
Limit

Let f : D→ R be a function, where D is a region. Let (a, b) ∈ D.
The limit of f (x, y) as (x, y) approaches (a, b) is L iff
corresponding to each n > 0, there exists X > 0 such that
for all (x, y) ∈ D with 0 <

√
(x − a)2 + (y − b)2 < X,

we have |f (x, y) − L| < n.
In this case, we write lim

(x,y)→(a,b)
f (x, y) = L.

We also say that L is the limit of f at (a, b).
If for no real number L, the above happens, then limit of f at (a, b)
does not exist.
It is often difficult to show that limit of a function does not exist at a
point. We will come back to this question soon.



Limit-see
The limit of f (x, y) as (x, y) approaches (a, b) is L

f (x, y) → L as (x, y) → (a, b).
lim

(x,y)→(a,b)
f (x, y) = L.

lim
x→a
y→b

f (x, y) = L.

The distance between f (x, y) and L can be made arbitrarily small by
making the distance between (x, y) and (a, b) sufficiently small but not
zero.



Example 1
Determine if lim

(x,y)→(0,0)

4xy2

x2 + y2
exists.

Observe: Domain D of f is R2 \ {(0, 0)}.
f (0, y) = 0 for y ≠ 0. Also, f (x, 0) = 0 for x ≠ 0.We guess that if the
limit exists, it would be 0. To see that it is the case, we start with any
n > 0.We want to choose a X > 0 such that

If 0 <
√

x2 + y2 < X, then | 4xy2
x2+y2 | < n.

Now,
���� 4xy2

x2 + y2

���� ≤ 4|x| ≤ 4
√

x2 + y2.

So, we choose X = n/4. Assume that 0 <
√

x2 + y2 < X. Then���� 4xy2

x2 + y2

���� ≤ 4
√

x2 + y2 < 4X = n .

Hence lim
(x,y)→(0,0)

4xy2

x2 + y2
= 0.
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Example 2

Consider f (x, y) =
√
1 − x2 − y2 when D = {(x, y) : x2 + y2 ≤ 1}.

We guess that limit f (x, y) is 1 as (x, y) → (0, 0).

To see this, Let n > 0.
Observe: Look at the requirement of the limit. If we have found a X
corresponding to a smaller n, then the same X works for a larger n .
So, assume that 0 < n < 1. Choose X =

√
1 − (1 − n)2.

Let | (x, y) − (0, 0) | < X. Then

x2 + y2 < 1 − (1 − n)2 ⇒ 1 − x2 − y2 > (1 − n)2 ⇒ f (x, y) > 1 − n .

That is, |f (x, y) − 1| = 1 − f (x, y) < n.
Therefore, f (x, y) → 1 as (x, y) → (0, 0).
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Uniqueness of limit

Theorem 1: Let f (x, y) be a real valued function defined on a region
D ⊆ R2. Let (a, b) ∈ D. If limit of f (x, y) as (x, y) approaches (a, b)
exists, then it is unique.

Proof: Suppose f (x, y) → ℓ and also f (x, y) → m as (x, y) → (a, b).
Let n > 0. For n/2, we have X1 > 0, X2 > 0 such that

0 < (x − a)2 + (y − b)2 < X21 ⇒ |f (x, y) − ℓ | < n/2,
0 < (x − a)2 + (y − b)2 < X22 ⇒ |f (x, y) − m| < n/2.

Choose a point (U, V) so that both of the following hold:

0 < (U − a)2 + (V − b)2 < X21, 0 < (U − a)2 + (V − b)2 < X22.

Then |f (U, V) − ℓ | < n/2 and |f (U, V) − m| < n/2.
Now, |ℓ − m| ≤ |ℓ − f (U, V) | + |f (U, V) − m| < n/2 + n/2 = n .
That is, for any n > 0, we have |ℓ − m| < n . Hence ℓ = m. �
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Non-existence of Limit

Proposition: If f (x, y) → L1 as (x, y) → (a, b) along a path C1 and
f (x, y) → L2 as (x, y) → (a, b) along a path C2, and L1 ≠ L2, then
limit of f (x, y) as (x, y) → (a, b) does not exist.

Example 3 Consider f (x, y) = x2−y2
x2+y2 for x ≠ 0, y ≠ 0.

What is its limit at (0, 0)?

When y = 0, limit of f (x, y) as x→ 0 is lim
x→0

x2

x2
= 1.

That is, f (x, y) → 1 as (x, y) → (0, 0) along the x-axis.

When x = 0, limit of f (x, y) as y→ 0 is lim
y→0

−y2

y2
= −1.

That is, f (x, y) → −1 as (x, y) → (0, 0) along the y-axis.
Hence lim

(x,y)→(0,0)
f (x, y) does not exist.
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Example 4

Consider f (x, y) = xy
x2+y2 for x ≠ 0, y ≠ 0.
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Example 5
Consider f (x, y) = xy2

x2+y4 for x ≠ 0, y ≠ 0.

What is its limit at (0, 0)?
If y = mx, for some m ∈ R, then f (x, y) = m2x

1+m4x2 .

So, lim
(x,y)→(0,0)

f (x, y), along all straight lines is 0.

If x = y2, then f (x, y) = y4
y4+y4 = 1/2 for y ≠ 0.

As (x, y) → (0, 0) along the parabola x = y2, lim f (x, y) is 1/2.
Hence lim

(x,y)→(0,0)
f (x, y) does not exist.
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Iterated Limit

Are the following same:

lim
(x,y)→(a,b)

f (x, y), lim
x→a

lim
y→b

f (x, y), lim
y→b

lim
x→a

f (x, y)

Example 6: f (x, y) = (y−x) (1+x)
(y+x) (1+y) for x + y ≠ 0,−1 < x, y < 1. Then

lim
y→0

lim
x→0

f (x, y) = lim
y→0

y
y(1 + y) = 1.

lim
x→0

lim
y→0

f (x, y) = lim
x→0

−x(1 + x)
x

= −1.

Along y = mx, lim
(x,y)→(0,0)

f (x, y) = m − 1
m + 1 .

For different values of m, we get the last limit value different. So, limit
of f (x, y) as (x, y) → (0, 0) does not exist.
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Iterated Limit Contd.

Example 7: f (x, y) = x sin
1
y
+ y sin

1
x
for xy ≠ 0.

lim
x→0

y sin
1
x

and lim
y→0

x sin
1
y

do not exist.

So, lim
y→0

lim
x→0

f (x, y) does not exist. lim
x→0

lim
y→0

f (x, y) does not exist.

However, |f (x, y) − 0| ≤ |x| + |y| ≤ 2
√

x2 + y2. That is,
If | (x, y) − (0, 0) | < n/2, then |f (x, y) − 0| < n. Therefore,

lim
(x,y)→(0,0)

f (x, y) = 0.

Hence existence of the limit of f (x, y) as (x, y) → (a, b) and the two
iterated limits have no connection.
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Limit Properties

Let L,M, c ∈ R; lim
(x,y)→(a,b)

f (x, y) = L; lim
(x,y)→(a,b)

g(x, y) = M. Then

1. Constant Multiple : lim
(x,y)→(a,b)

cf (x, y) = cL.

2. Sum : lim
(x,y)→(a,b)

(f (x, y) + g(x, y)) = L +M.

3. Product : lim
(x,y)→(a,b)

(f (x, y) g(x, y)) = LM.

4. Quotient : If M ≠ 0 and g(x, y) ≠ 0 in an open disk around the
point (a, b), then lim

(x,y)→(a,b)
(f (x, y)/g(x, y)) = L/M

5. Power : If p, q ∈ Z, q ≠ 0, Lp/q ∈ R and lim
(x,y)→(a,b)

f (x, y) = L,

then lim
(x,y)→(a,b)

(f (x, y))p/q = Lp/q.
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Continuity

Let f (x, y) be a real valued function on a subset D of R2.
f (x, y) is continuous at a point (a, b) iff for each n > 0, there exists
X > 0 such that for all points (x, y) ∈ D with

√
(x − a)2 + (y − b)2 < X

we have |f (x, y) − f (a, b) | < n .
If (a, b) is an isolated point of D, then f is continuous at (a, b).

When D is a region,(a, b) is not an isolated point of D; and then f is
continuous at (a, b) ∈ D iff the following are satisfied:
1. f (a, b) is well defined, that is, (a, b) ∈ D;
2. lim
(x,y)→(a,b)

f (x, y) exists; and

3. lim
(x,y)→(a,b)

f (x, y) = f (a, b).

f (x, y) is continuous on a subset of D iff f (x, y) is continuous at all
points of the subset.
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Properties
Constant multiples, sum, difference, product, quotient and rational
powers of continuous functions are continuous whenever they are well
defined.

Polynomials in two variables are continuous. Rational functions
(Ratios of polynomials) are continuous functions provided they are
well defined.

Example 8: f (x, y) =
{

3x2y
x2+y2 if (x, y) ≠ (0, 0)
0 if (x, y) = (0, 0)

is continuous on R2.Why?
Being a rational function, it is continuous at all nonzero points.
For the point (0, 0), let n > 0 be given. Choose X = n/3.
For all (x, y) with

√
x2 + y2 < X, we have

|f (x, y) − 0| ≤ 3x2y
x2 + y2

≤ 3(x2 + y2)
√

x2 + y2

x2 + y2
< 3X = n .

Hence lim
(x,y)→(0,0)

f (x, y) = 0 = f (0, 0).
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Example 9

The function f (x, y) =
{

xy(x2−y2)
x2+y2 if (x, y) ≠ (0, 0)

0 if (x, y) = (0, 0)

is continuous on R2.

Why?
Being a rational function, it is continuous at all nonzero points.
For the point (0, 0), let n > 0 be given. Choose X =

√
n .

For all (x, y) with
√

x2 + y2 < X, we have

|f (x, y) − 0| ≤ (x
2 + y2) (x2 + y2)

x2 + y2
< X2 = n .

Hence lim
(x,y)→(0,0)

f (x, y) = 0 = f (0, 0).
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Example 10

The function f (x, y) = x2 − y2

x2 + y2
is continuous on D = R2 \ {(0, 0)}.

f (x, y) is not continuous at (0, 0) since it is not defined at (0, 0).
Also, f (x, y) is not continuous at (0, 0) since lim

(x,y)→(0,0)
f (x, y) does

not exist.

Therefore, the function g(x, y) defined on R2 by

g(x, y) =
{

x2−y2
x2+y2 if (x, y) ≠ (0, 0)
0 if (x, y) = (0, 0)

is not continuous at (0, 0).
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Composition
As earlier, composition of continuous functions is continuous:

Let f : D→ R be continuous at (a, b) with f (a, b) = c. Let g : I → R
be continuous at c ∈ I. Then g(f (x, y)) from D to R is continuous at
(a, b).
For example, ex−y is continuous at all points in the plane.

cos
xy

1 + x2
and ln(1 + x2 + y2) are continuous on R2.

