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1
First Order ODE

1.1 Introduction
A differential equation is an equation that involves derivatives of a variable that
depends on other independent variables. For instance,

3~

3G
= 3G2 sin(G + ~), 33~

3G3 + 2
(3~
3G

)4
− ~ = 0

are differential equations, where the variable ~ is supposed to be the variable that
depends on the independent variable G . When the equation involves only one
independent variable, the equation is said to be an ordinary differential equation,
an ODE.
The order of an ODE is the order of the highest derivative of the dependent

variable. In the above equations, the first one is of first order and the second one is
of third order.
A solution of an ODE is a function which when replaces the dependent variable,

it is seen that the equation is satisfied. If the dependent variable is ~ and the
independent variable is G in an ODE of order : , then a solution of such an equation
is ~ = ~ (G) which is : times differentiable and which satisfies the given equation.
For example, ~ (G) = 2 sinG − 1

3 cos(2G) is a solution of the ODE

32~

3G2 + ~ = cos(2G).

(We also write ~′ for 3~/3G , ~ (=) for 3=~/3G= etc.) This claim is verified as follows:

~ = 2 sinG − 1
3

cos(2G) ⇒ ~′ = 2 cosG + 2
3

sin(2G)

⇒ ~′′ = −2 sinG + 4
3

cos(2G) = −~ + cos(2G).

Often an ODE comes with the restriction that the independent variable varies in a
particular subset ofR. In that case, the domain of the dependent variable is assumed
to be that subset. For example, in the ODE

G~′ + ~ = 0, G ≠ 0

1
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it is assumed that the domain of ~ = ~ (G) is R \ {0}. In this case, the function
~ (G) = 1/G is a solution. Reason:

~ = 1/G ⇒ G~′ + ~ = G
3 (1/G)
3G

+ 1
G
= G

(
− 1
G2

)
+ 1
G
= 0 for G ≠ 0.

It is easy to see that ~ (G) = 2/G for any 2 ∈ R is also a solution. In such a case, we
say that 2 is an arbitrary constant.
Are there other types of solutions to this equation? Well, suppose, ~ (G) is a

solution of G~′ + ~ = 0. Write I (G) = G~. Then

3I

3G
= G~′ + 1 · ~ = 0 ⇒ I (G) = 2 ⇒ G~ = 2 ⇒ ~ = 2/G .

That is, any solution of G~′ + ~ = 0 is in the form ~ = 2/G for G ≠ 0.
Observe that a solution of an ODE need not be unique. However, if we have

another condition on the function ~ (G) such as ~ (1) = 1, then substituting G = 1 in
our solution ~ = 2/G , we have

1 = ~ (1) = 2/1 = 2.

We thus obtain the unique solution ~ = 1/G . The condition ~ (1) = 1 is called an
initial condition for the ODE. In fact, when a condition on the dependent variable
is given by prescribing its value at a single point, it is called an initial condition. An
ODE with a given initial condition is called an initial value problem, an IVP.
It follows that ~ = 2/G = 1/G is the only solution to the initial value problem

G~′ + ~ = 0, ~ (1) = 1, G ≠ 0.

A general first order ODEmay be given by an equation using G,~,~′, which would
then look like

ℎ(G,~,~′) = 0

for some specific expressionℎ(·, ·, ·). For simplicity, wemay only consider equations
which can be solved for ~′; that is, an ODE in the form:

~′ = 6(G,~)

with a given domain, a subset of R, where G varies. Geometrically, consider the
G~-plane. At a particular point (with an admissible G-value), say (G0, ~0), the ODE
gives the value of ~′. That is, ~′(G0) = 6(G0, ~0); it is a number which represents the
slope of the tangent to ~ = ~ (G) at G = G0. By varying G throughout its domain and
with all possible values of ~, the ODE prescribes slopes at each admissible point.
The set of all these slopes is called the direction field for the ODE.
By joining these slopes geometrically we may get many solution curves ~ = ~ (G)

to the ODE. In general, we accept continuous curves in the G~-plane as solutions to
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ODEs rather than functions ~ = ~ (G). Once an initial value is prescribed, whenever
there exists a unique solution, we would obtain only one solution curve that passes
through the point (G0, ~0).
The direction field for the ODE ~′ = G +~ is plotted in the following figure. Also

plotted are three approximate solution curves passing through the points (0, 1),
(0, 0) and (0,−1), respectively.

It is a fact that even all initial value problems do not have unique solutions.
Anything can happen. There are IVPs having no solutions, having more than one
solutions, and there are IVPs having a unique solution. We will use the following
result without proof.

(1.1) Theorem (Existence-Uniqueness)

Let 6(G,~) and m6

mG
be continuous in the rectangle' : G0 ≤ G ≤ G0+0, |~−~0 | ≤ 1.

Compute " = max{|6(G,~) | : (G,~) ∈ '} and U = min{0, 1/"}. Then, the IVP
~′ = 6(G,~), ~ (G0) = ~0 has a unique solution in the interval G0 ≤ G ≤ G0 + U .

(1.2) Example
Consider the IVP: ~′ = sin(2G)~1/3, ~ (0) = 0.
It has a solution as ~ (G) = 0, the zero function.
Verify that ~ (G) = ±

√
8/27 sin3 G are solutions of the same IVP.

Notice that 5 (G,~) = sin(2G)~1/3 has no partial derivative at ~ = 0.

1.2 Variables Separable
Sadly, all ODEs of the form ~′ = 6(G,~) cannot be solved since it would ask us to
integrate 6(G,~) with respect to G , where ~ is an unknown function of G . A simpler
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case, which we may think of solving is when 6(G,~) is a function of G alone. So,
we consider an ODE in the form

~′ = 5 (G).

Of course, we cannot even solve all equations in this form. For instance, we do not
know how to solve

~′ = 4G
2

since our data base for integrating algebraic expressions does not include such a
function. Knowing this fact very well, we will attempt solving first order ODEs; in
fact, whichever we can. In general, if we know how to integrate the function 5 (G),
we can get a solution of the ODE. In fact,

~′ = 5 (G) ⇒ ~ (G) =
∫
5 (G) 3G .

For example, the ODE ~′ = GA for A > −1 may be solved by taking

~ =

∫
GA 3G =

GA+1

A + 1
+� for an arbitrary constant �.

We can slightly generalize this method to solve most ODEs in the form

6(~)~′ = 5 (G) (1.2.1)

by using the differentials. Recall that 3~ = ~′3G . Using this, we obtain

6(~)~′ = 5 (G) ⇒
∫
6(~) 3~ =

∫
6(~)~′3G =

∫
5 (G) 3G .

This amounts to the following formal manipulation:

6(~)3~
3G

= 5 (G) ⇒ 6(~) 3~ = 5 (G) 3G ⇒
∫
6(~) 3~ =

∫
5 (G) 3G .

Of course, we also add an arbitrary constant to the result of any one integral. This is
the reason, the ODE in (1.2.1) is called a variables separable ODE, and this method
is called the method of variables separable. The solution so obtained this way is
called the general solution of the ODE (1.2.1) since any solution can be put in this
form.

(1.3) Example
Find the general solutions to the following ODEs:
(a) ~′ = G2/~2 (b) ~′ = 1 + ~2 (c) ~′ = (G + 1)4−G~2.
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(a) Separating the variables, we have ~2~′ = G2. Integrating,∫
~2 3~ =

∫
G2 3G ⇒ ~3

3
=
G3

3
+�1 ⇒ ~3 = G3 +�.

(b) ~′ = 1 + ~2 ⇒ (1 + ~2)−1~′ = 1 ⇒
∫

3~

1 + ~2 =

∫
13G ⇒ tan−1~ = G +�

⇒ ~ = tan(G +�).

(c) ~′ = (G + 1)4−G~2 ⇒ ~−2~′ = (G + 1)4−G ⇒
∫
~−2 3~ =

∫
(G + 1)4−G 3G

⇒ −~−1 = −(G + 2)4−G +� ⇒ ~ = [(G + 2)4−G −�]−1.

(1.4) Example
Find solutions to the following IVPs:
(a) ~′ = −2G~, ~ (0) = 1.8 (b) 4~~′ = G + G3, ~ (1) = 1.

(a) ~′ = −2G~ ⇒ ~−1~′ = −2G ⇒
∫
~−1 3~ =

∫
(−2G) 3G ⇒ log |~ | = −G2 +�1

⇒ |~ | = 4−G2+�1 ⇒ |~ | = �4−G2 ⇒ ~ = ±�4−G2 .
As � is an arbitrary constant, which may be any real number, ~ = �4−G

2 .
Then ~ (0) = 1.8 ⇒ �40 = 1.8 ⇒ � = 1.8. Hence, ~ (G) = 1.8 4−G2 .

(b) 4~~′ = G + G3 ⇒
∫
4~ 3~ =

∫
(G + G3) 3G ⇒ 4~ =

G2

2
+ G

4

4
+�

⇒ ~ = log
(G2

2
+ G

4

4
+�

)
for � ≥ 0.

~ (1) = 1 ⇒ 41 = 1
2 +

1
4 +� ⇒ � = 4 − 3

4 . Hence, the solution is

~ (G) = log
(G2

2
+ G

4

4
+ 4 − 3

4

)
.

Most often, the differential equation does not signal in any way that its solutions
are not defined at certain points. This can even happen for IVPs.

(1.5) Example
Solve the IVPs: (a) ~′ = 1 + ~2, ~ (0) = 0 (b) ~′ = 1 + ~2, ~ (0) = 1.

(a) ~′ = 1 + ~2 ⇒
∫
(1 + ~2)−1 3~ =

∫
3G ⇒ tan−1~ = G +� ⇒ ~ = tan(G +�).

~ (0) = 0 ⇒ 0 = tan(�) ⇒ � = 0. Hence, the solution is ~ = tanG .
This solution is not defined at G = ±c/2. Yet, the ODE does not signal anything

about this! The solution exists in (−c/2, c/2).
(b) As in (a), ~ = tan(G +�). ~ (0) = 1 ⇒ 1 = tan� ⇒ � = c/4. So, the solution
is ~ = tan(G + c/4). Again, this solution exists in (−3c/4, c/4).
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(1.6) Example
Find the solution of the IVP ~′ = (1 + ~)G, ~ (0) = −1.

~′ = (1 + ~)G ⇒
∫

3~

1 + ~ =

∫
G 3G ⇒ log |1 + ~ | = G2

2
+�.

This solution is defined for ~ ≠ −1. But the initial condition says otherwise. We
observe that ~ (G) = −1 is a solution. Due to our existence-uniqueness theorem,
~ (G) = −1 is the only solution of the IVP.

(1.7) Example
Find the solution to the IVP ~~′ + (1 + ~2) sinG = 0, ~ (0) = 1.

~~′ + (1 + ~2) sinG = 0 ⇒ ~ (1 + ~2)−1~′ = − sinG

⇒
∫

2~ 3~
1 + ~2 = −

∫
2 sinG ⇒ log(1 + ~2) = 2 cosG +�.

~ (0) = 1 ⇒ log 2 = 2 +� ⇒ � = log 2 − 2.
So, log(1 + ~2) = 2 cosG + log 2 − 2. Or,

~2 = 42 cosG−2+log 2 − 1 = 242(cosG−1) − 1 = 24−4 sin2 (G/2) − 1.

Since ~ (0) > 0, we take the positive sign in the square root. That is,

~ =

√
24−4 sin2 (G/2) − 1.

This solution is defined for 24−4 sin2 (G/2) . However,
24−4 sin2 (G/2) ≥ 1⇔ 4−4 sin2 (G/2) ≥ 1/2⇔ 44 sin2 (G/2) ≤ 2

⇔ 4 sin2(G/2) ≤ log 2⇔ |G/2| ≤ sin−1
√

log 2
2 .

That is, the solution exists in the interval (−0, 0), where 0 = sin−1
√

log 2
2 .

(1.8) Example
Find all solutions of ~′ = −G/~.

~′ = −G/~ ⇒
∫
~ 3~ = −

∫
G 3G ⇒ ~2

2
= −G

2

2
+�1 ⇒ G2 + ~2 = �.

In this case, we cannot find ~ as a function of G . However, the solutions are solution
curves in the G~-plane.

(1.9) Example
Solve the IVP (1 + 4~)~′ = cosG, ~ (c/2) = 3.

(1 + 4~)~′ = cosG ⇒
∫
(1 + 4~) 3~ =

∫
cosG 3G ⇒ ~ + 4~ = sinG +�.
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~ (c/2) = 3 ⇒ 3 + 43 = 1 +� ⇒ � = 2 + 43. So, the solution is given by

~ + 4~ = sinG + 2 + 43.

Here, we cannot express ~ in terms of G explicitly. In general, we accept solutions
given implicitly.

1.3 Reducible to variables separable
Sometimes we use a suitable substitution so that a givenODEwill become amenable
to the variables separable method. A specific case is when the ODE looks like

~′ = 5 (~/G),

where the right hand side is a an expression depending directly on ~/G . In this case,
we substitute D = ~/G . Then, D = ~/G ⇒ ~ = DG ⇒ ~′ = D′G + D. The ODE
becomes

D′G + D = 5 (D) ⇒ 3D

3G
= 5 (D) − D ⇒

∫
3D

5 (D) − D =

∫
3G

G
.

In fact, we do not remember the last formula. It only shows that the substitution
~ = DG reduces the ODE to a case of variables separable.

(1.10) Example
Consider the ODE 2G~~′ = ~2 − G2.

Here, ~′ =
~2 − G2

2G~
=
~

2G
− G

2~
. Take ~ = DG to get

D′G + D =
D

2
− 1

2D
⇒ D′G = −1 + D2

2D
⇒ 2D

1 + D2
3D

3G
= −1

G
.

Integrating, we obtain∫
2D

1 + D2 3D = −
∫
3G

G
⇒ log(1 + D2) = − log |G | +� ⇒ 1 + D2 =

�

G
.

Since � is arbitrary, we write �/G instead of �/|G |.
Substituting back D = ~/G , we get 1 + (~/G)2 = �/G or, G2 + ~2 = �G or,(

G − �
2

)2
+ ~2 =

�2

4
.
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The solutions comprise a family of circles passing through the origin with center
on the G-axis.

Another type of ODEs can be reduced to variables separable form. They are
equations of the form

3~

3G
=

0G + 1~ + 2
0′G + 1′~ + 2′ .

Here, 0, 1, 2, 0′, 1′, 2′ are some real numbers. We consider two cases.

Case 1: Suppose the coefficients of G and ~ are in ratio. That is,
0

0′
=
1

1′
.

In this case, the ODE is in the form

3~

3G
=

0G + 1~ + 2
<(0G + 1~) + 2′ .

We substitute D = 0G + 1~ so that D′ = 0 + 1~′ and the ODE is reduced to

D′ = 0 + 1~′ = 0 + 1 D + 2
<D + 2′ .

Here, the variables are separated.

Case 2: Suppose the the coefficients of G and ~ are not in ratio. That is,
0

0′
≠
1

1′
.

In this case, we shift both the independent and dependent variables; that is,
we take G = - +ℎ and ~ = . +: for some constants ℎ, : to be determined suitably.

With this change of variables, we have

3.

3-
=
3~

3G
=

0G + 1~ + 2
0′G + 1′~ + 2′ =

0- + 1. + 0ℎ + 1: + 2
0′- + 1′. + 0′ℎ + 1′: + 2′ .

The trick is to take ℎ, : in such a way that the last expression is simplified. So, we
take

0ℎ + 1: + 2 = 0, 0′ℎ + 1′: + 2′ = 0. (1.3.1)

Then, the ODE is simplified to

3.

3-
=
0- + 1.
0′- + 1′. =

0 + 1 (./- )
0′ + 1′(./- ) = 5 (./- ).

Now, the earlier method of substituting . = D- will separate the variables. Then,
solution curves will be obtained in the form 6(-,. ) = 0, or, 6(G − ℎ,~ − :) = 0.

(1.11) Example
Solve the ODE (G + ~ − 1)~′ = 2G + 2~ + 1.
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Here, the coefficients of G,~ are in ratio. We substitute D = G +~ so that D′ = 1 +~′,
and the ODE is reduced to

D′ − 1 =
2D + 1
D − 1

⇒ 3D

3G
= D′ =

2D + 1
D − 1

+ 1 =
3D
D − 1

.

Integrating, we get∫
D − 1

3D
3D =

∫
3G ⇒ D

3
− 1

3
log |D | = G +�1.

Substituting D = G + ~ and simplifying we obtain

~ − 2G −�2 = log |G + ~ | ⇒ �4~−2G = G + ~

for an arbitrary constant �. This gives the solution curves of the ODE.

(1.12) Example
Solve the ODE (3~ − 7G + 7) + (7~ − 3G + 3)~′ = 0.

The ODE is ~′ =
7G − 3~ − 7
−3G + 7~ + 3

. The coefficients of G,~ in both linear expressions

are not in ratio. So, we substitute G = - + ℎ, ~ = . + : . Equation 1.3.1 gives
7ℎ − 3: − 7 = 0 = −3ℎ + 7: + 3. Solving these, we get ℎ = 1, : = 0. That is, we
take G = - + 1, ~ = . so that the ODE is reduced to[
3.−7(-+1)+7

]
+
[
7.−3(-+1)+3

] 3.
3-

= 0 ⇒ 3.

3-
=

7- − 3.
−3- + 7.

=
7 − 3(./- )
−3 + 7(./- ) .

Substitute . = D- so that
3.

3-
=
3D

3-
- + D =

7 − 3D
−3 + 7D

. This gives

3D

3-
- =

7 − 3D
−3 + 7D

− D =
7 − 3D + 3D − 7D2

−3 + 7D
=

7 − 7D2

−3 + 7D
.

Separating the variables, we obtain
∫

7D − 3
7 − 7D2 3D =

∫
3-

-
.

Now,
7D − 3
7 − 7D2 = −1

2
2D

D2 − 1
+ 3

14
1

D − 1
− 3

14
1

D + 1
. Then the above gives

−1
2

log |D2 − 1| + 3
14

log |D − 1| − 3
14

log |D + 1| = log |- | +�1.

Taking exponential of both sides and simplifying we get

�2 |- | = |D − 1|−2/7 |D + 1|−5/7.

Substituting D = ./-, - = G − 1, . = ~ and simplifying we obtain

(~ + G − 1)5(~ − G + 1)2 = �

for some arbitrary constant �. This gives the solution curves.
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1.4 Exact Equations
Sometimes observing simple identities about the differentials help in solving ODEs.
For instance, consider the ODE

G~′ + ~ − 2G = 0.

Notice that
3 (G~)
3G

= G~′ + ~. Then the ODE can be solved as follows:

3 (G~)
3G

= 2G ⇒
∫
3 (G~) =

∫
2G 3G ⇒ G~ = G2 +�.

Using differentials, the ODE can be written as

G 3~ + ~ 3G − 2G 3G = 0.

This can be solved as

3 (G~) − 3 (G2) = 0 ⇒
∫
3 (G~) −

∫
3 (G2) = � ⇒ G~ − G2 = �.

In fact, we will write an ODE of the first order such as G~′ + ~ − 2G = 0 as

G 3~ + (~ − 2G) 3G = 0

using the differentials. In general, we consider first order ODEs in the form

" (G,~) 3G + # (G,~) 3~ = 0.

This also covers the variables separable case since anODE in the form6(~)~′ = 5 (G)
can be rewritten as

−5 (G) 3G + 6(~) 3~ = 0.

We can solve the general ODE above provided we find that the expression on the
left is a differential 3

(
D (G,~)

)
. In this case, we may integrate to obtain the general

solution as D (G,~) = �. So, the question is when can we get a function D (G,~) so
that

3
(
D (G,~)

)
= " 3G + # 3~

is true. First, we look for some necessary conditions. Suppose that there exists a
function D (G,~) such that

3D = " 3G + # 3~
From calculus we know that

3D =
mD

mG
3G + mD

mG
3~.
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Hence, the necessary condition is that

" =
mD

mG
, # =

mD

m~
.

If we assume that the second derivatives of D (G,~) are continuous, then DG~ = D~G .
The above condition would imply that

m"

m~
= DG~ =

m#

mG
.

In fact, this condition is also sufficient as the following result shows.

(1.13) Theorem
Let" (G,~) and # (G,~) be real valued functions having continuous partial deriva-
tives on the rectangle ' : 0 < G < 1, 2 < ~ < 3 . Then, the following are equivalent:

(1) There exists a function D (G,~) defined on ' such that 3D = " 3G + # 3~.
(2) "~ = #G holds in '.
(3) There exists a function D (G,~) satisfying " = DG and # = D~ .

Proof. (1)⇒ (2): Suppose 3D = " 3G +# 3~ is true in '. Then, DG~ and D~G exist
and are continuous. By the Chain rule, 3D = DG3G + D~3~. Comparing these two
equations, we get" = DG and # = D~ . Thus,"~ = DG~ and #G = D~G . Since DG~ and
D~G are continuous, they are equal. Hence,"~ = #G holds in '.
(2)⇒ (3): Suppose that"~ = #G . Integrate with respect to G to get

# (G,~) =
∫
"~ 3G + 6(~).

Here, 6(~) is an arbitrary function of ~ alone. Define

D (G,~) =
∫
" (G,~) 3G +

∫
6(~) 3~.

Then,
DG = " (G,~) +

m

mG

∫
6(~) 3~ = " (G,~) + 0 = " (G,~).

D~ =

∫
"~ 3G + 6(~) = # (G,~).

(3)⇒ (1): Suppose that there exists D (G,~) such that " = DG and # = D~ . Then
" 3G + # 3~ = DG 3G + D~ 3~ = 3D.

In view of this result, we say that
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the ODE " (G,~) 3G + # (G,~) 3~ = 0 is an exact equation iff "~ = #G .

The proof of (1.13) shows how to compute a function D (G,~) if the condition
"~ = #G is satisfied. It is:

D (G,~) =
∫
" (G,~) 3G +

∫
6(~) 3~

=

∫
" (G,~) 3G +

∫
# (G,~) 3~ −

∫ ∫
"~ 3G 3~.

Since this formula holds under the assumption"~ = #G , we also have

D (G,~) =
∫
" (G,~) 3G +

∫
# (G,~) 3~ −

∫ ∫
#G 3~ 3G .

We will not memorize these formulas. Instead, we understand the method and
then use it in any particular problem. This understanding gives rise to three ways
of solving an exact equation. So, let the given exact equation be

" (G,~) 3G + # (G,~) 3~ = 0.

The exactness implies that "~ = #G , which, due to (1.13) guarantees the existence
of a function D (G,~) such that" = DG and # = D~ .
First method: Since" = DG , we have D =

∫
" (G,~) 3G + 6(~). Differentiating with

respect to ~, we get

6′(~) = D~ −
∫
"~ 3G = # (G,~) −

∫
m"

m~
3G.

Then, we determine 6(~) from this and substitute back to get D (G,~). Recall that
the solution curves are given by D (G,~) = �.
Second method: As # = D~ , we have D =

∫
# (G,~) 3~ + ℎ(G). Differentiating with

respect to G , we obtain

ℎ′(G) = DG −
∫
#G 3~ = " (G,~) −

∫
m#

mG
3~.

We determine ℎ(G) from this and substitute back to obtain D (G,~).
Third method: Using both" = DG and # = D~ , we get

D (G,~) =
∫
" (G,~) 3G + 6(~), D (G,~) =

∫
# (G,~) 3~ + ℎ(G).

Inspecting these two expression, we determine 6(~), ℎ(G); and then D (G,~).
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(1.14) Example
Find the general solution of the ODE 3~ + 4G + (3G + cos~)~′ = 0.
The ODE is" 3G + # 3~ = 0 with" = 3~ + 4G and # = 3G + cos~.
We find that "~ = 3 and #G = 3. So, it is an exact equation. Hence, there exists a
function D (G,~) such that

(a) " = 3~ + 4G = DG (G,~), (b) # = 3G + cos~ = D~ (G,~).

We illustrate the three methods to determine D (G,~).
First method: Integrating (a) with respect to G , we get

D =

∫
(3~ + 4G ) 3G = 3G~ + 4G + 6(~).

Differentiating with respect to ~ and using (b), we have

D~ = 3G + 6′(~) ⇒ 3G + cos~ = 3G + 6′(~) ⇒ 6′(~) = cos~ ⇒ 6(~) = sin~.

Here, we need not consider the constant of integration, since in the solution this
constant will re-appear as D (G,~) = �. Also, we need just one such 6(~).
Then, D = 3G~ + 4G + 6(~) = 3G~ + 4G + sin~. The solution curves are given by

D (G,~) = � or, 3G~ + 4G + sin~ = �.

Second method: Integrate (b) with respect to ~ to get

D =

∫
(3G + cos~) 3~ = 3G~ + sin~ + ℎ(G).

Differentiate with respect to G and use (a) to get

DG = 3~ + ℎ′(G) ⇒ 3~ + 4G = 3~ + ℎ′(G) ⇒ ℎ′(G) = 4G ⇒ ℎ(G) = 4G .

Again, we neglect the constant of integration. It says that

D (G,~) = 3G~ + sin~ + ℎ(G) = 3G~ + sin~ + 4G .

And, the solution curves are given by D (G,~) = � or, 3G~ + sin~ + 4G = �.
Third method: We integrate (a) with respect to G and also integrate (b) with respect
to ~ to obtain

D =

∫
(3~ + 4G )3G = 3G~ + 4G + 6(~), D =

∫
(3G + cos~)3~ = 3G~ + sin~ + ℎ(G).

Matching them we find that 6(~) = sin~ and ℎ(G) = 4G . Then D = 3G~ + 4G + sin~
gives the solution curves as 3G~ + 4G + sin~ = �.

Out of the three, the third method is the easiest provided one is able to guess
correctly. One should also get familiarized with other methods.
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(1.15) Example
Solve cos(G + ~) 3G +

(
3~2 + 2~ + cos(G + ~)

)
3~ = 0.

Here, " = cos(G + ~) and # = 3~2 + 2~ + cos(G + ~). Then "~ = − sin(G + ~)
and #G = − sin(G + ~) = "~ . Hence, it is an exact equation. Thus, there exists a
function D (G,~) such that

(a) DG = " = cos(G + ~), (b) D~ = # = 3~2 + 2~ + cos(G + ~).

