1
αiβi with

αi ’s ∈ K1, βi ’s ∈ K2, belongs to the subfield
F (α1, . . . , αk , β1, . . . , βk) which equals the subring
F [α1, . . . , αk , β1, . . . , βk ] in view of Corollary 2.
In particular if K is an algebraic extension of a field F of
characteristic p > 0, then F ,Kp are algebraic extensions of the field
F p and hence the compositum FKp consists of all finite sums of the
type

∑
biyp

i with bi ∈ F , yi ∈ K .
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The following theorem gives a necessary and sufficient condition for a
finite extension to be separable.

Theorem 20. Suppose F is a field of characteristic p > 0. A finite
extension K/F is separable if and only if K = FKp.

The following corollary is an immediate consequence of the above theorem.

Corollary 21. Let α be algebraic over a field F of characteristic p > 0.
Then F (α)/F is separable if and only if F (αp) = F (α).
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Corollary 22. If α is separable over a field F , then F (α)/F is a separable
extension.

Proof.
Since every finite extension of a field of characteristic zero is
separable, it is enough to prove the corollary when characteristic of F
is p > 0.
Check that F (α) = F (αp).
Hence by the above corollary, F (α) is a separable extension of F .

Theorem 23. (Transitive property of separable extensions) If L/K and
K/F are separable extensions, then so is the extension L/F .
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Corollary 24. Let K/F be an extension of fields. The set F S of all
elements of K which are separable over F forms a subfield of K .

Proof.
Let α, β ∈ K be separable over F .
It is to be shown that α± β, αβ and α/β are separable over F .
Now F (α)/F is separable by Corollary 22.
Also F (α, β)/F (α) is separable by the same corollary.
Therefore by the transitive property of separable extensions,
F (α, β)/F is separable.

The following corollary is an immediate consequence of the above corollary.

Corollary 25. If elements α1, α2, . . . , αn of an extension of a field F are
separable over F , then F (α1, α2, . . . , αn)/F is a separable extension.
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Definition. The set F S given in Corollary 24 is called the separable closure
of F in K and the degree [F S : F ] is called the separable degree of the
extension K/F . The degree of K/F S is called the inseparable degree of
K/F .

Finite separable extensions have a special property which is given by the
following theorem.

Theorem 26. (Primitive Element Theorem) Every finite separable
extension is simple. More generally if K = F (θ1, θ2, . . . , θn) is a finite
extension of a field F and if at least n − 1 of the elements θ1, . . . , θn are
separable over F , then K is a simple extension of F .

Definition. Let K/F be an extension of fields of characteristic p > 0. An
element α of K is said to be purely inseparable over F if the minimal
polynomial of α over F has only one root. The extension K/F is said to
purely inseparable if every element of K is purely inseparable over F .
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Note that an element α of K is both separable and inseparable over F if
and only if α ∈ F .

Theorem 27. Let K/F be an algebraic extension of fields of characteristic
p > 0. Let F S denote the separable closure of F in K . Then K/F S is a
purely inseparable extension. In particular every algebraic extension can be
written as a separable extension followed by a purely inseparable extension.

Proof.
Let α be any element of K .
To prove the theorem, it is enough to show that there exists e > 0
such that αpe ∈ F S ;
because this will prove that α is purely inseparable over F S as it will
satisfy the polynomial xpe − αpe = (x − α)pe over F S .
Let g(x) be the minimal polynomial of α over F .
If α is separable over F , then α ∈ F S . If not, then by Corollary 17,
g(x) is a polynomial in xp, say g(x) = g1(xp), g1(x) ∈ F [x ].
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Proof Contd....
Note that g1(x) being irreducible over F is the minimal polynomial of
αp over F .
If αp is separable over F , then αp ∈ F S .
If not, then by Corollary 17, g1(x) = g2(xp) for some g2(x) ∈ F [x ].
Note that g2(x) is the minimal polynomial of αp2 over F and
deg g2(x) = deg g1(x)

p = deg g(x)
p2 .

Repeating the above argument, we see that there exists e such that
αpe must be separable over F .
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Normal Extensions.

Definition. An algebraic extension K/F is called a normal extension if
whenever an irreducible polynomial g(x) ∈ F [x ] has one root in K , then it
has all roots in K .