At which points is tan−1(y/x) continuous?
The function y/x is continuous everywhere except when x = 0.
The function tan−1 is continuous everywhere on R.
So, tan−1(y/x) is continuous everywhere except on x = 0.
Similar definitions can be given for functions of more than two
variables; and similar results hold.
The function (x2 + y2 + z2 − 1)−1 is continuous everywhere except on
the sphere x2 + y2 + z2 = 1, where it is not defined.
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At which points is tan−1(y/x) continuous?
The function y/x is continuous everywhere except when x = 0.
The function tan−1 is continuous everywhere on R.
So, tan−1(y/x) is continuous everywhere except on x = 0.

Similar definitions can be given for functions of more than two
variables; and similar results hold.
The function (x2 + y2 + z2 − 1)−1 is continuous everywhere except on
the sphere x2 + y2 + z2 = 1, where it is not defined.
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Partial Derivatives
Let f : D ⊆ R2 → R and let (x0, y0) ∈ D.

Let C be the curve of intersection of the surface z = f (x, y) with the
plane y = y0.
The slope of the tangent line to C at (x0, y0, f (x0, y0)) is the partial
derivative of f (x, y) with respect to x at (x0, y0).
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Partial Derivatives Contd.

Let f : D ⊆ R2 → R and let (a, b) ∈ D.

The partial derivative of f (x, y) with respect to x at the point (a, b) is

fx(a, b) =
mf
mx

���
(a,b)

=
df (x, b)

dx

���
x=a

= lim
h→0

f (a + h, b) − f (a, b)
h

,

provided this limit exists.
Note: f (x, b) must be continuous at x = a.
The partial derivative of f (x, y) with respect to y at the point (a, b) is

fy(a, b) =
mf
my

���
(a,b)

=
df (a, y)

dy

���
y=b

= lim
k→0

f (a, b + k) − f (a, b)
k

,

provided this limit exists.
Note: f (a, y) must be continuous at y = b.
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Example 11
Find fx(1, 1) where f (x, y) = 4 − x2 − 2y2.

fx(1, 1) = lim
h→0

(4 − (1 + h)2 − 2) − (4 − 1 − 2)
h

= lim
h→0

−2h − h2

h
= −2.

That is, treat y as a constant and differentiate with respect to x.

fx(1, 1) = fx(x, y)
��
(1,1) = −2x

��
(1,1) = −2.

The vertical plane y = 1 crosses the paraboloid in the curve C1 :
z = 2 − x2, y = 1. The slope of the tangent line to this parabola at the
point (1, 1, 1) (which corresponds to (x, y) = (1, 1)) is fx(1, 1) = −2.
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Examples Contd.
Example 12: Find fx and fy, where f (x, y) = y sin(xy).

fx(x, y) = y cos(xy) y, fy(x, y) = y cos(xy)x + sin(xy).

Example 13: Find mz/mx and mz/my where z = f (x, y) is defined by
x3 + y3 + z3 − 6xyz = 1. Differentiate x3 + y3 + z3 − 6xyz − 1 = 0 with
respect to x treating y as a constant:

3x2 + 0 + 3z2
mz
mx
− 6y

(
z + x

mz
mx

)
− 0 = 0.

Solving this for mz/mx, we have

mz
mx

= −x2 − 2yz
z2 − 2xy

.

Similarly, find mz/my.

mz
my

= −y2 − 2xz
z2 − 2xy

.
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Example 14

The plane x = 1 intersects the z = x2 + y2 in a parabola. Find the slope
of the tangent to the parabola at the point (1, 2, 5).

The asked slope is mz/my at (1, 2). It is

m (x2 + y2)
my

(1, 2) = (2y) (1, 2) = 4.

Alternatively, the parabola is z = x2 + y2, x = 1 OR, z = 1 + y2. So, the
slope at (1, 2, 5) is

dz
dy

���
y=2

=
d(1 + y2)

dy

���
y=2

= (2y) |y=2 = 4.
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Higher Order Partial derivatives
For a function f (x, y), partial derivatives of second order are:

fxx = (fx)x =
m

mx
mf
mx

=
m2f
mx2

.

fxy = (fx)y =
mfx
my

=
m

my
mf
mx

=
m2f
mymx

.

fyx = (fy)x =
mfy
mx

=
m

mx
mf
my

=
m2f
mxmy

.

fyy = (fy)y =
m

my
mf
my

=
m2f
my2

.

Similarly, higher order partial derivatives are defined. For example,

fxxy =
m

my
m

mx
mf
mx

=
m3f

mymxmx
.
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fxy = fyx?

Observe: fx(a, b) is not the same as lim
(x,y)→(a,b)

fx(x, y).Why?

Let f (x, y) =
{
1 if x > 0
0 if x ≤ 0

Then fx(x, y) = 0 for all x ≠ 0.

limx→0 fx(x, y) = 0. But fx(0, 0) does not exist. Reason?

fx(0, 0) = lim
h→0

f (h, 0) − f (0, 0)
h

= lim
h→0

1 or 0
h

does not exist

On the other hand, fx(a, b) can exist though lim
(x,y)→(a,b)

fx does not.

However, if fx(x, y) is continuous at (a, b), then

fx(a, b) = lim
(x,y)→(a,b)

fx(x, y).

Similarly, fxy need not be equal to fyx.



fxy = fyx?

Observe: fx(a, b) is not the same as lim
(x,y)→(a,b)

fx(x, y).Why?

Let f (x, y) =
{
1 if x > 0
0 if x ≤ 0

Then fx(x, y) = 0 for all x ≠ 0.

limx→0 fx(x, y) = 0. But fx(0, 0) does not exist. Reason?

fx(0, 0) = lim
h→0

f (h, 0) − f (0, 0)
h

= lim
h→0

1 or 0
h

does not exist

On the other hand, fx(a, b) can exist though lim
(x,y)→(a,b)

fx does not.

However, if fx(x, y) is continuous at (a, b), then

fx(a, b) = lim
(x,y)→(a,b)

fx(x, y).

Similarly, fxy need not be equal to fyx.



fxy = fyx?

Observe: fx(a, b) is not the same as lim
(x,y)→(a,b)

fx(x, y).Why?

Let f (x, y) =
{
1 if x > 0
0 if x ≤ 0

Then fx(x, y) = 0 for all x ≠ 0.

limx→0 fx(x, y) = 0. But fx(0, 0) does not exist. Reason?

fx(0, 0) = lim
h→0

f (h, 0) − f (0, 0)
h

= lim
h→0

1 or 0
h

does not exist

On the other hand, fx(a, b) can exist though lim
(x,y)→(a,b)

fx does not.

However, if fx(x, y) is continuous at (a, b), then

fx(a, b) = lim
(x,y)→(a,b)

fx(x, y).

Similarly, fxy need not be equal to fyx.



fxy = fyx?

Observe: fx(a, b) is not the same as lim
(x,y)→(a,b)

fx(x, y).Why?

Let f (x, y) =
{
1 if x > 0
0 if x ≤ 0

Then fx(x, y) = 0 for all x ≠ 0.

limx→0 fx(x, y) = 0. But fx(0, 0) does not exist. Reason?

fx(0, 0) = lim
h→0

f (h, 0) − f (0, 0)
h

= lim
h→0

1 or 0
h

does not exist

On the other hand, fx(a, b) can exist though lim
(x,y)→(a,b)

fx does not.

However, if fx(x, y) is continuous at (a, b), then

fx(a, b) = lim
(x,y)→(a,b)

fx(x, y).

Similarly, fxy need not be equal to fyx.



fxy = fyx?

Observe: fx(a, b) is not the same as lim
(x,y)→(a,b)

fx(x, y).Why?

Let f (x, y) =
{
1 if x > 0
0 if x ≤ 0

Then fx(x, y) = 0 for all x ≠ 0.

limx→0 fx(x, y) = 0. But fx(0, 0) does not exist. Reason?

fx(0, 0) = lim
h→0

f (h, 0) − f (0, 0)
h

= lim
h→0

1 or 0
h

does not exist

On the other hand, fx(a, b) can exist though lim
(x,y)→(a,b)

fx does not.

However, if fx(x, y) is continuous at (a, b), then

fx(a, b) = lim
(x,y)→(a,b)

fx(x, y).

Similarly, fxy need not be equal to fyx.



fxy = fyx?

Observe: fx(a, b) is not the same as lim
(x,y)→(a,b)

fx(x, y).Why?

Let f (x, y) =
{
1 if x > 0
0 if x ≤ 0

Then fx(x, y) = 0 for all x ≠ 0.

limx→0 fx(x, y) = 0. But fx(0, 0) does not exist. Reason?

fx(0, 0) = lim
h→0

f (h, 0) − f (0, 0)
h

= lim
h→0

1 or 0
h

does not exist

On the other hand, fx(a, b) can exist though lim
(x,y)→(a,b)

fx does not.

However, if fx(x, y) is continuous at (a, b), then

fx(a, b) = lim
(x,y)→(a,b)

fx(x, y).

Similarly, fxy need not be equal to fyx.



fxy = fyx?

Observe: fx(a, b) is not the same as lim
(x,y)→(a,b)

fx(x, y).Why?

Let f (x, y) =
{
1 if x > 0
0 if x ≤ 0

Then fx(x, y) = 0 for all x ≠ 0.

limx→0 fx(x, y) = 0. But fx(0, 0) does not exist. Reason?

fx(0, 0) = lim
h→0

f (h, 0) − f (0, 0)
h

= lim
h→0

1 or 0
h

does not exist

On the other hand, fx(a, b) can exist though lim
(x,y)→(a,b)

fx does not.

However, if fx(x, y) is continuous at (a, b), then

fx(a, b) = lim
(x,y)→(a,b)

fx(x, y).

Similarly, fxy need not be equal to fyx.



Example 15

Consider f (x, y) = xy(x2 − y2)
x2 + y2

for (x, y) ≠ (0, 0) and f (0, 0) = 0.

f (0, 0) = 0 = f (x, 0) = f (0, y) = fx(x, 0) = fy(0, y) = fxx(0, 0) = fyy(0, 0).

fx(0, y) = lim
h→0

f (h, y) − f (0, y)
h

= −y, fy(x, 0) = lim
k→0

f (x, k) − f (x, 0)
k

= x.

fxy(0, 0) = lim
k→0

fx(0, k) − fx(0, 0)
k

= lim
k→0

−k − 0
k

= −1.

fyx(0, 0) = lim
h→0

fy(h, 0) − fy(0, 0)
h

= lim
h→0

h − 0
h

= 1.

That is, fxy ≠ fyx.

Continuity of both of fxy and fyx implies their equality.
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Clairaut’s Theorem
Theorem 2: Let D ⊆ R2 be a region. Let f : D→ R. Suppose that
fx, fy, fxy and fyx are continuous on D. Then fxy = fyx.