We determine D (G,~) by inspection (Third method) as follows.
Integrate (a) with respect to G and integrate (b) with respect to ~ to get

D = sin(G + ~) + 6(~), D = ~3 + ~2 + sin(G + ~) + ℎ(G).

Matching these, we find that 6(~) = ~3 +~2 and ℎ(G) = 0. Then the solution curves
are given by D (G,~) = � or, sin(G + ~) + ~3 + ~2 = �.

(1.16) Example
Solve the IVP (cos~ sinhG + 1) 3G − sin~ coshG 3~ = 0, ~ (1) = 2.
Here, " = cos~ sinhG + 1 and # = − sin~ coshG . It gives "~ = − sin~ sinhG and
#G = − sin~ sinhG . As "~ = #G , the ODE is exact. Then, there exists a function
D (G,~) such that DG = " and D~ = # . To determine D, we integrate DG = " with
respect to G to obtain

D = cos~ coshG + G + 6(~).
Differentiating with respect to ~ and using D~ = # , we have

D~ = − sin~ coshG+6′(~) ⇒ 6′(~) = − sin~ coshG+sin~ coshG = 0 ⇒ 6(~) =  .

Since we need only one such D, we take  = 0 so that

D (G,~) = cos~ coshG + G + 6(~) = cos~ coshG + G .

Ageneral solution is cos~ coshG+G = �. Using~ (1) = 2, we have cos 2 cosh 1+1 =

�. Then the solution to the IVP is given by

cos~ coshG + G = cos 2 cosh 1 + 1.

(1.17) Example
Solve the IVP 3G2~ + 8G~2 + (G3 + 8G2~ + 12~2)~′ = 0, ~ (2) = 1.
Here, " = 3G2~ + 8G~2 and # = G3 + 8G2~ + 12~2. Then "~ = 3G2 + 16G~ and
#G = 3G2 + 16G~ + 0 = "~ . So, the ODE is exact. Then, there exists a function
D (G,~) such that

(a) DG = 3G2~ + 8G~2, (b) D~ = G3 + 8G2~ + 12~2.
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Integrating (a) and (b) with respect to G and ~, respectively, we get

D = G3~ + 4G2~2 + 6(~), D = G3~ + 4G2~2 + 4~3 + ℎ(G).

Matching these we have 6(~) = 4~3 and ℎ(G) = 0. Then the solution curves are
given byD (G,~) = � or, G3~+4G2~2+4~3 = �. Using the initial condition: ~ (2) = 1,
we see that

23 · 1 + 4 · 22 · 12 + 4 · 13 = � ⇒ � = 28.

Hence, the solution to the IVP is G3~ + 4G2~2 + 4~3 = 28.

1.5 Integrating factors
We must be cautious while using the three methods discussed in the last section.
Remember that the methods work for exact equations. If the ODE is not exact, then
the methods need not give solutions to the ODE, or even, they may fail towards
obtaining a solution. See the following example.

(1.18) Example
Solve the ODE −~ 3G + G 3~ = 0.
here, " = −~ and # = G . We find D (G,~) so that DG = " = −~ and D~ = # = G .
Integrating first with respect to G , we get D = −G~ + 6(~). Differentiating with
respect to ~, we have D~ = −G +6′(~). Since D~ = G , we have 6′(~) = −2G . There is
something wrong, since our method assumes that 6(~) is a function of ~ alone.
We find that the ODE is not exact, because"~ = −1 whereas #G = 1. Thus, none

of the three methods above are applicable.
However, we can separate the variables and solve it as follows:

G 3~ = ~ 3G ⇒
∫
3~

~
=

∫
3G

G
⇒ log |~ | = log |G | +�1 ⇒ ~ = �G.

So, before applying any one of the three methods, one must check that the ODE
is exact.
Though the ODE in (1.18) is not exact, it can be made exact. Look at the solution

curves. They are ~/G = �. So, our function of two variables is D (G,~) = ~/G . Now,
its differential is

3D = DG 3G + D~ 3~ = − ~
G2 3G +

3~

G
.

The ODE is given as −~ 3G + G 3~ = 0. Comparing these, we find that if we
multiply 1/G2 to the given ODE, we would obtain an exact equation. We explore
this possibility further.
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For the ODE" 3G + # 3~ = 0, a function ` (G,~) is called an integrating factor
iff ` (G,~)" 3G + ` (G,~)# 3~ = 0 is an exact equation; that is, multiplying ` (G,~)
the new ODE becomes exact.
Notice that ` (G,~)" 3G + ` (G,~)# 3~ = 0 is exact when

m
[
` (G,~)"

]
m~

=
m
[
` (G,~)#

]
mG

.

Using the Chain rule, it means that ` (G,~) is an integrating factor of the ODE
" 3G + # 3~ = 0 iff

"
m`

m~
+ ` m"

m~
= #

m`

mG
+ ` m#

mG
.

However, solving such an equation for determining ` (G,~) may be more difficult
than solving the original ODE. So, we look for some special cases.
We ask whether it is possible for the function ` (G,~) to depend on G alone?

What could be the conditions that yield this situation? When ` = ` (G), its partial
derivative with respect to ~ becomes 0 so that the above equation simplifies to

`
m"

m~
= #

3`

3G
+ ` m#

mG
⇔ 3`

3G
=
"~ − #G

#
`.

Notice that this expression is meaningless unless
"~ − #G

#
is a function of G alone.

So, suppose
"~ − #G

#
= 5 (G).

Then ` is obtained by solving `′(G) = 5 (G)`. We need just one such `; so we ignore
the constants of integration. By separating the variables, we have∫

3`

`
=

∫
5 (G) 3G ⇒ log ` =

∫
5 (G) 3G ⇒ ` (G) = exp

( ∫
5 (G) 3G

)
.

Here, we do not bother about taking |` | since our requirement is one such `. Our
method boils down to the following:

Integrating factor 1: If the ODE " 3G + # 3~ = 0 is not exact and

"~ − #G
#

= 5 (G),

a function of G alone, then ` (G) = exp
( ∫
5 (G) 3G

)
is an integrating factor of the

ODE.
Similarly, we have the following method when an analogous expression is a

function of ~ alone.
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Integrating factor 2: If the ODE " 3G + # 3~ = 0 is not exact and

"~ − #G
"

= 6(~),

a function of ~ alone, then ` (~) = exp
(
−

∫
6(~) 3~

)
is an integrating factor of the

ODE.
We illustrate these methods in the following examples.

(1.19) Example

Solve the ODE
~2

2
+ 2~4G + (~ + 4G )~′ = 0.

Here, " = ~2/2 + 2~4G , # = ~ + 4G ⇒ "~ = ~ + 24G , #G = 4G ≠ "~ . Hence, it is
not an exact equation. Now,

"~ − #G
#

=
~ + 4G
~ + 4G = 1 = 5 (G) .

It is a function of G alone. Hence, ` = exp
( ∫
5 (G) 3G

)
= exp

( ∫
3G

)
= 4G is an

integrating factor. There exists a function D (G,~) such that

(a) DG = `" =
4G~2

2
+ 2~42G , (b) D~ = `# = ~4G + 42G .

Integrating (a) with respect to G and (b) with respect to ~, we have

D =
4G~2

2
+ ~42G + 6(~), D =

4G~2

2
+ ~42G + ℎ(G).

Matching these, we take 6(~) = ℎ(G) = 0 to get the solution curve as D (G,~) = �

or,
4G~2

2
+ ~42G = �.

(1.20) Example
Solve the IVP

(
4G+~ + ~4~

)
3G +

(
G4~ − 1

)
3~ = 0, ~ (0) = −1.

Here," = 4G+~ +~4~, # = G4~ − 1 ⇒ "~ − #G = 4G+~ +~4~ . So, it is not an exact
equation. We find that

"~ − #G
#

=
4G+~ + ~4~
G4~ − 1

is not a function of G alone. And,
"~ − #G

"
=
4G+~ + ~4~
4G+~ + ~4~ = 1 = 6(~)

is a function of ~ alone. So, we take the integrating factor as

` (~) = exp
(
−

∫
6(~) 3~

)
= exp

(
−

∫
3~

)
= 4−~ .
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Multiplying it with the ODE, we have(
4G + ~

)
3G +

(
G − 4−~

)
3~ = 0.

Since it is an exact equation, there exists a function D (G,~) such that

(a) DG = 4G + ~, (b) D~ = G − 4−~ .

Integrating (a) with respect to G and (1) with respect to ~ we get

D (G,~) = 4G + G~ + 61(~), D (G,~) = G~ + 4−~ + ℎ1(G).

Matching these we see that 61(~) = 4−~ and ℎ1(G) = 4G . Then the solution curves
are given by D (G,~) = � or,

4G + G~ + 4−~ = �.

Since ~ (0) = −1, we get 40 + 0(−1) + 41 = � ⇒ � = 1 + 4. Then the solution of
the IVP is given by 4G + G~ + 4−~ = 1 + 4.

1.6 Linear equations
A very special type of ODE that often comes up in applications is a linear equation.
A linear first order ODE is an ODE in the form

~′ + ? (G) ~ = A (G).

When the right hand side is 0, that is, A (G) = 0, the equation is called a linear first
order homogeneous ODE.
The linear ODE can be written in the differential form as(

? (G)~ − A (G)
)
3G + 3~ = 0.

Here," = ? (G)~ − A (G), # = 1 so that"~ −#G = ? (G). Thus, the equation is exact
when ? (G) = 0. In that case, the equation is~′ = A (G) whose solution can be written
as ~ =

∫
A (G) 3G +�. In case ? (G) ≠ 0, we should seek an integrating factor. We

observe that
"~ − #G

#
=
? (G)

1
= ? (G)

is a function of G alone. Hence, an integrating factor is given by

` (G) = exp
( ∫

? (G) 3G
)
.
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Multiplying the ODE with ` (G), we have ` (G)
(
? (G)~ − A (G)

)
3G + ` (G) 3~ = 0, or,

` (G)? (G)~ 3G + ` (G) 3~ = ` (G)A (G) 3G .

We see that

`′(G) = 3

3G
exp

( ∫
? (G) 3G

)
= exp

( ∫
? (G) 3G

) 3
3G

( ∫
? (G) 3G

)
= ` (G)? (G).

Thus, the ODE reduces to

`′(G)~ 3G + ` (G) 3~ = ` (G)A (G) 3G ⇒ 3
(
` (G)~

)
= ` (G)A (G) 3G.

Integrating, we obtain ` (G)~ =
∫
` (G)A (G) 3G . Along with the constant of integra-

tion, we obtain

~ = [` (G)]−1
[ ∫

` (G)A (G) 3G +�
]
, where ` (G) = exp

( ∫
? (G) 3G

)
.

This is the general solution of the linear first order ODE. We need not remember
this formula, but use the method by multiplying the linear ODE with the integrating
factor ` (G). It is enough remember that `′(G) = ` (G)? (G).

(1.21) Example
Find the general solution of the ODE ~′ − 2G~ = G .
It is a linear first order ODE with ? (G) = −2G . Its integrating factor is

` (G) = exp
( ∫

? (G) 3G
)
= exp

( ∫
(−2G) 3G

)
= 4−G

2
.

Multiplying it with the equation, we get

4−G
2
~′ − 2G~4−G

2
= G4−G

2 ⇒
(
4−G

2
~

)′
= G4−G

2
.

Integrating, we obtain

4−G
2
~ =

∫
G4−G

2
3G = −1

2
4−G

2 +� ⇒ ~ = �4G
2 − 1

2
.

(1.22) Example
Solve the IVP ~′ + 2G~ = G, ~ (1) = 2.
It is a linear first order ODE with ? (G) = 2G so that its integrating factor is

` (G) = exp
( ∫

? (G) 3G
)
= exp

( ∫
2G 3G

)
= 4G

2
.
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Multiplying with the equation, we have

4G
2
~′ + 4G2

2G~ = 4G
2
G ⇒

(
4G

2
~
)
= G4G

2
.

Integrating, we obtain

4G
2
~ =

∫
G4G

2
3G =

1
2
4G

2 +�.

As ~ (1) = 2, we get 41 · 2 = 1
24

1 +� ⇒ � = 34
2 . Hence, the solution of the IVP is

~ = �4−G
2 + 1

2 = 3
24

1−G2 + 1
2 .

(1.23) Example
Solve the IVP ~′ + ~ tanG = sin(2G), ~ (0) = 1.
It is a linear first order ODE with ? (G) = tanG . Its integrating factor is

` (G) = exp
( ∫

tanG 3G
)
= exp(log secG) = secG .

Multiplying it with the equation, we get

secG~′ + secG tanG~ = 2 sinG ⇒ (secG~)′ = 2 sinG .

Integrating, we obtain

secG~ = −2 cosG +� ⇒ ~ = −2 cos2 G +� cosG .

Now, ~ (0) = 1 ⇒ −2 + � = 1 ⇒ � = 3. Then the solution to the IVP is
~ = 3 cosG − 2 cos2 G .

There aremanyODEs that can be reduced to linearODEs by suitable substitutions.
One such is the Bernoulli equation:

~′ + ? (G)~ = 6(G)~U .

Notice that this first order ODE is linear for U = 0, 1. So, suppose U ≠ 0 and U ≠ 1.
Substitute I (G) = [~ (G)]1−U . Then

I′(G) = (1 − U)~−U~′ = (1 − U)~−U
[
6(G)~U − ? (G)~

]
= (1 − U)

(
6(G) − ? (G)~1−U ) = (1 − U) (6(G) − ? (G)I (G))

= −(1 − U)? (G)I (G) + (1 − U)6(G).

That is, we have the linear first order ODE

I′(G) + (1 − U)? (G)I (G) = (1 − U)6(G).
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(1.24) Example
Solve the Logistic equation ~′ = �~ − �~2.
Observe that it is a Bernoulli equation with U = 2. We substitute I (G) = ~−1. Then

I′ = −~−2~′ = −~−2(�~ − �~2) = � −�~−1 = � −�I ⇒ I′ +�I = �.

For this linear first order ODE, the integrating factor is ` = exp(
∫
�3G) = 4�G .

Multiplying, we have

4�GI′ +�4�GI = 4�G� ⇒
(
4�GI

)′
= 4�G�.

It gives
4�GI =

∫
4�G� 3G =

�

�
4�G +� ⇒ I =

�

�
+�4−�G .

Substituting I = ~−1, we get ~ =
(
�/� +�4−�G

)−1
.

Notice that this general solution does not include the solution ~ (G) = 0.
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Second Order ODE

2.1 Introduction
As we have seen all first order equations could not be solved. We could only solve
exact equations and those which could be reduced to exact equations in two special
cases. The second order equations put more difficult challenges. In general, a
second order equation looks like

5 (G,~,~′, ~′′) = 0.

A special case is when we can solve such an equation for the second derivative. It
then looks like

~′′ = 6(G,~,~′).

Unfortunately, there is no method to solve even this special type. General methods
are available to solve a still special class, and that to partially. The special class is
the second order linear ODEs, which have the form

~′′ + ? (G)~′ + @(G)~ = A (G).

When A (G) = 0, such anODE is calledhomogeneous, otherwise, non-homogeneous.
The initial value problems or IVPs involving second order equations come with

two conditions given at a point such as

Initial values : ~ (G0) = ~0, ~
′(G0) = ~′0.

Thus, the initial, value problemwith a homogeneous linear second order ODE looks
like

~′′ + ? (G)~′ + @(G)~ = 0, ~ (G0) = ~0, ~
′(G0) = ~′0 (2.1.1)

for some given real numbers G0, ~0, and~′0. We are interested in finding a solution of
the IVP in an open interval that contains the point G0. The existence and uniqueness
of a solution to such an initial value problem is guaranteed under certain mild
conditions.

22
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(2.1) Theorem (Existence-Uniqueness)
Let the functions ? (G) and @(G) be continuous in the open interval 0 < G < 1 and
let 0 < G0 < 1. Then, there exists a unique function ~ = ~ (G) defined on the interval
0 < G < 1 satisfying the IVP (2.1.1).

Wewill not prove this theorem. Observe that, in particular, if the initial conditions
are zero conditions, that is, if ~0 = 0 = ~′0, then ~ (G) is the zero function. This
means, if ~ (G) satisfies the homogeneous linear ODE and for some G0 in the open
interval, ~ (G0) = 0 = ~′(G0), then at all points G in the same open interval ~ (G) = 0.

2.2 The Wronskian
Before actually solving the homogeneous linear second order ODE

~′′ + ? (G)~′ + @(G)~ = 0 (2.2.1)

we will discuss some important properties of the solutions, or rather, properties of
the set of all solutions. This will help us in solving the ODE. Due to the Existence-
uniqueness theorem, we assume that ? (G) and @(G) are continuous functions in a
nontrivial open interval.

(2.2) Theorem
Let~1(G) and~2(G) be two solutions of the ODE (2.2.1). Let 21, 22 be two constants.
Then ~ (G) = 21~1(G) + 22~2(G) is also a solution of (2.2.1).

Proof. Since ~1(G) and ~2(G) are solutions of (2.2.1), we have

~′′1 + ? (G)~
′
1 + @(G)~1 = 0 = ~′′2 + ? (G)~

′
2 + @(G)~2.

Then multiplying the first equation with 21 and the second with 22, and adding, we
obtain

(21~1 + 22~2)′′ + ? (G) (21~1 + 22~2)′ + @(G) (21~1 + 22~2) = 0.
Of course, the above result does not hold for non-homogeneous ODEs.

(2.3) Example
The ODE ~′′ + ~ = 0 has solutions ~1(G) = cosG and ~2(G) = sinG . From (2.2) it
follows that ~ (G) = � cosG + � sinG is also a solution of the ODE. Indeed,

~′′ = (� cosG + � sinG)′′ = (−� sinG + � cosG)′ = (−� cosG − � sinG) = −~.

It verifies what the theorem states.

We will show that any solution of this ODE is in the form~ (G) = � cosG +� sinG .
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Instead of cosG and sinG suppose we take any two distinct functions, say, ~1(G)
and ~2(G), with ~1(G) ≠ ~2(G) for some G . For instance, take ~1 = cosG and
~2 = 2 cosG . Then they are distinct functions but the solution sinG cannot be
written as 21 cosG + 22(2 cosG). Thus, we need some condition on the functions ~1
and ~2 in order to write any solution as 21~1 + 22~2.
Let ~1(G) and ~2(G) be two continuously differentiable functions defined on a

nontrivial open interval � . TheWronskian of~1(G) and~2(G), written, [~1, ~2] (G),
is defined by

, [~1, ~2] (G) = ~1(G)~′2(G) − ~
′
1(G)~2(G).

Notice that the Wronskian is a function of G . The reason for defining this is the
following result.

(2.4) Theorem
Let~1(G) and~2(G) be two solutions of the ODE (2.2.1) on a nontrivial open interval
� with , [~1, ~2] (G) ≠ 0 for some G ∈ � . Then the general solution of the ODE
(2.2.1) is ~ (G) = 21~1(G) + 22~2(G), where 21, 22 are arbitrary constants.

Proof. Let ~ (G) be a solution of (2.2.1). We need to find two constants 21, 22 such
that ~ (G) = 21~1(G) + 22~2(G) for each G ∈ � . To this end, let G0 ∈ � be such that
, [~1, ~2] (G0) ≠ 0. Let ~0 denote ~ (G0) and let ~′0 denote ~

′(G0). If such constants
21, 22 exist, then evaluating at G0, we must have

21~1(G0) + 22~2(G0) = ~0, 21~
′
1(G0) + 22~

′
2(G0) = ~′0.

Since, [~1, ~2] (G0) ≠ 0, we have ~1(G0)~′2(G0) − ~′1(G0)~2(G0) ≠ 0. It follows that
there exist unique constants 21, 22 satisfying the above two linear algebraic equations.
Now, define

I (G) = 21~1(G) + 22~2(G) for 0 < G < 1.

Due to (2.2), I (G) is a solution of (2.2.1). Further,

I (G0) = 21~1(G0) + 22~2(G0) = ~ (G0), I′(G0) = 21~
′
1(G0) + 22~

′
2(G0) = ~′0.

That is, I (G) is a solution to the IVP consisting of (2.2.1) and the initial conditions
I (G0) = ~0 and I′(G0) = ~′0. But ~ (G) is also a solution to the same IVP. Hence, by
the Existence-uniqueness theorem, ~ (G) = I (G). That is, ~ (G) = 21~1(G) + 22~2(G)
for 0 < G < 1.

Look at the statement in (2.4). It looks that the same conclusion will hold
irrespective of whether the Wronskian is nonzero at G0 or at G1 as long as G0, G1 ∈ � .
In fact, if the Wronskian of two solutions of (2.2.1) is nonzero at some point in � ,
then it is nonzero at each point of � . We show this fact below.
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(2.5) Theorem
Let, (G) be the Wronskian of two solutions ~1(G) and ~2(G) of the ODE (2.2.1).
Then, ′(G) + ? (G), (G) = 0.

Proof. Since ~1 and ~2 are solutions of (2.2.1), we have

~′′1 = −? (G)~′1 − @(G)~1, ~′′2 = −? (G)~′2 − @(G)~2.

Using these, we obtain

, ′(G) = (~1~
′
2 − ~

′
1~2)′ = ~′1~

′
2 + ~1~

′′
2 − ~

′′
1~2 − ~′1~

′
2

= ~1~
′′
2 − ~

′′
1~2 = ~1

(
− ? (G)~′2 − @(G)~2

)
+

(
? (G)~′1 + @(G)~1

)
~2

= −? (G)
(
~1~
′
2 − ~

′
1~2

)
= −? (G), (G).

(2.6) Theorem
Let ? (G) and @(G) be continuous on a nontrivial open interval � . Let ~1(G) and
~2(G) be two solutions of the ODE (2.2.1). Then,, [~1, ~2] (G) is either identically
zero, or is never zero for any G ∈ � .

Proof. Take anyG0 ∈ � . Write, (C) =, [~1, ~2] (C). By (2.5),, ′(C) = −? (C), (C)
for C ∈ � . Separating the variables and integrating from G0 to any G ∈ � , we have∫ G

G0

, ′(C)
, (C) 3C = −

∫ G

G0

? (C) 3C ⇒ log |, (G) | − log |, (G0) | = −
∫ G

G0

? (C) 3C

⇒ |, (G) | = |, (G0) | exp
(
−

∫ G

G0

? (C) 3C
)
.

The exponential term is never zero. Thus,, (G) = 0 iff, (G0) = 0. That is,, (G)
is either identically zero or is never zero for any G ∈ � .

The formula |, (G) | = |, (G0) | exp
(
−

∫ G
G0
? (C) 3C

)
derived in the proof of (2.6) is

called Abel’s formula.
Caution: The Wronskian of any two arbitrary functions need not have the property
proved in (2.6). It so happens only for solutions ~1 and ~2 of a homogeneous linear
second order ODE. For instance, consider ~1(G) = G and ~2(G) = sinG . We find
that

, (G) =, [~1, ~2] (G) = G (sinG)′ − G′ sinG = G cosG − sinG .
Then, (0) = 0 but, (c/2) = −1. That is,, (G) is neither identically zero nor
that it is never zero. It means that the functions ~1(G) = G and ~2(G) = sinG cannot
both be solutions of the same homogeneous linear second order ODE.
Suppose ~(G) is a solution of (2.2.1). Then for any constant 2, the function

~2(G) = 2~1(G) is also a solution. We see that their Wronskian

, [~1, ~2] (G) = ~1(2~1)′ − ~′1(2~1) = 0.
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That is, when one solution is a constant multiple of the other, then their Wronskian
is zero. We show that the converse is also true.

(2.7) Theorem
Let ~1(G) and ~2(G) be solutions of the ODE (2.2.1) on a nontrivial open interval
� . Suppose, [~1, ~2] (G0) = 0 for some G0 ∈ � . Then, one of these solutions is a
constant multiple of the other.

Proof. Since, [~1, ~2] (G0) = (~1~
′
2−~

′
1~2) (G0) = 0, the linear algebraic equations

21~1(G0) + 22~2(G0) = 0, 21~
′
1(G0) + 22~

′
2(G0) = 0

have a nontrivial solution. That is, there exist constants 21, 22 not both zero such
that both the equations above are satisfied. With this choice of 21, 22, write ~ (G) =
21~1(G) + 22~2(G). By (2.2), ~ (G) is a solution of (2.2.1). The above two equations
imply that ~ (G0) = 0 and ~′(G0) = 0. Thus, by the Existence-uniqueness theorem,
the IVP consisting of (2.2.1) and these two initial conditions has a unique solution.
However, the zero function is a solution of this IVP. Hence, ~ (G) = 0, the zero
function. That is,

21~1(G) + 22~2(G) = 0 for each G ∈ � .

Now, if 21 ≠ 0, then ~1(G) = −(22/21)~2(G); and if 22 ≠ 0, then ~2(G) =

−(21/22)~1(G). In either case, one is a multiple of the other.

Again, wemust remember that the above result is true only for solutions~1(G), ~2(G)
of a homogeneous linear second order ODE. It need not be true for arbitrary func-
tions ~1(G) and ~2(G).
Let ~1(G) and ~2(G) be two functions defined on an open interval 0 < G < 1. We

say that the functions ~1, ~2 are linearly dependent iff one of them is a constant
multiple of the other. We say that ~1, ~2 are linearly independent iff they are not
linearly dependent.
Further, two solutions ~1(G) and ~2(G) of (2.2.1) are said to form a fundamental

set of solutions iff any solution of the ODE is expressible in the form 21~1 + 22~2
for suitable constants 21, 22.
Using these terminology, we can summarize our results as in the following.

(2.8) Theorem
Let ~1(G) and ~2(G) be solutions of the ODE (2.2.1) in a nontrivial open interval
� , where the functions ? (G) and @(G) are continuous. Then the following are
equivalent:
(1) ~1(G) and ~2(G) are linearly independent.
(2) , [~1, ~2] (G) ≠ 0 for some G ∈ � .
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(3) , [~1, ~2] (G) ≠ 0 for every G ∈ � .
(4) ~1(G) and ~2(G) form a fundamental set of solutions for (2.2.1).