Examples.
(i) Any extension K/F of degree two is normal because if an irreducible

polynomial g(x) = ax2 + bx + c has one root β in K , then its other
root namely −β − b/a also belongs to K .

(ii) If K/F is a normal extension, then the separable closure F S of F in K
is also a normal extension of F .

(iii) Let θ be a root of the polynomial x4 − 2, then Q(θ)/Q is not a
normal extension.
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Definition. Two elements α and α′ lying in an extension of a field F and
both algebraic over F are said to be conjugates over F or F-conjugates if
they have the same minimal polynomial over F .

Proposition 28. Let α and α′ be algebraic over a field F . Then α and α′
are conjugates over F if and only if there exists an F -isomorphism σ from
F (α) onto F (α′) with σ(α) = α′.

Proof.
Suppose first that α and α′ are the roots of the same monic
irreducible polynomial g(x) belonging to F [x ].
By Proposition 1, F (α) = F [α] and F (α′) = F [α′].
Let h(α) be any element of F (α), h(x) ∈ F [x ].
We define σ(h(α)) = h(α′).
Then σ is well defined because if h(α) = h1(α) with h1(x) ∈ F [x ],
then g(x) divides h(x)− h1(x) and hence h(α′) = h1(α′).
It can be easily seen that σ is F -isomorphism of F (α) onto F (α′).
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Proof Contd....
Conversely, assume that there exists an F -isomorphism σ from F (α)
onto F (α′) with σ(α) = α′.
Let g(x) denote the minimal polynomial of α over F .
Now g(α) = 0 implies that σ(g(α)) = g(σ(α)) = g(α′) = 0.
Therefore α and α′ have the same minimal polynomial g(x) over F .

Remark.
If g(x) is an irreducible polynomial over a field F having a root α and
L is an extension of F containing a splitting field of g(x) over F , then
arguing as in the proof of above proposition, it can be easily seen that
the number of F -isomorphisms of F (α) into L is the number of
distinct roots of g(x).
In fact each of these F -isomorphisms is defined by mapping α onto a
root of g(x).
In particular, if K/F is a finite separable extension of degree n, then
by Theorem 26, K/F is a simple extension and hence there are exactly
n F -isomorphisms of K into a normal extension of F containing K .
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The following two results will be used to give two more equivalent
definitions of a finite normal extension.

Proposition 29. Let K be a splitting field of a polynomial h(x) ∈ F [x ] over
a field F . If σ is an F -isomorphism from K into an extension of K , then
σ(K ) = K .

Proof. Let α1, α2, . . . , αn be the roots of h(x) in K so that
K = F (α1, α2, . . . , αn).

Let σ is an F -isomorphism from K into an extension of K .
Write h(x) =

∏n
i=1(x − αi ).

Applying σ, we obtain h(x) =
∏n

i=1(x − σ(αi )).
So σ(α1), σ(α2), . . . , σ(αn) is a permutation of α1, α2, . . . , αn.
Therefore

σ(K ) = σ(F (α1, α2, . . . , αn)) = F (σ(α1), σ(α2), . . . , σ(αn))
= F (α1, α2, . . . , αn) = K .

Dr. Anuj Jakhar Lecture 1-4 2021



Theorem 30. Let K/F be a finite extension of fields. Then the extension
K/F is normal if and only if K is a splitting field over F of some
polynomial in F [x ].

Proof.
Let K/F be a finite normal extension.
Write K = F (β1, β2, . . . , βm).
Let gi (x) ∈ F [x ] be the minimal polynomial of βi over F and define

h(x) =
m∏

i=1
gi (x).