Proof: Let (a, b) ∈ D. Let h ≠ 0.Write
g(x) = f (x, b + h) − f (x, b) and g̃(y) = f (a + h, y) − f (a, y). Now,

q(f ) := g(a + h) − g(a)
= [f (a + h, b + h) − f (a + h, b)] − [f (a, b + h) − f (a, b)]
= [f (a + h, b + h) − f (a, b + h)] − [f (a + h, b) − f (a, b)]
= g̃(b + h) − g̃(b).

Notice that q(f ) is a function of h.
Consider the equality q(f ) = g(a + h) − g(a).
Since fx is continuous, g′(x) is continuous.
By MVT, we have c between a and a + h such that

q(f ) = g′(c)h = h[fx(c, b + h) − fx(c, b)] .
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Proof Contd.
q(f ) = g′(c)h = h[fx(c, b + h) − fx(c, b)] .
Now, fx(c, y) is a function of y. Since fxy is continuous, the function
fx(c, y) as a function of y, is continuously differentiable.

Again,
applying MVT on fx(c, y), we get d between b and b + h such that

q(f ) = h · h · fxy(c, d) = h2fxy(c, d).

Due to continuity of fxy, we have

lim
h→0

q(f )
h2

= lim
(c,d)→(a,b)

fxy(c, d) = fxy(a, b).

Similarly, considering the equality q(f ) = g̃(b + h) − g̃(b), we obtain

lim
h→0

q(f )
h2

= fyx(a, b).

Hence, fxy(a, b) = fyx(a, b). �
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fx(x, y) ⇒ continuity of f ?

In one variable, f ′(t) exists at x = a implies that f (t) is continuous at
t = a. But for f (x, y), even if both fx(x, y) and fy(x, y) exist at (a, b),
the function f (x, y) need not be continuous at (a, b).

Example 16: Let f (x, y) =
{ xy

x2+y2 if (x, y) ≠ (0, 0)
0 if (x, y) = (0, 0)

f (x, 0) = 0 = f (0, y). So, fx(0, 0) = 0 = fy(0, 0).
Limit of f (x, y) as (x, y) → (0, 0) does not exist.
Hence f (x, y) is not continuous at (0, 0).
fxx(x, 0) = 0 = fyy(0, y).What about fxy(0, 0)?

fx(0, y) = lim
h→0

f (h, y) − f (0, y)
h

= lim
h→0

y
h2 + y2

=
1
y
.

fx(0, y) is not continuous at y = 0. So, fxy(0, 0) does not exist.
Similarly, fyx(0, 0) does not exist.
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Tangent Planes
Let S be the surface z = f (x, y), where fx, fy are continuous on the
region D, the domain of f . Let (a, b) ∈ D. Let C1 and C2 be the curves
of intersection of the planes x = a and of y = b with S.

Let T1 and T2 be tangent lines to the curves C1 and C2 at the point
P(a, b, f (a, b)). The tangent plane to the surface S at P is the plane
containing T1 and T2.

The tangent plane to S at P consists of all possible tangent lines at P to
the curves C that lie on S and pass through P. This plane approximates
S at P most closely.
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Equation of the tangent plane

Write the z-coordinate of P as c. Then P = (a, b, c). Equation of any
plane passing through P is z − c = A(x − a) + B(y − b).

When y = b,
the tangent plane represents the tangent to the intersected curve at P.
Thus, A = fx(a, b), the slope of the tangent line. Similarly,
B = fy(a, b). Hence equation of the tangent plane to the surface
z = f (x, y) at the point P(a, b, c) on S is

z − c = fx(a, b) (x − a) + fy(a, b) (y − b)

provided that fx, fy are continuous at (a, b).
For example, the equation of the tangent plane to the elliptic
paraboloid z = 2x2 + y2 at (1, 1, 3) on the surface, is z = 4x + 2y − 3.
To see this: zx = 4x, zy = 2y. So, zx(1, 1) = 4, zy(1, 1) = 2. Then
Eqn is z − 3 = 4(x − 1) + 2(y − 1).
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Linear Approximation
The tangent plane gives a linear approximation to the surface at that
point.

How? Write the eqn as
f (x, y) − f (a, b) = fx(a, b) (x − a) + fy(a, b) (y − b). Then

f (x, y) = f (a, b) + fx(a, b) (x − a) + fy(a, b) (y − b).

This formula holds true for all points (x, y, f (x, y)) on the tangent
plane at (a, b, f (a, b)). For approximating f (x, y) for (x, y) close to
(a, b), we may take

f (x, y) ≈ f (a, b) + fx(a, b) (x − a) + fy(a, b) (y − b).

The RHS is called the standard linear approximation of f (x, y).
Writing in the increment form,

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k.

This gives rise to the total increment f (a + h, b + k) − f (a, b).
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Increment Theorem
Theorem 3: Let f : D→ R, D be a region in R2, fx and fy be
continuous on D. Then f (x, y) is continuous on D and the total
increment Δf = f (a + Δx, b + Δy) − f (a, b) at (a, b) ∈ D can be
written as

Δf = fx(a, b)Δx + fyΔy + n1Δx + n2Δy,

where n1 → 0 and n2 → 0 as both Δx→ 0 and Δy→ 0.

Proof: For convenience, write Δx = h, Δy = k, and

Δf = f (a + h, b + k) − f (a + h, b) + f (a + h, b) − f (a, b).

By MVT, there exist c ∈ [a, a + h] and d ∈ [b, b + k] such that

f (a + h, b) − f (a, b) = h[fx(c, b) − fx(a, b)] + hfx(a, b)
f (a + h, b + k) − f (a + h, b) = k[fy(a + h, d) − fy(a, b)] + kfy(a, b)

Write n1 = fx(d, b) − fx(a, b) and n2 = fy(a + h, c) − fy(a, b).
When both h→ 0, k→ 0, we see that c→ a and d→ b.
Since fx and fy are continuous, n1 → 0 and n2 → 0.
Then f (x, y) is a continuous function. �
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Differntiability
Let D be a region in R2. A function f : D→ R is called differentiable
at a point (a, b) ∈ D if the total increment

Δz = f (a + Δx, b + Δy) − f (a, b)

in f with respect to increments Δx, Δy in x, y, can be written as

Δz = fx(a, b)Δx + fy(a, b)Δy + n1Δx + n2Δy

where n1 → 0 and n2 → 0 as Δx→ 0 and Δy→ 0.

Theorem 4: Let D be a region in R2. Let f : D→ R be such that both
fx and fy exist and at least one of them is continuous at (a, b) ∈ D.
Then f is differentiable at (a, b).
Theorem 5: Let D be a region in R2. Let f : D→ R be differentiable
at (a, b) ∈ D. Then f is continuous at (a, b).
However, we continue using the Increment Theorem directly.
Remember: We can always replace the continuity of fx, fy with
differentiablity of f in all our results.
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Differential
Recall: For a function of one variable, differential is dg = g′(t)dt.

Let f (x, y) be a given function.
The differential of f , also called the total differential, is

df = fx(x, y)dx + fy(x, y)dy.

It represents a linear approximation to the total increment.
Example 17: The dimensions of a rectangular box are measured to be
75cm, 60cm, and 40 cm, and each measurement is correct to within
0.2cm. Use differentials to estimate the largest possible error when
the volume of the box is calculated from these measurements.
The volume of the box is V = xyz. So,

dV =
mV
mx

dx + mV
my

dy + mV
mz

dz.

Given that |Δx|, |Δy|, |Δz| ≤ 0.2cm, the largest error in cubic cm is

|ΔV | ≈ |dV | = 60 × 40 × 0.2 + 40 × 75 × 0.2 + 75 × 60 × 0.2 = 1980.



Differential
Recall: For a function of one variable, differential is dg = g′(t)dt.
Let f (x, y) be a given function.
The differential of f , also called the total differential, is

df = fx(x, y)dx + fy(x, y)dy.

It represents a linear approximation to the total increment.

Example 17: The dimensions of a rectangular box are measured to be
75cm, 60cm, and 40 cm, and each measurement is correct to within
0.2cm. Use differentials to estimate the largest possible error when
the volume of the box is calculated from these measurements.
The volume of the box is V = xyz. So,

dV =
mV
mx

dx + mV
my

dy + mV
mz

dz.

Given that |Δx|, |Δy|, |Δz| ≤ 0.2cm, the largest error in cubic cm is

|ΔV | ≈ |dV | = 60 × 40 × 0.2 + 40 × 75 × 0.2 + 75 × 60 × 0.2 = 1980.



Differential
Recall: For a function of one variable, differential is dg = g′(t)dt.
Let f (x, y) be a given function.
The differential of f , also called the total differential, is

df = fx(x, y)dx + fy(x, y)dy.

It represents a linear approximation to the total increment.
Example 17: The dimensions of a rectangular box are measured to be
75cm, 60cm, and 40 cm, and each measurement is correct to within
0.2cm. Use differentials to estimate the largest possible error when
the volume of the box is calculated from these measurements.

The volume of the box is V = xyz. So,

dV =
mV
mx

dx + mV
my

dy + mV
mz

dz.

Given that |Δx|, |Δy|, |Δz| ≤ 0.2cm, the largest error in cubic cm is

|ΔV | ≈ |dV | = 60 × 40 × 0.2 + 40 × 75 × 0.2 + 75 × 60 × 0.2 = 1980.



Differential
Recall: For a function of one variable, differential is dg = g′(t)dt.
Let f (x, y) be a given function.
The differential of f , also called the total differential, is

df = fx(x, y)dx + fy(x, y)dy.

It represents a linear approximation to the total increment.
Example 17: The dimensions of a rectangular box are measured to be
75cm, 60cm, and 40 cm, and each measurement is correct to within
0.2cm. Use differentials to estimate the largest possible error when
the volume of the box is calculated from these measurements.
The volume of the box is V = xyz. So,

dV =
mV
mx

dx + mV
my

dy + mV
mz

dz.

Given that |Δx|, |Δy|, |Δz| ≤ 0.2cm, the largest error in cubic cm is

|ΔV | ≈ |dV | = 60 × 40 × 0.2 + 40 × 75 × 0.2 + 75 × 60 × 0.2 = 1980.



Differential
Recall: For a function of one variable, differential is dg = g′(t)dt.
Let f (x, y) be a given function.
The differential of f , also called the total differential, is

df = fx(x, y)dx + fy(x, y)dy.

It represents a linear approximation to the total increment.
Example 17: The dimensions of a rectangular box are measured to be
75cm, 60cm, and 40 cm, and each measurement is correct to within
0.2cm. Use differentials to estimate the largest possible error when
the volume of the box is calculated from these measurements.
The volume of the box is V = xyz. So,

dV =
mV
mx

dx + mV
my

dy + mV
mz

dz.