(2.9) Example
The ODE ~′′ + ~ = 0 has solutions ~1(G) = cosG and ~2(G) = sinG . So,
~ (G) = � cosG + � sinG is also a solution of the ODE. We compute the Wronskian
of ~1(G) and ~2(G) for any G in a nontrivial open interval � :

, [~1, ~2] (G) = ~1~
′
2 − ~

′
1~2 = cosG · cosG − (− sinG) sinG = 1 ≠ 0.

Therefore, these two functions form a fundamental set; that is, any solution of the
ODE ~′′ + ~ = 0 is in the form 21 cosG + 22 sinG for some constants 21 and 22.

2.3 Constant coefficients
Consider the simpler case of the ODE (2.2.1), where both ? (G) and @(G) are
constants. We may rewrite the simpler case as

0~′′ + 1~′ + 2~ = 0. (2.3.1)

Since the ODE is of second order, we implicitly assume that 0 ≠ 0. The theorems
of the last section say that there are two linearly independent solutions which may
be used to express all solutions. Unfortunately, the results do not tell us how to
obtain a solution. We will have some sort of guess work. Observe that the functions
~ (G), ~′(G) and ~′′(G) should be such that they cancel among themselves and give
us 0.
For example, if ~ (G) is G9, then ~′(G) is a constant times G8 and ~′′ is a constant

times ~7. They cannot cancel to give us 0. If ~ (G) is cosG , then ~′(G) will be a
constant multiple of sinG and ~′′ a constant multiple of cosG . Again, this is not a
right candidate. If ~ (G) is an exponential, say 4_G , then ~′(G) and ~′′(G) are also
constant times 4_G . It looks this is a possible choice. So, let us try ~ (G) = 4_G . Then
~′(G) = _4_G and ~′′ = _24_G . Substituting these in (2.3.1), we get

0(4_G )′′ + 1 (4_G )′ + 24_G = 0 ⇒ (0_2 + 1_ + 2)4_G = 0.

Thus, ~ (G) = 4_G is a solution of (2.3.1) iff

0_2 + 1_ + 2 = 0. (2.3.2)

This equation is called the characteristic equation of (2.3.1). It has two roots
_1, _2 given by

_1 =
−1 +

√
12 − 402
20

, _2 =
−1 −

√
12 − 402
20

.
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Depending on the sign of 12 − 402 we have three different cases.

Case 1 (Distinct Real Roots): First, suppose that 12 − 402 > 0.
Then _1, _2 ∈ R and _1 ≠ _2. We know that ~1(G) = 4_1G and ~2(G) = 4_2G are two
distinct solutions of (2.3.1). Now,

, [~1, ~2] (G) = 4_1G
(
4_2G

)′ − (
4_1G

)′
4_2G = (_2 − _1)4 (_1+_2)G .

As _2 ≠ _1, , [~1, ~2] (G) ≠ 0 for any G . By (2.8), these two solutions form a
fundamental set. That is, the general solution of the homogeneous linear second
order ODE (2.3.1) is given by

~ (G) = 214
_1G + 224

_2G .

Before discussing other cases, we solve some examples.

(2.10) Example
Find the general solution of ~′′ + 5~′ + 4~ = 0.
It is a homogeneous linear second order ODE with constant coefficients. Its char-
acteristic equation is

_2 + 5_ + 4 = 0 ⇒ (_ + 1) (_ + 4) = 0.

So, the characteristic roots are _1 = −1 and _2 = −4; these are distinct and real.
Thus, ~1(G) = 4−G and ~2(G) = 4−4G form a fundamental set of solutions. That is,
the general solution is given by

~ (G) = 21~1 + 22~2 = 214
−G + 224

−4G

where 21, 22 are arbitrary constants.

(2.11) Example
Solve the IVP: ~′′ + ~′ − 2~ = 0, ~ (0) = 4, ~′(0) = −5.
It is a homogeneous linear second order ODE with constant coefficients. Its char-
acteristic equation is _2 + _ − 2 = 0 ⇒ (_ − 1) (_ + 2) = 0. The characteristic roots
are _1 = 1 and _2 = −2. So, the general solution is

~ (G) = 214
G + 224

−2G .

The initial conditions give

~ (0) = 21 + 22 = 4, ~′(0) = 21 − 222 = −5.

Solving these equations, we have 21 = 1, 22 = 3. Thus, the solution to the IVP is
~ (G) = 4G + 34−2G .

(2.12) Example
Find the general solution of the ODE ~′′ + 4~′ − 2~ = 0 and then solve the IVP
~′′ + 4~′ − 2~ = 0, ~ (0) = 1, ~′(0) = 2.
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It is a homogeneous linear second order ODE with constant coefficients. Its char-
acteristic equation is

_2 + 4_ − 2 = 0.
Since 42 − 4(1) (−2) > 0, there are two distinct real characteristic roots

_1 =
−4 +

√
16 + 8

2
= −2 +

√
6, _2 =

−4 −
√

16 + 8
2

= −2 −
√

6.

The fundamental set of solutions comprise ~1(G) = 4_1G and ~2(G) = 4_2G . The
general solution is

~ (G) = 21~1 + 22~2 = 214
(−2+

√
6)G + 224

(−2−
√

6)G

for arbitrary constants 21, 22. Using the initial conditions, we have

21 + 22 = 1, (−2 +
√

6)21 + (−2 −
√

6)22 = 2.

Solving these equations, we get 21 = 2/
√

6 and 22 = 1/2 − 2/
√

6. Then the solution
of the IVP is

~ (G) =
(1
2
+ 2
√

6

)
4 (−2+

√
6)G

(1
2
− 2
√

6

)
4−(2+

√
6)G .

Case 2 (Complex Conjugate Roots): Suppose that 12 − 402 < 0.
Then the characteristic roots _1, _2 are given by

_1 = U + V8, _2 = U − V8, U = − 1
20
∈ R, V =

√
402 − 12

20
∈ R \ {0}.

For the time being, pretend that we be satisfied with complex solutions. Then, as in
Case 1, the two solutions will be

I1 = 4 (U+8V)G , I2 = 4 (U−8V)G .

Their linear combinations, that is, any expression of the form 21I1 + 22I2 is also a
solution. In particular,

~1 =
I1 + I2

2
= 4UG cos(VG), ~2 =

I1 − I2
28

= 4UG sin(VG)

are also solutions. Notice that~1, ~2 are real solutions. This suggests we try to show
directly that ~1, ~2 are solutions of the ODE. For ~1 we proceed as follows, using
the values of U, V as obtained earlier:

~1 = 4UG cos(VG)
~′1 = 4UG

(
U cos(VG) − V sin(VG)

)
~′′1 = U4UG

(
U cos(VG) − V sin(VG)

)
+ 4UG

(
− UV sin(VG) − V2 cos(VG)

)
⇒ 0~′′1 + 1~

′
1 + 2~1

= 4UG
(
cos(VG)

(
0U2 − 0V2 + 1U + 2

)
− (20U + 1)V sin(VG)

)
= 4UG

(
0

( 12

402 −
402 − 12

402

)
+ 1 −1

20
+ 2

)
cos(VG) = 0.
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That is, ~1(G) is a solution to the ODE. Similarly, it is easily verified that ~2(G) is
also a solution of the ODE. Clearly, these two solutions are linearly independent.
Hence, the general solution is given by

~ (G) = 4UG
(
21 cos(VG) + 22 sin(VG)

)
.

Observe that 4 (U+8V)G = ~1(G) + 8~2(G) and 4 (U−8V)G = ~1(G) − 8~2(G). Thus, the
two linearly independent solutions are the real and imaginary parts of 4_G where _
is a complex characteristic root.

(2.13) Example
Find the general solution of 4~′′ + 4~′ + 5~ = 0.
It is a homogeneous linear second order ODE with constant coefficients. Its char-
acteristic equation is _2 + 4_ + 5 = 0; its characteristic roots are

_1 = −1
2
+ 8, _2 = −1

2
− 8 .

Hence, the two linearly independent solutions are

~1(G) = 4−G/2 cosG, ~2(G) = 4−G/2 sinG .

Thus, the general solution is ~ (G) = 4−G/2(21 cosG + 22 sinG).

(2.14) Example
Find the solution of the IVP: ~′′ + 2~′ + 4~ = 0, ~ (0) = 1, ~′(0) = 1.
The characteristic equation is _2+2_+4 = 0. The characteristic roots are −1±

√
3 8.

Hence, the two linearly independent solutions are

~1(G) = 4−G cos(
√

3G), ~2(G) = 4−G sin(
√

3G).

The general solution is ~ (G) = 4−G
(
21 cos(

√
3G) + 22 sin(

√
3G)

)
.

The constants 21, 22 are determined from the initial conditions

1 = ~ (0) = 21, 1 = ~′(0) = −21 +
√

3 22.

They give 21 = 1 and 22 = 2/
√

3. So, the solution to the IVP is
~ (G) = 4−G

[
cos(
√

3G) + (2/
√

3) sin(
√

3G)
]
.

Case 3 (Equal Roots): Suppose 12 − 402 = 0.
Then the characteristic roots are real and equal; that is, _1 = _2 = −1/(20). We
have at least one solution, namely, ~1(G) = 4_1G = 4 [−1/(20)]G . The second solution,
namely, 4_2G is same as ~1(G); and we would not obtain a fundamental set. We use
this known solution to obtain the second one in a clever way.
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If ~2(G) is another solution so that ~1(G) and ~2(G) are linearly independent, then
~2(G)/~1(G) is not a constant function. So, we start with ~2(G) = ~1(G)D (G) and
try to determine D (G) from the ODE 0~′′ + 1~′ + 2~ = 0. With this substitution, we
have

~2 = ~1D, ~′2 = ~′1D + ~1D
′, ~′′2 = ~′′1D + 2~′1D

′ + ~1D
′′.

Since ~2 satisfies the ODE, we get

0 = 0~′′2 + 1~
′
2 + 2~2

= 0(~′′1D + 2~′1D
′ + ~1D

′′) + 1 (~′1D + ~1D
′) + 2~1D

= 0(~′′1 + 1~
′
1 + 2~1)D + 0~1D

′′ + (20~′1 + 1~1)D′.

As ~1 also satisfies the ODE, we have 0~′′1 + 1~
′
1 + 2~1 = 0. Further,

20~′1 + 1~1 = 20
(
4−

1
20G

)′ + 14− 1
20G = 20 · −1

20
4−

1
20G + 14− 1

20G = 0.

Then the above equation reduces to 0~1D
′′ = 0. Also, 0~1 ≠ 0. Hence D′′ = 0 of

which one solution is D (G) = G .
It follows that~2(G) = G~1(G) is another solution of the same ODE. Clearly,~1(G)

and ~2(G) are linearly independent. Therefore, the general solution of (2.3.1) is
given by

~ (G) = (21 + 22G)~1(G) = (21 + 22)4_1G , _1 = − 1
20
.

As a caution, we should remember that this ~ (G) is not a solution of the ODE if _1
is not a double root of the characteristic equation.
Observe that we could have tried this solution in the beginning and got it imme-

diately. However, it is good to familiarize with the method followed above. We will
see the use of this method later in a more general setting.

(2.15) Example
Solve the IVP ~′′ + 4~′ + 4 = 0, ~ (0) = 1, ~′(0) = 3.
The characteristic equation is _2 + 4_ + 4 = 0. So, the characteristic roots are
_1 = _2 = −2. Thus, the general solution is

~ (G) = (21 + 22G)4−2G .

The initial conditions imply that

1 = ~ (0) = 21, 3 = ~′(0) = −221 + 22 ⇒ 21 = 1, 22 = 5.

So, the general solution of the IVP is ~ (G) = (1 + 5G)4−2G .
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2.4 Higher Order Linear ODEs and Systems
We have learnt how to solve linear homogeneous second order ODEs with constant
coefficients. The samemethod can be used to solve higher order linear homogeneous
ODEs with constant coefficients and also a similar method can be used to solve
homogeneous systems of linear ODEs with constant coefficients.
A linear homogeneous ODE with constant coefficients of order = is of the form

0=~
(=) + 0=−1~

(=−1) + · · · + 01~
′ + 00~ = 0.

Its characteristic equation is

0=_
= + 0=−1_

=−1 + · · · + 01_ + 00 = 0.

1. If _ is a simple real root of the characteristic equation, then corresponding to
it we take the solution as 4_G .

2. If U + 8V and U − 8V are a pair of complex roots of the characteristic equa-
tion, then corresponding to this pair, the two linearly independent complex
solutions are 4 (U+8V)G and 4 (U+8V)G . The real and imaginary parts of one of
them coincides with those of the other. They are 0UG cos(VG) and 4UG sin(VG),
which form two linearly independent real solutions.

3. If _ is a root of the characteristic equation having multiplicity < > 1, then
corresponding to this, we take the< linearly independent solutions as 4_G ,

G4_G , . . . and G<−14_G .

4. If a pair of complex roots U + 8V and U − 8V are repeated, then we compute the
corresponding complex solutions as explained in Step 3, and then take their
real and imaginary parts as real solutions.

As earlier, the general solution is obtained by multiplying these solutions with
arbitrary constants and adding them together. In other words, we take a linear
combination of all linearly independent solutions thus obtained to get the general
solution.

(2.16) Example
Find the general solution of ~ (4) + ~ (3) − 7~′′ − ~′ + 6~ = 0.
The characteristic equation is _4 + _3 − 7_2 − _ + 6 = 0.
Its roots are _ = 1, −1, 2 and −3. Thus, the general solution is

~ (G) = 214
G + 224

−G + 234
2G + 244

−3G .

(2.17) Example
Find the solution of the IVP

~ (4) (G) − ~ (G) = 0, ~ (0) = 7/2, ~′(0) = −4, ~′′(0) = 5/2, ~ (3) (0) = −2.



Second Order ODE 33

The characteristic equation is _4 − 1 = 0. Its roots are _ = 1, −1, 8 and −8. Thus,
the general solution is

~ (G) = 214
G + 224

−G + 23 cosG + 24 sinG .

We find that

~′ = 214
G − 224−G − 23 sinG + 24 cosG,

~′′ = 214
G + 224

−G − 23 cosG − 24 sinG,
~ (3) = 214

G − 224
−G + 23 sinG − 24 cosG .

Using the initial values, we get

7/2 = ~ (0) = 21 + 22 + 23

−4 = ~′(0) = 21 − 22 + 24

5/2 = ~′′(0) = 21 + 22 − 23

−2 = ~ (3) (0) = 21 − 22 − 24.

Solving these equations we obtain 21 = 0, 22 = 3, 23 = 1/2 and 24 = −1.
Hence the solution of the IVP is ~ (G) = 34−G + 1

2 cosG − sinG .

(2.18) Example
Find the general solution of the ODE

~ (5) − 10~ (4) + 54~ (3) − 132~′′ + 137~′ − 50~ = 0.

The characteristic equation is

_5 − 10_4 + 54_3 − 132_2 + 137_ − 50 = 0.

Trying 1 and 2 as possible values of _, we factor the left hand side as follows:

_5 − 10_4 + 54_3 − 132_2 + 137_ − 50 = (_ − 1) (_4 − 9_3 + 45_2 − 87_ + 50)
= (_ − 1) (_ − 1) (_3 − 8_2 + 37_ − 50) = (_ − 1)2(_ − 2) (_2 − 6_ + 25)
= (_ − 1)2(_ − 2)

(
(_ − 3)2 + 42) .

Hence, the characteristic equation has a simple root as _1 = 2, a double root as
_2 = _3 = 1, and a pair of complex conjugate roots _4 = 3 + 48 and _5 = 3− 48. The
corresponding linearly independent solutions are

~1 = 42G , ~2 = 4G , ~3 = G4G , ~4 = 43G cos(4G), ~5 = 43G sin(4G).

Therefore, the general solution is
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~ (G) = 214
2G + (22 + 23G)4G + 43G (24 cos(4G) + 25 sin(4G)

)
.

A homogeneous system of first order linear ODEs with constant coefficients
looks like

~′1(G) = 011~1 + 012~2 + · · · + 01=~=

~′2(G) = 021~1 + 022~2 + · · · + 02=~=
...

~′= (G) = 0=1~1 + 0=2~2 + · · · + 0==~= .

Here, each of the = functions ~1(G), . . . , ~= (G) are the dependent variables and G is
the only independent variable; further, 08 9 are given real numbers. We rewrite the
system of ODEs as follows:

~′ = �~, where ~ = ~ (G) =

~1
...

~=

 , ~′(G) =

~′1
...

~′=

 , � =


011 · · ·01=

...

0=1 · · ·0==

 .
We call this = × = matrix � as the system matrix. Our goal is to solve this system,
that is, to find functions ~1(G), . . . , ~= (G), as general as possible, which satisfy the
above equations simultaneously. In some cases, it is possible to eliminate = − 1
dependent variables and obtain an =-th order ODE in the remaining variable. We
first illustrate this method; and then proceed to the general method of solution.

(2.19) Example
Solve the first order linear system of ODEs ~′1 = ~1 + ~2, ~

′
2 = 4~1 + ~2.

We try to eliminate one of the dependent variables, say, ~2. From the first equation
we have

~2 = ~′1 − ~1.

Substituting this in the second equation we get

4~1 = ~2 − ~′2 = ~′1 − ~1 − (~′1 − ~1)′ = ~′1 − ~1 − ~′′1 + ~
′
1.

This simplifies to
~′′1 − 2~′1 − 3~1 = 0.

Its characteristic equation is _2 − 2_ − 3 = 0. The roots are _ = 3, −1. Then, the
general solution is

~1(G) = 214
3G + 224

−G .

As ~2 = ~′1 − ~1, we obtain

~2(G) = ~′1 − ~1 = 3214
3G − 224

−G − 214
3G − 224

−G = 2214
3G − 2224

−G .
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This general solution of the system of ODEs can also be written as

~ (G) =
[
~1
~2

]
= 21

[
1
2

]
43G + 22

[
1
−2

]
4−G .

Notice that in Example 2.19, the system of ODEs can be written as

~′ =

[
1 1
4 1

]
~, with y =

[
~1
~2

]
.

The characteristic polynomial of the system matrix is����1 − _ 1
4 1 − _

���� = (1 − _)2 − 4 = (−_ − 1) (3 − _).

Thus, the eigenvalues of the system matrix are _ = −1, 3. Observe that these
eigenvalues match exactly with the roots of the characteristic equation obtained by
eliminating one of the variables. Further, we find that[

1 1
4 1

] [
1
2

]
= 3

[
1
2

]
,

[
1 1
4 1

] [
1
−2

]
= −1

[
1
−2

]
.

That is, the vectors
[
1
2

]
and

[
1
−2

]
are eigenvectors associated with the eigenvalues

3 and −1, respectively. These eigenvalues and the eigenvectors can be used now
directly to write the general solution in the form as obtained earlier.
It so happens that a general solution of the system ~′ = �~ can be computed by

using the information of eigenvalues and eigenvectors of the system matrix. We
describe this eigenvalue-eigenvector method of solving a system of ODE as in the
following.
Consider computing a general solution of the first order system of linear homo-

geneous ODEs
~′ = �~,

where ~ = [~1(G), . . . , ~= (G)]C and � is an = × = matrix with real entries. Let
_1, . . . , _= be the eigenvalues of �. Notice that there can be repetitions and also
there can be complex numbers in this list of eigenvalues.
Case 1: Suppose that _ is a real eigenvalue of � which is never repeated in the
list of eigenvalues. Let E ∈ R=×1 be an eigenvector associated with _. Then, a
corresponding solution of the system is given by 4_GE .
Case 2: Suppose that _ = U + 8V is an eigenvalue of �, where V ≠ 0. Let D + 8E
be an eigenvector associated with _, where D, E ∈ R=×1. Notice that _ is also an
eigenvalue of� associated with the eigenvectorD−8E . Corresponding to this pair of
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eigenvalues, namely, _ and _, the two linearly independent solutions of the system
are given by

4 (U+8V)G (D + 8E) and 4 (U−8V)G (D − 8E).

Both the real parts and the imaginary parts of these solutions give the real solutions
of the ODE. Notice that the two real solutions obtained from the first one are exactly
the same obtained from the second one. So, we may consider only one of the
complex solutions and proceed to take its real and imaginary parts. These two
linearly independent real solutions of the ODE are

4UG
(
cos(VG)D − sin(VG)E

)
and 4UG

(
sin(VG)D + cos(VG)E .

Case 3: Suppose that _ is a real eigenvalue of � which is repeated < times. We
find the maximum number of linearly independent eigenvectors associated with _;
suppose these are E1, . . . , E<1. The corresponding<1 number of linearly independent
solutions of the system are given by

4_GE1, . . . , 4
_GE<1 .

If <1 = <, then the process stops here with < number of linearly independent
solutions corresponding to the eigenvalue _. If<1 < <, then we look for nonzero
vectors D which are solutions to

(� − _� )2D = 0, (� − _� )D ≠ 0.

If there are <2 number of linearly independent solutions of these equations, say,
D1, . . . , D<2 , then the corresponding<2 number of linearly independent solutions of
the system are

4_G
(
D1 + G (� − _� )D1

)
, . . . , 4_G

(
D<2 + G (� − _� )D<2

)
.

Linear Algebra guarantees that if <1 < <, then <2 ≠ 0 and <1 +<2 ≤ <. If
<1 + <2 = <, then we have got < linearly independent solutions. Otherwise
<1 +<2 < <. Then, we look for nonzero vectorsF satisfying

(� − _� )3F = 0, (� − _� )2F ≠ 0.

If there are <3 number of linearly independent solutions of these equations, say,
F1, . . . ,F<3 , then the corresponding <3 number of linearly independent solutions
of the system are

4_G
(
F1+G (�−_� )F1+

G2

2!
(�−_� )2F1

)
, . . . , 4_G

(
F<3+G (�−_� )F<3+

G2

2!
(�−_� )2F<3

)
.

The process continues until all< linearly independent solutions are obtained.
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Finally, a general solution of the system is obtained by taking a linear combination
of all solutions obtained by the above method.
Notice that the process becomes complicated when a complex root is repeated.

Of course, the earlier method of taking the real and imaginary parts of complex
solutions give us the real solutions.
The vectors D, F, . . . obtained in the above process are called the generalized

eigenvectors of the matrix �. Essentially, it leads to computing the Jordan form of
the matrix �, and then computing 4�G from the Jordan form.
We remark that a linear homogeneous =th order ODE with constant coefficients

can be converted to a linear system of ODEs in the form

~′ = �~ with ~2 = ~′1, ~3 = ~′2, . . . , ~= = ~
′
=−1.

Conversely, not all linear homogeneous systems of the form ~′ = �~ can be con-
verted to a higher order linear homogeneous ODE. The linear system of ODEs in
Example 2.19 is an exception. Thus, we need to familiarize ourselves with this
eigenvalue-eigenvector method of solution of ~′ = �~ as outlined earlier.

(2.20) Example
Find the general solution of the system of ODEs ~′1 = ~1 + 12~2, ~

′
2 = 3~1 + ~2.

The characteristic polynomial of the system matrix � is����1 − _ 12
3 1 − _

���� = (1 − _)2 − 36 = (_ − 7) (_ + 5).

Thus, the eigenvalues are _ = 7, −5. We compute the corresponding eigenvectors.
For _ = 7, we solve the linear system[

1 12
3 1

] [
0

1

]
= 7

[
0

1

]
for a nonzero solution. It gives 0 + 121 = 70, 30 + 1 = 71, or 0 = 21. One such
solution is the eigenvector [2 1]C . The corresponding solution is ~ (G) = 47G [2 1]C .
For _ = −5, we solve the linear system[

1 12
3 1

] [
0

1

]
= −5

[
0

1

]
for a nonzero solution. It gives 0 + 121 = −50, 30 + 1 = −51, or 0 = −21.
One such solution is the eigenvector [−2 1]C . The corresponding solution is
~ (G) = 4−5G [−2 1]C .
Notice that the two solutions obtained are linearly independent. The general

solution is given by a linear combination of these two. That is the general solution
of the system of ODEs is

~ (G) =
[
~1(G)
~2(G)

]
= 214

7G
[
2
1

]
+ 224

−5G
[
−2
1

]
.
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Or, ~1(G) = 2214
7G − 2224

−5G , ~2(G) = 214
7G + 224

−5G .

In the above example, it is possible to convert the system to a higher order ODE
by eliminating one of the variables. We choose to eliminate ~2. The equations
~′1 = ~1 + 12~2, ~

′
2 = 3~1 +~2 imply that 12~2 = ~′1 −~1. Differentiating this we get

12~′2 = ~′′1 − ~
′
1. Using the second equation, we get

~′′1 − ~
′
1 = 12(3~1 + ~2) = 36~1 + 12~2 = 36~1 + ~′1 − ~1.

It gives
~′′1 − 2~′1 − 35~1 = 0.

Its characteristic polynomial as _2 − 2_ − 35 = (_ − 7) (_ + 5). The characteristic
roots are _ = 7, −5. Then the general solution is

~1(G) = 214
7G + 224

−5G .

Then, 12~2 = ~′1 − ~1 = 7214
7G − 5224

−5G − 214
7G − 224

−5G . Or,

~2(G) =
1
2
214

7G − 1
2
224
−5G .

We have thus obtained the general solution of the system. To see that it is the same
as obtained in Example 2.20, replace 21 with 221 and 22 with −222. This can be
done since the constants are arbitrary. We then get

~1(G) = 2214
7G − 2224

−5G , ~2(G) = 214
7G + 224

−5G

as obtained by the eigenvalue-eigenvector method in Example 2.20.

(2.21) Example
Find the general solution of the system ~′1 = ~1 − ~2, ~

′
2 = ~1 + ~2.

Here, it is possible to convert the system to a higher order ODE by eliminating one
of the variables. However, we illustrate the eigenvalues and eigenvector method of
finding the general solution. The system of ODEs is in the form

~′ = �~, where � =

[
1 −1
1 1

]
, ~ =

[
~1(G)
~2(G)

]
.

The characteristic polynomial of � is����1 − _ −1
1 1 − _

���� = (1 − _)2 + 1.

