
MA 1101

Functions of Several Variables

Multiple Integrals



Solids of revolution

The solid obtained by rotating a plane region about a straight line in
the same plane is called a solid of revolution. The line is called the
axis of revolution

Suppose the region is bounded above by the curve y = f (x) and below
by the x-axis, where a ≤ x ≤ b.
To find the volume of the solid, divide the interval [a, b] into n equal
parts:

a = x0 < x1 < · · · < xn−1 < xn = b.



Volume of revolution
On the ith subinterval, the slice of the solid is a portion of a cylinder
whose cross section with a plane vertical to its axis is a circle.
So, an approximation of the slice is c[f (x∗i )]2(xi − xi−1) for a point
x∗i ∈ [xi−1, xi] .
Then the volume of the solid of revolution is approximated by the sum

n∑
i=1

c[f (x∗i )]2(xi − xi−1).

The volume of the solid of revolution is the limit of this sum where
n→∞.
Also, the cross sectional area for x ∈ [a, b] is A(x) = c(f (x))2.
Assuming that A(x) is a continuous function of x, the volume is

V =

∫ b

a
A(x) dx =

∫ b

a
c[f (x)]2 dx.

If the axis of revolution is a straight line other than the x-axis, similar
formulas can be obtained for the volume.



Examples

Example 1: The region between the curve y =
√

x, 0 ≤ x ≤ 4 and the
x-axis is revolved around x-axis. Find the volume of the solid of
revolution.

As shown in the above figure, the required volume is

V =

∫ 4

0
c(
√

x)2 dx =
∫ 4

0
c x dx = c

[x2

2

]4
0
= 8c.

Example 2: Find the volume of the sphere x2 + y2 + z2 = a2, a > 0.

Think of the sphere as the solid of revolution of the region bounded by
the upper semi-circle x2 + y2 = a2, y ≥ 0. Here, −a ≤ x ≤ a.
The curve is thus y =

√
a2 − x2. Then the volume of the sphere is

V =

∫ a

−a
c(

√
a2 − x2)2 dx =

∫ a

−a
c(a2−x2) dx = c

[
a2x−x3

3

]a

−a
=
4
3
ca3.



Example 3

Find the volume of the solid obtained by revolving the region bounded
by y =

√
x and the lines y = 1, x = 4 about the line y = 1.

The required volume is

V =

∫ 4

1
c[R(x)]2 dx =

∫ 4

1
c(
√

x−1)2 dx =
∫ 4

1
c(x−2

√
x+1) dx =

7c
6
.



Example 4
Find the volume of the solid generated by revolving the region
between the y-axis and the curve xy = 2, 1 ≤ y ≤ 4, about the y-axis.

The volume is

V =

∫ 4

1
c[R(y)]2 dy = c

∫ 4

1

4
y2

dy = 3c.



Example 5
Find the volume of the solid generated by revolving the region
between the parabola x = y2 + 1 and the line x = 3 about the line x = 3.

Notice that the cross sections are perpendicular to the axis of
revolution: x = 3.

The volume is

V =

∫ √
2

−
√
2
c[R(y)]2dy =

∫ √
2

−
√
2
c[2 − y2]2dy =

64c
√
2

15
.



With holes

If the region which revolves does not border the axis of revolution,
then there are holes in the solid.

In this case, we subtract the volume of the hole to obtain the volume
of the solid of revolution.
The volume of the the solid of revolution is

V =

∫ b

a
A(x) dx =

∫ b

a
c[(R(x))2 − (r(x))2] dx.



Example 6
The region bounded by the curve y = x2 + 1 and the line x + y = 3 is
revolved about the x-axis to generate a solid. Find the volume of the
solid.

The outer radius is R(x) = −x + 3.
The inner radius is r(x) = x2 + 1.
The limits of integration are obtained by
finding the points of intersection of the
given curves:

x2 + 1 = −x + 3⇒ x = −2, 1.

The volume is V =

∫ 1

−2
c[(−x + 3)2 − (x2 + 1)2] dx =

117c
5

.



Example 7
Find the volume of the solid obtained by revolving the region bounded
by the curves y = x2 and y = 2x, about the y-axis.

The given curves intersect at y = 0 and y = 4. The required volume is

V =

∫ 4

0
c[(R(y))2 − (r(y))2] dy =

∫ 4

0
c[(√y)2 − (y/2)2] dy =

8c
3
.



Example 8

Find the volume of the solid generated by revolving about the x-axis
the region bounded by the curve y = 4/(x2 + 4) and the lines
x = 0, x = 2, y = 0.

The volume is V =

∫ 2

0
c

16
(x2 + 4)2

dx.

Substitute x = 2 tan t. dx = 2 sec2 t dt, (x2 + 4)2 = 16 sec4 t for
0 ≤ t ≤ c/4. So,

V =

∫ c/4

0
16c

2 sec2 t
16 sec4 t

dt =
∫ c/4

0
2c cos2 t dt = c

(c
4
+ 1
2

)
.



Example 9

In the figure is shown a solid with
a circular base of radius 1. Parallel
cross sections perpendicular to the
base are equilateral triangles. Find
the volume of the solid.

Take the base of the solid as the disk
x2 + y2 ≤ 1. The solid, its base, and
a typical triangle at a distance x from
the origin are:



Example 9 Contd.

The point B lies on the circle y =
√
1 − x2.

The length of AB is 2
√
1 − x2.

The triangle is equilateral with height
√
3
√
1 − x2.

The cross sectional area is

A(x) = 1
2
2
√
1 − x2

√
3
√
1 − x2 =

√
3 (1 − x2).

Thus, the volume of the solid is

V =

∫ 1

−1
A(x) dx =

∫ 1

−1

√
3 (1 − x2) dx =

4
√
3
.



Example 10

A wedge is cut out of a circular cylinder of radius 4 by two planes.
One plane is perpendicular to the axis of the cylinder. The other
intersects the first at an angle of 30◦ along a diameter of the cylinder.
Find the volume of the wedge.

Place the x-axis along the diameter where
the planes meet.
The base of the solid is the semicircle:
y =
√
16 − x2, −4 ≤ x ≤ 4.

A cross-section perpendicular to x-axis at
a distance x from the origin is the triangle
ABC. The base and height of ABC are:

Base: y =
√
16 − x2; Height: |BC | = y tan 30◦ =

√
16 − x2/

√
3.

Cross sectional area A(x) = 1
2

√
16 − x2

√
16−x2√

3
= 16−x2

2
√
3
.

Volume of the wedge V =
∫ 4
−4 A(x) dx =

∫ 4
−4

16−x2
2
√
3

dx = 128
3
√
3
.



Cylindrical Shell Method
Let S be a solid obtained by revolving about the y-axis the region
bounded by y = f (x) and the lines y = 0, x = a, x = b, where
f (x) > 0, 0 < a < b.