Given that |Δx|, |Δy|, |Δz| ≤ 0.2cm, the largest error in cubic cm is

|ΔV | ≈ |dV | = 60 × 40 × 0.2 + 40 × 75 × 0.2 + 75 × 60 × 0.2 = 1980.



Chain Rule 1
Theorem 6: Let x(t) and y(t) be differentiable. Let f (x, y) be such that
fx and fy are continuous. Then

df
dt
=
mf
mx

dx
dt
+ mf
my

dy
dt
.

Proof: Use the increments theorem at a point P.

Δf
Δt

=
mf
mx
Δx
Δt
+ mf
my
Δy
Δt
+ n1

Δx
Δt
+ n2

Δy
Δt
.

As Δt→ 0, we have Δx→ 0,Δy→ 0, n1 → 0, n2 → 0 and
Δx
Δt →

dx
dt ,

Δy
Δt →

dy
dt . �

For example, if z = xy and x = sin t, y = cos t, then

dz
dt
=
mz
mx

x′(t) + mz
my

y′(t) = cos2 t − sin2 t.

Check: z(t) = sin t cos t. So, z′(t) = cos2 t − sin2 t.
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Chain Rule 2

Using a similar argument, we obtain the following result.

Theorem 7: Let f (x, y) be a function, where fx and fy are continuous.
Suppose x = x(s, t) and y = y(s, t) are functions such that xs, xt, ys
and yt are also continuous. Then

mf
ms
=
mf
mx
mx
ms
+ mf
my
my
ms
,

mf
mt
=
mf
mx
mx
mt
+ mf
my
my
mt
.

Example 18: Let z = ex sin y, x = st2, y = s2t. Then

mz
ms
= (ex sin y)t2 + (ex cos y)2st = test2 (t sin(s2t) + 2s cos(s2t)).

mz
mt
= (ex sin y)2st + (ex cos y)s2 = sest2 (2t sin(s2t) + s cos(s2t)).

Similar formulas hold for functions of more than two variables.
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Example 19
Given that z = f (x, y) has continuous second order partial derivatives
and that x = r2 + s2 and y = 2rs. Find zrr .

zr = 2rzx + 2szy.

zxr = zxxxr + zxyyr = 2rzxx + 2szxy.

zyr = zyxxr + zyyyr = 2rzyx + 2szyy.

zrr =
mzr

mr
=
m

mr
(2rzx + 2szy) = 2zx + 2rzxr + 2szyr

= 2zx + 2r(2rzxx + 2szxy) + 2s(2rzyx + 2szyy)
= 2zx + 4r2zxx + 8rszxy + 4s2zyy.

Functions can be differentiated implicitly.
If F is defined within a sphere S containing a point (a, b, c), where
F(a, b, c) = 0, Fz(a, b, c) ≠ 0, and Fx,Fy,Fz are continuous inside the
sphere, then the equation F(x, y, z) = 0 defines a function z = f (x, y) in
a sphere containing (a, b, c) and contained in the sphere S. Moreover,
with z = f (x, y), we have zx = −Fx/Fz, zy = −Fy/Fz, which are
continuous.
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Example 20

It is easier to differentiate implicitly than remembering the formula.

Find zx and zy if x3 + y3 + z3 + 6xyz = 1.
We differentiate ‘the equation’ with respect to x and y as follows:

3x2 + 3z2zx + 6y(z + xzx) = 0⇒ zx = −
(x2 + 2yz)
z2 + 2xy

3y2 + 3z2zy + 6x(z + yzy) = 0⇒ zy = −
(y2 + 2xz)
z2 + 2xy

Find
dy
dx

if y2 = x2 + sin(xy).

2y
dy
dx
− 2x − cos(xy) (y + x

dy
dx
) = 0⇒ dy

dx
=

2x + y cos(xy)
2y − x cos(xy) .
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Dependent and Independent Variables

Find mw/mx if w = x2 + y2 + z2 and z = x2 + y2.

1. As it looks, mw/mx = 2x.
2. However, since z = x2 + y2, we have w = x2 + y2 + (x2 + y2)2. Then
mw/mx = 2x + 4x3 + 4xy2.
Notice that, here we take z as the dependent variable and x, y as
independent variables.
3. Suppose we know that x and z are the independent variables and y
is the dependent variable. Then the second equation says that
y2 = z − x2. Then w = x2 + (z − x2) + z2 = z + z2 ⇒ mw/mx = 0.
The correct procedure to get mw/mx is :
(a) w must be dependent variable and x must be independent variable.
(b) Decide which of the other variables are dependent or independent.
(b) Eliminate the dependent variables from w using the constraints.
(d) Then take the partial derivative mw/mx.
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An Example

Evaluate mw
mx (2,−1, 1) given that w = x2 + y2 + z2 and z(x, y) satisfies

z3 − xy + yz + y3 = 1.

Now that z,w are dependent variables and x, y are independent
variables.

mw
mx

= 2x + 2z
mz
mx
, 3z2

mz
mx
− y + y

mz
mx

= 0.

These two together give

mw
mx

= 2x + 2yz
y + 3z2

.

Evaluating it at (2,−1, 1) gives mw
mx (2,−1, 1) = 3.
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Homogeneous Functions
A function f (x, y) is homogeneous of degree n in a region D ⊆ R2 if
for all (x, y) ∈ D, and for each positive _, f (_x, _y) = _nf (x, y).

For example, f (x, y) = x1/3y−4/3 tan−1(y/x) is homogeneous of degree
−1 in the region D, which is any quadrant without the axes.
f (x, y) = (

√
x2 + y2)3 is homogeneous of degree 3 in the whole plane.

Theorem 8: (Euler) Let D be a region in R2. Let f : D→ R have
continuous first order partial derivatives. Then, f is a homogeneous
function of degree n iff x fx + y fy = nf .
Proof: Differentiate f (_x, _y) − _nf (x, y) = 0 partially with respect to
_ to obtain:

x fx(_x, _y) + y fy(_x, _y) = n_n−1f (x, y).

Here, fx means partial differentiation w.r.t. first variable, similarly, fy
means partial differentiation w.r.t. second variable.
Then set _ = 1 to get x fx(x, y) + y fy(x, y) = nf (x, y).
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Proof of Theorem 8 Contd.
Conversely, let (a, b) ∈ D.

Define q(_) = f (_a, _b).
Differentiate with respect to _ to get

q′(_) = a fx(_a, _b) + b fy(_a, _b).
n f (_a, _b) = _a fx(_a, _b) + _b fy(_a, _b).

That is, _q′(_) = nq(_).
Now, differentiate _−nq(_) with respect to _ to obtain

[q(_)_−n] ′ = q′(_)_−n − nq(_)_−n−1 = 0.

Therefore, q(_)_−n = c for some constant c. Set _ = 1 to get
c = f (a, b). Then f (_a, _b) = _nf (a, b).
Since (a, b) is any arbitrary point in D, we have

f (_x, _y) = _nf (x, y).
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Directional Derivative

Recall: If f (x, y) is a function, then fx(x0, y0) is the rate of change in f
w.r.t. change in x at (x0, y0), that is, in the direction ŷ.

Similarly, fy(x0, y0) is the rate of change of f at (x0, y0) in the direction
ẑ .

How do we find the rate of change of f (x, y) at (x0, y0) in the direction
of a unit vector û?

Consider the surface S with the equation
z = f (x, y). Let z0 = f (x0, y0). The point
P(x0, y0, z0) lies on S. The vertical plane
that passes through P in the direction of û
intersects S in a curve C.

The slope of the tangent line T to C at P is the rate of change of z in
the direction of û.
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Directional Derivative

Let f (x, y) be a function defined in a region D. Let (x0, y0) ∈ D. The
directional derivative of f (x, y) in the direction of a unit vector
û = aŷ + b ẑ at (x0, y0) is given by

(Duf ) (x0, y0) =
(
df
ds

)
u

���
(x0,y0)

= lim
h→0

f (x0 + ha, y0 + hb) − f (x0, y0)
h

.

Example 21: Find the derivative of z = x2 + y2 at (1, 2) in the direction
of û = (1/

√
2)ŷ + (1/

√
2) ẑ .

Duz(1, 2) = lim
h→0

f (1 + h/
√
2, 2 + h/

√
2) − f (1, 2)

h
= 6/
√
2.

Notice that
fx(1, 2) (1/

√
2) + fy(1, 2) (1/

√
2) = (2 + 2(2)) (1/

√
2) = 6/

√
2.
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A formula
Theorem 9: If f (x, y) is a function of x and y having continuous partial
derivatives fx and fy, then f has a directional derivative at (x, y) in any
direction û = aŷ + b ẑ; and it is given by

Duf (x, y) = fx(x, y)a + fy(x, y)b.

Proof: g(h) = f (x0 + ah, y0 + bh) is a continuously differentiable
function of h. Now,

g′(h) = fx
dx
dh
+ fy

dy
dh
= fx a + fy b.

Then g′(0) = fx(x0, y0) a + fy(x0, y0) b. Also,
g′(0) = limh→0

g(h)−g(0)
h = Duf (x0, y0). Hence

Duf (x0, y0) = g′(0) = fx(x0, y0)a + fy(x0, y0)b. �

Example 22: Find the directional derivative of f (x, y) = x3 − 3xy + 4y2
in the direction of the line that makes an angle of c/6 with the x-axis.

Duf (x, y) = fx cos(c/6) + fy sin(c/6) = 1
2
[3
√
3x2 − 3x + (8 − 3

√
3)y] .
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direction û = aŷ + b ẑ; and it is given by

Duf (x, y) = fx(x, y)a + fy(x, y)b.

Proof: g(h) = f (x0 + ah, y0 + bh) is a continuously differentiable
function of h. Now,

g′(h) = fx
dx
dh
+ fy

dy
dh
= fx a + fy b.

Then g′(0) = fx(x0, y0) a + fy(x0, y0) b. Also,
g′(0) = limh→0

g(h)−g(0)
h = Duf (x0, y0). Hence

Duf (x0, y0) = g′(0) = fx(x0, y0)a + fy(x0, y0)b. �

Example 22: Find the directional derivative of f (x, y) = x3 − 3xy + 4y2
in the direction of the line that makes an angle of c/6 with the x-axis.

Duf (x, y) = fx cos(c/6) + fy sin(c/6) = 1
2
[3
√
3x2 − 3x + (8 − 3

√
3)y] .



A formula
Theorem 9: If f (x, y) is a function of x and y having continuous partial
derivatives fx and fy, then f has a directional derivative at (x, y) in any
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Gradient
The formula for the directional derivative in the direction of the unit
vector û = aŷ + b ẑ can be written as

Duf = fxa + fyb = (fxŷ + fy ẑ) · (aŷ + b ẑ).

The vector operator
m

mx
ŷ + m

my
ẑ is called the gradient. The gradient of

f (x, y) is given by

∇f = grad f =
mf
mx
ŷ + mf

my
ẑ .