Its roots are _ = 1 ± 8. We find an eigenvector corresponding to one of the
complex conjugate pairs. For _ = 1 + 8, we seek a nonzero complex solution of
�[0 1]C = _[0 1]C . This is the linear system[

1 −1
1 1

] [
0

1

]
= (1 + 8)

[
0

1

]
.
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Or, 0 − 1 = (1 + 8)0, 0 + 1 = (1 + 8)1 ⇒ 20 = (1 + 8) (0 + 1) = (1 + 8)21. One
nonzero solution is obtained by taking 1 = 1 and 0 = (1 + 8)2/2 = 8.
Thus, a complex solution corresponding to this pair of complex conjugate roots

is

4 (1+8)G
[
8

1

]
= 4G

[
8 (cosG + 8 sinG)

cosG + 8 sinG

]
= 4G

[
− sinG + 8 cosG
cosG + 8 sinG

]
= 4G

[
− sinG
cosG

]
+84G

[
cosG
sinG

]
.

The real part and the imaginary part of this complex solution are the linearly
independent solutions of the system, which are

4G
[
− sinG
cosG

]
, 4G

[
cosG
sinG

]
.

Hence, the general solution of the system is

~ =

[
~1(G)
~2(G)

]
= 214

G

[
− sinG
cosG

]
+ 224

G

[
cosG
sinG

]
.

It is same as ~1(G) = 4G (−21 sinG + 22 cosG), ~2(G) = 4G (21 cosG + 22 sinG).

(2.22) Example
Find the general solution of ~′1 = ~2 + ~3, ~

′
2 = ~1 + ~3, ~

′
3 = ~1 + ~2.

It does not seem possible to eliminate two of the dependent variables so that the
system could be converted to a higher order ODE. We write the system in the form
~′ = �G as follows:

~′ =


0 1 1
1 0 1
1 1 0

 ~.
The characteristic polynomial of the matrix is������−_ 1 1

1 −_ 1
1 1 −_

������ = −(_ − 2) (_ + 1)2.

Thus the eigenvalues of the matrix are 2, −1, −1. Notice that −1 is repeated twice.
However, the matrix is real symmetric; thus, there are two linearly independent
eigenvectors associated with the repeated root −1. We compute the eigenvectors.
Fpr _ = 2, we seek 0, 1, 2 not all zero such that

0 1 1
1 0 1
1 1 0



0

1

2

 = 2

0

1

2

 ⇒
1 + 2 = 20
0 + 2 = 21
0 + 1 = 22

.
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Solving the linear equations gives 0 = 1 = 2. One solution is the eigenvector[
1 1 1

]C
.

Corresponding to the eigenvalue _ = 2, we have a solution as

42G [1 1 1
]C
.

For the eigenvalue −1, we have
0 1 1
1 0 1
1 1 0



0

1

2

 = −1

0

1

2

 ⇒
1 + 2 = −0
0 + 2 = −1
0 + 1 = −2

.

Two linearly independent solutions of these equations (actually only one equation
0 + 1 + 2 = 0) are [

1 0 −1
]C
,

[
0 1 −1

]C
.

Thus, the two linearly independent solutions corresponding to the eigenvalue −1
are

4−G
[
1 0 −1

]C
, 4−G

[
0 1 −1

]C
.

Then, the general solution is obtained by taking a linear combination of all the
linearly independent solutions. It is

~ =


~1(G)
~2(G)
~3(G)

 = 214
2G


1
1
1

 + 224
−G


1
0
−1

 + 234
−G


0
1
−1

 .
This can be alternatively written as

~1(G) = 214
2G + 224

−G , ~2(G) = 214
2G + 234

−G , ~3(G) = 214
2G − (22 + 23)4−G .

(2.23) Example
Find the general solution of the system of ODEs:

~′1 = 2~1 + ~2 + 3~3, ~
′
2 = 2~2 − ~3, ~

′
3 = 2~3.

The characteristic polynomial of the system matrix � is

|� − _� | =

������2 − _ 1 3
0 2 − _ −1
0 0 2 − _

������ = (2 − _)3.
The only eigenvalue is 2 repeated 3 times. We will get three linearly independent
solutions. For the first such solution, we compute the eigenvector of �. So, we
solve (� − 2� )E = 0. With E = [0 1 2]C , we have the linear equations given by

(� − 2� )

0

1

2

 =


0 1 3
0 0 −1
0 0 0



0

1

2

 =


0
0
0

 .
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The linear equations are 1 + 32 = 0, −2 = 0. This gives 1 = 0, 2 = 0 and 0 is
arbitrary. Thus there is only one linearly independent eigenvector. Choosing 0 = 1,
we get one such, which is [1 0 0]C . The corresponding solution is

42G

1
0
0

 .
For other linearly independent solutions, we solve (�−2� )2D = 0 but (�−2� )D ≠ 0.
With D = [0 1 2]C , the equations are

(� − 2� )2D =


0 1 3
0 0 −1
0 0 0



0 1 3
0 0 −1
0 0 0

 D =


0 0 −1
0 0 0
0 0 0



0

1

2

 =


0
0
0

 .
It gives 2 = 0 and both 0, 1 arbitrary. We choose 0 = 0 and 1 = 1 so that the vector
D = [0 1 0]C satisfies (� − 2� )2D = 0 and (� − 2� )D ≠ 0. The corresponding
solution is

42G

0
1
0

 + G42G

0 1 3
0 0 −1
0 0 0



0
1
0

 = 42G

0
1
0

 + 42GG


1
0
0

 = 42G

G

1
0

 .
We have got only two linearly independent solutions. So, we proceed further
following the same method. We solve the linear equations (� − 2� )3F = 0 with
(� − 2� )2F ≠ 0. As (� − 2� )3 = 0, the zero matrix, any nonzero vector F satisfies
(� − 2� )3F = 0. As (� − 2� )2F ≠ 0, we choose F = [0 0 1]C . Then, the
corresponding solution is

42G [F + G (� − 2� )F + G
2

2
(� − 2� )2F

]
= 42G


0
0
1

 + G42G

0 1 3
0 0 −1
0 0 0



0
0
1

 +
G2

2
42G


0 0 −1
0 0 0
0 0 0



0
0
1


= 42G


0
0
1

 + G42G


3
−1
0

 +
G2

2
42G


−1
0
0

 = 42G

3G − G2/2
−G
1

 .
Since we have got 3 linearly independent solutions, the general solution is obtained
by taking a linear combination of these linearly independent solutions. It is given
by

~ =


~1(G)
~2(G)
~3(G)

 = 214
2G


1
0
0

 + 224
2G


G

1
0

 + 234
2G


3G − G2/2
−G
1

 .
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We can write the general solution as

~1(G) =
(
21 + 22G + 23(3G − G2/2)

)
42G , ~2(G) =

(
22 − 23G)42G , ~3(G) = 234

2G .

2.5 Euler-Cauchy Equation
A particular type of ODE, called the Euler-Cauchy equations, do not have constant
coefficients but they can be solved by the methods suitable for constant coefficients.
The Euler-Cauchy equation is a linear second order ODE of the form

G2~′′ + 0G~′ + 1~ = 0 for G > 0 (2.5.1)

where 0 and 1 are constants. Notice that it is a linear second order ODE but not of
constant coefficients type.
Substitute C = logG so that G = 4C . Using the chain rule, we get

3~

3G
=
3~

3C

3C

3G
=
3~

3C

1
G
=
3~

3C
4−C .

32~

3G2 =
3

3G

(3~
3C
4−C

)
=
3

3C

(3~
3C
4−C

) 3C
3G

=

( 3~
3C2

4−C + 3~
3C
(−4−C )

) 1
G

=

(32~

3C2
− 3~
3C

) 1
G2 .

Substituting these in (2.5.1), we obtain

0 = G2~′′ + 0G~′ + 1~ =
32~

3C2
− 3~
3C
+ 03~

3C
+ 1~ =

32~

3C2
+ (0 − 1)3~

3C
+ 1~.

Thus, we have got a linear homogeneous second order ODE with constant coeffi-
cients, whose characteristic equation is

_2 + (0 − 1)_ + 1 = 0.

Notice that this equation can also be written as

_(_ − 1) + 0_ + 1 = 0.

This equation being the characteristic equation for the ODE with the new variable
C , is called the Auxiliary equation for the original ODE (2.5.1).
We solve the above ODE with constant coefficients having the independent vari-

able as C , and then substitute back to obtain a solution to (2.5.1) with the independent
variable as G . The three ensuing cases are as follows.



Second Order ODE 43

Case 1: Suppose _1 ≠ _2 are the two real roots of the auxiliary equation. Then the
general solution is given by

~ (G) = 214
_1C + 224

_2C = 214
_1 logG + 224

_2 logG = 21G
_1 + 22G

_2 .

Indeed, it is easily verified that ~1 = G_1 and ~2 = G_2 satisfy the ODE (2.5.1).

Case 2: Suppose _2 = U + 8V, _2 = U − 8V for U, V ∈ R. Then the general solution
is given by (with C = logG)

~ (G) = 4UC
[
21 cos(VC) + 22 sin(VC)

]
= GU

[
21 cos(V logG) + 22 sin(V logG)

]
.

Also, we can directly verify that ~1 = GU cos(V logG) and ~2 = GU sin(V logG) are
solutions of (2.5.1).

Case 3: Suppose _2 = _1 ∈ R. Then the general solution is given by (C = logG)

~ (G) = (21 + 22C)4_1C = (21 + 22 logG)G_1 .

Again, this fact can be verified without going through the details of derivation.
Notice that finally, one solution is obtained in the form G_ instead of 4_G as used

to be for the constant coefficients case. This is also easy to guess since the second
order derivative is multiplied with G2 and the first order derivative is multiplied with
G . If we try a solution in the form ~ = G_, then the equation (2.5.1) yields

0 = G2(G_)′′ + 0G (G_)′ + 1 (G_) = G_
(
_(_ − 1) + 0_ + 1

)
.

Since G_ is not the zero function, we get the auxiliary equation

_(_ − 1) + 0_ + 1 = 0.

This is another heuristic way to solve the Euler-Cauchy equation.

(2.24) Example
(1) The ODE 2G2~′′ + 3G~′ − ~ = 0 is the Euler-Cauchy equation

G2~′′ + (3/2)G~′ − (1/2)~ = 0.

Its auxiliary equation _(_−1) + (3/2)_− (1/2) = 0 has roots _1 = 1/2 and _2 = −1.
As in Case 1, the general solution is

~ = 21
√
G + 22/G .

(2) The ODE 100G2~′′ + 60G~′ + 1604~ = 0 is the Euler-Cauchy equation

G2~′′ + 0.6G~′ + 16.04~ = 0.
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Its auxiliary equation _(_ − 1) + 0.6_ + 16.04 = 0 has roots _1 = 0.2 + 48 and
_2 = 0.2 − 48. As in Case 2, the general solution is

~ = G0.2 [21 cos(4 logG) + 22 sin(4 logG)
]
.

(3) The Euler-Cauchy equation

G2~′′ − 5G~ + 9~ = 0

has the auxiliary equation _(_−1) −5_ +9 = 0. The roots of the auxiliary equation
are _1 = _2 = 3. As in Case 3, the general solution is

~ = G3(21 + 22 logG).

(2.25) Example
Solve the ODE 4G2~′′ + 4UG~′ + (U − 1)2~ = 0 for G > 0.
This is an Euler-Cauchy equation with 0 = U and 1 = (U − 1)2/4. The auxiliary
equation is _(_ − 1) + U_ + (U − 1)2/4 = 0 or _2 + (U − 1)_ + (U − 1)2/4 = 0. Its
roots are _1 = _2 = (1 − U)/2. Hence, the general solution is

~ = G (1−U)/2(21 + 22 logG).

2.6 Reduction of order
Consider the homogeneous linear second order ODE

~′′ + ? (G)~′ + @(G)~ = 0. (2.6.1)

In this ODE, the coefficients of ~ and ~′ are functions of G . The method of taking
characteristic equations will not apply to this case. Unfortunately, there is no simple
method to solve these “variable coefficients" type of ODEs. However, methods
exist to get a second solution if one solution is known so that the two would become
linearly independent. This method is a simple adaptation of the same for the
"constants coefficients" case.
So, suppose ~1(G) is a solution to (2.6.1). That means

~′′1 + ? (G)~
′
1 + @(G)~1 = 0.

We wish to determine a second solution ~2(G) so that ~1 and ~2 are linearly inde-
pendent. That means, if ~2(G) = ~1(G)D (G), then the function D (G) should not be a
constant function. We thus assume that

~2(G) = ~1(G)D (G)
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for some function D (G) which we wish to find. Now,

~′2 = ~′1D + ~1D
′, ~′′2 = ~′′1D + 2~′1D

′ + ~1D
′′.

Then the ODE (2.6.1) becomes

0 = ~′′2 + ? (G)~
′
2 + @(G)~2

= ~′′1D + 2~′1D
′ + ~1D

′′ + ? (G) (~′1D + ~1D
′) + @(G)~1D

= ~1D
′′ +

(
2~′1 + ? (G)~1

)
D′ +

(
~′′1 + ? (G)~

′
1 + @(G)~1

)
D

= ~1D
′′ +

(
2~′1 + ? (G)~1

)
D′

We see that~2(G) = ~1(G)D (G) is a solution of (2.6.1) provided E (G) = D′(G) satisfies

~1E
′ +

(
2~′1 + ? (G)~1

)
E = 0.

This is a linear first order equation. Its solution is

E (G) = 2 exp
(
−

∫ (
2
~′1(G)
~1(G)

+ ? (G)
)
3G

)
= 2 exp

(
−

∫
? (G) 3G

)
exp

(
− 2

∫
~′1(G)
~1(G)

3G

)
=

2 exp
(
−

∫
? (G) 3G

)
~2

1 (G)
.

Since we are interested in only one function D (G), we set the constant 2 = 1 in the
above and obtain

D′(G) = E (G) =
exp

(
−

∫
? (G) 3G

)
~2

1 (G)
.

Integrating this and setting the arbitrary constant to 0, we obtain the function D (G).
Therefore, the second solution ~2(G) is given by

~2(G) = ~1(G)D (G) = ~1(G)
∫
E (G) 3G, E (G) =

exp
(
−

∫
? (G) 3G

)
~2

1 (G)
.

In this method, we solve a second order equation by solving another first order
equations in E (G). This is the reason, the method is named as the method of
reduction of order. However, it applies when we have already got one solution of
the ODE.

(2.26) Example
Find the solution of the IVP

(1 − G2)~′′ + 2G~′ − 2~ = 0, ~ (0) = 3, ~′(0) = −4 for − 1 < G < 1.
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We see that ~1(G) = G is a solution of the ODE. To get another solution, we use
the method of reduction of order. So, let ~2(G) = ~1(G)D (G). Since in (2.6.1) the
coefficient of ~′′ is taken as 1, we rewrite the ODE as

~′′ + 2G
1 − G2~

′ − 2
1 − G2~ = 0.

Now, ? (G) = 2G/(1 − G2) and @(G) = 1/(1 − G2). Our formula for the second
solution gives

E (G) =
exp

(
−

∫
? (G) 3G

)
~2

1 (G)
=

exp
(
−

∫
2G

1−G2 3G

)
G2 =

4 log(1−G2)

G2 =
1 − G2

G2 .

~2(G) = ~1(G)D (G) = G
∫
E (G) 3G = G

∫
1 − G2

G2 3G = −G
(1
G
+ G

)
= −(1 + G2).

Therefore, the general solution is

~ (G) = 21G − 22(1 + G2).
The initial conditions imply that

3 = ~ (0) = −22, −4 = ~′(0) = 21.

Hence the solution to the IVP is ~ (G) = 3 − 4G + 3G2.

(2.27) Example
Given that ~1(G) = 40G is a solution of the ODE G~′′ − (1 + 3G)~′ + 3~ = 0 for some
0 ∈ R, find the general solution.
Substituting ~ = 40G in the ODE, we get

G0240G − (1 + 3G)04G + 340G = 0 ⇒ (0 − 3) (G0 − 1) = 0.

Since 0 ∈ R, a constant, we have 0 = 3. So, ~1(G) = 43G .
The ODE is re-written as

~′′ −
(1
G
+ 3

)
~′ +

(3
G

)
~ = 0

so that ? (G) = −(1/G + 3) and @(G) = 3/G .
For the second solution, we set ~2(G) = ~1(G)D (G) and E (G) = D′(G). By the

method of reduction of order, we have

E (G) =
exp

(
−

∫
? (G) 3G

)
~2

1 (G)
=

exp
(
−

∫
(−1/G + 3) 3G

)
43G

= 4−6G exp(logG − 3G) = G4−9G .

~2(G) = ~1(G)
∫
E (G) 3G = 43G

∫
(G4−9G ) 3G = 43G

(
− G

9
+ 1

81

)
4−9G

=
1
81
(1 − 9G)4−6G .
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Then, the general solution is ~ (G) = 214
3G + 22(1 − 9G)4−6G .

2.7 Non-homogeneous second order linear ODE
Before proceeding to discuss any method to to solve the general non-homogeneous
linear second order ODE, we will discuss some properties of such equations. These
properties will help us in finding general solutions. We will consider the non-
homogeneous ODE

~′′ + ? (G)~′ + @(G)~ = A (G) for G ∈ � (2.7.1)

where � is an open interval and the right hand side function A (G) is not the zero
function. Corresponding to this we will consider the homogeneous ODE on the
interval � :

~′′ + ? (G)~′ + @(G)~ = 0 for G ∈ � . (2.7.2)

We assume that the functions ? (G), @(G) and A (G) are continuous on � so that the
corresponding IVPs with initial conditions ~ (G0) = ~0 and ~′(G0) = ~′0 have unique
solutions for a given G0 ∈ � .
Relations between solutions of the solutions of (2.7.1-2.7.2) is given by the

following results.

(2.28) Theorem
The difference of any two solutions of (2.7.1) is a solution of (2.7.2).

Proof. Let D1(G) and D2(G) be two solutions of (2.7.1). Then

D′′1 + ? (G)D
′
1 + @(G)D1 = A (G), D′′2 + ? (G)D

′
2 + @(G)D2 = A (G).

Subtracting the second from the first, we get

(D1 − D2)′′ + ? (G) (D1 − D2)′ + @(G) (D1 − D2) = 0.

That is, D1 − D2 is a solution of (2.7.2).

(2.29) Theorem
Let~1(G) and~2(G) be two linearly independent solutions of the homogeneous equa-
tion (2.7.2) and let q (G) be any one (particular) solution of the non-homogeneous
equation (2.7.1). Then every solution of (2.7.1) is in the form

~ (G) = 21~1(G) + 22~2(G) + q (G)

for some constants 21 and 22.
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Proof. Let ~ (G) be any solution of (2.7.1). By (2.28), ~ (G) − q (G) is a solution of
(2.7.2). By (2.8), ~1(G) and ~2(G) form a fundamental set of solutions of (2.7.2).
So, ~ (G) − q (G) = 21~1(G) + 22~2(G) for some constants 21 and 22. It then follows
that ~ (G) = 21~1(G) + 22~2(G) + q (G).

Notice that this theorem reduces the problem of finding a general solution of
the non-homogeneous problem to finding two linearly independent solutions of the
homogeneous problem and just one solution of the non-homogeneous problem.

(2.30) Example
Find the general solution of the ODE ~′′ + ~ = G .
The functions~1(G) = cosG and~2(G) = sinG are two linearly independent solutions
of ~′′ + ~ = 0. The function q (G) = G satisfies the ODE ~′′ + ~ = G . Hence, the
general solution of the given ODE is

~ (G) = 21 cosG + 22 sinG + G .

(2.31) Example
If q1(G) = G, q2(G) = G + 4G and q3(G) = 1 + G + 4G are three solutions of a certain
non-homogeneous linear second order ODE, then find its general solution.
By (2.28),k1(G) = q2 − q1 = 4G andk2(G) = q3 − q2 = 1 satisfy the corresponding
homogeneous linear second order ODE. Also, k1(G) and k2(G) are linearly inde-
pendent. The function q1(G) is a particular solution of the non-homogeneous ODE.
By (2.29), the general solution is given by

~ (G) = 21k1(G) + 22k2(G) + q1(G) = 214
G + 22 + G

where 21, 22 are arbitrary constants.

To sum up, we know how to solve a homogeneous linear second order ODE with
constant coefficients. For the variable coefficients case, if we already know one
solution, then we can find another solution linearly independent with the known one
by the method of reduction of order. For the non-homogeneous case, we also need
a particular solution.

2.8 Variation of parameters
How do we find a particular solution of a non-homogeneous linear second order
ODE? We discuss a method that can compute such a particular solution from the
two linearly independent solutions of the corresponding homogeneous ODE.
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We consider the non-homogeneous ODE

~′′ + ? (G)~′ + @(G)~ = A (G) for G ∈ � (2.8.1)

where the functions ? (G), @(G) and A (G) are continuous on the open interval � .
Let ~1(G) and ~2(G) be two linearly independent solutions of the corresponding
homogeneous ODE

~′′ + ? (G)~′ + @(G)~ = 0 for G ∈ � . (2.8.2)

We know that any function in the form 21~1(G) + 22~2(G) is a solution of (2.8.2).
Idea : if we treat the constants 21, 22 as functions, then probably we will be able to
satisfy (2.8.1). So, we try to determine two functions D1(G) and D2(G) so that

q (G) = D1(G)~1(G) + D2(G)~2(G)

is a solution of (2.8.1). It looks that the idea is a bogus one, since for determining one
function q (G) we now need to determine two functions D1(G) and D2(G). However,
it also implicitly says that we have probably some freedom in choosing these two
functions. That is, if necessary we can impose some more conditions suitably so
that our work becomes simple. With q (G) in the above form, we see that

q′(G) =
(
D1~1 + D2~2)′ =

(
D1~
′
1 + D2~

′
2
)
+

(
D′1~1 + D′2~2

)
.

We will also require q′′(G). It will involve the second order derivatives of the
unknown functions D1 and D2. In order to make our work simple, we impose the
condition that

D′1(G)~1(G) + D′2(G)~2(G) = 0.

Then, q′(G) = D1~
′
1 + D2~

′
2. As q (G) satisfies (2.8.1),we have

A (G) = q′′(G) + ? (G)q′(G) + @(G)q (G)
=

(
D1~
′
1 + D2~

′
2
)′ + ? (G) (D1~

′
1 + D2~

′
2
)
+ @(G)

(
D1~1 + D2~2

)
= D′1~

′
1 + D

′
2~
′
2 + D1

(
~′′1 + ?~

′
1 + @~1

)
+ D2

(
~′′2 + ?~

′
2 + @~2

)
= D′1~

′
1 + D

′
2~
′
2

The last equality follows since both~1(G) and~2(G) are solutions of (2.8.2). To sum
up, we see that q (G) = D1~1+D2~2 is a solution of (2.8.1) provided thatD1(G), D2(G)
satisfy

~1D
′
1 + ~2D

′
2 = 0, ~′1D

′
1 + ~

′
2D
′
2 = A (G).

We need to solve these linear equations in the unknowns D′1 and D′2. So, multiply
the first equation by ~′2 and second by ~2, then subtract to get(

~1~
′
2 − ~

′
1~2

)
D′1 = −A (G)~2.



50 MA2020 Classnotes

Similarly, multiplying the first by ~′1 and the second by ~1, then subtracting we get(
~1~
′
2 − ~

′
1~2

)
D′2 = A (G)~1.

Recall that the Wronskian is, [~1, ~2] (G) = ~1~
′
2 − ~

′
1~2. Hence, we obtain

D′1(G) = −
A (G)~2(G)

, [~1, ~2] (G)
, D′2(G) = −

A (G)~1(G)
, [~1, ~2] (G)

. (2.8.3)

Finally, we get D1(G) and D2(G) by integrating these. Of course, we can take
any suitable constant of integration to make our choices of D1, D2 simple. This
method of determining a particular solution for a non-homogeneous equation from
a fundamental set of solutions for the corresponding homogeneous equation is called
the method of variation of parameters due to Lagrange.

(2.32) Example
Solve the IVP ~′′ + ~ = tan C for −c/2 < C < c/2; with ~ (0) = 1 = ~′(0).
The corresponding homogeneous equation ~′′ +~ = 0 has two linearly independent
solutions as ~1 = cosG and ~2 = sinG . To get a particular solution of the given
non-homogeneous equation, we first compute the Wronskian. Now,

, [~1, ~2] (G) = ~1~
′
2 − ~

′
1~2 = cosG (cosG) − (− sinG) sinG = 1.

Using variation of parameters, we seek a particular solution q (G) in the form

q (G) = D1(G)~1 + D2(G)~2 = D1(G) cosG + D2(G) sinG

where due to (2.8.3),

D′1(G) = − tanG sinG, D′2(G) = tanG cosG .

Integrating and ignoring the constants of integration, we have

D1(G) =
∫

tanG sinG 3G =

∫
cos2 G − 1

cosG
3G = sinG − log(secG + tanG).

D2(G) =
∫

tanG cosG 3G =

∫
sinG 3G = − cosG

q (G) =
[
sinG − log(secG + tanG)

]
cosG − cosG sinG

= − cosG log(secG + tanG).

Then, the general solution of the ODE is given by

~ (G) = 21~1 + 22~2 + q = 21 cosG + 22 sinG − cosG log(secG + tanG).

The initial conditions give

1 = ~ (0) = 21, 1 = ~′(0) = 22 − 1 ⇒ 21 = 1, 22 = 2.

Thus, the solution of the IVP is

~ (G) = cosG + 2 sinG − cosG log(secG + tanG).
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2.9 Method of undetermined coefficients
The variation of parameters is a very general method to determine a solution of
the non-homogeneous equation. If the coefficients of the unknown variable ~ and
its derivatives are constants and the right hand side function involves exponentials,
polynomials, or trigonometric functions of certain particular forms, then a particular
solution can be determined without resorting to integration.
We consider the non-homogeneous linear second order ODE with constant coef-

ficients:
0~′′ + 1~′ + 2~ = A (G), 0 ≠ 0. (2.9.1)

Its characteristic equation is

0_2 + 1_ + 2 = 0.

The method of undetermined coefficients asserts that when A (G) is in certain form,
the particular solution q (G) of the ODE (2.9.1) is of certain form. These statements,
written as ‘Rules’ below follow from the method of variation of parameters. They
are as follows.