Approximate the volume of the solid by slicing into cylindrical shells.
When the width of the cylindrical shells approach zero, as in the
Riemann sums, we would obtain the volume as a limit.



Using the Idea
The volume of each cylindrical shell is

V = V2 − V1 = cr22h − cr21h = 2crhΔr

where r = (r1 + r2)/2 and Δr = r2 − r1.

So, for the volume of the solid, divide the interval [a, b] into n
subintervals [xi−1, xi] of equal width Δx and take xi as the mid-point of
the subinterval.
If the rectangle with base [xi−1, xi] and height f (xi) is revolved about
the y-axis, the result is a cylindrical shell with average radius xi,

height f (xi) and thickness Δx.
Thus the volume of the shell is Vi = (2cxi) f (xi) Δx. Therefore, the
approximation to the volume V is given by

n∑
i=1

Vi =

n∑
i=1
(2cxi) f (xi) Δx.



Axis of revolution

By taking n approach∞, we get the required volume as

V = lim
n→∞

n∑
i=1

Vi =

∫ b

a
2cxf (x) dx.

Instead of taking the axis of revolution as the y-axis, we may take the
vertical line x = ℓ. In that case, the shell radius will be x − ℓ instead of
x = x − 0. Therefore, we have the following:

The volume V of the solid generated by revolving the region
between the x-axis and the graph of a continuous function
y = f (x) with f (x) ≥ 0 and ℓ ≤ a ≤ x ≤ b, about a vertical
line x = ℓ is given by

V =
∫ b
a 2c(x − ℓ)f (x) dx =

∫ b
a 2c(shell radius) (shell height) dx.



Example 11
Find the volume of the solid generated by revolving the region
bounded by the parabola y = 3x − x2 and the x-axis,
about the line x = −1.

The parabola intersects the x-axis at x = 0 and x = 3.

The required volume is

V =

∫ 3

0
2c(x + 1) (3x − x2) dx = 2c

∫ 3

0
(2x2 + 3x − x3) dx =

45c
2
.



Example 12
The region bounded by the x-axis, the line x = 4, and the curve y =

√
x

is revolved about the x-axis. Find the volume of the solid of
revolution.

Here, the shell thickness variable is y.
The limits of integration are y = 0 and y = 2.
The shell radius is y and the shell height is 4 − y2.
Thus the volume of the solid of revolution is

V =

∫ 2

0
2c y(4 − y2) dy = 2c

[
2y2 − y4

4

]2
0
= 8c.



Volume of general solids
Let f (x, y) be defined on the rectangle R : a ≤ x ≤ b, c ≤ y ≤ d.
For simplicity, take f (x, y) ≥ 0. The graph of f is the surface
z = f (x, y).We approximate the volume of the solid
S : {(x, y, z) : (x, y) ∈ R, 0 ≤ z ≤ f (x, y)} by partitioning R and then
adding up the volumes of the solid rods:

So, consider a partition of R as P : Rij = [xi−1, xi] × [yj−1, yj] for
1 ≤ i ≤ m, 1 ≤ j ≤ n, a = x0, b = xm, c = y0, d = yn.

Denote by ‖P‖ = max{area of Rij}, the norm of P.
Denote by A(Rij) the area of such a rectangle Rij .

Choose sample points (x∗i , y∗j ) ∈ Rij . An approximation to the volume
of S is the Riemann sum Smn =

∑m
i=1

∑n
j=1 f (x∗i , y∗j )A(Rij).



Continuous Functions on a Rectangle
If limit of Smn exists as ‖P‖ → 0, then this limit is called the double
integral of f (x, y). It is denoted by

∬
R f (x, y)dA. Whenever the

integral exists, it is also enough to consider uniform partitions, that is,
xi − xi−1 = (b − a)/m = Δx and yj − yj−1 = (d − c)/n = Δy. In this
case, we write A(Rij) = ΔA = ΔxΔy. Then∬

R
f (x, y)dA = lim

‖P‖→0
Smn = lim

m→∞
lim
n→∞

m∑
i=1

n∑
j=1

f (x∗i , y∗j )ΔxΔy.

Since f (x, y) ≥ 0, the value of this integral is the volume of the solid
S bounded by the rectangle R and the surface z = f (x, y).
When the integral of f (x, y) exists, we say that f is Riemann integrable
or just integrable.

Riemann sum is well defined even if f is not a positive function.

Theorem 1: Each continuous function defined on a closed bounded
rectangle is integrable.



Iterated Integrals
Find the volume V of the solid raised over the rectangle
R : [0, 2] × [0, 1] and bounded above by the plane z = 4 − x − y.

Suppose A(x) is the cross sectional are at x. Then V =
∫ 2
0 A(x)dx.

Now, A(x) =
∫ 1
0 (4 − x − y)dy. Thus, V =

∫ 2
0

∫ 1
0 (4 − x − y)dydx.

Therefore,
∬

R
(4 − x − y)dA =

∫ 2

0

∫ 1

0
(4 − x − y)dydx.

The expression on the left is a double integral and on the right is an
iterated integral.



Fubuni’s

Theorem 2: Let R be the rectangle [a, b] × [c, d] . Let f : R→ R be a
continuous function. Then∬

R
f (x, y)dA =

∫ b

a

∫ d

c
f (x, y)dydx =

∫ d

c

∫ b

a
f (x, y)dxdy.

Example 13: Evaluate
∬

R(1 − 6x2y)dA, where R = [0, 2] × [−1, 1] .∬
R
(1 − 6x2y)dA =

∫ 1

−1

∫ 2

0
(1 − 6x2y)dxdy =

∫ 1

−1
(2 − 16y)dy = 4.

Also, reversing the order of integration, we have∬
R
(1 − 6x2y)dA =

∫ 2

0

∫ 1

−1
(1 − 6x2y)dydx =

∫ 2

0
2dx = 4.



Example 14

Evaluate
∬

R y sin(xy)dA, where R = [1, 2] × [0, c] .∬
R

y sin(xy)dA =

∫ c

0

∫ 2

1
y sin(xy) dxdy

=

∫ c

0
(− cos 2y + cos y)dy = 0.

Notice that the volume of the solid above R and below the surface
z = y sin(xy) is the same as the volume below R and above the surface.
Therefore, the net volume is zero.



Example 15

Find the volume of the solid bounded by the elliptic paraboloid
x2 + 2y2 + z = 16, planes x = 2 and y = 2, and the three co-ordinate
planes.

Let R be the rectangle [0, 2] × [0, 2] . The solid is above R and below
the surface defined by z = f (x, y) = 16 − x2 − 2y2, where f is defined
on R.