Therefore, Duf = grad f · û.
And at a point (x0, y0), the directional derivative is given by

Duf |(x0,y0) = grad f |(x0,y0) · û.
Caution: Apply this formula when fx and fy are continuous, and û is a
unit vector.
For example, for the function f (x, y) = xey + cos(xy),
grad f |(2,0) = ŷ + 2 ẑ . Thus, the directional derivative of f in the
direction of 3ŷ − 4 ẑ is grad f |(1,2) · ((3/5)ŷ − (4/5) ẑ) = −1.



Gradient
The formula for the directional derivative in the direction of the unit
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Caution: Apply this formula when fx and fy are continuous, and û is a
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For example, for the function f (x, y) = xey + cos(xy),
grad f |(2,0) = ŷ + 2 ẑ .

Thus, the directional derivative of f in the
direction of 3ŷ − 4 ẑ is grad f |(1,2) · ((3/5)ŷ − (4/5) ẑ) = −1.
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ẑ is called the gradient. The gradient of

f (x, y) is given by

∇f = grad f =
mf
mx
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Example 23

How much the value of y sin x + 2yz change if the point (x, y, z) moves
0.1 units from (0, 1, 0) toward (2, 2,−2)?

Let f (x, y, z) = y sin x + 2yz. P(0, 1, 0), Q(2, 2,−2).
®v = −−→PQ = 2ŷ + ẑ − 2k̂. The unit vector in the direction of ®v is û = 1

3®v.
We find Du at P which requires grad f .

grad f = (y cos x)ŷ + (sin x + 2z) ẑ + 2y k̂.

Then
Du(P) = grad f |(0,1,0) · ®u = (ŷ + 2k̂) · û = −2

3
.

The change df in the direction of ®u in moving ds = 0.1 units is
approximately

df ≈ Du(P) ds = −2
3
(0.1) = −0.067 units.
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Gradient Again

Theorem 10: Let f (x, y) have continuous first order partial derivatives.
The maximum value of the directional derivative Duf (x, y) is |grad f |
and it is achieved when the unit vector û has the same direction as that
of grad f .

This is obvious since Duf = grad f · û says that the directional
derivative is the scalar projection of the gradient in the direction of û.
Proof: Duf = grad f · û = |grad f | |û| cos \ = |grad f | cos \,
where \ is the angle between grad f and û.
Since maximum of cos \ is 1, maximum of Duf is |grad f |.
The maximum occurs when \ = 0, that is, when the directions of
grad f and û coincide. �

This also says that
f (x, y) increases most rapidly in the direction of its gradient.
f (x, y) decreases most rapidly in the opposite direction of its gradient.
f (x, y) remains constant in any direction orthogonal to its gradient.
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of grad f .
This is obvious since Duf = grad f · û says that the directional
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of grad f .
This is obvious since Duf = grad f · û says that the directional
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derivative is the scalar projection of the gradient in the direction of û.
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Example 24

Find the directions in which the function f (x, y) = (x2 + y2)/2 changes
most, least, and not at all, at (1, 1).

When we say ‘direction’, we mean a unit vector.
grad f = fxŷ + fy ẑ = xŷ + y ẑ . (grad f ) (1, 1) = ŷ + ẑ .
Thus the function f (x, y) increases most at (1, 1) in the direction
(ŷ + ẑ)/

√
2. It decreases most at (1, 1) in the direction −(ŷ + ẑ)/

√
2.

And it does not change at (1, 1) in the directions ±(ŷ − ẑ)/
√
2.
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Normal to the Level Curve

Let z = f (x, y) be a given surface. Assume that fx and fy are
continuous. Let c be a number in the range of f . Suppose
®r(t) = x(t)ŷ + y(t) ẑ is a parametrization of the corresponding level
curve. Then f (x(t), y(t)) = c.

Differentiating w.r.t. t, we have d
dt f (x(t), y(t)) = 0. Or,

fx
dx
dt
+ fy

dy
dt
= grad f · d®r(t)

dt
= 0.

Since d®r/dt is the tangent to the curve, grad f is the normal to the level
curve. That is,
Let f (x, y) have continuous first order partial derivatives. At any point
(x0, y0) in the domain of f (x, y), its gradient grad f is the normal to the
level curve that passes through (x0, y0), provided grad f is nonzero at
(x0, y0).
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Gradient Rules
In higher dimensions, if f (x1, . . . , xn) is a function of n independent
variables defined on D ⊆ Rn, then its gradient at any point is

grad f =
( mf
mx1

, . . . ,
mf
mxn

)
.

The directional derivative at any point ®x in the direction of a unit
vector û = (u1, . . . , un) is

Duf = lim
h→0

f (®x + hû) − f (®x)
h

= grad f · û = fx1u1 + · · · + fxnun.

The algebraic rules for the gradient are:
1. Constant multiple: grad (kf ) = k(grad f ) for k ∈ R.
2. Sum: grad (f + g) = grad f + grad g.
3. Difference: grad (f − g) = grad f − grad g.
4. Product: grad (fg) = f (grad g) + g(grad f ).
5. Quotient: grad (f /g) = g(grad f )−f (grad g)

g2 .
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vector û = (u1, . . . , un) is

Duf = lim
h→0

f (®x + hû) − f (®x)
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vector û = (u1, . . . , un) is

Duf = lim
h→0

f (®x + hû) − f (®x)
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Tangent Planes
Suppose ®r(t) = x(t)ŷ + y(t) ẑ + z(t)k̂ is a smooth curve on the level
surface f (x, y, z) = c. Then f (x(t), y(t), z(t)) = c for all t.
Differentiating this we get

grad f · ®r ′(t) = 0.

Look at all such smooth curves that pass through a point P on the level
surface. The velocity vectors ®r ′(t) to all these smooth curves are
orthogonal to the gradient at the point P.
Let f (x, y, z) have continuous first order partial derivatives. The
tangent plane at P(x0, y0, z0) on the level surface f (x, y, z) = c of the
function f (x, y, z) is the plane through P which is orthogonal to grad f
at P. Its equation is

fx(x0, y0, z0) (x − x0) + fy(x0, y0, z0) (y − y0) + fz(x0, y0, z0) (z − z0) = 0.

The normal line to the level surface f (x, y, z) = c at P(x0, y0, z0) is the
line through P parallel to grad f . Its equation is

x = x0 + fx(x0, y0, z0) t, y = y0 + fy(x0, y0, z0) t, z = z0 + fz(x0, y0, z0) t.
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Simplification
How do you find a tangent plane to the surface z = f (x, y) at (a, b).?

The surface can be written as F(x, y, z) = 0, where
F(x, y, z) = f (x, y) − z. Then Fx = fx, Fy = fy, Fz = −1.
Hence the equation of the tangent plane is

fx(a, b) (x − a) + fy(a, b) (y − b) − (z − f (a, b)) = 0.

Example 25: Find the tangent plane and the normal line to the surface
x2 + y2 + z − 9 = 0 at the point (1, 2, 4).
Check that the point (1, 2, 4) lies on the surface.
fx(1, 2, 4) = 2, fy(1, 2, 4) = 4 and fz(1, 2, 4) = 1. The tangent plane is

2(x − 1) + 4(y − 2) + (z − 4) = 0.

The normal line at (1, 2, 4) is x = 1 + 2t, y = 2 + 4t, z = 4 + t.
Example 26: Find the tangent plane to the surface z = x cos y − yex at
the origin.
fx(0, 0) = 1, fy(0, 0) = −1. The tangent plane is

x − y − z = 0.
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Example 27

Find the tangent line to the curve of
intersection of the surfaces
f (x, y, z) := x2 + y2 − 2 = 0 and
g(x, y, z) := x + z − 4 = 0 at the point
(1, 1, 3).

The tangent line is orthogonal to both grad f and grad g at (1, 1, 3).
So, it is parallel to

grad f × grad g = (2ŷ + 2 ẑ) × (ŷ + k̂) = 2ŷ − 2 ẑ − 2k̂.

The tangent line is x = 1 + 2t, y = 1 − 2t, z = 3 − 2t.
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Taylor’s Theorem
Recall: Let f : (a, b) → R be a function having continuous derivatives
up to order n + 1. Let x0 ∈ (a, b). Then for each x ∈ (a, b), there exists
c between x and x0 such that

f (x) = f (x0) +
n∑

m=1

f (m) (x0)
m!

(x − x0)m +
f (n+1) (c)
(n + 1)! (x − x0)n+1.

Theorem 11: Let D be a region in R2. Let (a, b) be an interior point of
D. Let f : D→ R have continuous partial derivatives of order up to
n + 1 in some open disk D0 centered at (a, b) and contained in D.
Then for any (a + h, b + k) ∈ D0, we have

f (a + h, b + k) = f (a, b) +
n∑

m=1

1
m!

(
h
m

mx
+ k

m

my

)m
f (a, b)

+ 1
(n + 1)!

(
h
m

mx
+ k

m

my

)n+1
f (a + \h, b + \k)

for some \ with 0 ≤ \ ≤ 1.
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Proof of Taylor’s Formula

Proof: Let q(t) = f (a + th, b + tk). For any t ∈ [0, 1],

q′(t) = fx(a + th, b + tk)h + fy(a + th, b + tk)k
= (h m

mx + k m
my )f (a + th, b + tk).

q (2) (t) = (fxxh + fxyk)h + (fyxh + fyyk)k
= (h m

mx + k m
my )

2f (a + th, b + tk).

By induction, q (m) (t) =
(
h m
mx + k m

my
)mf (a + th, b + tk).

Use Taylor’s formula for q(t) to get

q(1) = q(0) +
n∑

m=1

q (m) (0)
m!

+ q
(n+1) (\)
(n + 1)! .

for some \ between 0 and 1.
Substitute the expressions for q(1), q(0), q (m) (0) and q (n+1) (\). �
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Upper bound for the Error
Recall: The standard linearization (linear approximation) of f (x, y) at
(a, b) is L(x, y) = f (a, b) + fx(a, b) (x − a) + fy(a, b) (y − b).

The error in the standard linearization at (a, b) is (Taylor’s)
E(x, y) = f (x, y) − L(x, y) = 1

2! ((x − a)2fxx + 2(x − a) (y − b)fxy + (y − b)2fyy)
���
(c,d)

,
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Example 28
Find the standard linearization of f (x, y) = x2 − xy + y2/2 − 3 at (3, 2).
Also find an upper bound of the error in the linearization in the
rectangle |x − 3| ≤ 0.1, |y − 2| ≤ 0.1.

The standard linearization (linear approximation) of f (x, y) at (a, b) is

L(x, y) = f (a, b) + fx(a, b) (x − a) + fy(a, b) (y − b).

Now, f (3, 2) = 8, fx(3, 2) = (2x − y) |(3,2) = 4, and
fy(3, 2) = (−x + y) |(3,2) = −1. Thus

L(x, y) = 2 + 4(x − 3) − (y − 2) = 4x − y − 8.