Rule 1: Suppose A (G) = ?= (G)4UG , where ?= (G) is a polynomial of degree =. Then,
the particular solution q (G) of (2.9.1) is in the following form, where D= (G) is some
polynomial of degree at most =:

(A) If U is not a root of the characteristic equation, then q (G) = D= (G)4UG .
(B) If U is a simple root of the characteristic equation, then q (G) = GD= (G)4UG .
(C) If U is a double root of the characteristic equation, then q (G) = G2D= (G)4UG .
A particular case of Rule 1 is worth mentioning. In Rule 1, if U = 0, then we get

the following.

Rule 2: Suppose A (G) = ?= (G), a polynomial of degree =. Then, the particular
solution q (G) of (2.9.1) is in the following form:

(A) If 2 ≠ 0, then q (G) = D= (G).
(B) If 2 = 0, 1 ≠ 0, then q (G) = GD= (G).
(C) If 2 = 0 = 1, then q (G) = G2D= (G).

As earlier, D= (G) is a polynomial of degree at most =.

Rule 3: Suppose A (G) = 4UG
[
? (G) cos(VG) + @(G) sin(VG)

]
, where ? (G), @(G) are

polynomials. Then, the particular solution q (G) of (2.9.1) is in the following form:

(A) If U + 8V is not a root of the characteristic polynomial, then

q (G) = 4UG
[
D (G) cos(VG) + E (G) sin(VG)

]
.
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(B) If U + 8V is a root of the characteristic polynomial, then

q (G) = G4UG
[
D (G) cos(VG) + E (G) sin(VG)

]
.

Here, D (G) and E (G) are some polynomials whose degrees are at most the highest
degree of the polynomials ? (G) and @(G).
We emphasize that if one of the polynomials ? (G) or @(G) is equal to 0, then

A (G) involves only one of the terms cos(VG) or sin(VG). In that case, q (G) may still
involve both thee terms cos(VG) and sin(VG).
This rule says that we must try to determine the coefficients in D= (G) by plugging

in this q (G) in (2.9.1).
In Rule 3, if U = 0 and the polynomials ? (G) and @(G) are constants, we get the

following important case.

Rule 4: Suppose A (G) = 31 cos(VG) +32 sin(VG) for some constants 31 and 32. Then
q (G) is in the following form:

(A) If V8 is not a root of the characteristic equation, then

q (G) = � cos(VG) + � sin(VG).

(B) If V8 is a root of the characteristic equation, then

q (G) = G
[
� cos(VG) + � sin(VG)

]
.

We remark that if A (G) is a sum of functions, then their corresponding q (G) are
to be added.

(2.33) Example
Find a particular solution of the ODE ~′′ + ~′ + ~ = G2.
By Rule 2, a particular solution may be tried in the form q (G) = � + �G +�G2. As
q satisfies the ODE, we obtain

G2 = q′′ + q′ + q = 2� + (� + 2�G) +� + �G +�G2

= (� + � + 2�) + (� + 2�)G +�G2

⇒ � + � + 2� = 0, � + 2� = 0, � = 1 ⇒ � = 0, � = −2, � = 1

Hence, q (G) = −2G + G2 is a particular solution.

(2.34) Example
Find a particular solution of the ODE ~′′ − 3~′ + 2~ = (1 + G)43G .
To use Rule 1, we should check whether 3 is a root of the characteristic equation.
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The characteristic equation is _2 − 3_ + 2 = 0, and 3 is not its root. So, by Rule
1(A), q (G) = (� + �G)43G . Then

(1 + G)43G = q′′ − 3q′ + 2q
= 43G ((9� + 6� + 9�G) − 3(3� + � + 3�G) + 2(� + �G)

)
= 43G ((2� + 3�) + 2�G

)
⇒ 2� = 1, 2� + 3� = 1 ⇒ � = −1/4, � = 1/2.

Hence, a particular solution is q (G) = (−1/4 + G/2)43G .

(2.35) Example
Solve the ODE ~′′ − 7~′ + 6~ = (G − 2)4G .
The characteristic equation is _2 − 7_ + 6 = 0 whose roots are 6 and 1. Here, the
right hand side is in the form ?1(G)4G and U = 1 is a simple root of the characteristic
equation. So, we seek a particular solution in the form q (G) = G (� + �G)4G .
Plugging in the equation, we obtain

(G − 2)4G =
(
(�G + �G2) + (2� + 4�G) + 2� − 7(�G + �G2)
−7(� + 2�G) + 6(�G + �G2)

)
4G

= (−5� + 2� − 10�G)4G

⇒ −5� + 2� = −2, −10� = 1 ⇒ � = 9/25, � = −1/10.

Hence, q (G) = G (9/25 − G/10)4G is a particular solution. The general solution of
the ODE is ~ (G) = 214

6G + 224
G + G (9/25 − G/10)4G .

(2.36) Example
Find a particular solution of the ODE ~′′ + 4~ = sin(2G).
The characteristic equation _2 + 4 = 0 has roots ±28. By Rule 4(B), a particular
solution is in the formq (G) = G

[
� cos(3G) +� sin(3G)

]
. Plugging it in the equation,

we get

sin(2G) = q′′ + 4q
= G

[
− 4� cos(2G) − 4� sin(2G)

]
+

[
− 2� sin(2G) + 2� cos(2G)

]
+
[
− 2� sin(2G) + 2� cos(2G)

]
+ 4G

[
� cos(2G) + � sin(2G)

]
= −4� sin(2G) + 4� cos(2G)

Comparing the left and the right hand sides, we get � = −1/4 and � = 0. Then, a
particular solution is given by q (G) = −(G/4) cos(2G).

(2.37) Example
Solve the IVP ~′′ + 2~′ + 0.75~ = 2 cosG − 0.25 sinG + 0.09G,

~ (0) = 2.78, ~′(0) = −0.43.
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The characteristic equation is _2 + 2_ + 0.75 = 0 having roots as _1 = −1/2 and
_2 = −3/2. Hence, two linearly independent solutions of the homogeneous equation
are ~1 = 4−G/2 and ~2 = 4−3G/2.
The non-homogeneous term is A (G) = (2 cosG − 0.25 sinG) + 0.09G . We first find

a particular solution q (G) for

~′′ + 2~′ + 0.75~ = 2 cosG − 0.25 sinG .

Since 1 is not a root of the characteristic equation, by Rule 4(A), we try a particular
solution in the form q (G) = � cosG + � sinG . Plugging it in the ODE, we get

2 cosG − 0.25 sinG = q′′ + 2 ′ + 0.75q
= (−� cosG − � sinG) + 2(−� sinG + � cosG) + 0.75(� cosG + � sinG)
= (−� + 2� + 0.75) cosG + (−� − 2� + 0.75) sinG

⇒ −� + 2� + 0.75 = 2, −� − 2� + 0.75 = −0.25
⇒ � = 0, � = 1.

So, q (G) = sinG . Next, we find a particular solutionk (G) for

~′′ + 2~′ + 0.75~ = 0.99G .

By Rule 2, we tryk (G) = � + �G . Ask ′ = � andk ′′ = 0, we get

0.09G = k ′′ + 2k ′ + 0.75k = 2� + 0.75(� + �G) ⇒ � = −0.32, � = 0.12.

Hence,k (G) = 0.12G − 0.32. Therefore, a particular solution of the ODE is

q +k = sinG + 0.12G − 0.32.

That is, the general solution of the ODE is

~ (G) = 214
−G/2 + 224

−3/2 + sinG + 0.12G − 0.32.

The initial conditions imply

2.78 = ~ (0) = 21 + 22 − 0.32, −0.4 = ~′(0) = −1
2
21 −

3
2
22 + 1 + 0.12.

Solving it, we obtain 21 = 3.1 and 22 = 0. So, the solution of the IVP is

~ = 3.14−G/2 + sinG + 0.12G − 0.32.

(2.38) Example
Find the general solution of ~′′ − 4~′ + 4~ = (1 + G + G2 · · · + G25)42G .
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The characteristic equation is _2 − 4_ + 4 = 0 of which the roots are _1 = _2 = 2.
Hence, ~1(G) = 42G and ~2(G) = G42G are two linearly independent solutions of
the corresponding homogeneous equation. A particular solution q (G) is in the form

q (G) = G2 (�0 +�1G + · · · +�25G
25)42G

It is of course sheer waste of time to plug in such a q (G) in the ODE and try to
evaluate�0, �1, . . . , �25. Following themethod of variation of parameters, we rather
write

q (G) = D (G)42G

and plug it in the ODE. It gives

q′(G) =
(
D′(G) + 2D (G)

)
42G , q′′(G) =

(
D′′(G) + 4D′(G) + 4D (G)

)
42G .

As q (G) satisfies the ODE, we get

q′′ − 4q′ + 4q = D′′(G)42G =
(
1 + G + G2 · · · + G25)42G .

That is, D′′(G) = 1 + G + G2 · · · + G25. Integrating twice and setting the constants of
integration to 0, we have

D (G) = G2

1 · 2 +
G3

2 · 3 + · · · +
G27

26 · 27
.

Hence, the general solution is

~ (G) =
(
21 + 22G +

G2

1 · 2 +
G3

2 · 3 + · · · +
G27

26 · 27

)
42G .



3
Series Solutions

3.1 Introduction
To recall, we could solve a linear homogeneous second order ODE with constant
coefficients some what satisfactorily. For such an ODE with variable coefficients,
we could only get a second solution provided a first solution is already known. How
do we get this first solution? We relied on guess work. The main aim of this chapter
is to obtain a first solution by using power series. We recall some facts about power
series.
A power series about G = G0 is in the form

00 + 01(G − G0) + 02(G − G0)2 + · · · =
∞∑
==0

0= (G − G0) (3.1.1)

where 00, 01, . . . are constants.
Each power series has an interval of convergence. That is, there exists A ≥ 0 such

that the power series (3.1.1) converges for all G with |G − G0 | < A and diverges for
all G with |G − G0 | > A . This number A is called the radius of convergence of the
power series (3.1.1).

If lim
=→∞

|0= |
|0=+1 |

exists, then the limit is equal to the radius of convergence of (3.1.1).

Also, the radius of convergence of (3.1.1) is equal to
(

lim
=→∞
|0= |1/=

)−1
provided this

limit exists in R ∪ {∞}.
Two power series

∑∞
==0 00(G − G0)= and

∑∞
==0 1=G

= are equal iff 0= = 1= for
each = = 0, 1, 2, . . .. In particular,

∑∞
==0 0= (G − G0)= = 0 iff 0= = 0 for each

= = 0, 1, 2, . . ..
Two power series can be added and multiplied the following way:

∞∑
==0

0= (G − G0)= +
∞∑
==0

1= (G − G0)= =
∞∑
==0
(0= + 1=) (G − G0)= .( ∞∑

==0
0= (G − G0)=

) ( ∞∑
==0

1= (G − G0)=
)
=

∞∑
==0

2= (G − G0)=

where 2= = 001= + 011=−1 + · · · + 0=10.

56
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If 10 ≠ 0, then the quotient
00 + 01G + · · ·
10 + 11G + · · ·

of two power series is a power series.

The power series (3.1.1) can be differentiated and integrated term by term and the
resultant series has the same radius of convergence. In particular,( ∞∑

==0
0=G

=
)′
=

(
00 + 01G + 02G

2 + · · ·
)′
= 01 + 202G + · · · =

∞∑
==0

=0=G
=−1.

Afunction 5 (G) is said to be analytic atG = G0 iff there exist constants00, 01, 02, . . .
such that for all G in a neighborhood of G0,

5 (G) = 00 + 01(G − G0) + 02(G − G0)2 + · · · =
∞∑
==0

0= (G − G0)= .

This series is called the Taylor series of the function 5 (G) at G = G0 and the
coefficients satisfy

0= (=!) = 5 (=) (G0).
When G0 = 0, the Taylor series is called the Maclaurin series. We are familiar with
the following Maclaurin series:

(1 − G)−1 =

∞∑
==0

G= = 1 + G + G2 + G3 + · · · for |G | < 1.

4G =

∞∑
==0

G=

=!
= 1 + G + G

2

2
+ G

3

3!
+ · · · for G ∈ R.

cosG =

∞∑
==0

(−1)=G2=

(2=)! = 1 − G
2

2!
+ G

4

4!
− · · · for G ∈ R

sinG =

∞∑
==0

(−1)=G2=+1

(2= + 1)! = G − G
3

3!
+ G

5

5!
− · · · for G ∈ R.

3.2 Regular and singular points
Our plan is to plug in a power series in place of ~ (G) in a linear second order
homogeneous ODE and try to evaluate the coefficients 0=. We hope that if a
solution of the ODE has an analytic solution at a point, then we should be able to
find out the coefficients. Before discussing what will be the general case, let us
consider an example, and try to execute our ideas.

(3.1) Example
Find a power series solution of the first order ODE ~′ − ~ = 0.
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Assume that ~ (G) = ∑∞
==0 0=G

= is a solution of the ODE. Plugging it in the ODE
and using term by term differentiation, we get

0 =

∞∑
==1

=G=−1 −
∞∑
==0

0=G
= =

∞∑
==1

=G=−1 −
∞∑
==1

0=−1G
=−1 =

∞∑
==1
(=0= − 0=−1)G=−1

⇒ 0= =
0=−1
=

for = ≥ 1.

We obtain a recurrence relation between the coefficients. It gives

01 =
00
1
, 02 =

01
2

=
00
2!
, 03 =

02
3

=
00
3!
, . . . , 0= =

00
=!
.

Notice that the constant 00 remains arbitrary. Then

~ (G) =
∞∑
==0

0=G
= =

∞∑
==0

00
=!
G= = 00

∞∑
==0

G=

=!
= 004

G .

We see that we have obtained the general solution of the ODE.

We wish to apply the power series method to linear second order ODEs. For this
purpose, we consider the following linear second order homogeneous ODE:

~′′ + ? (G)~′ + @(G)~ = 0. (3.2.1)

When the coefficient of ~′′ is 1 as in (3.2.1), we say that the ODE is in its standard
form. The central fact about such equations is that the nature of solutions depend
on the nature of the coefficient functions ? (G) and @(G). The ease of obtaining a
solution depends on how smooth are the coefficient functions. To demarcate the
cases, we will need some terminology.
A point G0 is said to be an ordinary point of the ODE (3.2.1) iff both the functions

? (G) and@(G) are analytic atG = G0. An ordinary point is sometimes called a regular
point.
A point G0 is called a singular point of the ODE iff it is not an ordinary point of

the ODE. At a singular point at least one of ? (G) or @(G) fails to be analytic.
A singular point G0 of the ODE (3.2.1) is called a regular singular point iff both

the functions (G − G0)? (G) and (G − G0)2@(G) are analytic at G0.
A singular point G0 of the ODE (3.2.1) is called an irregular singular point iff

at least one of the functions (G − G0)? (G) or (G − G0)2@(G) fails to be analytic at G0.
Roughly speaking at a regular singular point G0, ? (G) is not worse than (G −G0)−1

and @(G) is not worse than (G −G0)−2. The reason for defining regular singular point
is that we can still obtain a solution to the ODE which involves a power series at G0.
We will soon see this in the guise of a theorem.
We should take care to bring a given equation to the form of (3.2.1), which is

called the standard form while deciding about a point being ordinary or singular.
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Further, in some ODEs we will require the behavior of a solution as G approaches
∞. Thus, we need to determine whether G0 = ∞ is an ordinary point or a regular
singular point or neither. In such a case, we transform the ODE to one by taking
C = 1/G and then find what kind of a point C = 0 is. So, write . (C) = ~ (G) = ~ (1/C).
Then

~′(G) = 3./3C
3G/3C = −C23.

3C

~′′(G) = −C2 3
3C

(
− C23.

3C

)
= C4

32.

3C2
+ 2C3

3.

3C
.

Then the ODE (3.2.1) reduces to

C4
32.

3C2
+

(
2C3 − C2? (1/C)

)3.
3C
+ @(1/C). (C) = 0.

Next, we say that G = ∞ is an ordinary, a regular singular , or an irregular singular
point of the original ODE according as C = 0 is a respective point of the above ODE.

(3.2) Example
1. Consider the ODE G~′′ − ~ = 0. In the standard form of (3.2.1), ? (G) = 0 and
@(G) = −1/G . Thus G0 = 1 is an ordinary point. But G0 = 0 is a singular point.
Further, G? (G) = 0 and G@(G) = −1 are analytic at G0 = 0. Hence G0 = 0 is a
regular singular point.

2. The Legendre’s equation (1 − G2)~′′ − 2G~′ + 6~ = 0, in standard form, is

~′′ − 2G
1 − G2~

′ + 6
1 − G2 = 0.

Here, ? (G) = −2G/(1 − G2) and @(G) = 6/(1 − G2). The point G = 0 is
an ordinary point of the ODE. In fact every point other than G = ±1 is an
ordinary point of the ODE. The points G = ±1 are its singular points. Further,
(G−1)? (G) = 2G/(1+G) and (G−1)2@(G) = 6(1−G)/(G+1) are analytic atG0 = 1.
Hence, G0 = 1 is a regular singular point. Similarly, (G + 1)? (G) = 2G/(G − 1)
and (G + 1)2@(G) = 6(G + 1)/(1 − G) are analytic at G = −1. So, G0 = −1 is a
regular singular point.

3. Consider the ODE (G + 1)2~′′ + ~′ − ~ = 0. Here, ? (G) = (G + 1)−2 and
@(G) = −(G + 1)−2. Any point G0 ≠ −1 is an ordinary point. The point G0 = −1
is a singular point. Now, (G + 1)? (G) = (G + 1)−1 is not analytic at G0 = −1.
Hence, G0 = −1 is an irregular singular point.

4. Consider Airy’s equation ~′′ − G~ = 0. To classify the point at infinity, we put
C = 1/G . Here ? (G) = 0 and @(G) = −1. The ODE is reduced to

C4
32.

3C2
+

(
2C3 − C2(0)

)3.
3C
+ (−1). (C) = 0 or

32.

3C2
+ 2
C

3.

3C
− 1
C3
. (C) = 0.
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Here, ? (C) = 2/C and @(C) = −1/C3. Since C2@(C) = −1/C is not analytic at C0 = 0,
we conclude that C0 = 0 is an irregular singular point. Therefore, G0 = ∞ is an
irregular singular point of Airy’s equation.

In the following two sections, we discuss how to obtain a series solution of (3.2.1)
about an ordinary point, and also about a regular singular point. Unfortunately, we
do not have any general method for finding a series solution of a linear homogeneous
second orderODEwith variable coefficientswhen the concerned point is an irregular
singular point.

3.3 Power series solution at an ordinary point
We assume that the point G0 is an ordinary point of the ODE (3.2.1). That is, the
coefficient functions ? (G) and @(G) have power series expansions at G0. Due to
(3.3), we assume that ~ (G) = 00 + 01(G − G0) + 02(G − G0)2 + · · · is a solution of the
ODE. Using term by term differentiation, we get the series expansions of ~′(G) and
~′′(G). Substituting these expressions in to (3.2.1) and comparing the coefficients
of powers of G , we determine the coefficients 0= except possibly two. These two
constants will remain arbitrary and we would obtain a general solution of (3.2.1).
The following result guarantees that the above method works.
We will use the following result without proof.

(3.3) Theorem
Let G0 be a regular point of the ODE (3.2.1). Then the following are true:

(1) There exists a solution ~ (G) of (3.2.1) which is analytic at G0.
(2) The IVP consisting of the ODE (3.2.1) and the initial conditions ~ (G0) = ~0,

~′(G0) = ~′0 for ~0, ~
′
0 ∈ R has a unique solution ~ (G) which is analytic at G0.

(3) If ? (G) and @(G) have Taylor series expansions about G = G0 convergent for
all G with |G − G0 | < d for some d > 0, then in both (1)-(2), the radius of
convergence of the Taylor series for ~ (G) is at least d .

(3.4) Example
Solve Legendre’s equation (1 − G2)~′′ − 2G~′ + 2~ = 0 by power series method.
Here ? (G) = −2G/(1 − G2) and @(G) = 2/(1 − G2) are analytic at G = 0. By (3.3),
there exists a power series solution to the ODE about G = 0. So, we assume

~ (G) =
∞∑
==0

0=G
= .
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Plugging it in the ODE, we obtain

0 = (1 − G2)
∞∑
==0

=(= − 1)0=G=−2 − 2G
∞∑
==0

=0=G
=−1 + 2

∞∑
==0

0=G
=

=

∞∑
==0

=(= − 1)0=G=−2 +
∞∑
==0
[−=(= − 1) − 2= + 2]0=G=

=

∞∑
==0
(= + 2) (= + 1)0=+2G= −

∞∑
==0
(= − 1) (= + 2)0=G=

So, coefficient of each power of G is 0. It gives 0=+2 =
= − 1
= + 1

0= for = ≥ 0.

This recurrence relation gives 03 = 0, 05 = 2
403 = 0, . . .. That is, all odd

coefficients except 01 are 0. And,

02 = −00, 04 =
1
3
02 = −1

3
00, 06 =

3
5
04 = −1

3
3
5
00 =

1
5
00, . . .

The even coefficients are given by 02= = −
1

2= − 1
00. Hence,

~ (G) = 01G + 00(1 − G2 − 1
3
G4 − 1

5
G6 − · · · ) .

(3.5) Example
Determine two linearly independent solutions of

~′′ + 3G
1 + G2~

′ + 1
1 + G2~ = 0.

Then, find the solution ~ (G) of the ODE that satisfies the initial conditions ~ (0) = 2
and ~′(0) = 3.
We will use the power series method for solving the IVP. The functions 3G/(1+G2)
and 1/(1 + G2) are analytic at G = 0. Due to (3.3), we try a solution in the form

~ (G) =
∞∑
==0

0=G
= = 00 + 01G + 02G

2 + · · ·

Instead of plugging in the expression for ~ in the ODE, we multiply the ODE with
(1 + G2) and then put the series for ~ (G). This will make our computations simpler.
Then
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0 = (1 + G2)~′′ + 3G~′ + ~

= (1 + G2)
∞∑
==0

=(= − 1)0=G=−2 + 3G
∞∑
==0

=0=G
=−1 +

∞∑
==0

0=G
=

=

∞∑
==0

=(= − 1)0=G=−2 +
∞∑
==0
[=(= − 1) + 3= + 1]0=G=

=

∞∑
==0
(= + 2) (= + 1)0=+2G= +

∞∑
==0
(= + 1)20=G= .

So, the coefficient of like powers of G is 0; it gives (=+2) (=+1)0=+2+ (=+1)20= = 0.
Hence

0=+2 = − (= + 1)20=
(= + 2) (= + 1) = −

(= + 1)0=
= + 2

for = ≥ 0.

This is a recurrence relation to express 02, 03, . . . in terms of 00 and 01. We choose
two simplest cases: (i) 00 = 1, 01 = 0; (ii) 00 = 0, 01 = 1 to obtain two linearly
independent solutions.
(i) 00 = 1, 01 = 0. Now, 03 = 0, 05 = 0; in fact, all odd coefficients are 0. The even
coefficients are determined from

02 = −00
2

= −1
2
, 04 = −302

4
=

1 · 3
2 · 4 , . . . .

Proceeding inductively, we find that

02= = (−1)= 1 · 3 · 5 · · · (2= − 1)
2 · 4 · 6 · · · (2=) = (−1)= 1 · 3 · · · (2= − 1)

2==!
.

Thus,

~1(G) =
∞∑
==0
(−1)= 1 · 3 · · · (2= − 1)

2==!
= 1 − C

2

2
+ 1 · 3

2 · 4C
4 + · · · .

(ii) 00 = 0, 01 = 1. In this case, all even coefficients are 0, and the odd coefficients
are determined from

03 = −201
3

= −2
3
, 05 = −403

5
=

2 · 4
3 · 5 , . . . .

Proceeding inductively, we find that

02=+1 = (−1)= 2 · 4 · · · (2=)
3 · 5 · · · (2= + 1) =

(−1)=2==!
3 · 5 · · · (2= + 1) .
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Thus,

~2(G) =
∞∑
==0

(−1)=2==!
3 · 5 · · · (2= + 1)G

2=+1 = G − 2
3
G3 + 2 · 4

3 · 5G
5 − · · · .

It is easily verified that both the power series for ~1(G) and ~2(G) converge for
|G | < 1 and diverge for |G | > 1.
Further, observe that by construction, the solutions ~1(G) and ~2(G) satisfy

~1(0) = 1, ~′1(0) = 0, ~2(0) = 0, ~′2(0) = 1.

Therefore, the initial conditions ~ (0) = 2 and ~′(0) = 3 are satisfied by the solution

~ (G) = 2~1(G) + 3~2(G).

(3.6) Example
Solve the IVP: (G2 − 2G)~′′ + 5(G − 1)~′ + 3~ = 0, ~ (1) = 7, ~′(1) = 3.
The initial conditions are given at G = 1. So, we try a solution as a power series
about G = 1. Set ~ (G) =

∞∑
==0

0= (G − 1)=. Plugging it in the ODE, we obtain

0 = (G2 − 2G)~′′ + 5(G − 1)~′ + 3~

=
(
(G − 1)2 − 1

) ∞∑
==0

=(= − 1)0= (G − 1)=−2 + 5(G − 1)
∞∑
==0

=0= (G − 1)=−1 + 3
∞∑
==0

0= (G − 1)=

= −
∞∑
==0

=(= − 1)0= (G − 1)=−2 +
∞∑
==0

=(= − 1)0= (G − 1)= +
∞∑
==0
(5= + 3)0= (G − 1)=

= −
∞∑
==0
(= + 2) (= + 1)0=+2(G − 1)= +

∞∑
==0
(=2 + 4= + 3)0= (G − 1)= .

So, the coefficient of all powers of (G − 1) are 0. It gives

0=+2 =
=2 + 4= + 3
(= + 2) (= + 1)0= =

= + 3
= + 2

0= for = ≥ 0.

Now, 00 = ~ (1) = 7 and 01 = ~′(1)/1! = 3. Using the above recurrence relation,

02 =
3
2
00 =

3
2
· 7, 04 =

5
4
02 =

5 · 3
4 · 2 · 7, 06 =

7
6
04 =

7 · 5 · 3
6 · 4 · 2 · 7, . . .

03 =
4
3
01 =

4
3
· 3, 05 =

6
5
03 =

6 · 4
5 · 3 · 3, 07 =

8
7
05 =

8 · 6 · 4
7 · 5 · 3 · 3, . . .