V =

∬
R
(16 − x2 − 2y2)dA =

∫ 2

0

∫ 2

0
(16 − x2 − 2y2)dxdy = 48.



Non-rectangular Region
Given a function defined over a bounded non-rectangular region, we
follow the same path: partition the region into smaller rectangles,
form the Riemann sum, take its limit as the norm of the partition goes
to zero.

The double integral of f over such a bounded region R can also be
evaluated using iterated integrals. Look at R bounded by two
continuous functions g1(x) and g2(x).
Or, as one bounded by two continuous functions h1(y) and h2(y).



Fubuni Again

Theorem 3: Let f (x, y) be a continuous on a region R.

1. If R is given by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), where
g1, g2 : [a, b] → R are continuous, then∬

R
f (x, y)dA =

∫ b

a

∫ g2 (x)

g1 (x)
f (x, y)dydx.

2. If R is given by c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y), where
h1, h2 : [c, d] → R are continuous, then∬

R
f (x, y)dA =

∫ d

c

∫ h2 (y)

h1 (y)
f (x, y)dxdy.



Example 16

Find the volume of the prism whose base is the triangle in the
xy-plane bounded by the lines y = 0, x = 1 and y = x, and whose top
lies in the plane z = 3 − x − y.

V =
∫ 1
0

∫ x
0 (3 − x − y)dydx =

∫ 1
0 (3x − 3x2/2)dx = 1.

Also, V =
∫ 1
0

∫ 1
y (3 − x − y)dxdy =

∫ 1
0 (5/2 − 4y + 3y2/2)dy = 1.



Get the Limits Right

Suppose R is the region bounded by the line x + y = 1 and the portion
of the circle x2 + y2 = 1 in the first quadrant.

Sketch it, find the limits, and then write the appropriate integrals:

∬
R

f (x, y)dA =
∫ 1

0

∫ √
1−x2

1−x
f (x, y)dydx =

∫ 1

0

∫ √1−y2

1−y
f (x, y)dxdy.



First x or First y?
Example 17: Evaluate

∬
R

sin x
x

dA, where R is the triangle in the

xy-plane bounded by the lines y = 0, x = 1, y = x.

∬
R

sin x
x

dA =
∫ 1

0

∫ 1

y

sin x
x

dxdy.

We are stuck. No way to proceed further. On the other hand,∬
R

sin x
x

dA =
∫ 1

0

∫ x

0

sin x
x

dydx =
∫ 1

0
sin xdx = − cos(1) + 1.

For evaluating a double integral as an iterated integral, choose some
order: first x, next y. If it does not work, choose the reverse order.



Example 18

Evaluate the iterated integral
∫ 1
0

∫ 1
x sin(y2)dydx.∫ 1

0

∫ 1

x
sin(y2)dydx =

∬
D

sin(y2)dA,

where D : 0 ≤ x ≤ 1, x ≤ y ≤ 1.

Then∫ 1
0

∫ 1
x sin(y2)dydx =

∬
D sin(y2)dA =

∫ 1
0

∫ y
0 sin(y2)dxdy

=
∫ 1
0 y sin(y2)dy = 1

2 (1 − cos(1).



Properties of Double Integrals

Let D and R be non-overlapping regions in the plane. Let f (x, y) and
g(x, y) be continuous on D,R. Let c be a constant.

1. Constant Multiple:
∬

D cf (x, y)dA = c
∬

D f (x, y)dA.

2. Sum-Difference:∬
D [f (x, y) ± g(x, y)]dA =

∬
D f (x, y)dA ±

∬
D g(x, y)dA.

3. Additivity:
∬

D∪R f (x, y)dA =
∬

D f (x, y)dA +
∬

R f (x, y)dA.

4. Domination:

If f (x, y) ≤ g(x, y) in D, then
∬

D f (x, y)dA ≤
∬

D g(x, y)dA.

5. Area:
∬

R 1 dA = Δ(R) = Area of R.

6. Boundedness:

If m ≤ f (x, y) ≤ M in R, then mΔ(R) ≤
∬

R f (x, y)dA ≤ MΔ(R).



Polar Rectangles
Suppose R is one of the following regions in the plane:

It is easy to describe as polar rectangles. A polar rectangle is

R = {(r, \) : a ≤ r ≤ b, U ≤ \ ≤ V, V − U ≤ 2c}.
for some a, b, U, V ∈ R. We can divide a polar rectangle into polar
subrectangles as in the following:

Rij = {(r, \) : ri−1 ≤ r ≤ ri, \j−1 ≤ \ ≤ \j}.



Riemann Sum in Polar

Suppose f is a real valued function defined on a polar rectangle R.
Let P be a partition of R into smaller polar rectangles Rij .

The area of Rij is Δ(Rij) = 1
2 (r

2
i − r2i−1) (\j − \j−1).

Take a uniform grid dividing r into m equal parts and \ into n equal
parts. Write ri − ri−1 = Δr and \j − \j−1 = Δ\. Also write the
mid-point of ri−1 and ri as r∗i =

1
2 (ri + ri−1), similarly,

\∗j =
1
2 (\j−1 + \j). Then the Riemann sum for f (r, \) can be written as

S =
m∑

i=1

n∑
j=1

f (r∗i , \∗j )Δ(Rij) =
m∑

i=1

n∑
j=1

f (r∗i , \∗j )r∗i ΔrΔ\.

Therefore, if f (r, \) is continuous on the polar rectangle R, then∬
R

f (r, \)dA =
∬

R
f (r, \)rdrd\,

∬
R

f (x, y)dA =
∫ V

U

∫ b

a
f (r cos \, r sin \)rdrd\.



Fubini

Let f be a continuous function defined over a region bounded by the
rays \ = U, \ = V and the continuous curves r = g1(\), r = g2(\).

Then ∬
R

f (r, \)dA =
∫ V

U

∫ g2 (\)

g1 (\)
f (r, \)r dr d\.

Caution: Do not forget the r on the right hand side.



Finding Limits of Integration

Example 19: Find the limits of integration for integrating f (r, \) over
the region R that lies inside the cardioid r = 1 + cos \ and outside the
circle x2 + y2 = 1.

Better write the circle as r = 1. Now, R is the region:

∬
R

f (r, \)dA =
∫ c/2

−c/2

∫ 1+cos \

1
f (r, \)r dr d\.



Example 20

Evaluate I =
∫ 1
0

∫ √1−x2

0 (x2 + y2)dydx.

The limits of integration say that the region is the quarter of the unit
disk in the first quadrant:

The region in polar co-ordinates is R : 0 ≤ r ≤ 1, 0 ≤ \ ≤ c/2.
Changing to polar co-ordinates, we have x = r cos \, y = r sin \ and
then

I =
∫ c/2

0

∫ 1

0
r2 r d\ dr =

∫ c/2

0

1
4

d\ =
c

8
.