The error in this linearization is
E(x, y) = f (x, y) − L(x, y) = x2 − xy + y2/2 − 3 − 4x + y + 8.
The rectangle is R : |x − 3| ≤ 0.1, |y − 2| ≤ 0.1. Here,
fxx = 2, fxy = −1, fyy = 1. So, we take M = 2, an upper bound for all
these.
Then |E(x, y) | ≤ (|x − 3| + |y − 2|)2 ≤ (0.1 + 0.1)2 = 0.04.
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Examples

Example 29: f (x, y) = x2 + xy − y2, a = 1, b = −2.

Here, f (1,−2) = −5, fx(1,−2) = 0, fy(1,−2) = 5, fxx = 2,
fxy = 1, fyy = −2.
f (x, y) = −5 + 5(y + 2) + 1

2 [2(x − 1)
2 + 2(x − 1) (y + 2) − 2(y + 2)2] .

This becomes exact, since third (and more) order derivatives are 0.
Example 30: Find the linearization and the maximum error incurred
for f (x, y, z) = x2 − xy + 2 sin z at P(2, 1, 0) in the cuboid
|x − 2| ≤ 0.01, |y − 1| ≤ 0.02, |z| ≤ 0.01.
L(x, y, z) = f (P) + fx(P) (x−2) + fy(P) (y−1) + fz(P)z = 3x−2y+2z−2.
All double derivatives are bounded above by 2. So,

E(x, y, z) |P ≤
1
2
(2) ( |x − 2| + |y − 1| + |z|)2 ≤ 0.0016.
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Extreme Values
Let D be a region in R2, (a, b) an interior point of D, and f : D→ R.
We say that f (x, y) has a local maximum at (a, b) iff f (x, y) ≤ f (a, b)
for all (x, y) ∈ D near (a, b). That is, for all (x, y) in some open disk
centered at (a, b) and contained in D, f (x, y) ≤ f (a, b).

In this case, f (a, b) is called a local maximum value of f ; the point
(a, b) is called a point of local maximum.
We say that f has an absolute maximum at a point (a, b) ∈ D iff
f (x, y) ≤ f (a, b) happens for all (x, y) ∈ D.
The number f (a, b) is called the absolute maximum value of f ; the
point (a, b) is called a point of absolute maximum.

Replace all ≤ by ≥ in the above
definition;
and call all those minimum instead of
maximum.
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and call all those minimum instead of
maximum.
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Critical Points
Let D be a region in R2; f : D→ R. Let (a, b) ∈ D. The function f
has a local extremum at (a, b) iff f has a local maximum or a local
minimum at (a, b).

An interior point (a, b) of D is a critical point of f iff either
fx(a, b) = 0 = fy(a, b) or at least one of fx(a, b), fy(a, b) does not exist.
Theorem 13: Let D be a region in R2; f : D→ R. Let (a, b) be an
interior point of D. If f has a local extremum at (a, b), then (a, b) is a
critical point of f .
Proof: Suppose f has a local maximum at an interior point (a, b) of D.
Suppose fx(a, b) exists. The function g(x) = f (x, b) has a local
maximum at x = a. Then g′(a) = 0. That is, fx(a, b) = 0. Similarly,
consider h(y) = f (a, y) and conclude that fy(a, b) = 0. Give similar
argument if f has a local minimum at (a, b). �
Geometrically, it says that if at an interior point (a, b), there exists a
tangent plane to the surface z = f (x, y), then there exists a horizontal
tangent plane to the surface at (a, b).
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Saddle Points
Let D be a region in R2. Let f : D→ R have continuous first order
partial derivatives. Let (a, b) be a critical point of f .

The point
(a, b, f (a, b)) on the surface is called a saddle point of f if in every
open disk centered at (a, b) and contained in D, there are points
(x1, y1), (x2, y2) such that f (x1, y1) < f (a, b) < f (x2, y2).

At a saddle point, the function has neither a local maximum nor a
local minimum; the surface crosses its tangent plane.
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Second Derivative Test

Theorem 14: Let f : D→ R have continuous first and second partial
derivatives in an open disk centered at (a, b) ∈ D. Define the Hessian
of f as

H(f ) :=
���� fxx fxy
fxy fyy

���� = fxx fyy − f 2xy.

If H(f ) (a, b) > 0, then the surface z = f (x, y) curves the same way in
all directions near (a, b).

In particular, suppose (a, b) is a critical point of f . Then
1. If H(f ) (a, b) > 0 and fxx < 0, then f has a local maximum at (a, b).
2. If H(f ) (a, b) > 0 and fxx > 0, then f has a local minimum at (a, b).
3. If H(f ) (a, b) < 0 then f has a saddle point at (a, b).
4. If H(f ) (a, b) = 0, then nothing can be said, in general.
See the classnotes for proof of (1)-(4).
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Proof
Let (a + h, b + k) be in an open disk centered at (a, b) and contained in
D.

By Taylor’s formula,

f (a+h, b+k) = (f +hfx+kfy)
���
(a,b)
+ 1
2
(h2fxx+2hkfxy+k2fyy)

���
(a+\h,b+\k)

.

Since (a, b) is a critical point of f , fx(a, b) = 0 = fy(a, b). Then

f (a + h, b + k) − f (a, b) = 1
2
(h2fxx + 2hkfxy + k2fyy)

���
(a+\h,b+\k)

.

(1) Let H(f ) (a, b) > 0 and fxx(a, b) < 0.
Multiply both sides by fxx(a + \h, b + \k) and rearrange to get

2fxx [f (a + h, b + k) − f (a, b)] = (hfxx + kfxy)2 + (fxxfyy − (fxy)2)k2.

By continuity of functions involved, fxx(a + \h, b + \k) < 0. The RHS
is positive. Therefore, f (a + h, b + k) − f (a, b) < 0. That is, (a, b) is a
local maximum point.
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First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0.

So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.
(3) Let H(f ) (a, b) < 0.We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).
We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.
(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.
First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0. So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.

(3) Let H(f ) (a, b) < 0.We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).
We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.
(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.
First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0. So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.
(3) Let H(f ) (a, b) < 0.

We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).
We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.
(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.
First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0. So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.
(3) Let H(f ) (a, b) < 0.We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).

We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.
(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.
First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0. So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.
(3) Let H(f ) (a, b) < 0.We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).
We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.

(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.
First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0. So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.
(3) Let H(f ) (a, b) < 0.We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).
We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.
(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.

First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0. So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.
(3) Let H(f ) (a, b) < 0.We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).
We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.
(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.
First, set h = t, k = 0.

Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0. So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.
(3) Let H(f ) (a, b) < 0.We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).
We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.
(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.
First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0. So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.
(3) Let H(f ) (a, b) < 0.We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).
We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.
(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.
First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b).

Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0. So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.
(3) Let H(f ) (a, b) < 0.We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).
We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.
(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.
First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
(2) Let H(f ) (a, b) > 0 and fxx(a, b) > 0. Similar to (1),
fxx(a + \h, b + \k) > 0. So, f (a + h, b + k) − f (a, b) > 0. That is, (a, b)
is a local minimum point.
(3) Let H(f ) (a, b) < 0.We want to show that f (a + h, b + k) − f (a, b)
has opposite signs at different points in any small disk around (a, b).
We break this case into three sub-cases:
(3A) fxx(a, b) ≠ 0. (3B) fyy(a, b) ≠ 0, (3C) fxx(a, b) = fyy(a, b) = 0.
(3A) Let H(f ) (a, b) < 0 and fxx(a, b) ≠ 0.
First, set h = t, k = 0. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

t2fxx

2t2
=

fxx(a, b)
2

.

Next, set h = −tfxy(a, b), k = tfxx(a, b). Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= lim
t→0

1
2
(f 2xyfxx−2fxxf 2xy+f 2xxfyy) =

fxx

2
H(f ) (a, b).



Proof Contd.
Since H(f ) (a, b) < 0, these two limits have opposite signs.

Thus, for
small values of t, f (a + h, b + k) − f (a, b) will have opposite signs.
(3B) Let H(f ) (a, b) < 0 and fyy(a, b) ≠ 0. This is similar to (3A).
(3C) Let H(f ) (a, b) < 0 and fxx(a, b) = fyy(a, b) = 0.
First, set h = k = t. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= fxy(a, b).

Next, set h = t, k = −t. Then

lim
t→0

f (a + h, b + k) − f (a, b)
t2

= −fxy(a, b).

As in (3A), we conclude that for small values of t,
f (a + h, b + k) − f (a, b) will have opposite signs. �

Notice that the case H(f ) (a, b) > 0 and fxx(a, b) = 0 is not possible.
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Example 31

Find the extreme values of f (x, y) = xy − x2 − y2 − 2x − 2y + 4.

Domain of f is R2 having no boundary points. The first and second
order partial derivatives of f are continuous. Its extreme values are all
local extrema. The critical points are where both fx and fy vanish.
Now,

fx = y − 2x − 2, fy = x − 2y − 2.

The critical points are fx = 0 = fy, that is, x = y = −2.
fxx(−2,−2) = −2, fxy(−2,−2) = 1, fyy(−2,−2) = −2.
Then H(f ) (−2,−2) = 3 > 0, fxx < 0.
Thus, f has local maximum at (−2,−2).
Here also f has absolute maximum and the maximum value is
f (−2,−2) = 8.
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Example 32

Investigate f (x, y) = x4 + y4 − 4xy + 1 for extreme values.

Here, fx and fy are continuous, etc.
The critical points are at (x, y) where fx = 4x3 − 4y = 0 = fy = 4y3 − 4x.
That is, when x3 = y and y3 = x. Giving x9 = x which has solutions
x = 0, 1,−1 in R. The corresponding y values are 0, 1,−1.
Now, fxx = 12x2, fxy = −4, fyy = 12y2. Thus H(f ) = 144x2y2 − 16.
At x = 0, y = 0, H(f ) = −16. Thus f has a saddle point at (0, 0).
At x = 1, y = 1, H(f ) > 0, fxx > 0. Thus f has a local minimum at
(1, 1).
At x = −1, y = −1, H(f ) > 0, fxx > 0. Thus f has a local minimum at
(−1,−1).
The local minimum values are f (1, 1) = −1 and f (−1,−1) = −1. Both
are absolute minima.
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Example 33

Find absolute extrema of f (x, y) = 2 + 2x + 2y − x2 − y2 defined on the
triangular region bounded by the straight lines x = 0, y = 0, and
x + y = 9.

1. The critical points are solutions of fx = 2 − 2x = 0 = fy = 2 − 2y.
That is, x = 1, y = 1.
This accounts for the interior points of the region.
2. Draw the picture. The vertices of the triangle are
A(0, 0), B(0, 9), C(9, 0). These are possible extremum points.
This accounts for the vertices which are on the boundary.
3. Next, we should consider the boundary in detail.
3(a). On the line segment AB, f is given by (x = 0):
g(y) = f (0, y) = 2 + 2y − y2 for 0 ≤ y ≤ 9.
Taking g′(y) = 0, we see that y = 1.
Thus, a possible extremum point is (0, 1).