Proceeding inductively, we find that

00 = 7, 02= =
3 · 5 · · · (2= + 1)

2 · 4 · · · (2=) ·7, 01 = 3, 02=+1 =
4 · 6 · · · (2= + 2)
3 · 5 · · · (2= + 1) ·3 for = ≥ 1.
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And, ~ (G) =
∞∑
==0

0= (G − 1)=, where 0=s are as shown above.

We remark that in the recurrence relation for the coefficients, it can very well
happen that 0=+2 depends on 0=−1, 0= and 0=+1. In such a case, we may not be able
to write 0=+2 as an expression in =.

3.4 Series solution about a regular singular point
Suppose G = 0 is a regular singular point of the ODE (3.2.1). Then G? (G) and
G2@(G) have Maclaurin series expansion. This means

? (G) = ?0

G
+ ?1 + ?2G + ?3G

2 + · · ·

@(G) = @0

G2 +
@1

G
+ @2 + @3G + @4G

2 + · · ·

Moreover, ?0, @0 and @1 are nonzero, so that ? (G) and @(G) are not analytic at G = 0.
In this case, we cannot apply (3.3). In fact, for such equations we do not have a
power series solution at G = 0. The following result shows that in such a case a
solution can be obtained in the form of GA times a power series for some real number
A . But this also is guaranteed only under some more restrictions.

(3.7) Theorem (Frobenius)
Let G = 0 be a regular singular point of the ODE (3.2.1) so that the functions G? (G)
and G2@(G) are analytic at G = 0 with power series expansions

G? (G) = ?0 + ?1G + ?2G
2 + · · · , G2@(G) = @0 + @1G + @2G

2 + · · ·

which converge for |G | < d for some d > 0. Let A1 and A2 be the roots of the equation
(called the indical equation)

A (A − 1) + ?0A + @0 = 0.

Then the ODE (3.2.1) has two linearly independent solutions in the following form
on the interval 0 < G < d:

(a) If A1, A2 ∈ R, A1 > A2 and A1 − A2 is neither 0 nor a positive integer, then

~1(G) = GA1
∞∑
==0

0=G
=, ~2(G) = GA2

∞∑
==0

1=G
=, 00 ≠ 0, 10 ≠ 0.
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(b) If A1, A2 ∈ R and A1 − A2 is a positive integer, then

~1(G) = GA1
∞∑
==0

0=G
=, ~2(G) = 0~1(G) logG + GA2

∞∑
==1

1=G
=, 00 ≠ 0.

Here, the constant 0 may turn out to be 0.
(c) If A1, A2 ∈ R and A1 = A2, then

~1(G) = GA1
∞∑
==0

0=G
=, ~2(G) = ~1(G) logG + GA1

∞∑
==1

1=G
=, 00 ≠ 0.

(d) If A1 = U + 8V and A2 = U − 8V with V ≠ 0, then

~1(G) = Re
(
z(x)

)
, y2(x) = Im

(
z(x)

)
, z(x) = xU+iV

∞∑
n=0

anxn.

The indical equation referred to in the above result comes from trying a solution
of the ODE in the form GA times a power series. In fact, we will use the above
theorem to determine the form of the series which could be a solution of the given
ODE. Next, we plug in this series in the ODE and setting the coefficients of all
powers to 0, we determine the coefficients.

(3.8) Example
Find two linearly independent solutions of 2G~′′ + ~′ + G~ = 0 for G > 0.
Here, ? (G) = (2G)−1 and @(G) = 1/2. At G = 0, @(G) is analytic, but ? (G) is not.
However, G? (G) = 1/2 and G2@(G) = G2/2 are analytic at G = 0. So, G = 0 is a
regular singular point of the ODE. We use Frobenius method to get a solution of
the ODE. Since ?0 = 1/2 and @0 = 0, the indical equation gives

A (A − 1) + ?0G + @0 = A2 − A + A
2
= A2 + A

2
= 0 ⇒ A1 =

1
2
, A2 = 0.

Since A2 − A1 is not an integer, by (3.7)(a) the two linearly independent solutions are
in the form

~1(G) =
∞∑
==0

0=G
=+1/2, ~2(G) =

∞∑
==0

1=G
=, 00 ≠ 0, 10 ≠ 0.

Instead of determining 0=s and 1=s separately, we take any solution ~ (G) as

~ (G) = GA
∞∑
==0

0=G
= =

∞∑
==0

0=G
=+A where 00 ≠ 0
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and then try to determine the coefficients 0= by considering two cases A = 0 or
A = 1/2 at an appropriate stage. So, plugging it in the ODE, we obtain

0 = 2G~′′ + ~′ + G~

= 2G
∞∑
==0
(= + A ) (= + A − 1)0=C=+A−1 +

∞∑
==0
(= + A )0=C=+A−1 + G

∞∑
==0

0=G
=+A+1

=
[
2A (A − 1)00 + A00

]
GA−1 +

[
2(1 + A )A01 + (1 + A )01

]
GA

+
∞∑
==2

[
2(= + A ) (= + A − 1)0= + (= + A )0= + 0=−2

]
G=+A−1.

Setting the coefficient of each power of G to 0, we get

1. 2A (A − 1)00 + A00 = A (2A − 1)00 = 0 ⇒ A = 0 or A = 1/2, as we had got
earlier. In fact, this gives the indical equation.

2. 2(A + 1)A01 + (A + 1)01 = (A + 1) (2A + 1)01 = 0.
3. 2(= + A ) (= + A − 1)0= + (= + A )0= = (= + A )

[
2(= + A ) − 1

]
0= = −0=−2 for = ≥ 2.

(a) A = 0. The recurrence formula (3) gives 0= =
−0=−2

=(2= − 1) for = ≥ 2.
Since 01 = 0, all odd coefficients are 0. The even coefficients are determined from
(3) and they are:

02 =
−00
2 · 3 , 04 =

−02
4 · 7 =

00
2 · 4 · 3 · 7 , 06 =

−04
6 · 11

=
−00

2 · 4 · 6 · 3 · 7 · 11
, . . . .

Since we will account for constants later, set 00 = 1 to get one solution as

~1(G) = 1 − G3

2 · 3 +
G4

2 · 4 · 3 · 7 + · · · = 1 +
∞∑
==1

(−1)=G2=

2==!3 · 7 · · · (4= − 1) .

It is easily verified that this series, a power series, converges for all G > 0.
(b) A = 1/2. The recurrence formula (3) gives

0= =
−0=−2

(= + 1/2)
[
2(= + 1/2) − 1

] =
−0=−2

=(2= + 1) for = ≥ 2.

All odd coefficients are 0; and the even coefficients are given by

02 =
−00
2 · 5 , 04 =

−02
4 · 9 =

00
2 · 4 · 5 · 9 , 06 =

−04
6 · 13

=
−00

2 · 4 · 6 · 5 · 9 · 13
, . . . .

Again, setting 00 = 1, we have

~2(G) = G1/2
(
1 +

∞∑
==1

(−1)=C2=
2==!5 · 9 · · · (4= + 1)

)
.
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It is easily verified that the series here converges for all G > 0. Clearly, ~1(G)
and ~2(G) are linearly independent. Then the general solution of the ODE is
~ (G) = 21~1(G) + 22~2(G) for G > 0.

In the indical equation A (A − 1) + ?0A + @0 = 0, the constants ?0 and @0 are the
constant terms in theMaclaurin series expansions of G? (G) and G2@(G), respectively.
Thus,

?0 = lim
G→0

[
G? (G)

]
, @0 = lim

G→0

[
G2@(G)

]
.

Alternatively, the indical equation is obtained from the ODE by substituting the
series ~ (G) = ∑∞

==0 0=G
=+A in the ODE and then setting the coefficient of the least

power in G to 0. In practice, we obtain the indical equation this way.
When the indical equation has a double root or the roots differ by an integer, it

is usually extremely difficult to determine the second solution ~2(G). In fact, ~2(G)
there has been obtained by using reduction of order. Sometimes, it is easier to
get ~2(G) by using the method of reduction of order directly once ~1(G) is already
available. If that is also difficult, which is often the case, then one only finds a few
terms in the series expansion of ~2(G).

(3.9) Example
Solve the ODE (G2 − G)~′′ + (3G − 1)~′ +~ = 0 for G > 0 using Frobenius method.
Here, ? (G) = (3G − 1)/(G2 − G) is not analytic at G = 0. However, G? (G) is analytic
at G = 0 and G2@(G) = G/(G − 1) is also analytic at G = 0. Hence G = 0 is a regular
singular point of the ODE. We try a solution in the form

~ (G) =
∞∑
==0

0=G
=+A , 00 ≠ 0.

Substituting this in the ODE, we obtain

0 =

∞∑
==0
(= + A ) (= + A − 1)0=G=+A −

∞∑
==0
(= + A ) (= + A − 1)0=G=+A−1

+ 3
∞∑
==0
(= + A )0=G=+A −

∞∑
==0
(= + A )0=G=+A−1 +

∞∑
==0

0=G
=+A .

Equating the coefficient of the least power of G to 0, we obtain the indical equation
as

0 =
[
− A (A − 1) − A

]
00 ⇒ A2 = 0.

Since A = 0 is a double root, by (3.7)(b), the two linearly independent solutions are
of the form:

~1(G) =
∞∑
==0

0=G
=, ~2(G) = ~1(G) logG +

∞∑
==0

1=G
=, 00 ≠ 0.
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To find ~1(G), we take A = 0 and equate the coefficient of G= to 0 in the above to
obtain the following recurrence relation:

=(= − 1)0= − (= + 1)=0=+1 + 3=0= − (= + 1)0=+1 + 0= = 0.

It gives 0=+1 = 0=. By choosing 00 = 1, we get one solution as

~1(G) = 1 + G + G2 + · · · = 1
1 − G for |G | < 1.

For the second solution, we use reduction of order. From § 2.6, we have

~2(G) = ~1(G)
∫
E (G) 3G, E (G) =

exp
(
−

∫
? (G) 3G

)
~2

1 (G)
,

where the ODE is in standard form, that is, when the coefficient of ~′′ is 1. For our
ODE, (with G > 0)

−
∫
? (G) 3G = −

∫
3G − 1
G (G − 1) 3G = −

∫ ( 2
G − 1

+ 1
G

)
3G = −2 log |G − 1| − logG .

E (G) = 1
~2

1 (G)
exp(−2 log |G − 1| − logG) = (1 − G)2(G (G − 1)2)−1 =

1
G
.

~2(G) = ~1(G)
∫
E (G) 3G =

1
1 − G

∫
3G

G
=

logG
1 − G .

Hence, the general solution of the ODE is ~ (G) = (1 − G)−1(21 + 22 logG).

(3.10) Example
Solve the ODE G2~′′ + 3G~′ + (1 − G)~ = 0 by Frobenius method.
Here, ? (G) = 3/G and @(G) = (1 − G)/G2 which are not analytic at G = 0 but
G? (G) = 3 and G2@(G) = 1 − G are analytic at G = 0. Hence, G = 0 is a regular
singular point of the ODE. Here, ?0 = 3 and @0 = 1; so the indical equation is

A (A − 1) + 3A + 1 = A2 − A + 2A + 1 = (A + 1)2 = 0 ⇒ A1 = −1, A2 = −1.

Since A = −1 is a double root, by (3.7)(b), the two lienarly independent solutions of
the ODE are in the form

~1(G) =
∞∑
==0

0=G
=−1, ~2(G) = ~1(G) logG +

∞∑
==0

1=G
=−1, 00 ≠ 0.
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So, let ~ (G) =
∞∑
==0

0=G
=+A with 00 ≠ 0. Putting it in the ODE gives

0 = G2
∞∑
==0
(= + A ) (= + A − 1)0=G=+A−2 + 3G

∞∑
==0
(= + A )0=G=+A−1 +

∞∑
==0

0=G
=+A −

∞∑
==0

0=G
=+A+1

=

∞∑
==0
[(= + A ) (= + A − 1 + 3) + 1]0=G=+A −

∞∑
==0

0=G
=+A+1

=

∞∑
==1
(= + A + 1)20=G=+A −

∞∑
==1

0=−1G
=+A

= (A + 1)200G
A +

∞∑
==1

[
(= + A + 1)20= − 0=−1

]
G=+A .

Setting the coefficients of all powers of G to 0, we obtain

(A + 1)2 = 0, 0= =
0=−1

(= + A + 1)2
for = ≥ 1.

Since A = −1, we have 0= = 0=−1/=2. Then

01 =
00

12 = 00, 02 =
01

22 =
00

22 , 03 =
02

32 =
00

2232 , . . .

Proceeding inductively, we obtain 0= =
00

(=!)2
. Setting 00 = 1 we have a solution of

the ODE as

~1(G) =
∞∑
==0

G=−1

(=!)2
.

We do not compute the second solution, but remark that after some cumbersome
computation, the second solution is found to be

~2(G) =
∞∑
==0

G=−1

(=!)2
logG − 2

G

(
1 +

∞∑
==1

�=G
=

(=!)2
)
where �= = 1 + 1

2 + · · · +
1
=
.

(3.11) Example
Solve the ODE (G2 − G)~′′ − G~′ + ~ = 0 for G > 1 by Frobenius method.
Here, G = 0 is a regular singular point. Write ~ (G) = ∑∞

==0 0=G
=+A and substitute in

the ODE to get

(G2 − G)
∞∑
==0
(= + A ) (= + A − 1)0=G=+A−2 − G

∞∑
==0
(= + A )0=G=+A−1 +

∞∑
==0

0=G
=+A = 0.
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Simplifying we get

∞∑
==0
(= + A − 1)20=G=+A −

∞∑
==0
(= + A ) (= + A − 1)0=G=+A−1 = 0.

The lowest power of G is GA−1. Equating its coefficient to 0, we get the indical
equation. It gives

A (A − 1) = 0 ⇒ A1 = 1, A2 = 0.

Since the roots differ by an integer, using (3.7)(3), we compute the first solution
~1(G) as follows.
Taking the A = A1 = 1 and setting the coefficient of G=+1 to 0, we get

∞∑
==0

[
=20= − (= + 2) (= + 1)0=+1

]
G=+1 = 0.

It implies the recurrence relation

0=+1 =
=2

(= + 1) (= + 2)0= for = ≥ 0.

For = = 0, we have 01 = 0. Consequently, 0= = 0 for all = ≥ 1. Choosing 00 = 1 we
get the first solution as ~1(G) = 00G

A1 = G .
For the second solution, we use the method of reduction of order. Here, ? (G) =

1/(1 − G). Then

−
∫
? (G) 3G =

∫
3G

G − 1
= log |G − 1| = log(G − 1) as G > 1

⇒ E (G) =
exp

(
−

∫
? (G) 3G

)
~2

1 (G)
=
G − 1
G2

⇒ ~2(G) = ~1(G)
∫
E (G) 3G = G

∫
G − 1
G2 3G = G

(
logG + 1

G

)
= G logG + 1.

Hence, the general solution of the ODE is ~ (G) = 21G + 22(logG + 1).

(3.12) Example
Find a series solution of Euler-Cauchy equation G2~′′ − G~′ + 10~ = 0 for G > 0.
Here, ? (G) = −1/G and @(G) = 10/G2. Thus, G = 0 is a regular singular point. We
have ?0 = lim

G→0
G? (G) = −1 and @0 = lim

G→0
G2@(G) = 10. So, the indical equation is

A (A − 1) + (−1)A + 10 = A2 − 2A + 10 = 0.
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It has complex roots 1 ± 38. We require now complex solutions of the ODE. We
proceed as earlier for the recurrence relations. Substituting

I (G) = ~ (G) =
∞∑
==0

0=G
=+A

into the ODE and setting powers of G to 0, we obtain

0 =

∞∑
==0
(= + A ) (= + A − 1)0=G=+A −

∞∑
==0
(= + A )0=G=+A +

∞∑
==0

100=G=+A

=

∞∑
==0

[
(= + A ) (= + A − 2) + 10

]
0=G

=+A

= (A2 − 2A + 10)00 = 0, (= + A ) (= + A + 10)0= = 0 for = ≥ 1.

The first one gives the indical equation. In the second one, with A = 1 ± 38, the
factor (= + A ) (= + A + 10) ≠ 0. Hence 0= = 0 for each = ≥ 1. Thus the complex
solutions are given by

I (G) = 00G
1+38 = 00G exp

(
log(G38)

)
= 00G

(
cos(3 logG) + 8 sin(3 logG)

)
.

Setting the constant00 = 1, and using (3.7)(4), the two linearly independent solutions
are

~1(G) = G cos(3 logG), ~2(G) = G sin(3 logG).

Thus, the series solution of the ODE is given by

~ (G) = 21~1 + 22~2 = 21G cos(3 logG) + 22G sin(3 logG)

where 21 and 22 are arbitrary constants.



4
Special Functions

4.1 Legendre polynomials
In this chapter we discuss some special types of ODEs whose series solutions give
rise to the special functions. First, we consider the Legendre equation in its general
form. It is

(1 − G2)~′′ − 2G~′ + ? (? + 1)~ = 0 for |G | < 1. (4.1.1)

where ? is a constant, often called a parameter. So, this equation is actually a family
of ODEs. We should not be surprised if the nature of solutions differs for various
values of ?.
The ODE in (4.1.1) has the standard form

~′′ − 2G
1 − G2 ~

′ + ? (? + 1)
1 − G2 ~ = 0.

The coefficient functions −2G/(1 − G2) and ? (? + 1)/(1 − G2) are analytic at G = 0.
That is, G = 0 is an ordinary point of the ODE. Thus, the ODE has a power series
solution in the form

~ (G) =
∞∑
==0

0=G
= .

Substituting it in the ODE and setting the coefficients of G= to 0, we obtain

(1 − G2)
∞∑
==0

=(= − 1)0=G=−2 − 2G
∞∑
==0

=0=G
=−1 + ? (? + 1)0=G= = 0

⇒ (= + 2) (= + 1)0=+2 − =(= − 1)0= − 2=0= + ? (? + 1)0= = 0
⇒ (= + 2) (= + 1)0=+2 = (=2 − = + 2= − ?2 − ?)0= = (=2 − ?2 + = − ?)0=

⇒ 0=+2 = − (= − ?) (? + = + 1)
(= + 1) (= + 2) 0= .

The recurrence relation is used to compute the coefficients of 02, 03, . . . in terms of

72
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00 and 01, which are left arbitrary. To compute a few,

02 = −
? (? + 1)

1 · 2 00, 04 = − (? − 2) (? + 3)
3 · 4 =

? (? − 2) (? + 1) (? + 3)
4!

, . . .

03 = −
(? − 1) (? + 2)

2 · 3 01, 05 = − (? − 3) (? + 4)
4 · 5 03 =

(? − 1) (? − 3) (? + 2) (? + 4)
5!

01, . . .

We thus get a formal solution ~ (G) = 00~1(G) + 01~2(G) , where

~1(G) = 1 − ? (? + 1)
2!

G2 + ? (? − 2) (? + 1) (? + 3)
4!

G4 − · · ·

~2(G) = G −
(? − 1) (? + 2)

3!
G3 + (? − 1) (? − 3) (? + 2) (? + 4)

5!
G5 − · · ·

When ? is not an integer, the numerators in the coefficients of powers of G do not
vanish. In the series for ~1(G), taking the absolute value of ratio of a term and its
preceding term, we find that���02=+2G2=+2

02=G2=

��� = ��� (? − 2=) (? + 2= + 1)
(2= + 1) (2= + 2)

���→ |G |2 as = →∞.

Hence, the radius of convergence of the series for ~1(G) is 1. Similarly, it is easy to
show that the radius of convergence for the series for ~2(G) is also 1 in case ? is not
an integer. That is, the formal solution given above is a solution for −1 < G < 1.
Notice that this is the best we can expect since the coefficient functions−2G/(1−G2)
and ? (? + 1)/(1 − G2) are not analytic at G = 1.
Next, we consider the interesting case when ? is a non-negative integer. We

consider the cases ? = 0, ? is nonzero even, and ? is nonzero odd separately.
Case 1: Suppose ? = 0. Then ~1(G) = 1 and

~2(G) = G −
(−1) (2)

3!
G3 + (−1) (−3) (2) (4)

5!
G5 − · · ·

Here, ~1(G) is a constant and ~2(G) is a power series.
Case 2: Suppose ? is nonzero and even, say, ? = 2: for some : ≥ 1. Then

~1(G) = 1−2: (2: + 1)
2!

G2+· · ·+(−1): 2: (2: − 2) · · · (2) (2: + 1) (2: + 3) · · · (2: + 2: − 1)
(2:)! G2: .

The next term in the series for ~1(G) has in the numerator the factor (? − 2:) = 0.
All succeeding terms are then 0. Therefore, ~1(G) terminates there, and it is a
polynomial. In this case, ~2(G) is a power series.
Case 3: Suppose ? is odd, say, ? = 2: + 1 for some : ≥ 0. Then

~2(G) = G−
(2:) (2: + 3)

3!
G3+· · ·+(−1): (2:) (2: − 2) · · · (2) (2: + 3) (2: + 5) · · · (2: + 2: + 1)

(2: + 1)! G2:+1.
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The next term in the series for ~2(G) is 0 since the numerator has a factor
(? − (2: + 1)) = 0. All succeeding terms are then 0. Therefore, ~2(G) termi-
nates there, and it is a polynomial. In this case, ~1(G) is a power series.
We thus find that if ? is an integer, then exactly one of ~1(G) or ~2(G) is a

polynomial.
When ? = 0, the ODE is (1 − G2)~′′ − 2G~′ = 0. Since ? = 0, the polynomial

solution of this ODE is ~1(G) = 1. This polynomial ~1(G) is of degree 0 with
~1(1) = 1.
When ? = 2, the ODE is (1 − G2)~′′ − 2G~′ + 6~ = 0. Since ? is even, the

polynomial solution of this ODE is (with ? = 2:, : = 1)

~1(G) = 1 − 2(3)
2!

G2 = 1 − 3G2.

This polynomial ~1(G) is of degree 2 with ~1(1) = 1 − 3 = −2.
It continues this way for even ?. Let us look at a few cases when ? is odd.
When ? = 1, the ODE is (1−G2)~′′−2G~′+2~ = 0. Since ? is odd, the polynomial

solution is (with ? = 2: + 1, : = 0)

~2(G) = G .

This polynomial ~2(G) is of degree 1 with ~2(1) = 1.
When ? = 3, the ODE is (1 − G2)~′′ − 2G~′ + 12~ = 0. The polynomial solution

is (with ? = 2: + 1, : = 1)

~2(G) = G −
(2) (2 + 3)

3!
G3 = G − 5

3
G3.

This polynomial ~2(G) is of degree 3 with ~2(1) = 1 − 5/3 = −2/3.
As we see from the above cases, the polynomials when evaluated at G = 1 give

the values as follows:

Parameter ?: 0 1 2 3
Degree of polynomial: 0 1 2 3
Which solution: ~1 ~2 ~1 ~2
Its value at 1: 1 1 −2 −2/3

Notice that since ~1(G) is a solution of an appropriate Legendre equation, any
constant multiple of ~1(G) is also a solution of the same Legendre equation. The
same is also true for ~2(G). In particular, the polynomials and there constant
multiples are also solutions of suitable Legendre equations. Thus, we can choose
to multiply an appropriate constant in each case so that the resulting polynomial
when evaluated at 1 will give the value 1. Such polynomials are called Legendre
polynomials.
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Thus, the Legendre polynomial of degree =, denoted by %= (G), is the polynomial
of degree = that satisfies the Legendre equation

(1 − G2)~′′ − 2G~′ + =(= + 1)~ = 0 with ~ (1) = 1.

We find that if = is even, then %= (G) = ~1(G) and it does not have any odd power
of G ; and if = is odd, then %= (G) = ~2(G) and it does not have any even power of
G . Further, these polynomials satisfy %= (1) = 1. Using the above computations, we
obtain the following:

%0(G) = ~1(G) (with ? = 0) = 1.
%1(G) = ~2(G) (with ? = 1) = G .
%2(G) = ~1(G) (with ? = 2) = 1

−2 (1 − 3G2) = 1
2 (3G

2 − 1).

%3(G) = ~2(G) (with ? = 3) = −3
2
(
G − 5

3
G3) = 1

2 (5G
3 − 3G).

There is another way to choose these constants so that the condition %= (1) = 1
is satisfied. This way we may be able to express Legendre’s polynomials in close
form. The idea is to assume certain nice form of the coefficient of highest power of
G in %= (G). So, suppose 0= is the coefficient of G= in %= (G). We choose the constants
in such a way that

0= =
(2=)!

2= (=!)2
=

1 · 3 · 5 · · · (2= − 1)
=!

for = ≥ 0.

Using our recurrence relation for the coefficients derived earlier, we have

0=−2 = −
=(= − 1)
2(2= − 1)0= = −

=(= − 1) (2=)!
2(2= − 1) (=!)2

= − (2= − 2)!
2= (= − 1)!(= − 2)! .

0=−4 = −
(= − 2) (= − 3)

4(2= − 3) 0=−2 =
(2= − 4)!

2=2!(= − 2)!(= − 4)! .

0=−2: = (−1): (2= − 2:)!
2=:!(= − :)!(= − 2:)! for = ≥ 2:.

Using this, Legendre polynomial of degree = may be written as

%= (G) =
<∑
:=0
(−1): (2= − 2:)!

2=:!(= − :)!(= − 2:)! G
=−2: where < = [=/2]

=
(2=)!

2= (=!)2
G= − (2= − 2)!

2=1!(= − 1)!(= − 2)!G
=−2 + · · · (4.1.2)

To see that it is the same %= (G) we have defined earlier we need only to check that
%= (1) = 1 for each =. We will show it later in (4.1.4).
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Though %= (G) is a polynomial, it is treated as a special function because it has
some nice properties and it comes in various disguises. One of its useful form is
the following:

Rodrigue’s formula : %= (G) =
1

2==!
3=

3G=
(G2 − 1)= . (4.1.3)

To see that the formula is correct, notice that

3=

3G=
G2=−2: =

(2= − 2:)!
(= − 2:)! G

=−2: for 0 ≤ : ≤ < = [=/2] .