Example 21
Evaluate I =

∫ 1
−1

∫ √1−x2

0 ex2+y2dydx.

The region is the upper semi-unit-disk:

Its polar description is

R = {(r, \) : 0 ≤ r ≤ 1, 0 ≤ \ ≤ c}.

Then I =
∬

R ex2+y2dA. Using integration in polar form,

I =
∫ c

0

∫ 1

0
er2r dr d\ =

∫ c

0

[1
2

er2
]1
0
d\ =

∫ c

0
(e−1)/2d\ =

c

2
(e−1).



Example 22

Evaluate
∬

R(3x + 4y2)dA, where R is the region in the upper half
plane bounded by the circles x2 + y2 = 1 and x2 + y2 = 4.

R = {(r, \) : 1 ≤ r ≤ 2, 0 ≤ \ ≤ c}. Therefore,∬
R
(3x + 4y2)dA =

∫ c

0

∫ 2

1
(3r cos \ + 4r2 sin2 \)r dr d\ =

15c
2
.



Example 23

Find the area enclosed by one of the four leaves of the curve
r = | cos(2\) |.

The region is R = {(r, \) : −c/4 ≤ \ ≤ c/4, 0 ≤ r ≤ cos(2\)}. Then
the required area is∬

R
dA =

∫ c/4

−c/4

∫ cos(2\)

0
r dr d\ = c/8.



Example 24
Find the volume of the solid that lies under the paraboloid z = x2 + y2
above the xy-plane, and inside the cylinder x2 + y2 = 2x.

The solid lies above the disk D whose boundary circle has equation
x2 + y2 = 2x, or (x − 1)2 + y2 = 1. In polar co-ordinates, the boundary
of D is r2 = 2r cos \, or r = 2 cos \.

The disk D = {(r, \) : −c/2 ≤ \ ≤ c/2, 0 ≤ r ≤ 2 cos \}.
Then the required volume V is given by

V =

∬
D
(x2 + y2)dA =

∫ c/2

−c/2

∫ 2 cos \

0
r2 r dr d\ =

3c
2
.



Triple Integral
Let f (x, y, z) be a real valued function defined on a bounded region D
is 3d space. As earlier we divide the region into smaller cubes
enclosed by planes parallel to the co-ordinate planes. The set of these
smaller cubes is called a partition P. The norm of the partition is the
maximum volume enclosed by any smaller cube.
Then form the Riemann sum S and take its limit as the cubes become
smaller and smaller. If the limit exists, we say that the limit is the
triple integral of the function over the region D.∭

D
f (x, y, z)dV = lim

‖P‖→0

∑
f (x∗i , y∗j , z∗k) (xi − xi−1) (yj − yj−1) (zk − zk−1),

where (x∗i , y∗j , z∗k) is a point in the (i, j, k)-th cube in the partition.
As earlier, Fubuni’s theorem says that for continuous functions,
if the region D can be written as

D = {(x, y, z) : a ≤ x ≤ b, g1 (x) ≤ y ≤ g2 (x), h1 (x, y) ≤ z ≤ h2 (x, y)},
then the triple integral can be written as an iterated integral:∭

D
f (x, y, z)dV =

∫ b

a

∫ g2 (x)

g1 (x)

∫ h2 (x,y)

h1 (x,y)
f (x, y, z)dz dy dx.



Finding Limits of Integration

Sketch D along with its shadow on the xy-plane.
Find the z-limits, then y-limits and then x-limits.

Observe: Volume of D is
∭

D 1 dV .
All properties for double integrals hold analogously for triple
integrals.



Example 25
Find the volume of the solid enclosed by the surfaces z = x2 + 3y2 and
z = 8 − x2 − y2.

Eliminating z from the two equations, we get the projection of the
curve of intersection on the xy-plane, which is x2 + 2y2 = 4. This
gives the limits of integration for y as ±

√
(4 − x2)/2. Thus

V =

∭
D

dV =

∫ 2

−2

∫ √(4−x2)/2

−
√
(4−x2)/2

∫ 8−x2−y2

x2+3y2
dz dy dx =

8c
√
2
.



Cylindrical Co-ordinates
Cylindrical co-ordinates express a point P in space as a triple (r, \, z),
where (r, \) is the polar representation of the vertical projection of P
on the xy-plane.

If P has Cartesian representation (x, y, z) and cylindrical
representation (r, \, z), then

x = r cos \, y = r sin \, z = z, r2 = x2 + y2, tan \ = y/x.

In cylindrical co-ordinates,
r = a describes a cylinder with axis as z-axis.
\ = U describes a plane containing the z-axis.
z = b describes a plane perpendicular to z-axis.



Triple Integral in Cylindrical Co-ordinates

The Riemann sum of f (r, \, z) uses a partition of D into cylindrical
wedges:

The volume element dV = r dr d\dz. Thus the triple integral is∭
D

f (r, \, z)dV =

∭
D

f (r, \, z)r dr d\ dz.

Its conversion to iterated integrals uses a similar technique of
determining the limits of integration.



Example 26

Find the limits of integration in cylindrical
coordinates for integrating a function
f (r, \, z) over the region D bounded
below by the plane z = 0, laterally by the
circular cylinder x2 + (y − 1)2 = 1, and
above by the paraboloid z = x2 + y2.

The projection of D onto the xy-plane gives the disk R enclosed by the
circle x2 + (y − 1)2 = 1, whose polar form is r = 2 sin \.
A line through a point (r, \) ∈ R enters D at z = 0 and leaves D at
z = x2 + y2 = r2.
A line in the (r, \)-plane through the origin enters R at r = 0 and
leaves R at r = 2 sin \.
As this line sweeps through R it starts at \ = 0 and ends at \ = c.

Hence
∭

f (r, \, z)dV =

∫ c

0

∫ 2 sin \

0

∫ r2

0
f (r, \, z)r dz dr d\.



Example 27

Evaluate I =
∫ 2

−2

∫ √
4−x2

−
√
4−x2

∫ 2

√
x2+y2
(x2 + y2) dz dy dx.

Its projection onto xy-plane is a disk; so cylindrical co-ordinates will
be easier.
The projected disk gives the limits as 0 ≤ \ ≤ 2c, 0 ≤ r ≤ 2 whereas√

x2 + y2 = r ≤ z ≤ 2. Thus

I =
∭

D
(x2 + y2)dV =

∫ 2c

0

∫ 2

0

∫ 2

r
r2 r dz dr d\ =

16
5
c.



Spherical Co-ordinates
Spherical co-ordinates express a point P in space as a triple (d, q, \), where
d is the distance of P from the origin O, q is the angle between z-axis and the
line OP, and \ is the angle between the projected line of OP on the xy-plane
and the x-axis. This \ is the same as the ‘cylindrical’ \. Moreover,
d ≥ 0, 0 ≤ q ≤ c, and 0 ≤ \ ≤ 2c.