Then K contains all roots of h(x) and hence it is a splitting field of
h(x) over F .
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Proof Contd....
Conversely let K be a splitting field of a polynomial h(x) ∈ F [x ].
Let α1, α2, . . . , αn be all the roots of h(x) so that
K = F (α1, α2, . . . , αn).
Let β ∈ K be any root of a monic irreducible polynomial g(x) ∈ F [x ].
Let β′ be another root of g(x) in an extension of K .
We have to prove that β′ ∈ K . Since β and β′ are F -conjugates,
there exists an F -isomorphism σ from F (β) onto F (β′) with
σ(β) = β′ by Proposition 28.
Note that splitting fields of h(x) over F (β) and F (β′) are respectively
K (β) = K and K (β′) = F (β′, α1, . . . , αn).
Therefore by Theorem 11, σ can be extended to an F -isomorphism σ1
from K onto K (β′).
By Proposition 29, σ1(K ) = K , so β′ = σ1(β) belongs to K .
This proves that K/F is normal.
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Definition.
Let K/F be a finite extension. It can be easily seen that there exists
a smallest normal extension L of F such that K ⊆ L.
The field L is called a normal closure of K over F .
In fact if K = F (β1, β2, . . . , βm) and gi (x) ∈ F [x ] is the minimal

polynomial of βi over F , then L is a splitting field of h(x) =
m∏

i=1
gi (x)

over F . So L is unique upto F -isomorphism.

Proposition 31. Let K be a finite normal extension of a field F and E be a
subfiled of K containing F . Then every F -isomorphism of E into K can be
extended to an F -automorphism of K .
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Proof of Proposition 31.
Let σ be an F -isomorphism of E into K .
Since K/F is a finite normal extension, K is a splitting field of a
polynomial say h(x) ∈ F [x ] over F by Theorem 30.
So K is also a splitting field of h(x) over E .
Therefore in view of Theorem 11, σ can be extended to an
F -automorphism of K .

Using the above proposition, we prove the following theorem which gives
two more equivalent definitions of a finite normal extension.

Theorem 32. The following statements are equivalent for a finite extension
K of a field F :
(i) K/F is a normal extension.
(ii) K is a splitting field over F of a polynomial h(x) belonging to F [x ].
(iii) Every F -isomorphism of K into any extension of K has image K .
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Proof of Theorem 32.
(i) and (ii) are equivalent in view of Theorem 30.
(ii) implies (iii) in view of Proposition 29.
We now prove that (iii) implies (i).
Let L be a finite normal extension of F containing K .
Let β ∈ K be any root of a monic irreducible polynomial g(x) ∈ F [x ].
Let β′ be another root of g(x) in the extension L of K .
We have to prove that β′ ∈ K .
Since β and β′ are F -conjugates, there exists an F -isomorphism τ
from F (β) onto F (β′) with τ(β) = β′ in view of Proposition 28.
By Proposition 31, τ can be extended to an F -automorphism τ̄ (say)
of L. On restricting τ̄ to K and using assertion (iii), we see that
τ̄(K ) = K and hence β′ = τ̄(β) belongs to K .
This proves that K/F is normal.
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Keeping in mind the above theorem, the following corollary can be easily
verified.

Corollary 33. If K1,K2 are finite normal extensions of a field F , then so are
K1K2 and K1 ∩ K2.

We shall quickly deduce the following corollary from Proposition 31 and
Theorem 32.

Corollary 34. Let K be a finite normal extension of field F and E be a
subfiled of K containing F . Then E/F is a normal extension if and only if
σ(E ) = E for every F -automorphism σ of K .
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Proof of Corollary 34.
It is immediate from Theorem 32 that if E/F is a normal extension,
then σ(E ) = E for every F -automorphism σ of K .
To prove the converse, assume that σ(E ) = E for every
F -automorphism σ of K .
Let g(x) ∈ F [x ] be an irreducible polynomial having a root β ∈ E
and β′ be another root of g(x).
Since K/F is normal, β′ ∈ K .
Let τ be an F -isomorphism from F (β) into K defined by τ(β) = β′.
By Proposition 31, τ can be extended to an F -automorphism τ̄ (say)
of K .
Then by our assumption τ̄(E ) = E and therefore β′ = τ̄(β) belongs
to E .
This proves that E/F is a normal extension.
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Example. Every finite extension K of a finite field F is normal.
Because if |K | = q = pm, then as shown in the proof of Corollary 13,
K is a splitting field of Xq − X over Fp and hence it is also splitting
field of Xq − X over F .
Therefore K/F is normal by Theorem 32.