Thus, %= (G) is rewritten as

%= (G) =
<∑
:=0
(−1): (2= − 2:)!

2=:!(= − :)!(= − 2:)! G
=−2:

=
1

2==!
3=

3G=

<∑
:=0
(−1): =!

:!(= − :)!G
2=−2: .

When : > < = [=/2], any term in the sum above is a polynomial of degree less
than = so that its =th derivative is 0. Hence, the sum above can be extended from
< + 1 to = without changing the value on the left hand side. So,

%= (G) =
1

2==!
3=

3G=

=∑
:=0
(−1): =!

:!(= − :)!G
2=−2: =

1
2==!

3=

3G=
(G2 − 1)= .

The last equality follows from the Binomial expansion of (G2 − 1)=.
Various useful properties of Legendre polynomials follow from Rodrigue’s for-

mula with the help of Leibniz rule for computing the =th derivative of a product of
two functions. Leibniz’s rule says that

3= (5 6)
3G=

=

=∑
:=0

=!
:!(= − :)!

3: 5

3G:

3=−:6

3G=−:
,

where the 0th derivative of a function is taken as the function itself.
In Rodrigue’ formula writing (G2 − 1)= = (G + 1)= (G − 1)= and applying Leibniz

rule we obtain

%= (G) =
1

2==!

=∑
:=0

=!
:!(= − :)!

3: [(G + 1)=]
3G:

3=−: [(G − 1)=]
3G=−:

.

The first term in the above sum is

30 [(G + 1)=]
3G0 · 3

= [(G − 1)=]
3G=

= (G + 1)==!.
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Each of the remaining terms contains the factor (G − 1). Thus, when evaluated at
G = 1, each term except the first in the sum becomes 0. Thus,

%= (1) =
1

2==!
(1 + 1)==! = 1. (4.1.4)

It is often helpful to get the generating function for the Legendre polynomials.
We will show that the generating function is (1 − 2GC + C2)−1. That is,(

1 − 2GC + C2
)−1/2

=

∞∑
==0

%= (G)C= . (4.1.5)

To see this, we apply the Binomial theorem on the left hand side expression.
Recall that the Binomial theorem asserts that

(1 + I)A =
∞∑
==0

A (A − 1) · · · (A − = + 1)
=!

I= for |I | < 1.

Taking I = C2 − 2GC = C (C − 2G) and assuming that |C2 − 2GC | < 1, we obtain

(1 − 2GC + C2)−1/2 =
∞∑
==0

(−1
2 ) (−

3
2 ) · · · (−

1
2 − = + 1)

=!
C= (C − 2G)=

=

∞∑
==0

(−1)= (2=)!
22= [=!]2

C= (C − 2G)=

=

∞∑
==0

(−1)= (2=)!
22= (=!)2

C=
( =∑
:=0

=!
:!(= − :)!C

: (−2G)=−:
)

=

∞∑
==0

=∑
:=0

(−1): (2=)!
22==!:!(= − :)!

C=+: (2G)=−: .

In general, if �:,= is any expression depending on : and =, we have

∞∑
==0

=∑
:=0

�:,=C
=+: =

∞∑
==0

[=/2]∑
:=0

�:,=−:C
= .

Using this on the above sum, we obtain

(1 − 2GC + C2)−1/2 =

∞∑
==0

[=/2]∑
:=0

(−1): (2= − 2:)!
2=:!(= − :)!(= − 2:)!C

=G=−2: =

∞∑
==0

%= (G)C= .

An important property of the Legendre polynomials is that they are orthogonal
to each other. It means∫ 1

−1
%< (G)%= (G) 3G = 0 for < ≠ =. (4.1.6)
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To see this we use the fact that Legendre polynomials are solutions of the Legendre
ODE, which can be rewritten as

[(1 − G2)~′]′ + ? (? + 1)~ = 0.

Therefore,

[(1 − G2)% ′< (G)]′ +<(< + 1) = 0, [(1 − G2)% ′= (G)]′ + =(= + 1) = 0.

Multiply the first with %= and the second with %<, subtract, and integrate to get∫ 1

−1

(
%= [(1−G2)% ′<]′−%< [(1−G2)% ′=]′

)
3G −

[
<(<+1) −=(=+1)

] ∫ 1

−1
%<%= 3G = 0.

Evaluate the first integral by using integration by parts. It gives∫ 1

−1

(
%= [(1 − G2)% ′<]′ − %< [(1 − G2)% ′=]′

)
3G

=

[
%= (1 − G2)% ′<

]1

−1
−

[
%< (1 − G2)% ′=

]1

−1

−
∫ 1

−1

[
% ′= (1 − G2)% ′< − % ′< (1 − G2)% ′=

]
3G = 0.

Hence, If< ≠ =, then
∫ 1
−1 %< (G)%= (G) 3G = 0.

What happens when< = =? We use Rodrigue’s formula and integration by parts
as follows:∫ 1

−1

[
%= (G)

]2
3G =

∫ 1

−1
%= (G)

3=

3G=
(G2 − 1)= 3G

=
1

2==!

[
%= (G)

3=−1

3G=−1 (G
2 − 1)=

]1

−1
− 1

2==!

∫ 1

−1
% ′= (G)

3=−1

3G=−1 (G
2 − 1)= 3G

= 0 − 1
2==!

∫ 1

−1
% ′= (G)

3=−1

3G=−1 (G
2 − 1)= 3G

...

=
(−1)=
2==!

∫ 1

−1
[%= (G)] (=)

∫ 1

−1
% ′= (G)

30

3G0 (G
2 − 1)= 3G

=
(−1)=
2==!

∫ 1

−1

(2=)!
2==!

(1 − G2)= 3G

=
2(2=)!

22= (=!)2

∫ 1

0
(1 − G2)= 3G (put G = sin\ )

=
2(2=)!

22= (=!)2

∫ c/2

0
cos2=+1 \ 3\
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=
2(2=)!

22= (=!)2
2=

2= + 1

∫ c/2

0
cos2=−1 \ 3\

...

=
2(2=)!

22= (=!)2
2=

2= + 1
2= − 2
2= − 1

· · · 2
3

∫ c/2

0
cos\ 3\

=
2(2=)!

22= (=!)2
2=

2= + 1
2= − 2
2= − 1

· · · 2
3
=

2
2= + 1

.

Hence, ∫ 1

−1

[
%= (G)

]2
3G =

2
2= + 1

. (4.1.7)

Many problems in engineering depend on the possibility of expanding a given
function in a series of Legendre polynomials. It is easy to see that a polynomial
can always be expanded this way. For example, consider a polynomial of degree at
most 3, say

? (G) = 10 + 11G + 12G
2 + 13G

3.

With %0(G) = 1, %1(G) = G, %2(G) = 1
2 (3G

2 − 1), %3(G) = 1
2 (5G

3 − 3G), we see that

1 = %0(G), G = %1(G), G2 =
1
3
%0(G) +

2
3
%2(G), G3 =

3
5
%1(G) +

2
5
%3(G).

Hence,

? (G) =
(
10 +

12
3

)
%0(G) +

(
11 +

313
5

)
%1(G) +

212
3
%2(G) +

213
5
%3(G) .

Similarly, G= can be expanded as
∑=
:=0 0:%: (G) for some constants 0: . It looks that

if a function has a power series expansion, then it can also be expanded in terms
of Legendre polynomials %= (G). However, some conditions my be required so that
the obtained series is convergent. We rather concentrate on how to compute the
coefficients in such a series expansion if it exists.
When a function 5 (G) for −1 < G < 1, can be written in the form

5 (G) =
∞∑
==0

0=%= (G)

we say that 5 (G) has a Legendre series expansion. Our question is, if 5 (G) has a
Legendre series expansion, then how do we compute the coefficients 0=?
We multiply the above with %< (G), integrate term by term (assuming that this is

permissible), and use (4.1.6-4.1.7) to obtain∫ 1

−1
5 (G)%< (G) 3G =

∞∑
==0

0=

∫ 1

−1
%< (G)%= (G) 3G =

20<
2< + 1

.
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Therefore,

0= =

(
= + 1

2

) ∫ 1

−1
5 (G)%= (G) 3G.

Many other properties of Legendre polynomials are included in the exercises. As
a convention, when %= (G) is treated as a function, we assume that −1 ≤ G ≤ 1.

4.2 Bessel Functions
The linear homogeneous second order ordinary differential equation

G2~′′ + G~′ + (G2 − a2)~ = 0 (4.2.1)

is called the Bessel’s equation with non-negative parameter a . (It is nu not vee.) It
arises many where in applications. In standard form, the equation is

~′′ + ~
′

G
+

(
1 − a

2

G2

)
~ = 0.

The point G = 0 is a regular singular point of the ODE. Hence the ODE has a
solution in the form

~ (G) =
∞∑
:=0

0:G
:+A with 00 ≠ 0.

Substituting it in (4.2.1), we obtain

∞∑
:=0
(: + A ) (: + A − 1)0:G:+A +

∞∑
:=0
(: + A )0:G:+A

+
∞∑
:=0

0:G
:+A+2 − a2

∞∑
:=0

0:G
:+A = 0.

Thus coefficients of GA , GA+1 and G:+A for : ≥ 2, are 0. It follows that
1. A (A − 1)00 + A00 − a200 = 0.
2. (A + 1)A01 + (A + 1)01 − a201 = 0.
3. (: + A ) (: + A − 1)0: + (: + A )0: + 0:−2 − a20: = 0 for : ≥ 2.

The first one gives the indical equation as (A + a) (A − a) = 0. The roots are A1 = a

and A2 = −a . Corresponding to A = a , the first solution of the ODE is

~1(G) =
∞∑
:=0

0:G
:+a .
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We must find the coefficients 0: . For A = a , the second equation above implies

(a2 + a + a + 1 − a2)01 = (2a + 1)01 = 0 ⇒ 01 = 0.

Substituting A = a in the third equation, we obtain

(: + a) (: + a − 1)0: + (: + a)0: + 0:−2 − a20: = 0
⇒

[
(: + a) (: + a − 1 + 1) − a2]0: + 0:−2 = 0

⇒ : (: + 2a)0: + 0:−2 = 0
⇒ 0: = −

0:−2
: (: + 2a)

Since 01 = 0 it follows that all odd coefficients are 0. For even coefficients, say,
: = 2<, the above recurrence looks like

02< = − 02<−2

22<(a +<)
for < = 1, 2, 3, . . .

It implies that

02 = − 00

22(a + 1)
, 04 = − 02

222(a + 2)
=

00

242!(a + 1) (a + 2)
, . . .

Proceeding inductively, we get

02< =
(−1)<00

22<<!(a + 1) (a + 2) · · · (a +<)
for < = 1, 2, 3, . . .

By choosing the constant 00, all even coefficients are evaluated. It is customary to
choose

00 =
1

2aΓ(a + 1) .

Here,

Γ(G) =
∫ ∞

0
4−CCG−1 3C for G ≥ 0.

Notice that Γ(a + 1) is well defined since a is non-negative. Some useful properties
of the gamma function are as follows:

Γ(G + 1) = GΓ(G), Γ(1/2) =
√
c, Γ(= + 1) = =! for = = 0, 1, 2, . . . .

It then follows that

(G + 1) (G + 2) · · · (G +<)Γ(G + 1) = Γ(G +< + 1) for< ∈ N ∪ {0}.
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With the above choice of 00, we obtain

02< =
(−1)<00

22<<!(a + 1) (a + 2) · · · (a +<)

=
(−1)<

22<<!2aΓ(a + 1) (a + 1) (a + 2) · · · (a +<)

=
(−1)<

2a+2<<!Γ(a +< + 1)
for < = 1, 2, 3, . . . .

With these coefficients, the solution ~1(G) =
∑∞
:=0 0:G

:+a is written as �a (G), and is
called the Bessel function of first kind with order a . Thus,

�a (G) = Ga
∞∑
<=0

(−1)<G2<

2a+2<<!Γ(a +< + 1)
. (4.2.2)

The absolute value of the ratio of a term to its succeeding term in the seris for
�a (G) is given by���02<−2

02<

��� = ���22<(a +<)
G2

���→∞ for any nonzero G .

The ratio test implies that the series in �a (G) is convergent. Notice that the con-
vergence of the series is fast since factorials are in the denominator. The series
obviously converges for G = 0. Hence, �a (G) is well defined for all G .
In particular, when a = = ∈ N ∪ {0}, we have Γ(a + 1) = Γ(= + 1) = =!. Thus,

00 =
1

2==!

02< =
(−1)<

2a+2<<!Γ(a +< + 1)
=

(−1)<
2=+2<<!(= +<)!

for < = 1, 2, , 3, . . . .

The odd coefficients are 0 as earlier. Therefore, the first solution ~1(G) of Bessel’s
equation

G2~′′ + G~′ + (G2 − =2)~ = 0, = ∈ N ∪ {0}
is given by

~1(G) = �= (G) = G=
∞∑
<=0

(−1)< G2<

2=+2<<!(= +<)!
for = ∈ N ∪ {0}. (4.2.3)

Of course, this expression is directly obtained from (4.2.2) by taking a = =. For
instance, the Bessel functions of first kind and order 0 and 1 are as follows.

�0(G) =
∞∑
<=0

(−1)<G2<

22< (<!)2
= 1 − G2

22(1!)2
+ G4

24(2!)2
− G6

26(3!)2
+ · · ·

�1(G) =
∞∑
<=0

(−1)<G2<+1

22<+1<!(< + 1)!
=
G

2
− G3

231!2!
+ G5

252!3!
− G7

273!4!
+ · · ·
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Notice that �= (0) = 0 for = ≥ 1. It can be shown that

�= (G) ≈
√

2
cG

cos
(
G − =c

2
− c

4

)
for large G .

For a general solution of Bessel’s equation (4.2.1), we consider two cases.
Case 1: Suppose the non-negative parameter a is not an integer. Then the second
solution ~2(G) of Bessel’s equation (4.2.1) is given by

~2(G) = �−a (G) =
∞∑
<=0

(−1)<G2<−a

22<−a<!Γ(< − a + 1)
. (4.2.4)

This follows from a derivation similar to that of �a (G). Also, by substituting a with
−a in (4.2.2), we obtain this expression for �−a (G).
Observe that any power of G in �a (G) is G2<+a and any power of G in �−a (G) is

G2<−a . Since a is not an integer, no power of G in �a (G) matches with any power
of G in �−a (G). Hence �a (G) and �−a (G) are linearly independent. Therefore, any
solution ~ (G) of Bessel’s equation with non-integral parameter a is given by

~ (G) = 21�a (G) + 22�−a (G) for a ∉ Z.

Case 2: Suppose a = = is an integer. We know the first solution as �= (G) for = ≥ 0.
For the second solution, let us look at �−= (G). From (4.2.4) we have

�−= (G) =
∞∑
<=0

(−1)<G2<−=

22<−=<!(< − =)!
. (4.2.5)

We can also get �−= (G) from (4.2.4) another way. In (4.2.4), let a approach a positive
integer =. Then the Gamma function in the first = terms approach ∞ so that the
coefficients in the first = terms approach 0. The summation starts from < = = as
the Gamma function there is equal to Γ(< − = + 1) = (< − =)! for < ≥ =. Then,
shifting the index with : =< − =, we obtain

�−= (G) =
∞∑
<==

(−1)<G2<−=

22<−=<!(< − =)!
=

∞∑
:=0

(−1)=+:G2:+=

22:+=:!(: + =)!
.
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Comparing the last expression with (4.2.5) we find that it is (−1)= �= (G). Therefore,

�−= (G) = (−1)= �= (G) for = ∈ Z. (4.2.6)

It implies that �= (G) and �−= (G) are linearly dependent. Thus, we cannot take the
second solution ~2(G) as �−= (G). The second solution, denoted by .= (G) can be
obtained by using reduction of order; it is fairly complicated. We only mention the
final result:

.= (G) =
2
c
�= (G)

(
log

G

2
+ W

)
+ G

=

c

∞∑
<=0

(−1)<−1(ℎ< + ℎ<+=G2<

22<+=<!(< + =)!

−G
−=

c

=−1∑
<=0

(= −< − 1)!G2<

22<−=<!
for G > 0 (4.2.7)

where = = 0, 1, 2, . . ., ℎ0 = 0, ℎ1 = 1, ℎ: = 1 + 1
2 + · · · +

1
:
, and W = lim

:→∞
(ℎ: − log:)

is Euler constant. In particular,

.0(G) =
2
c

[
�0(G)

(
log(G/2) + W

)
+
∞∑
<=1

(−1)<−1ℎ<G
2<

22< (<!)2
]
.

It can be seen that .0(G) behaves like logG for small G and .0(G) → −∞ when
G → 0.
In fact, both the cases above can be unified to obtain a function .a (G) which is a

second solution of Bessel’s equation. It is as follows:

.a (G) = cosec(ac)
[
�a (G) cos(ac) − �−a (G)

]
.

With this definition, it can be seen that

lim
a→=

.a (G) = .= (G).

But remember that when a is not an integer, it does not say that �−a (G) is equal to
.−a (G). In fact for a ∉ Z, .−a (G) = 0�a (G) + 1�−a (G) for some nonzero 0 and 1.
Nonetheless, �a (G) and.a (G) are linearly independent and.a (G) is also a solution of
Bessel’s equation (4.2.1). This function .a (G) is called Bessel function of second
kind of order a . With the help of this function we thus say that the general solution
of Bessel’s equation (4.2.1) is given by

~ (G) = 21�a (G) + 22.a (G)

for all values of a and for G > 0.
The complex solutions of Bessel’s equation may be given by

�
(1)
a (G) = �a (G) + 8.a (G), �

(2)
a (G) = �a (G) − 8.a (G).

These two linearly independent complex solutions of Bessel’s equation are called
Bessel functions of third kind of order a .
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4.3 Properties of �a and �=
In what follows we write �= to indicate that the parameter a in �a is an integer =. In
this section we discuss some well known properties of �a (G) and of �= (G).
Multiply (4.2.2) by Ga to get

Ga �a (G) =
∞∑
<=0

(−1)<G2a+2<

2a+2<<!Γ(a +< + 1)
.

Differentiate with respect to G , cancel 2, pull out G2a−1, and use the relation
(a +<)Γ(a +<) = Γ(a +< + 1) to obtain(

Ga �a (G)
)′
=

∞∑
<=0

(−1)< 2(a +<)G2a+2<−1

2a+2<<!Γ(a +< + 1)
= GaGa−1

∞∑
<=0

(−1)<G2<

2a+2<−1<!Γ(a +<)
.

Comparing the last expression with (4.2.2), we find that(
Ga �a (G)

)′
= Ga �a−1(G). (4.3.1)

Multiply (4.2.2) by G−a , differentiate with respect to G , cancel 2<, and shift the
index by taking< = : + 1, to obtain(

G−a �a (G)
)′
=

∞∑
<=1

(−1)<G2<−1

2a+2<−1(< − 1)!Γ(a +< + 1)
=

∞∑
:=0

(−1):+1G2:+1

2a+2:+1:!Γ(a + : + 2)
.

Now, in (4.2.2) take a as a + 1 and < as : so that you get the last expression as
−G−a �a+1(G). Therefore, (

G−a �a (G)
)′
= −G−a �a+1(G). (4.3.2)

From (4.3.1)-(4.3.2), we get

�a−1(G) = G−a
(
Ga �a (G)

)′
= G−a

[
Ga � ′a (G) + aGa−1�a (G)

]
= � ′a (G) + aG−1�a (G).

�a+1(G) = −Ga
(
G−a �a (G)

)′
= −Ga

[
G−a � ′a (G) − aG−a−1�a (G)

]
= −� ′a (G) + aG−1�a (G).

Subtracting the second from the first, we obtain

�a−1(G) − �a+1(G) = 2� ′a (G). (4.3.3)

And, adding those two equalities, we get

�a−1(G) + �a+1(G) =
2a
G
�a (G). (4.3.4)
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This identity can be rewritten as

�a+1(G) =
2a
G
�a (G) − �a−1(G). (4.3.5)

Now, we can use it to compute Bessel functions of higher order from lower ones.
Recall that Γ(1/2) =

√
c . Then,

�1/2(G) =
√
G

∞∑
<=0

(−1)<G2<

22<+1/2<!Γ(< + 3/2)
=

√
2
G

∞∑
<=0

(−1)<G2<+1

22<+1<!Γ(< + 1/2)
.

However,

2<<! = 2<(2< − 2) · · · 4 · 2.
2<+1Γ(< + 1/2) = 2<+1(< + 1/2) (< − 1/2) · · · (3/2) · (1/2)Γ(1/2)

= (2< + 1) (2< − 1) · · · 3 · 1 ·
√
c.

22<+1<!Γ(< + 1/2) = [2<<!] [2<+1Γ(< + 1/2)] = (2< + 1)!
√
c.

Hence,

�1/2(G) =
√

2
G

∞∑
<=0

(−1)<G2<+1

(2< + 1)!
√
c
=

√
2
cG

sinG . (4.3.6)

Multiply by
√
G , differentiate with respect to G , and use (4.3.1) with a = 1/2 to

obtain (√
G �1/2(G)

)′
=

√
2
c

cosG,
(√
G �1/2(G)

)′
=
√
G �1/2−1(G).

Therefore,

�−1/2(G) =
√

2
cG

cosG . (4.3.7)

Due to (4.3.5) �:/2(G) for any integer : , can be expressed as a product of some
rational function and a trigonometric function.
To find a generating function for �= (G) and �−= (G), let us expand the function

exp
[
CG/2 − G/(2C)

]
. We find that

exp
(CG

2
− G

2C

)
=

( ∞∑
A=0

1
A !

(CG
2

)A ) ( ∞∑
B=0

1
B!

( G
2C

)B)
=

( ∞∑
A=0

1
A !

(G
2

)A
CA

) ( ∞∑
B=0

(−1)B
B!

(G
2

)B
C−B

)
=

∞∑
A=0

∞∑
B=0

(−1)B
A !B!

(G
2

)A+B
CA−B

=

∞∑
==−∞


∞∑

B=max{0,−=}

(−1)B
B!(= + B)!

(G
2

)=+2B C=



Special Functions 87

For = ≥ 0, the coefficient of C= in the above expression is
∞∑
B=0

(−1)B
(B!(= + B)!

(G
2

)=+2B
= G=

∞∑
B=0

(−1)B G2B

2=+2B B!(= + B)!
= �= (G).

And, for = ≥ 0, the coefficient of C−= is (shifting the index with : = B − =):
∞∑
B==

(−1)B
B!(= − B)!

(G
2

)−=+2B
=

∞∑
:=0

(−1):+=
(= + :)!:!

(G
2

)=+2B
= (−1)= �= (G) = �−= (G).

We thus conclude that the generating function for �= (G) for = ∈ Z is

exp
(CG

2
− G

2C

)
.

It means

exp
(CG

2
− G

2C

)
=

∞∑
==−∞

�= (G)C= . (4.3.8)

Some more properties of Bessel functions of first kind are to be found in the
exercises.
The zeros of Bessel functions of first kind play an important role in modeling

of vibrations. It is known that there are infinite number of positive zeros of �= (G).
It is also known that between any two zeros of �= (G) there exists a unique zero of
�=+1(G).

4.4 Sturm-Liouville problems
We have seen that the Legendre polynomials are orthogonal in the sense that∫ 1
−1 %< (G)%= (G) 3G = 0 when < ≠ =. A similar relation holds for Bessel func-
tions. There is a generalization of all these types of functions that are defined by a
second order ODE.We will discuss this generalization here. Later we will conclude
many useful properties about Bessel functions using this generalized problem.
Any ODE in the following form is called a Sturm-Liouville equation:[

? (G)~′
]′ + [

@(G) + _A (G)
]
~ = 0 for 0 < G < 1 (4.4.1)

Here, _ ∈ R is a parameter.

(4.1) Example

1. The simple harmonic motion equation~′′+=2~ = 0 is a Sturm-Liouville equation
with ? (G) = 1, @(G) = 0, A (G) = 1 and _ = =2.
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2. The Legendre equation (1 − G2)~′′ − 2G~′ + ? (? + 1)~ = 0 is a Sturm-Liouville
equation with ? (G) = 1 − G2, @(G) = 0, A (G) = 1 and _ = ? (? + 1).

3. The Bessel’s equation

C2
32~

3C2
+ C 3~
3C
+ (C2 − a2)~ = 0 for C > 0

is a Sturm-Liouville equation. To see this, put C = :G for : > 0. We have

3~

3G
= :

3~

3C
,

32~

3G2 = :23
2~

3C2
.

Then the above Bessel equation is reduced to

:2G23
2~

3C2
+ :G3~

3C
+ (:2G2 − a2)~ = 0 or,

G2~′′ + G~′ + (:2G2 − a2)~ = 0.

However, G (G~′)′ = G (G~′′+~′) = G2~′′+G~′. Hence, the above ODE is rewritten
as

(G~′)′ +
(
− a

2

G
+ _G

)
~ = 0 where _ = :2.

This is a Sturm-Liouville equation with ? (G) = G , @(G) = −a2/G , A (G) = G for
G > 0.
Notice that �= (_G) satisfies this ODE.

With the Sturm-Liouville equation, we associate one of the following conditions:

:1~ (0) + :2~
′(0) = 0, ℓ1~ (1) + ℓ2~′(1) = 0 (4.4.2)

? (0) = ? (1), ~ (0) = ~ (1), ~′(0) = ~′(1). (4.4.3)

? (0) = 0, ℓ1~ (1) + ℓ2~′(1) = 0, ~ (G) remains bounded. (4.4.4)

:1~ (0) + :2~
′(0) = 0, ? (1) = 0, ~ (G) remains bounded. (4.4.5)

Here, :1, :2, ℓ1, ℓ2 are constants where at least one : is nonzero and at least one ℓ is
nonzero, ? (G), ?′(G), @(G), A (G) are continuous on 0 ≤ G ≤ 1, and ? (G) is a non-zero
function. We also assume that either A (G) > 0 for all G ∈ [0, 1] or A (G) < 0 for all
G ∈ [0, 1].
The conditions in (4.4.2)-(4.4.5) are prescribed at two points instead of at one

single point; thus these conditions are called boundary conditions. Accordingly,
the Sturm-Liouville equation (4.4.1) along with one of these boundary conditions
is called a Sturm-Liouville problem. The names associated with these problems
are as follows:
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regular Sturm-Liouville problem: (4.4.1) and (4.4.2)
periodic Sturm-Liouville problem: (4.4.1) and (4.4.3)
singular Sturm-Liouville problems: (4.4.1) with any one of (4.4.4) or (4.4.5)

We must remember that if a solution of the BVP exists, then it must be well defined
over the interval [0, 1].
If the zero function is a solution of a Sturm-Liouville problem, then it is called

the trivial solution. We are interested in getting non-trivial solutions.
Suppose a Sturm-Liouville problem is given. Corresponding to each value of

the parameter _, there may or may not exist a nontrivial solution of the problem.
Those values of _ for which the problem has a non-trivial solution are called
eigenvalues. Corresponding to an eigenvalue _, the non-trivial solutions ~ (G) are
called eigenfunction.