If P(x, y, z) has spherical representation (d, q, \), then

x = d sin q cos \, y = d sin q sin \, z = d cos q, r = d sin q, d =
√

x2 + y2 + z2.

In spherical co-ordinates,
d = a describes a sphere centered at origin.
q = q0 describes a cone with axis as z-axis.
\ = \0 describes the plane containing z-axis and OP.



Triple Integral in Spherecal Co-ordinates
When computing triple integrals over a region D in spherical
coordinates, we partition the region into n spherical wedges. The size
of the kth spherical wedge, which contains a point (dk, qk, \k), is
given by changes by Δdk,Δqk,Δ\k in d, q, \.

Such a spherical wedge has one edge a
circular arc of length dkΔqk, another edge
a circular arc of length dk sin qkΔ\k and
thickness Δdk. The volume of this
spherical wedge is (approximately)
ΔVk = d

2
k sin qkΔdkΔqkΔ\k.

The corresponding Riemann sum is
S =

∑n
k=1 f (dk, qk, \k)d2k sin qkΔdkΔqkΔ\k. Accordingly,∭

D
f (d, q, \)dV =

∭
D

f (d, q, \)d2 sin q dd dq d\.



Iterated Integrals
Sketch the region D and its projection on xy-plane. Then find the d
limit, q limit and \ limit.

∭
D

f (d, q, \)dV =

∫ V

U

∫ q−max

q−min

∫ g2 (q,\)

g1 (q,\)
f (d, q, \)d2 sin q dd dq d\.



Example 28
Find the volume of the solid D cut from
the solid sphere d ≤ 1 by the cone
q = c/3.
Draw a ray M through D from the origin
making an angle q with z-axis. Draw also
its projection L on xy-plane along with it
making angle \ with x-axis. Let R be the
projected region of D in xy-plane.

M enters D at d = 0 and leaves D at d = 1.
Angle q runs through 0 to c/3, since D is bounded by the cone
q = c/3.
L sweeps through R as \ varies from 0 to 2c. Thus

V =

∭
D
d2 sin q dV =

∫ 2c

0

∫ c/3

0

∫ 1

0
d2 sin q dd dq d\ =

c

3
.



Example 29

Evaluate I =
∫ 1

−1

∫ √
1−x2

−
√
1−x2

∫ √1−x2−y2

−
√
1−x2−y2

e(x
2+y2+z2)3/2dz dy dx.

I =
∭

D e(x2+y2+z2)3/2dV , where D is the solid unit sphere.

Writing in spherical co-ordinates, I =
∭

D ed3dV .

Then converting to iterated integral,

I =
∫ 2c

0

∫ c

0

∫ 1

0
ed

3
d2 sin q dd dq d\.

Since the integrand is a product of separate functions of d, of q, of \,

I =
∫ 1

0
ed

3
d2 dd

∫ c

0
sin q dq

∫ 2c

0
d\ =

4c
3
(e − 1).



Change of Variables
Suppose f maps a region D in R2 to a region R in R2 in a one-one
manner. For convenience, we say that D is a region in uv-plane and R
is a region in xy-plane; and f maps (u, v) to (x, y). Then f can be
thought of as a pair of maps: (f1, f2). That is, x = f1(u, v) and
y = f2(u, v).We often show this dependence implicitly by writing

x = x(u, v), y = y(u, v).

What is the image of D = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1} under the
map given by x = u2 − v2, y = 2uv ?
Hint: Consider the boundary lines.



Area of a Rectangle

If (u, v) ↦→ (x, y), then how does area of a small rectangle change?

A typical small rectangle with sides Δu and Δv has corners

A1 = (a, b), A2 = (a +Δu, b), A3 = (a, b +Δv), A4 = (a +Δu, b +Δv).

Let the images of Ak under (u, v) ↦→ (x, y) be Bk = (ak, bk) for
k = 1, 2, 3, 4. Then

a1 = x(a, b)
a2 = x(a + Δu, b) ≈ x(a, b) + xuΔu
a3 = x(a, b + Δv) ≈ x(a, b) + xvΔv
a4 = x(a + Δu, b + Δv) ≈ x(a, b) + xuΔu + xvΔv

Here, xu = xu(a, b) and xv = xv(a, b).
Similar approximations hold for b1, b2, b3, b4.



Area of a Rectangle

Now, Area of the image of the rectangle A1A2A3A4 is approximately
equal to the area of the parallelogram B1B2B3B4 in xy-plane, which is
twice the area of the triangle B1B2B4 and is

| (a4 − a1) (b4 − b2) − (a4 − a2) (b4 − b1) | =
����det [xu xv

yu yv

] ���� (a, b)ΔuΔv.

This determinant is called the Jacobian of the map (u, v) ↦→ (x, y);
and is denoted by J(x(u, v), y(u, v)) and also as m (x, y)

m (u, v) .

We write this as Area of image of a rectangle centered at (a, b) of
sides Δu and Δv is approximately

��� m (x, y)
m (u, v)

���ΔuΔv, where the Jacobian

J(·, ·) is evaluated at (a, b).
In deriving this approximation, we have assumed that xu, xv, yu, yv are
continuous.



Change of Variables
Assume that x = x(u, v) and y = y(u, v) have continuous partial
derivatives with respect to u and v. Assume also that a region D in the
uv-plane is in one-one correspondence with a region R in the xy-plane
by the map (u, v) ↦→ (x, y). Let f (x, y) be a real valued continuous
function on a region R. Then we have the map
f̃ (u, v) = f (x(u, v), y(u, v)).
How are the integrals of f over R and integral of f̃ over D related?

Divide D in the uv-plane into smaller rectangles. Now, the images of
the smaller rectangles are related by

Area of R =
��� m (x, y)
m (u, v)

���Area of D.

By forming the Riemann sum and taking the limit, we obtain:∬
R

f (x, y)dA =
∬

D
f̃ (u, v)

��� m (x, y)
m (u, v)

��� dA.



Change of variables Contd.
In the case of polar co-ordinates, we have

x = x(r, \) = r cos \, y = y(r, \) = r sin \.
The absolute value of the Jacobian is��� m (x, y)

m (r, \)

��� = |xry\ − x\yr | = | cos \ (r cos \) − (−r sin \) sin \ | = r.

Therefore, the double integral in polar co-ordinates for a function
f (x, y) takes the form∬

R
f (x, y)dA =

∬
D

f (r cos \, r sin \)r dA.