In fact every algebraic extension L of a finite field F is normal because
whenever L contains a root α of an irreducible polynomial g(x) belonging
to F [x ], then all roots of g(x) belong to the normal extension F (α) of F .

Remark. Normality is not a transitive relation. For example; consider
K = Q(θ) where θ is a real root of x4 − 2, then Q(θ)/Q(

√
2) and

Q(
√
2)/Q are normal but Q(θ)/Q is not a normal extension.
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Galois extension.

Definition. An extension K/F is called a Galois extension if it is both
normal and separable.

Examples.

(i) An extension of degree 2 of a field of characteristic different from 2 is
a Galois extension.

(ii) A generator of the cyclic group consisting of all nth roots of unity in
C is called a primitive nth root of unity. If ζ is a primitive nth root of
unity in C, then Q(ζ)/Q is a Galois extension being the splitting field
of Xn − 1 over Q. The field Q(ζ) is called nth cyclotomic field. Such
extensions of Q are called cyclotomic extensions.

(iii) An algebraic extension of a finite field is a Galois extension in view of
Corollary 19 and the last example.
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(iv) If K/F is a Galois extension and E is a subfield of K containing F ,
then K/E is also a Galois extension because the minimal polynomial
of any element β ∈ K over E divides the minimal polynomial of β
over F . On the other hand E/F may fail to be Galois extension. For
example: K = Q(21/3,

√
−3) being a splitting field of the polynomial

x3− 2, is a Galois extension of Q but E = Q(21/3) fails to be a Galois
extension of Q.
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Galois extensions are named after the French mathematician Évariste
Galois (1811-1832) and are of fundamental importance in field theory.
Galois gave a complete solution to the problem partially solved by
Gauss, Ruffini and Abel of solving a polynomial equation by radicals
in 1830 when he submitted a memoir to the Paris Academy of
Sciences on the theory of equations.
In this memoir, he described what is now known as the Galois group
of a polynomial and used this group to derive necessary and sufficient
conditions for a polynomial to be solvable by radicals.
For complete details along with the history of this problem, the reader
is referred to the interesting book by Jean-Pierre Tignol.
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Definition. Let K/F be a Galois extension. The set of all F -automorphisms
of K is a group with respect to the composition of maps. This group is
called the Galois group3 of K/F and will be denoted by Gal(K/F ).

Example. Let d , d1 be distinct squarefree integers. Show that
K = Q(

√
d ,
√
d1) is a Galois extension of Q having Galois group

isomorphic to Klein’s 4-group.
Since K is the splitting field of the polynomial (x2 − d)(x2 − d1) over
Q, it is a normal extension of Q of degree 4.
If σ ∈ Gal(K/Q), then σ(

√
d) = ε

√
d , with ε ∈ {1,−1} and so

σ2(
√
d) =

√
d .

Similarly σ2(
√
d1) =

√
d1 and hence σ2 is identity.

Therefore Gal(K/Q) is isomorphic to Klein’s 4-group.

3It may be pointed out that this definition of Galois group is very different from the
one given by Galois in his memoir written by him at the age of 19. He only dealt with
splitting fields of polynomials and for him, the Galois group consisted of certain
permutations of the roots. The modern formulation of Galois Theory is due to Emil
Artin who published his own account of Galois Theory in 1938 and 1942.
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We shall now compute the degree of the n-th cyclotomic field over Q as
well as its Galois group.

Definition. Let n be a positive integer. The polynomial
∏
η

(x − η), where η

runs over all primitive n-th roots of unity in C is called the n-th cyclotomic
polynomial and will be denoted by Φn(x). Note that the degree of Φn(x)
is φ(n).

Note that Φ1(x) = x − 1, Φ2(x) = x + 1 belong to Z[x ]. The following
lemma shows that this holds for every n.

Lemma 35. The n-th cyclotomic polynomial Φn(x) is in Z[x ] for every
n ≥ 1.
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Proof of Lemma 35.
The lemma is proved by induction on n. We first show that ∀n ≥ 1,

xn − 1 =
∏
d |n

Φd (x). (1)

The above equality holds because every nth root of unity is a
primitive dth root of unity for a unique divisor d of n and the
polynomials on either side of (1) do not have any repeated root.
By induction hypothesis, the polynomial

g(x) :=
∏
d |n
d 6=n

Φd (x)

belongs to Z[x ].
Since g(x) is monic, it now follows from (1) that the polynomial
Φn(x) = (xn − 1)/g(x) belongs to Z[x ].
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Theorem 36. If ζ be a primitive nth root of unity in C, then
[Q(ζ) : Q] = φ(n). Equivalently, the cyclotomic polynomial Φn(x) is
irreducible over Q.