Example 33

Find absolute extrema of f (x, y) = 2 + 2x + 2y − x2 − y2 defined on the
triangular region bounded by the straight lines x = 0, y = 0, and
x + y = 9.
1. The critical points are solutions of fx = 2 − 2x = 0 = fy = 2 − 2y.
That is, x = 1, y = 1.
This accounts for the interior points of the region.

2. Draw the picture. The vertices of the triangle are
A(0, 0), B(0, 9), C(9, 0). These are possible extremum points.
This accounts for the vertices which are on the boundary.
3. Next, we should consider the boundary in detail.
3(a). On the line segment AB, f is given by (x = 0):
g(y) = f (0, y) = 2 + 2y − y2 for 0 ≤ y ≤ 9.
Taking g′(y) = 0, we see that y = 1.
Thus, a possible extremum point is (0, 1).



Example 33

Find absolute extrema of f (x, y) = 2 + 2x + 2y − x2 − y2 defined on the
triangular region bounded by the straight lines x = 0, y = 0, and
x + y = 9.
1. The critical points are solutions of fx = 2 − 2x = 0 = fy = 2 − 2y.
That is, x = 1, y = 1.
This accounts for the interior points of the region.
2. Draw the picture. The vertices of the triangle are
A(0, 0), B(0, 9), C(9, 0). These are possible extremum points.
This accounts for the vertices which are on the boundary.

3. Next, we should consider the boundary in detail.
3(a). On the line segment AB, f is given by (x = 0):
g(y) = f (0, y) = 2 + 2y − y2 for 0 ≤ y ≤ 9.
Taking g′(y) = 0, we see that y = 1.
Thus, a possible extremum point is (0, 1).



Example 33

Find absolute extrema of f (x, y) = 2 + 2x + 2y − x2 − y2 defined on the
triangular region bounded by the straight lines x = 0, y = 0, and
x + y = 9.
1. The critical points are solutions of fx = 2 − 2x = 0 = fy = 2 − 2y.
That is, x = 1, y = 1.
This accounts for the interior points of the region.
2. Draw the picture. The vertices of the triangle are
A(0, 0), B(0, 9), C(9, 0). These are possible extremum points.
This accounts for the vertices which are on the boundary.
3. Next, we should consider the boundary in detail.

3(a). On the line segment AB, f is given by (x = 0):
g(y) = f (0, y) = 2 + 2y − y2 for 0 ≤ y ≤ 9.
Taking g′(y) = 0, we see that y = 1.
Thus, a possible extremum point is (0, 1).



Example 33

Find absolute extrema of f (x, y) = 2 + 2x + 2y − x2 − y2 defined on the
triangular region bounded by the straight lines x = 0, y = 0, and
x + y = 9.
1. The critical points are solutions of fx = 2 − 2x = 0 = fy = 2 − 2y.
That is, x = 1, y = 1.
This accounts for the interior points of the region.
2. Draw the picture. The vertices of the triangle are
A(0, 0), B(0, 9), C(9, 0). These are possible extremum points.
This accounts for the vertices which are on the boundary.
3. Next, we should consider the boundary in detail.
3(a). On the line segment AB, f is given by (x = 0):
g(y) = f (0, y) = 2 + 2y − y2 for 0 ≤ y ≤ 9.

Taking g′(y) = 0, we see that y = 1.
Thus, a possible extremum point is (0, 1).



Example 33

Find absolute extrema of f (x, y) = 2 + 2x + 2y − x2 − y2 defined on the
triangular region bounded by the straight lines x = 0, y = 0, and
x + y = 9.
1. The critical points are solutions of fx = 2 − 2x = 0 = fy = 2 − 2y.
That is, x = 1, y = 1.
This accounts for the interior points of the region.
2. Draw the picture. The vertices of the triangle are
A(0, 0), B(0, 9), C(9, 0). These are possible extremum points.
This accounts for the vertices which are on the boundary.
3. Next, we should consider the boundary in detail.
3(a). On the line segment AB, f is given by (x = 0):
g(y) = f (0, y) = 2 + 2y − y2 for 0 ≤ y ≤ 9.
Taking g′(y) = 0, we see that y = 1.
Thus, a possible extremum point is (0, 1).



Example 33 Contd.

3(b). Similarly, on the line segment AC, f is given by (y = 0):
g(x) = f (x, 0) = 2 + 2x − x2 for 0 ≤ x ≤ 9.

Now, g′(x) = 0⇒ x = 1.
Thus (1, 0) is another possible extremum point.
3(c). On the line segment BC, f is given by (x + y = 9):
g(x) = f (x, 9 − x) = −61 + 18x − 2x2 for 0 ≤ x ≤ 9.
g′(x) = 0 implies that x = 9/2, y = 9 − x = 9/2.
Thus (9/2, 9/2) is a possible extremum point.
The values at these possible extrema are
f (1, 1) = 4, f (0, 0) = 2, f (0, 9) = −61, f (9, 0) = −61, f (1, 0) = 3,
f (0, 1) = 3, f (9/2, 9/2) = −41/2.
Therefore, f has absolute minimum at (0, 9) and (9, 0) and its
minimum value is −61.
It has absolute maximum at (1, 1) and its maximum value is 4.
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f (1, 1) = 4, f (0, 0) = 2, f (0, 9) = −61, f (9, 0) = −61, f (1, 0) = 3,
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Example 34
Maximize the volume of a box of length x, width y and height z
subject to the condition that x + 2y + 2z = 108.

f := V = xyz = (108 − 2y − 2z)yz. Then

fy = (108 − 4y − 2z)z, fz = (108 − 2y − 4z)y.

Thus the critical points (where fy = 0 = fz) are (0, 0), (0, 54), (54, 0)
and (18, 18). The volume is 0 at the first three points. The only
possibility is (18, 18). To see that this a point where f is maximum,
consider

fyy = −4z, fyz = 108 − 4y − 4z, fzz = −4y.

At (18, 18), that is, when y = z = 18, fyy < 0, and

H(f ) = fyy − fzz − f 2yz = 16 × 18 × 18 − 16(−9)2 > 0.

Hence the volume of the box is maximum when its length is
108 − 36 − 36 = 36, width is 18 and height is 18 units.
The maximum volume is 11664 cubic units.
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Example 35
Find the points closest to the origin on the hyperbolic cylinder
x2 − z2 = 1.

We seek a point (x, y, z) that minimizes f (x, y, z) = x2 + y2 + z2 subject
to x2 − z2 = 1.
As earlier, taking z2 = x2 − 1, we seek (x, y) such that
g(x, y) = x2 + y2 + x2 − 1 = 2x2 + y2 − 1 is minimum.
gx = 4x, gy = 2y. But x = 0 does not correspond to any point on the
surface x2 − z2 = 1.
So, the method fails!
Had you eliminated x, your g(y, z) would have been y2 + 2z2 + 1. And
gy = 0 = gz would have given a point on the surface.
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An Observation
Let S be a surface given by g(x, y, z) = 0.
Let f (x, y, z) have an extreme value at P(x0, y0, z0) on the surface S.
Let C be a curve given by ®r(t) = x(y)ŷ + y(t) ẑ + z(t)k̂ that lies on S and
passes through P. Let P = ®r(t0).

The composite function h(t) = f ◦ r = f (x(t), y(t), z(t)) represents the
values that f takes on C. Since f has an extreme value at P(t = t0), the
function h(t) has an extreme value at t = t0. Then h′(t0) = 0. That is,

0 = h′(t0) = fx |Px′(t0) + fy |Py′(t0) + fz |Pz′(t0) = grad f |(x0,y0,z0) · ®r ′(t0).

For every such curve as C, grad g|P is orthogonal to ®r ′(t0). Thus,
grad f |P is parallel to grad g|P. If grad g|P ≠ 0, then

(grad f + _ grad g) (x0, y0, z0) = 0 for some _ ∈ R.

Therefore, at (x0, y0, z0) we have

fx + _gx = 0, fy + _gy = 0, fz + _gz = 0, g = 0.
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A result
Our discussion may be summarized as follows:

Theorem: Let D ⊆ R2 be a region. Let f , g : D→ R2 have continuous
first order partial derivatives. If g2x + g2y > 0 for all (x, y) ∈ D, then
each point (a, b) on the curve g(x, y) = 0, where f (x, y) has maxima or
minima corresponds to a solution (a, b, _) of the system of equations

fx(a, b) + _gx(a, b) = 0, fy(a, b) + _gy(a, b) = 0, g(a, b) = 0.

The condition grad g ≠ 0 now appears as g2x + g2y > 0 for all (x, y) ∈ D.
Same as: Both gx and gy do not vanish simultaneously at any point of
the domain D.
Also, remember that the extreme values thus obtained are local
extrema of f (x, y) where the points are chosen from the curve
g(x, y) = 0.
The points thus obtained by solving the above equations give possible
points where the extrema may be achieved. Other verifications are
required to determine whether they are actually maxima or minima.
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required to determine whether they are actually maxima or minima.
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Example 35 Contd.
f (x, y, z) = x2 + y2 + z2, g(x, y, z) = x2 − z2 − 1.

The necessary equations at a possible extremum point (x0, y0, z0) are
fx + _gx = 2x + _2x = 0, fy + _gy = 2y = 0,
fz + _gz = 2z − _2z = 0, g = x2 − z2 − 1 = 0.
It gives x0 = 0 or _ = −1; y0 = 0; z0 = 0 or _ = 1.
From these, x0 = 0 not possible for any z in x2 − z2 = 1.
_ = 1 gives x = 0, which is not possible.
We are left with _ = −1, y0 = 0, z0 = 0.
Now, x20 − z20 − 1 = 0 gives x0 = ±1.
The corresponding points are (±1, 0, 0). f at these extremum points
are same. Since f is unbounded above, it does not have a maximum.
Therefore, f at these points attains its minimum value.
Thus the points closest to the origin on the cylinder are (±1, 0, 0).
Notice that if we set F(x, y, z, _) := f (x, y, z) + _g(x, y, z), then

Fx = fx + _gx = 0, Fy = fy + _gy = 0, Fz = fz + _gz = 0,F_ = g = 0.

We get all our required equations as earlier.
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Lagrange Multipliers

Requirement: Find extrema of the function f (x1, . . . , xn) subject to the
conditions g1(x1, . . . , xn) = 0, · · · , gm(x1, . . . , xn) = 0.

Method: Set the auxiliary function:
F(x1, . . . , xn, _1, . . . , _m)

:= f (x1, . . . , xn) + _1g1(x1, . . . , xn) + · · · _mgm(x1, . . . , xn).
Equate to zero the partial derivatives of F with respect to
x1, . . . , xn, _1, . . . , _m.