Suppose x = x(u, v,w), y = y(u, v,w), z = z(u, v,w). The Jacobian is

m (x, y, z)
m (u, v,w) = det


xu xv xw
yu yv yw
zu zv zw

 .
If R is the region in space on which f has been defined and D is the
region in the uvw-space so that the functions x, y, z map D onto R, then∭

R
f (x, y, z)dV =

∭
D

f (x(u, v,w), y(u, v,w), z(u, v,w))
���� m (x, y, z)m (u, v,w)

���� du dv dw.



Cylindrical-Spherical
For the cylindrical co-ordinates, x = r cos \, y = r sin \, z = z. The
absolute values of the Jacobian is����m (x, y, z)m (r, \, z)

���� =
������det


xr x\ xz
yr y\ yz
zr z\ zz


������ = r.

∭
R

f (x, y, z)dV =

∭
D

f (r cos \, r sin \, z) r dr d\ dz.

For the spherical co-ordinates, we see that

x = d sin q cos \, y = d sin q sin \, z = d cos q.

The triple integral looks like∭
R

f (x, y, z)dV =

∭
D

f (d sin q cos \, d sin q sin \, d cos q)d2 sin q dd d\ dq.



Example 30

Evaluate
∬

R(y − x)dA, where R is the region bounded by the lines
y − x = 1, y − x = −3, 3y + x = 7, 3y + x = 15.

Take u = y − x, v = 3y + x.

That is, x = 1
4 (v − 3u), y = 1

4 (u + v). Then

D = {(u, v) : −3 ≤ u ≤ 1, 7 ≤ v ≤ 15}.

The Jacobian is

J = xuyv − xvyu = (−3/4) (1/4) − (1/4) (1/4) = −1/4.

Therefore,∬
R
(y − x)dA =

∬
D

u
1
4

dA =
∫ 1

−3

∫ 15

7

1
4

u dv du = −8.



Example 31

Evaluate
∫ 4

0

∫ 1+y/2

y/2

2x − y
2

dxdy by using the transformation

u = x − y/2, v = y/2.
Here, x = u + v, y = 2v, f (x, y) = x − y/2 = u. The regions are

R = {(x, y) : 0 ≤ y ≤ 4, y/2 ≤ x ≤ 1 + y/2},
G = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 2}.

And |J(x(u, v), y(u, v) | = |xuyv − xvyu | = | (1) (2) − (0) (1) | = 2. So,∫ 4

0

∫ 1+y/2

y/2

2x − y
2

dxdy =
∬

R

2x − y
2

dA =
∬

G
2udA =

∫ 2

0

∫ 1

0
2u du dv =

∫ 2

0
12 dv = 2.



Caution

The change of variables formula turns an xy-integral into a uv-integral.
But the map that changes the variables goes from uv-region onto
xy-region. This map must be one-one on the interior of the uv-region.

Sometimes it is easier to get such a map from xy-region to uv-region.
Then we will be tackling with the inverse of such an easy map. Here,
the following fact helps us:

The Jacobian of the inverse map is the inverse of the Jacobian of the
original map.

This may be expressed as
m (x, y)
m (u, v) =

(
m (u, v)
m (x, y)

)−1
.

Similarly, triple integrals undergo change of variables by using the
inverse of the Jacobian.



Example 32
Integrate f (x, y) = xy(x2 + y2) over the region

D : −3 ≤ x2 − y2 ≤ 3, 1 ≤ xy ≤ 4.

There is a simple map that goes in the wrong direction:

u = x2 − y2, v = xy.

In the uv-plane R becomes the rectangle

R : −3 ≤ u ≤ 3, 1 ≤ v ≤ 4,

Then we have F : D→ R defined by F(x, y) = (u, v) = (x2 − y2, xy).
And G = F−1 is the map G : R→ D.



Example 32 Contd.
Instead of computing the map G, we go for the Jacobian.

m (u, v)
m (x, y) = det

[
ux uy
vx vy

]
= det

[
2x −2y
y x

]
= 2(x2 + y2).

Therefore,
m (x, y)
m (u, v) =

1
2(x2 + y2)

. Then∬
R

xy(x2 + y2) dA =
∬

D

[
xy(x2 + y2)

���� 1
2(x2 + y2)

����] dA.

The integral on the right side is in the uv-plane and the bracketed
term inside [ · ] is a function of (u, v). Since the bracketed term
simplifies to xy/2 which is equal to v/2, we have the integral as∬

D

v
2

dA =
1
2

∫ 3

−3

∫ 4

1
v dv du =

45
2
.



Review Problems
Problem 1: Find the area of the region bounded by the curves
y = x and y = 2 − x2.

The points of intersection of the curves are (−2,−2) and (1, 1).
Hence the area is∫ 1

−2

∫ 2−x2

x
dydx =

∫ 1

−2
(2 − x2 − x)dx =

9
2
.

Problem 2: Evaluate I =
∬

D(4 − x2 − y2) dA if D is the region
bounded by the straight lines x = 0, x = 1, y = 0 and y = 3/2.

I =
∫ 3/2

0

∫ 1

0
(4 − x2 − y2)dxdy =

∫ 3/2

0

[
4x − y2x − x3/3

]1
0dy =

35
8
.

Problem 3: Evaluate the double integral I of f (x, y) = 1 + x + y over a
region bounded by the lines y = −x, x = √y, and y = 2.

I =
∫ 2

0

∫ √y

−y
(1+x+y)dx dy =

∫ 2

0

(√
y+3y

2
+y√y+y2

2

)
dy =

44
15
√
2+13

3
.



Review Problems Contd.
Problem 4: Change the order of integration in

∫ 1
0

∫ √x
x f (x, y)dydx.

The region D of integration is bounded by the straight line y = x and
the parabola y =

√
x.

Every straight line parallel to x-axis cuts the boundary of D in no
more than two points, and it remains in between y2 to y. Also, y lies
between 0 and 1. Hence∫ 1

0

∫ √
x

x
f (x, y)dydx =

∫ 1

0

∫ y

y2
f (x, y)dx dy.

Problem 5: Evaluate I =
∬

D ey/x dA, where D is a triangle bounded
by the straight lines y = x, y = 0, and x = 1.

In D, the variable x remains in between 0 and 1, and y lies between 0
and x. Hence

I =
∫ 1

0

∫ x

0
ey/xdy dx =

∫ 1

0
x(e − 1) dx = (e − 1)/2.



Problem 6

Write the integral of f (x, y, z) over a tetrahedron with vertices at
(0, 0, 0), (1, 1, 0), (0, 1, 0), and (0, 1, 1) as iterated integrals in the
order dydzdx and also in the order dzdydx.
Sketch the region D to see the limits geometrically.

The right hand side bounding surface
of D lies in the plane y = 1.
The left hand side bounding surface lies
in the plane y = z + x.
The projection of D on the zx-plane is
R.
The upper boundary of R is the line
z = 1 − x.
So, R = {(x, z) : 0 ≤ x ≤ 1, 0 ≤ z ≤
1 − x}.