Corollary 37. Let K = Q(ζ) where ζ is a primitive nth root of unity. Then
the Galois group G of the extension K/Q consists of φ(n) automorphisms
σr , 1 ≤ r ≤ n, (r , n) = 1, defined by σr (ζ) = ζr and G is isomorphic to the
group (Z/nZ)× of reduced residue classes modulo n.
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Proof of Corollary 37.
By Lemma 35 and Theorem 36, Φn(x) is the minimal polynomial of ζ
over Q.
So the Q-conjugates of ζ are ζr , 1 ≤ r ≤ n, (r , n) = 1.
Consequently, we have exactly φ(n) isomorphisms σr from K into K
defined by σr (ζ) = ζr with r as above; in fact each of these is an
automorphism of K because σr (K ) = Q(ζr ) = Q(ζ). So the first
assertion of the corollary is proved.
Since ζr and hence σr depends only upon the residue class r of r
modulo n, therefore the mapping r 7→ σr from (Z/nZ)× into G is well
defined and bijective.
It is a group homomorphism, because if (rs, n) = 1, then

σrs(ζ) = ζrs = σr (ζs) = σr (σs(ζ)) = σr ◦ σs(ζ).

This completes the proof of the corollary.
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Definition. Let G be a subgroup of the group of all automorphisms of a
field K . Then it can be easily seen that the set
{α ∈ K | σ(α) = α ∀ σ ∈ G} is a subfield of K . It is called the fixed field
of G .

Theorem 38. Let K/F be a Galois extension of degree n. Then the Galois
group of K/F is a group of order n and F is the fixed field of Gal(K/F ).

Theorem 39. (Artin’s Theorem) Let G be a finite group of automorphisms
of a field K and F be the fixed field of G . Then K/F is a Galois extension
with Gal(K/F ) = G .

Using above two results, we prove the following main result.
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Theorem 40. (Fundamental Theorem of Galois Theory) Let K/F be a
finite Galois extension. For any subfield T of K which contains F , let
G(K ,T ) denote the subgroup of G(K ,F ) = Gal(K/F ) consisting of those
automorphisms which are identity on T . For any subgroup H of G(K ,F ),
let KH denote the fixed field of H. Then the mapping T 7→ G(K ,T ) sets
up a one-to-one correspondence between the set of subfields of K which
contain F onto the set of subgroups of G(K ,F ) such that
(i) T = KG(K ,T ),
(ii) H = G(K ,KH),
(iii) [K : T ] = order of G(K ,T ) and [T : F ] = index of G(K ,T ) in

G(K ,F ),
(iv) T is a normal extension of F if and only if G(K ,T ) is a normal

subgroup of G(K ,F ),
(v) when T is a normal extension of F , then

G(T ,F ) ∼= G(K ,F )/G(K ,T ).
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Proof .
Note that for any intermediate field T , K/T is a Galois extension,
therefore by Theorem 38, T is the fixed field of G(K ,T ) which proves
(i).
Second assertion follows from Theorem 39 applied to H. Also in view
of Theorem 38, we see that |G(K ,F )| = [K : F ],
|G(K ,T )| = [K : T ]. Therefore on dividing, assertion (iii) follows.
To prove (iv), suppose first that G(K ,T ) is a normal subgroup of
G(K ,F ). For every σ ∈ G(K ,F ), σG(K ,T )σ−1 = G(K ,T ). In
particular, their fixed fields are the same. Keeping in mind that the
fixed field of σG(K ,T )σ−1 is σ(T ), we see that
σ(T ) = T ∀ σ ∈ G(K ,F ). This proves that T/F is a normal
extension in view of Corollary 34.
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Proof Contd...
Conversely suppose that T is a normal extension of F . Note that for
any σ ∈ G(K ,F ), σ(T ) = T in view of Theorem 32.
Therefore the mapping Φ : G(K ,F )→ G(T ,F ) given by Φ(σ) = σ|T
is clearly a group homomorphism with ker(Φ) = G(K ,T ).
By virtue of Proposition 31, Φ is onto.
So by first isomorphism theorem of groups,
G(K ,F )/G(K ,T ) ∼= G(T ,F ).
Therefore G(K ,T ) is a normal subgroup of G(K ,F ) and hence the
theorem is proved.
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Definition. A Galois extension K/F is called cyclic (respectively abelian) if
its Galois group is cyclic (respectively abelian4).