It results in m + n equations in x1, . . . , xn, _1, . . . , _m.

Determine x1, . . . , xn _1, . . . , _m from these equations.
The required extremum points may be found from among these values
of x1, . . . , xn, _1, . . . , _m.

Remember that the method succeeds under the condition that such
extreme values exist where grad g ≠ 0.
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Example 36
Find the maximum value of f (x, y, z) = x + 2y + 3z on the curve of
intersection of the plane g(x, y, z) := x − y + z − 1 = 0 and the cylinder
h(x, y, z) := x2 + y2 − 1 = 0.

The auxiliary function is
F(x, y, z, _, `) = f + _g + `h

= x + 2y + 3z + _(x − y + z − 1) + `(x2 + y2 − 1).
Setting Fx = Fy = Fy = F_ = F` = 0, for (x0, y0, z0), we have

1+_+2x0` = 0, 2−_+2y0` = 0, 3+_ = 0, x0−y0+z0−1 = 0, x20+y20−1 = 0.

We obtain: _ = −3, x0 = 1/`, y0 = −5/(2`), 1/`2 + 25/(4`2) = 1.
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Review Problems

Probelm 1: Where is the function f (x, y) = 2xy
x2+y2 continuous? What

are the limits of f at the points of discontinuity?

f is defined everywhere in the plane except at the origin. When
(x, y) ≠ (0, 0), the functions g(x) = 2xy and h(x, y) = x2 + y2 are
continuous. Hence f is continuous everywhere except at the origin.
The only point of discontinuity is (0, 0).
The function f has no limit as (x, y) → (0, 0).
On the contrary, suppose f has the limit L at (0, 0). Then

L = lim
y=x,x→0

f (x, y) = lim
x→0

2x2

2x2
= 1

and also
L = lim

y=−x,x→0
f (x, y) = lim

x→0

−2x2

2x2
= −1

It is a contradiction.
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Problem 2

Find the total differential and the total increment of the function
z = xy at (2, 3) for Δx = 0.1, Δy = 0.2.

Δz = (x + Δx) (y + Δy) − xy = yΔx + xΔy + ΔxΔy.

At (2, 3) with Δx = 0.1, Δy = 0.2, we have

Δz = 3 × 0.1 + 2 × 0.2 + 0.1 × 0.2 = 0.72.

Also, dz = zxdx + zydy = ydx + xdy = yΔx + xΔy.
At (2, 3) with Δx = 0.1, Δy = 0.2, we have

dz = 3 × 0.1 + 2 × 0.2 = 0.7.
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Problem 3

It is known that in computing the co-ordinates of a point (x, y, z, t)
certain (small) errors such as Δx,Δy,Δz,Δt might have been
committed. Find the maximum absolute error so committed when we
evaluate a function f (x, y, z, t) at that point.

Let Δu = f (x + Δx, y + Δy, z + Δz, t + Δt) − f (x, y, z, t).
We want to find maxΔu. By Taylor’s formula,

Δu = (fxΔx + fyΔy + fzΔz + ftΔt) (a, b, c, d)

where (a, b, c, d) lies on the line segment joining
(x, y, z, t) to (x + Δx, y + Δy, z + Δz, t + Δt). Therefore,

|Δu| ≤ |fx | |Δx| + |fy | |Δy| + |fz | |Δz| + |ft | |Δt|.
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Problem 4
Determine the directions in which the function

f (x, y) =
{

xy2
x2+y4 for (x, y) ≠ (0, 0)
0 for (x, y) = (0, 0).

has directional derivatives at (0, 0).

Consider a unit vector û = aŷ + b ẑ.
At (0, 0), the directional derivative of f (x, y) is

lim
h→0

f (ah, bh) − f (0, 0)
h

= lim
h→0

ab2

a2 + bh2
=

{
b2/a for a ≠ 0
0 for a = 0.

Hence directional derivatives of f (x, y) at (0, 0) exist in all directions.
However, grad f at (0, 0) is 0ŷ + 0 ẑ. If you use the formula blindly,
then the directional derivative of f (x, y) at (0, 0) in any direction
would turn out to be 0. Why is it wrong?
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Problem 5
The hypotenuse c and the side a of a right angled triangle ABC
determined with maximum absolute errors |Δc| = 0.2, |Δa| = 0.1 are,
respectively, c = 75, a = 32. Determine the angle A from the formula
A = sin(a/c) and determine the maximum absolute error ΔA in the
calculation of the angle A.

A(a, c) = sin−1 a
c gives

mA
ma

=
1

√
c2 − a2

,
mA
mc

=
−a

c
√

c2 − a2
.

Then

|ΔA| ≤ 1√
(75)2 − (32)2

× 0.1 + 32
75

√
(75)2 − (32)2

× 0.2 = 0.00273.

Therefore

sin−1
32
75
− 0.00273 ≤ A ≤ sin−1

32
75
+ 0.00273.
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Problem 6

Let f (x, y, z) = x2 + y2 + z2. Find
( mf
ms

)
®v(1, 1, 1), where ®v = 2ŷ + ẑ + 3k̂.

The unit vector in the direction of ®v is

û =
2
√
14
ŷ + 1
√
14
ẑ + 3
√
14

k̂.

The gradient of f at (1, 1, 1) is

grad f (1, 1, 1) = (fxŷ + fy ẑ + fzk̂) (1, 1, 1) = 2ŷ + 2 ẑ + 2k̂.

Then (mf
ms

)
®v(1, 1, 1) = (grad f · û) (1, 1, 1) = 12

√
14
.
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Then (mf
ms

)
®v(1, 1, 1) = (grad f · û) (1, 1, 1) = 12
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Problem 7

Find a point in the plane where the function f (x, y) = 1
2 − sin(x2 + y2)

has a local maximum.
We see that at (0, 0), the function has a maximum value of 1

2 .

To prove this, consider the neighborhood

B = {(x, y) : x2 + y2 ≤ c/9}

of (0, 0). Now, for any point (a, b) ∈ B other than (0, 0),
we have

f (a, b) = 1
2
− sin(a2 + b2) ≤ 1

2
= f (0, 0).

Therefore, (0, 0) is a local maximum point of f (x, y).
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Problem 8
Decompose a given positive number a into three parts so that their
product is maximum.

Let a = x + y + (a − x − y), for 0 ≤ x, y, a − x − y ≤ a. Then x and y can
take values from the region D bounded by the straight lines
x = 0, y = 0 and x + y = a. The function to be maximized is
f (x, y) = xy(a − x − y) defined from D to R.
The partial derivatives of f exist everywhere on D. They are
fx = y(a − 2x − y), fy = x(a − x − 2y). The critical points are obtained
from y(a − 2x − y) = 0, x(a − x − 2y) = 0. The solutions of these
equations give:

P1 = (0, 0), P2 = (0, a), P3 = (a, 0), P4 = (
a
3
,
a
3
).

Of these, the points P1,P2,P3 are on the boundary of D, where f (x, y)
is zero. The only interior point is P4, where f (x, y) = a3

27 , which is the
maximum value of f (x, y, z).
Comparing f (P1), f (P2), f (P3), f (P4), we get the required
decomposition of a as a = a

3 +
a
3 +

a
3 .
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Problem 9
Test for maxima-minima the function z = x3 + y3 − 3xy.

Here, zx and zy are continuous.
Thus the critical points are obtained by solving

zx = 3x2 − 3y = 0, zy = 3y2 − 3x = 0.

These are P1 = (1, 1) and P2 = (0, 0).
The second derivatives are

zxx = 6x, zxy = −3, zyy = 6y.

For P1,

H(P1) = (zxxzyy − z2xy) (P1) = 27 > 0, zxx(P1) = 6 > 0.

Thus, P1 is a minimum point and zmin = −1.
For P2,

H(P2) = (zxxzyy − z2xy) (P2) = −9 < 0.

Hence P2 is a saddle point of the surface.
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Problem 10
Find the maximum of w = xyz given that xy + xz + yz = a and
x > 0, y > 0, z > 0 for a given positive number a.

The auxiliary function is F(x, y, z, _) = xyz + _(xy + zx + yz − a) = 0.
Equating its partial derivatives to zero, we have

yz + _(y + z) = 0, xz + _(x + z) = 0, xy + _(x + y) = 0.

Multiply the first by x, the second by y, and the third by z and add to
obtain: 3xyz + 2_(xy + zx + yz) = 0.
Since xy + zx + yz = a, we have _ = − 3xyz

2a . Substitute this value of _ in
the equations above to get

yz(2a− 3x(y + z)) = 0, xz(2a− 3y(x + z)) = 0, xy(2a− 3z(x + y)) = 0.

Since x > 0, y > 0, z > 0, these equations imply x = y = z. Then
xy + zx + yz = a gives x = y = z =

√
a/3.

The corresponding value of w cannot be minimum, since by reducing
x, y close to 0, and taking z close to a so that xy + zx + yz = a is
satisfied, w can be made as small as possible. Hence w has a
maximum at (

√
a/3,

√
a/3,

√
a/3). Then wmax = (a/3)3/2.
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Problem 11
Determine the maximum value of z = (x1 · · · xn)1/n provided that
x1 + · · · + xn = a, where a is a given positive number.

Maximizing z is equivalent to maximizing f (x1, . . . , xn) = x1x2 · · · xn.

Set up the auxiliary function

F(x1, . . . , xn, _) = x1x2 · · · xn + _(x1 + · · · xn − a).

Equate the partial derivatives Fxi to zero to obtain

x1 · · · xi−1xi+1 · · · xn + _ = 0 for i = 1, 2, . . . , n.

Notice that _ ≠ 0. Then multiplying by xi, we see that
−_xi = x1x2 · · · xn for each i. Therefore, x1 = x2 = · · · = xn = a/n.
In that case, f = (a/n)n and z = a/n. This value is not a minimum
value of z since z can be made arbitrarily small by choosing x1 close to
0. Thus, the maximum of z is a/n.
This gives an alternative proof that the geometric mean of n positive
numbers is no more than the arithmetic mean of those numbers.
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F(x1, . . . , xn, _) = x1x2 · · · xn + _(x1 + · · · xn − a).

Equate the partial derivatives Fxi to zero to obtain

x1 · · · xi−1xi+1 · · · xn + _ = 0 for i = 1, 2, . . . , n.

Notice that _ ≠ 0. Then multiplying by xi, we see that
−_xi = x1x2 · · · xn for each i. Therefore, x1 = x2 = · · · = xn = a/n.
In that case, f = (a/n)n and z = a/n.

This value is not a minimum
value of z since z can be made arbitrarily small by choosing x1 close to
0. Thus, the maximum of z is a/n.
This gives an alternative proof that the geometric mean of n positive
numbers is no more than the arithmetic mean of those numbers.
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