Then, D = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 − x, x + z ≤ y ≤ 1}.



Problem 6 Contd.
D = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 − x, x + z ≤ y ≤ 1}.
Thus the triple integral of a function f (x, y, z) over D is given by∭

D
f (x, y, z) dV =

∫ 1

0

∫ 1−x

0

∫ 1

x+z
f (x, y, z) dy dz dx.

To express in the order dzdydx, project D on the xy-plane.
A line parallel to z-axis through (x, y) in the xy-plane enters D at z = 0
and leaves D through the upper plane z = y − x.
For the y-limits, on the xy-plane, where z = 0, the sloped side of D
crosses the plane along the line y = x.
A line through (x, y) parallel to y-axis enters the xy-plane at y = x and
leaves at y = 1.
The x-limits are as earlier.
Therefore D = {(x, y, z) : 0 ≤ x ≤ 1, x ≤ y ≤ 1, 0 ≤ z ≤ y − x}. Then∭

D
f (x, y, z) dV =

∫ 1

0

∫ 1

x

∫ y−x

0
f (x, y, z) dz dy dx.



Problem 7
Evaluate

∫ 1
0

∫ z
0

∫ y
0 e(1−x)3 dx dy dz by changing the order of integration.

The region is D = {(x, y, z) : 0 ≤ z ≤ 1, 0 ≤ y ≤ z, 0 ≤ x ≤ y}.
Sketch the region.
We plan to change the order of integration from dxdydz to dzdydx.
Its projection on the xy-plane is the triangle bounded by the lines
x = 0, y = 1 and y = x.
It is expressed as {(x, y) : 0 ≤ x ≤ 1, x ≤ y ≤ 1}.
Then D = {(x, y, z) : 0 ≤ x ≤ 1, x ≤ y ≤ 1, y ≤ z ≤ 1}.

Therefore,
∫ 1

0

∫ z

0

∫ y

0
e(1−x)3 dx dy dz =

∫ 1

0

∫ 1

x

∫ 1

y
e(1−x)3 dz dy dx

=

∫ 1

0

∫ 1

x
(1 − y)e(1−x)3 dy dx =

∫ 1

0

(1 − x)2
2

e(1−x)3 dx

= −
∫ 0

(1−0)3

et

6
dt =

e − 1
6

. with t = (1 − x)3



Problem 8
Find I =

∬
D ex+y dA, where D is the annular region bounded by two

squares of sides 2 and 4, each has center (0, 0) and sides parallel to the
axes.

Draw the picture.
Let D1 be the inner square and D2 be the outer square. Then

I =
∬

D2

ex+y dA −
∬

D1

ex+y dA.

Converting each integral to an iterated integral, we have

I =

∫ 2

−2

∫ 2

−2
ex+ydydx −

∫ 1

−1

∫ 1

−1
ex+ydydx

= e4 − 2 − e−4 − (e2 − 2 − e−2)
= 2 cosh(4) − 2 cosh(2)
= 4 sinh(3) sinh(1).



Review Problems Contd.
Problem 9: Calculate the volume of the solid bounded by the planes
x = 0, y = 0, z = 0, and x + y + z = 1.

The volume V =
∬

D(1 − x − y)dA, where D is the base of the solid on
the xy-plane. D is the triangular region bounded by the straight lines
x = 0, y = 0, x + y = 1. Thus,

V =

∫ 1

0

∫ 1−x

0
(1 − x − y)dydx =

∫ 1

0

1
2
(1 − x)2dx =

1
6
.

Problem 10: Evaluate
∬

D(x
2 + y2)−2 dA, where D is the shaded region

The integrand in polar co-ordinates is
f (r, \) = r−4. The region D is given by
0 ≤ \ ≤ c/4, sec \ ≤ r ≤ 2 cos \.

Therefore

∬
D
(x2+y2)−2dA =

∫ c/4

0

∫ 2 cos \

sec \

r−4rdrd\ =
1
8

∫ c/4

0
(4 cos2 \−sec2 \)d\ = c

16
.



Problem 11
Compute the volume V of the solid bounded by the spherical surface
x2 + y2 + z2 = 4a2, the cylinder x2 + y2 = 2ay, where a > 0, and which
is inside the cylinder.

The region of integration is the circle x2 + y2 − 2ay = 0, which is
x2 + (y − a)2 = a2. We calculate V/4, the volume of the portion of the
solid in the first octant. Then the region of integration D is the
semicircular disk whose boundaries in polar co-ordinates are given by

r = g1(\) = 0, r = g2(\) = 2a sin \, 0 ≤ \ ≤ c/2.
The integrand is z =

√
4a2 − x2 − y2. In polar co-ordinates,

f (r, \) =
√
4a2 − r2. For the limits of integration, use

x2 + y2 = r2, y = r sin \ to get:
x2 + y2 − 2ay = 0⇒ r2 − 2ar sin \ = 0⇒ r = 2a sin \.

Therefore,

V = 4
∫ c/2

0

∫ 2a sin \

0

√
4a2 − r2 r dr d\

= −4
3

∫ c/2

0
[(4a2 − 4a2 sin2 \)3/2 − (4a2)3/2] d\ = 16

9
a3(3c − 4).



Problem 12

Integrate f (x, y, z) = z
√

x2 + y2 over the solid cylinder x2 + y2 ≤ 4 for
1 ≤ z ≤ 5.

The region of integration D in cylindrical co-ordinates is given by
0 ≤ \ ≤ 2c, 0 ≤ r ≤ 2, 1 ≤ z ≤ 5. The integrand is zr. Thus∭

D
z
√

x2 + y2 dV =

∫ 2c

0

∫ 2

0

∫ 5

1
(zr) r dz dr d\ = 64c.



Problem 13

Integrate f (x, y, z) = z over the part of the
solid cylinder x2 + y2 ≤ 4 for 0 ≤ z ≤ y.

The region W has the projection D on the
xy-plane as the semicircle depicted in the
figure. The z-co-ordinate varies from 0
to y and y = r sin \. Thus W is given by
0 ≤ \ ≤ c, 0 ≤ r ≤ 2, 0 ≤ z ≤ r sin \.

In cylindrical co-ordinates,∭
W

z dV =

∫ c

0

∫ 2

0

∫ r sin \

0
z r d\ dr dz =

∫ c

0

∫ 2

0

1
2
(r sin \)2 r d\ dr = c.



Problem 14

Compute
∭

D z dV , where D is the solid
lying above the cone x2 + y2 = z2 and
below the unit sphere.