In view of the fact that a subgroup of an abelian group is normal and a
factor group of an abelian (resp. cyclic) group is abelian (resp. cyclic), the
corollary stated below follows quickly from assertions (iv), (v) of Theorem
40.

Corollary 41. Let K be a finite Galois extension of a field F which is
abelian (resp. cyclic). If E is an intermediate field of the extension K/F ,
then E/F is a Galois extension and is abelian (resp. cyclic).

4The terminology ‘abelian extension’ seems to have been initiated by Leopold
Kronecker who stated and partially proved Kronecker-Weber Theorem which says that
every finite abelian extension of Q is contained in a cyclotomic extension.
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Keeping in mind that the number of subgroups of a cyclic group of order n
is the number of divisors of n, the following corollary is an immediate
consequence of Theorem 40.

Corollary 42. Let K be a finite cyclic extension of a field F of degree n.
Then the number of intermediate fields of K/F (including K , F ) is the
number of divisors of n.

Remark.
An analogue of the fundamental theorem of Galois theory also holds
for infinite Galois extensions.
In fact Krull defined a topology on Gal(K/F ) by taking as a
fundamental system of open neighbourhoods of the identity the set of
subgroups belonging to finite extensions of F contained in K .
The closed subgroups are precisely those subgroups which are of the
type Gal(K/L) where L runs over intermediate fields between K and
F .
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Definition. Let K be a finite extension of a finite field F consisting of q
elements. The mapping σ defined on K by σ(α) = αq, α ∈ K is clearly an
F -automorphism of K . It is called the Frobenius automorphism of K/F .

With K/F as in the above definition, we shall prove below that its
Frobenius automorphism generates the Galois group of K/F .

Proposition 43. Let K/F be an extension of finite fields. Then Gal(K/F )
is a cyclic group generated by the Frobenius automorphism of K/F .
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Proof of Proposition 43.
Let K/F be an extension of degree n with |F | = q.
Then |Gal(K/F )| = n by the fundamental theorem of Galois theory.
Consider the map σ : K −→ K defined by σ(α) = αq, α ∈ K .
It is easily checked that σ is an F -automorphism of K .
Its powers σ0, σ, σ2, . . . , σn−1 are distinct because otherwise σi is the
identity map for some i , 0 < i < n and consequently αqi = α for
each α in K which is impossible as the polynomial xqi − x can’t have
more roots than its degree.
Thus Gal(K/F ) is a cyclic group generated by σ.
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Definition. Let g(x) be a monic polynomial without repeated roots having
coefficients in a field F . Let α1, ..., αm be all the roots of g(x) in its
splitting field. In view of Corollary 25 and Theorem 30, F (α1, ..., αm) is a
Galois extension of F . Its Galois group is called the Galois group of g(x)
over F . This group is also called the Galois group of the equation
g(x) = 0 over F .

Example. Let m be an integer with |m| > 1 which is not divisible by the
cube of any prime number. Then we show that the Galois group of the
polynomial g(x) = x3 −m over Q is isomorphic to the symmetric group
S3 of degree 3. It can be easily seen that g(x) is irreducible over Q. Note
that the splitting field K of g(x) over Q is Q(θ, ω) , where θ is a root of
g(x) and ω 6= 1 is a cube root of unity. Hence [K : Q] = 6. So the Galois
group of g(x) over Q is either abelian or isomorphic to S3. But this group
can not be abelian in view of Corollary 41, because the subextension
Q(θ)/Q is not normal. Therefore Gal(K/Q) is isomorphic to S3.
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