The upper branch of the cone, which is relevant to D, has the equation
q = c/4 in spherical co-ordinates.
The sphere has the equation d = 1.
Thus D is given by 0 ≤ \ ≤ 2c, 0 ≤ q ≤ c/4, 0 ≤ d ≤ 1.
Since z = d cos q, the required integral is∭

D
z dV =

∫ 2c

0

∫ c/4

0

∫ 1

0
(d cos q)d2 sin q dd dq d\

= 2c
∫ c/4

0

∫ 1

0
d3 cos q sin q dd dq =

c

2

∫ c/4

0
cos q sin q dq =

c

8
.



Problem 15
Evaluate I =

∫ ∞
−∞ e−x2 dx.

I2 = lim
a→∞

( ∫ a

−a
e−x2 dx

)2
= lim

a→∞

[ ( ∫ a

−a
e−x2 dx

) ( ∫ a

−a
e−y2 dy

) ]
= lim

a→∞

[ ∫ a

−a

∫ a

−a
e−x2−y2 dx dy

]
= lim

a→∞

∬
R

e−x2−y2 dA,

where R is the rectangle [−a, a] × [−a, a] for a > 0.

Let D = B(0, a) and S = B(0,
√
2 a). Then D ⊆ R ⊆ S. Since e−x2−y2 > 0 for

all (x, y) ∈ R2, we have
∬

D
e−x2−y2 dA ≤

∬
R

e−x2−y2 dA ≤
∬

S
e−x2−y2 dA.

Also,∬
D

e−x2−y2 dA =
∫ 2c

0

∫ a

0
e−r2 r dr d\ = −1

2

∫ 2c

0
(e−a2 − 1) d\ = c(1 − e−a2 ).

Similarly,
∬

S
e−x2−y2 dA = c(1 − e−2a2 ). Hence

lim
a→∞

∬
D

e−x2−y2 dA = c, lim
a→∞

∬
S

e−x2−y2 dA = c.

Therefore, I2 = lim
a→∞

∬
R

e−x2−y2 dA = c ⇒ I =
√
c.



Problem 16
Compute the volume V of the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1.

Projection of this solid on the xy-plane is the ellipse
x2

a2
+ y2

b2
= 1.

Therefore, V =

∫ a

−a

∫ b
√
1− x2

a2

−b
√
1− x2

a2

∫ c
√
1− x2

a2
− y2

b2

−c
√
1− x2

a2
− y2

b2

dz dy dx

= 2c
∫ a

−a

∫ b
√
1− x2

a2

−b
√
1− x2

a2

√
1 − x2

a2
− y2

b2
dy dx.

Substitute y = b(1 − x2/a2)1/2 sin t. Then dy = b(1 − x2/a2) cos t dt
and −c/2 ≤ t ≤ c/2. Therefore,

V = 2c
∫ a

−a

∫ c/2

−c/2

[ (
1 − x2

a2
)
−

(
1 − x2

a2
)
sin2 t

]1/2
b
(
1 − x2

a2
)
cos t dt dx

=
bcc
a2

∫ a

−a
(a2 − x2) dx =

4cabc
3

.



Problem 17

Evaluate
∫ ∞

0

e−ax − e−bx

x
dx for a > 0, b > 0.

∫ ∞

0

e−ax − e−bx

x
dx =

∫ ∞

0

∫ b

a
e−yxdy dx

=

∫ b

a

∫ ∞

0
e−yxdx dy

=

∫ b

a

1
y

dy

= ln
b
a
.

Notice the change in order of integration above.



Problem 16
Evaluate

∫ 9

1

∫ 3

√y
xey dx dy.

The region of integration is given by 1 ≤ y ≤ 9, √y ≤ x ≤ 3.
The same is expressed as 1 ≤ x ≤ 3, 1 ≤ y ≤ x2.
Changing the order of integration, we have∫ 9

1

∫ 3

√y
xey dx dy =

∫ 3

1

∫ x2

1
xey dx dy =

∫ 3

1
(xex2−e x)dx =

1
2
(e9−9e).



Problem 18
Let D be the unit disc. Show that

c

3
≤

∬
D

dA√
x2 + (y − 2)2

≤ c

The quantity f (x, y) =
√

x2 + (y − 2)2 is the distance of any point (x, y)
from (0, 2). For (x, y) ∈ D, maximum of f (x, y) is thus 3 and
minimum is 1. Therefore, 1

3 ≤
1√

x2+(y−2)2
≤ 1.

Integrating over D, we have∬
D

1
3

dA ≤
∬

D

1√
x2 + (y − 2)2

dA ≤
∬

D
1 dA.

Since
∬

D dA = area of D, we obtain

c

3
≤

∬
D

dA√
x2 + (y − 2)2

≤ c.



Problem 19

Evaluate
∭

W z dV , where W is the solid
bounded by the planes x = 0, y = 0,
x + y = 1, z = x + y, and z = 3x + 5y in the
first octant.

W lies over the triangle D in the xy-plane
defined by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x.
Therefore,∭

D
z dV =

∫ 1

0

∫ 1−x

0

∫ 3x+5y

x+y
z dz dy dx

=

∫ 1

0

∫ 1−x

0
(4x2 + 14xy + 12y2) dy dx

=

∫ 1

0
(4 − 5x + 2x2 − x3) dx =

23
12
.



Fun Problem
The n-dimensional cube with side a has volume an.

What is the volume of an n-dimensional ball?

Denote by Vn(r) the volume of the n-dimensional ball with radius r.
Also, write An = Vn(1).
A1 = 2, V1(r) = 2r. A2 = c, V2 = cr2.
A3 = 4c/3 and V3(r) = 4cr3/3.
Exercise 1: By induction, show that volume of an n-dimensional ball
of radius r is Anrn.

Suppose Vn−1(r) = An−1rn−1. The slice of the n-dimensional ball

x21 + · · · x
2
n−1 + x2n = rn

at the height xn = c has the equation

x21 + · · · x
2
n−1 + c2 = r2.



Fun Problem Contd.
This slice has the radius

√
r2 − c2. Thus

Vn(r) =
∫ r

−r
Vn−1

√
r2 − x2n dxn = An−1

∫ r

−r
(
√

r2 − x2n)n−1 dxn.

Substitute xn = r sin \. So, dxn = r cos \ and −c/2 ≤ \ ≤ c/2. Then

Vn(r) = An−1rn
∫ c/2

−c/2
cosn \ d\ = An−1Cnrn,

where Cn =
∫ c/2
−c/2 cosn \ d\. This says that An = An−1Cn.

Exercise 2: Prove that C3 = 4/5,C4 = 3c/8 and Cn =
n−1

n Cn−2.

Exercise 2: Prove that A2m =
cm

m!
and A2m+1 =

2m+1cm

1 · 3 · · · (2m + 1) .

This sequence of numbers have a curious property:

An increases up to n = 5 and then it decreases to 0 as n→∞.