(4.2) Example
Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

~′′ + _~ = 0, ~ (0) = 0, ~ (c) = 0.

This is a regular Sturm-Liouville problem with 0 = 0, 1 = c , ? (G) = 1, @(G) = 0,
A (G) = 1, and :1 = ℓ1 = 1, :2 = ℓ2 = 0. Since the boundary conditions are given
at G = 0 and at G = c , the eigenfunctions if exist, must be defined over the interval
[0, c].
For _ = 0, the equation is ~′′ = 0 giving the general solution as ~ (G) = 21 + 22G .

Now, ~ (0) = 0 ⇒ 21 = 0. So, ~ (G) = 21G . Then, ~ (c) = 0 ⇒ 22 = 0.
So, ~ (G) = 0, the zero function. Thus, _ = 0 is not an eigenvalue; it means that
corresponding to _ = 0, there does not exist any eigenfunction (non-trivial solution).
Let _ < 0. Write _ = −U2 for nonzero U ∈ R. The ODE is ~′′ = U2~. Its general

solution is ~ = 214
UG + 224

−UG . The boundary conditions imply that 21 + 22 = 0 and
214

c + 224
−c = 0. The solution of these two linear equations in 21, 22 is unique and

it is 21 = 0 = 22. Consequently, ~ (G) = 0, the zero function. Hence, no negative
number is an eigenvalue of this Sturm-Liouville problem.
Let _ > 0. Write V =

√
_. The ODE is~′′+ V2~ = 0. Its general solution is~ (G) =

21 cos(VG) +22 sin(VG). Now, ~ (0) = 0 implies 21 = 0. So, ~ (G) = 22 sin(VG). Then
~ (c) = 22 sin(Vc). If 22 = 0, then ~ (G) = 0, the zero function. Thus, in order that
~ (G) be non-trivial, we must have 22 ≠ 0. Then, sin(VG) = 0 ⇒ V ∈ Z.
Write V = = ∈ Z. Then _ = =2 for = ∈ Z, are the eigenvalues. That is, the

eigenvalues are _ = =2 for = = 0, 1, 2, 3, . . . and the corresponding eigenfunctions
are ~ (G) = sin(=G) defined over the interval [0, c].

(4.3) Example
Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

~′′ + _~ = 0, ~ (0) = 0, ~′(c) = 0.
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This is again a regular Sturm-Liouville problem. As earlier, we consider three cases.
If _ = 0, then the general solution is ~ (G) = 21 + 22G . Now, ~ (0) = 0 ⇒ 21 = 0.

Then ~ (G) = 22G ⇒ ~′(G) = 22. Then, ~′(c) = 0 ⇒ 22 = 0. So, ~ (G) = 0.
Therefore, 0 is not an eigenvalue.
If _ < 0, then write _ = −U2 for U > 0. The general solution is ~ (G) =

214
UG + 224

−UG so that ~′(G) = 21U4
UG − 22U4

−UG . The boundary conditions imply
21 + 22 = 1 and 21U4

Uc − 22U4
−Uc = 0. It gives 21 = 22 = 0 so that ~ (G) = 0, the zero

function. Hence, negative numbers are not eigenvalues.
So, let _ = V2 for V > 0. The general solution is ~ (G) = 21 cos(VG) + 22 sin(VG).

Now,~ (0) = 0 ⇒ 21 = 0 so that~ (G) = 22 sin(VG). Then~′(G) = 22V cos(VG). The
boundary condition ~′(c) = 0 implies 22V cos(Vc) = 0. Now, 22 = 0 would give
only trivial solution. Otherwise, V cos(Vc) = 0 ⇒ cos(Vc) = 0 ⇒ V = = + 1/2
for = ∈ Z. Thus, the eigenvalues are

_= = V
2 =
(2= + 1)2

4
for = = 0, 1, 2, 3, . . .

Notice that negative values of = give rise to already listed eigenvalues. The corre-
sponding eigenfunctions are

~= (G) = sin(VG) = sin(= + 1/2)G for = = 0, 1, 2, 3, . . . .

(4.4) Example
Find the eigenvalues and eigenfunctions of the periodic Sturm-Liouville problem

~′′ + _~ = 0, ~ (0) = ~ (ℓ), ~′(0) = ~′(ℓ)

where ℓ > 0 is given.
If _ = 0, then the general solution is ~ (G) = 21 + 22G . Now, ~ (0) = ~ (ℓ) ⇒ 21 =

21 + 22ℓ ⇒ 22 = 0 ⇒ ~ (G) = 21, which is a nonzero function for 21 ≠ 0. Thus,
_ = 0 is an eigenvalue and ~ (G) = 1 is a corresponding eigenfunction.
If _ < 0, say, _ = −U2 for U > 0, then the general solution is~ (G) = 214

UG +224
−UG .

The boundary conditions imply

21(1 − 4Uℓ) = 22(4−Uℓ − 1), 21(1 − 4Uℓ) = −22(4−Uℓ − 1).

Solving these, we get 22 = 0 = 21. This leads to the trivial solution. So, no negative
number can be an eigenvalue.
If _ > 0, say, _ = V2 for V > 0, then the general solution is ~ = 21 cos(VG) +

22 sin(VG). The boundary conditions give

21
(
1 − cos(Vℓ)

)
= 22 sin(Vℓ), 21

(
1 − cos(Vℓ)

)
= −21 sin(Vℓ) .
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Eliminating 22, we obtain 221
(
1 − cos(Vℓ)

)
= 0. It implies either 21 = 0 or

cos(Vℓ) = 1.
If 21 = 0, then 22 = 0 so that ~ (G) is the trivial solution. This does not give any

eigenvalue. So, let cos(Vℓ) = 1. Then, Vℓ = 2=c for = ∈ Z. Then,

_= = V
2 = 4=2c2/ℓ2 for = = 0, 1, 2, 3, . . .

are the eigenvalues. The corresponding solutions are

~= (G) = 21 cos(V=G) + 22 sin(V=G), V= = 2=c/ℓ for = = 0, 1, 2, 3, . . .

Thus, both the functions cos(V=G) and sin(V=G) are eigenfunctions associated with
the eigenvalue V2

= . That is, the eigenvalues and the corresponding eigenfunctions
are

_= =
4=2c2

ℓ2 , ~1
= (G) = cos

(2=cG
ℓ

)
, ~2

= (G) = sin
(2=cG

ℓ

)
for = = 0, 1, 2, 3, . . ., defined over [0, ℓ].

(4.5) Example
Find the eigenvalues and eigenfunctions of the regular Sturm-Liouville problem

~′′ + _~ = 0, ~ (0) = ~′(0), ~ (1) + ~′(1) = 0.

Notice that the eigenfunctions must be well defined over [0, 1]. As earlier we
consider the three cases.
If _ = 0, then the general solution is ~ (G) = 21 + 22G . The boundary conditions

give 21 = 22, 221 + 22 = 0 ⇒ 21 = 0 = 22. So, ~ (G) = 0. Hence, _ = 0 is not an
eigenvalue.
Let _ < 0. Write _ = −U2 forU > 0. The general solution is~ (G) = 214

UG +224
−UG .

The boundary conditions give

21(1 − U) = −22(1 + U), 21
[
(1 + U)4U + 22(1 − U)4−U

]
= 0.

If U = 1, then the first equation gives 22 = 0; then the second equation gives 21 = 0.
It leads to the trivial solution. So, let U ≠ 1. Eliminating 22 from the above
equations, we get

21
[
(1 + U)24U − (1 − U)24−U

]
= 0.

Since the bracketed term is nonzero, 21 = 0. It then follows that 22 = 0 so that there
is no non-trivial solution. In any case, no non-trivial solution exists. So, a negative
number cannot be an eigenvalue.
Then, consider _ > 0. Write _ = V2 for V > 0. The general solution is

~ (G) = 21 cos(VG) + 22 sin(VG). The boundary conditions give

21 = V22, 21 cos V + 22 sin V − V21 sin V + V22 cos V = 0.
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Eliminating 21, we have 22
[
2V cos V + (1 − V2) sin V

]
= 0. If 22 = 0, then 21 =

0 and it leads to the trivial solution. For a non-trivial solution, we must have
2V cos V + (1 − V2) sin V = 0. It gives

tan V =
2V

V2 − 1
.

That is, the eigenvalues are V2, where V satisfies the above equation. The corre-
sponding eigenfunctions are ~1(G) = cos(VG) and ~2(G) = sin(VG).

(4.6) Example
Find the eigenvalues and eigenfunctions of Bessel’s equation

C2
32~

3C2
+ C 3~
3C
+ (C2 − a2)~ = 0 for C > 0

with the condition that the solution remains bounded on the interval [0, 0] and
~ (0) = 0.
See Example 4.1(3); taking C = :G for : > 0, the ODE is transformed to the
Sturm-Liouville equation

(G~′)′ +
(
− a

2

G
+ _G

)
~ = 0 where _ = :2.

Notice that ? (0) = 0 so that this is a singular Sturm-Lioville problem, where
~ (0) = 0.
The linearly independent solutions of the above Bessel equation are �= (C) and

.= (C). Hence, the general solution of the Sturm-Liouville equation is

~ (G) = 21�= (:G) + 22.= (:G).

Recall that .= (:G) → ∞ as G → 0. Since we need only bounded solutions, we must
set 22 = 0. Thus, the required non-trivial solution is ~ (G) = 21�= (:G).
Write ' = 0/: . When C = 0, we have :G = 0 ⇒ G = '. The boundary condition

says that �= (0) = 0 or
�= (:') = 0.

This condition is satisfied when :' is a zero of �= (G). Denote the zeros of �= (G) by
I=,A with A = 1, 2, 3, . . .. [It is known that there are infinite number of zeros of �= (G)]
Then, the values of : are

: =
I=,A

'
for A = 1, 2, 3, . . .

As _ = :2, the eigenvalues and the corresponding eigenfunctions are

_A =

(I=,A
'

)2
, ~A (G) = �=

(I=,AG
'

)
for A = 1, 2, 3, . . .

where I=,A is the A th positive zero of �= (G).
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4.5 Orthogonality
The most important property of eigenfunctions of a Sturm-Liouville problem is that
the eigenfunctions are orthogonal. For the plane vectors, orthogonality is obtained
via the dot product. To generalize this notion, we introduce the so called inner
products of funtions.
Let ~1(G), ~2(G), . . . be functions defined on an interval [0, 1]. Let A (G) be a

positive function defined on [0, 1], that is, A (G) > 0 for each G ∈ [0, 1]. Let
<,= ∈ N. The inner product with weight A (G) of ~< (G) and ~= (G) is denoted by
〈~<, ~=〉 and is defined as

〈~<, ~=〉 :=
∫ 1

0

A (G) ~< (G) ~= (G) 3G.

It follows that when< = =, 〈~<, ~<〉 ≥ 0. The norm of a function ~< (G) is denoted
by ‖~<‖ and is defined as

‖~<‖ =
√
〈~<, ~<〉 =

√∫ 1

0

A (G) [~< (G)]2 3G .

We say that~< and~= are orthogonal to each other with weight A (G) iff 〈~<, ~=〉 = 0.
The functions ~1(G), ~2(G), . . . are called orthogonal with weight A (G) iff ~< (G) is
orthogonal to ~= (G) for all <,= ∈ N, < ≠ =. The functions ~1(G), ~2(G), . . . are
called orthonormal with weight A (G) iff they are orthogonal and the norm of each
~ 9 is 1. This happens when for all<,= ∈ N, we find that

〈~<, ~=〉 =
∫ 1

0

A (G) ~< (G) ~= (G) 3G = X<,= =

{
0 if < ≠ =

1 if < = =.

(4.7) Example
The functions ~ 9 (G) = sin( 9G), 9 = 1, 2, . . . are orthogonal on the interval [−c, c]
with the weight function A (G) = 1. Indeed, if< ≠ =, then

〈~<, ~=〉 =
∫ c

−c
sin(<G) sin(=G) 3G =

1
2

∫ c

−c
cos(<−=)G 3G−1

2

∫ c

−c
cos(<+=)G 3G = 0.

Also, we find that ‖~<‖2 = 〈~<, ~<〉 =
∫ c

−c
sin2(<G) 3G = c.

Hence, the functions
sinG
√
c
,

sin(2G)
√
c

,
sin(3G)
√
c

, . . . are orthonormal.

In general, if~1(G), ~2(G), ~3(G), . . . are orthogonal, then the normalized functions
~1(G)
‖~1‖

,
~2(G)
‖~2‖

,
~3(G)
‖~3‖

, . . .
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are orthonormal. Similar to the last example, if< ≠ =, then∫ c

−c
1 · cos(<G) 3G = 0,

∫ c

−c
1 · sin(<G) 3G = 0,

∫ c

−c
cos(<G) cos(=G) 3G = 0,∫ c

−c
cos(<G) sin(=G) 3G = 0,

∫ c

−c
sin(<G) sin(=G) 3G = 0, and∫ c

−c
13G = 2c,

∫ c

−c
cos2(<G) 3G = c,

∫ c

−c
sin2(<G) 3G = c.

Hence,
1
√

2c
,

cos(<G)
√
c

,
sin(<G)
√
c

for< = 1, 2, 3, . . . are orthonormal.

We mention an important fact about Sturm-Liouville problems.

(4.8) Theorem
Consider the Sturm-Liouville problem (4.4.1) either with ? (0) = ? (1) = 0 or with
one of the boundary conditions in (4.4.2)-(4.4.5). Let ? (G), @(G), A (G), ?′(G) be
continuous and A (G) > 0 on 0 ≤ G ≤ 1. Then all eigenvalues are real, and they
may be arranged in order as _1 < _2 < _3 < · · · , where lim

=→∞
_= = ∞. Further, if

~< (G) and ~= (G) are eigenfunctions corresponding to distinct eigenvalues _< and
_=, respectively, then ~< and ~= are orthogonal with weight function A (G). That is,∫ 1

0

A (G) ~< (G) ~= (G) 3G = 0 for < ≠ =.

Proof. We prove only the orthogonality of the eigenfunctions corresponding to
distinct eigenvalues. So, let _< ≠ _= be eigenvalues with corresponding eigenfunc-
tions as~< (G) and~= (G). These eigenfunctions satisfy the Sturm-Lioville equation.
That is,

(?~′<)′ + (@ + _A )~< = 0, (?~′=)′ + (@ + _A )~= = 0.

Multiply the first with ~=, the second with −~<, and add to get

(_< − _=)A~<~= = ~< (?~′=)′ − ~= (?~′<)′.

However,[
? (~′=~< − ~′<~=)

]′
=

[
~< (?~′=) − ~= (?~′<)

]′
=

[
~< (?~′=)

]′ − [
~= (?~′<)

]′
= ~′< (?~′=) + ~< (?~′=)′ − ~′= (?~′<) − ~= (?~′<)′ = ~< (?~′=)′ − ~= (?~′<)′.

Hence, (_< − _=)A~<~= =
[
? (~′=~< − ~′<~=)

]′
. Integrating from 0 to 1, we obtain

q := (_< − _=)
∫ 1

0

A~<~= 3G =

[
? (~′=~< − ~′<~=)

]1
0

= ? (1)
[
~′= (1)~< (1) − ~′< (1)~= (1)

]
− ? (0)

[
~′= (0)~< (0) − ~′< (0)~= (0)

]
.
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The orthogonality of the eigenfunction is proved if q evaluates to 0. We show that
this is the case by breaking into following cases:
Case 1: ? (0) = 0 = ? (1). Then, q = 0.
Case 2: ? (0) ≠ 0, ? (1) = 0. Then q = −? (0)

[
~′= (0)~< (0) − ~′< (0)~= (0)

]
. The

boundary conditions in (4.4.5) are applicable. Since ~< and ~= are solutions of the
BVP, we have

:1~< (0) + :2~
′
< (0) = 0 = :1~= (0) + :2~

′
= (0).

At least one of :1, :2 is nonzero. Suppose :2 ≠ 0. Multiply the first equation by
~< (0), the second by −~= (0) and add to get

:2
[
~′= (0)~< (0) − ~′< (0)~= (0)

]
= 0.

As :2 ≠ 0, we get
[
~′= (0)~< (0) −~′< (0)~= (0)

]
= 0 so that q = 0. A similar proof is

given when :1 ≠ 0.
Case 3: ? (0) = 0, ? (1) ≠ 0. This case is similar to Case 2.
Case 4: ? (0) ≠ 0, ? (1) ≠ 0, ? (0) ≠ ? (1). We use both the conditions in (4.4.2)
and proceed as in Case 2.
Case 5: ? (0) = ? (1). The condition (4.4.3) says that~ (0) = ~ (1) and~′(0) = ~′(1).
These are satisfied for both ~ = ~< and ~ = ~=. Then, q evaluates to 0.

(4.9) Example
Consider the Sturm-Liouville problem of (4.3):

~′′ + _~ = 0, ~ (0) = 0, ~′(c) = 0.

Here, ? (G) = 1, @(G) = 0 and A (G) = 1. We found the eigenvalues and eigenfunc-
tions as

_= =
(2= + 1)2

4
, ~= (G) = sin

[ (
= + 1

2
)
G
]
, = = 0, 1, 2, 3, . . .

By (4.8), we conclude that∫ c

0
sin

[ (
< + 1

2
)
G
]

sin
[ (
= + 1

2
)
G
]
3G = 0 for < ≠ =.

Of course, it is easy to verify this directly.

(4.10) Example
Legendre’e equation (1−G2)~′′−2G~′+d (d+1)~ = 0 is a Sturm-Liouville equation
with ? (G) = 1 − G2, @(G) = 0, A (G) = 1 and _ = d (d + 1). Here, ? (−1) = ? (1) = 0.
Hence, this is a singular Sturm-Liouville problem on the interval −1 ≤ G ≤ 1. We
know that %= (G) is a solution of this equation for _ = =(= + 1), where = = 0, 1, 2, . . ..
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That is, corresponding to the eigenvalue _= = =(= + 1), the eigenfunction is %= (G).
By (4.8), these eigenfunctions are orthogonal with weight A (G) = 1. It means that∫ 1

−1
%< (G)%= (G) 3G = 0 for < ≠ =.

We have seen that this is the case.

(4.11) Example
As we have seen in (4.6), the Bessel’s equation

C2
32~

3C2
+ C 3~
3C
+ (C2 − a2)~ = 0 for C > 0

with the condition that the solution remains bounded on [0, 0] and ~ (0) = 0 is the
Sturm-Liouville problem (Take C = :G .)

(G~′)′ +
(
− a

2

G
+ _G

)
~ = 0 where _ = :2.

Here, ? (0) = 0 so that this is a singular Sturm-Lioville problem, where ~ (') = 0
with ' = 0/: . Its eigenvalues and eigenfunctions have been found to be

_A =

(I=,A
'

)2
, ~A (G) = �=

(I=,AG
'

)
for A = 1, 2, 3, . . .

where I=,A is the A th positive zero of �= (G).
By (4.8), the eigenfunctions are orthogonal with weight A (G) = G on the interval
[0, ']. That is, ∫ '

0
G �=

(I=,<G
'

)
�=

(I=,9G
'

)
3G = 0 for < ≠ 9 .

We see that the permissible values of : in the transformation C = :G are I=,A/'.
Notice that for fixed = and a fixed ' > 0, we have infinitely many orthogonal
functions �=

(
I=,<G

'

)
. The ' in this orthogonality can be chosen according to our

convenience, but it is to be fixed.

The above example shows that there are infinitely many orthogonal sets of Bessel
functions, one for each of �0, �1, �2, . . . on an interval 0 ≤ G ≤ ' with a fixed
positive ' of our choice and with the weight function A (G) = G .
We have only proved the orthogonality of the Bessel functions. In fact, the norms

of those can also be computed from the following result, which is left as an exercise.�= (I=,AG
'

)2
=

∫ '

0
G

[
�=

(I=,AG
'

)]2
3G =

'2

2

[
�=+1

(
I=,A

)]2
. (4.5.1)
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Orthogonality helps in expanding functions as series of eigenfunctions just like
Fourier series. We have seen in § 4.1 how to express a function defined on [−1, 1]
as a series involving the Legendre polynomials. By using orthogonality of Bessel
functions, similar series expansion can be obtained.
Fix = ∈ N∪ {0}. Let 5 (G) be a real valued peicewise smooth function defined on

an interval 0 ≤ G ≤ '. A Fourier-Bessel series of 5 (G) using the Bessel function
�= may be written as

5 (G) =
∞∑
<=1

0< �=

(I=,<G
'

)
= 01�=

(I=,1G
'

)
+ 02�=

(I=,2G
'

)
+ · · ·

Fix ℓ ∈ N. Multiply the above equation with G �=
(
I=,ℓG

'

)
and integrate from 0 to ' to

get ∫ '

0
G 5 (G) �=

(I=,ℓG
'

)
3G =

∞∑
<=1

0<

∫ '

0
G �=

(I=,<G
'

)
�=

(I=,ℓG
'

)
3G .

Due to orthogonality, the integral in the above summand is 0 when< ≠ ℓ . So, we
obtain ∫ '

0
G 5 (G) 9=

(I=,ℓG
'

)
3G = 0ℓ

∫ '

0
G

[
�=

(I=,ℓG
'

)]2
3G =

'2

2
� 2
=+1

(
I=,ℓ

)
.

The last equality follows from (4.5.1). This gives the coefficient 0ℓ for ℓ ∈ N. Thus,
the Fourier-Bessel series for 5 (G) on an interval [0, '] is given as follows:

5 (G) =
∞∑
<=1

0< �=

(I=,<G
'

)
, where 0< =

2
'2� 2

=+1(I=,<)

∫ '

0
G 5 (G) �=

(I=,<G
'

)
3G.

(4.5.2)
Notice that we have written 5 (G) is equal to its Fourier-Bessel series for deriving

the coefficients. However, the series so obtained may or may not converge to the
function 5 (G). This question of convergence is answered by the following result,
which we mention without proof.

(4.12) Theorem (Convergence of Fourier-Bessel series)
Let 5 (G) be a piecewise smooth function defined on the interval 0 < G < '. Then
the Fourier-Bessel series (4.5.2) of 5 (G) converges to 6(G), where

6(G) =
{
5 (G) if 5 is continuous at x
1
2
[
5 (G+) + 5 (G−)

]
if 5 is discontinuous at x.

It thus follows that if 5 (G) is continuous on 0 < G < ', then its Fourier-Bessel
series converges to 5 (G).
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(4.13) Example
Find the Fourier-Bessel series for the function 5 (G) = 1 on 0 < G < 1.
Here, ' = 1; we choose = = 0. By (4.5.2), the Fourier-Bessel series of 5 (G) = 1 is
given by (Write I0,< as I<.)

∞∑
<=1

0< �0(I<G)

where I< for< = 1, 2, 3, . . . are the positive zeros of �0(G) and the coefficients 0<
are given by

0< =
2

� 2
1 (I<)

∫ 1

0
G �0(I<G) 3G .

Weuse the identity
[
G �1(G)

]′
= G �0(G) given in (4.3.1) to evaluate the above integral.

Substitute C = I<G . Then, 3C = I< 3G , and when G varies from 0 to 1, C varies from
0 to I<. Hence,

0< =
2

I2
< �

2
1 (I<)

∫ I<

0
C �0(C) 3C =

2
I2
< �

2
1 (I<)

C �1(C)
]I<

0
=

2I< �1(I<)
I2
< �

2
1 (I<)

=
2

I< �1(I<)
.

Since 5 (G) is continuous everywhere on (0, 1), by the convergence theorem,

1 =

∞∑
<=1

2�0(I<G)
I< �1(I<)

.



5
Partial Differential Equations

5.1 Introduction
Suppose D (G,~) is a function of two independent variables. Instead of derivatives
we now think of its partial derivatives DG =

mD

mG
and D~ =

mD

m~
. We may also have

higher order partial derivatives such as DGG , DG~ , D~G , D~~ , DGGG , etc.
An equation involving G,~,D and some of its partial derivatives is called a partial

differential equation, or PDE for short. The order of the highest order derivative
of D is called the order of the PDE.
Usually, we will be concerned with first and second order PDEs. Of course, there

can be more than two independent variables. We will be generally taking two or
three independent variables and one dependent variable.
The general form of a first order PDE with dependent variable D and two inde-

pendent variables G,~ is
� (G,~,D,DG , D~) = 0

where � is an expression (also a function) involving G,~,D,DG and D~ . Similarly,
a general first order PDE with one dependent variable D and three independent
variables G,~, I may be written as

� (G,~, I,D,DG , D~, DI) = 0.

If such a function � is linear in the dependent variable and its derivatives, then it is
called a linear PDE. Notice that in a linear PDE, the coefficients of the dependent
variable and its derivatives must be functions of G,~ only. The general first order
linear PDE with two independent variables looks like

0(G,~)DG + 1 (G,~)D~ + 2 (G,~)D = 3 (G,~).

When 3 (G,~) = 0, the linear PDE is called homogeneous, else, it is called a
non-homogeneous PDE. For example, the following are first order linear PDEs:

GDG + ~D~ − D = 0.
DG + (G + ~)D~ − 5D = 4G .

~DG + G~D = G~.

(~ − I)DG + (I − G)D~ + (G − ~)DI = 0.

99
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The first and the fourth are homogeneous, whereas the second and the third are
non-homogeneous.
A PDE which is not linear is called nonlinear. Among the nonlinear PDEs there

are some easier classes of problems. A first order PDE is called semilinear iff
the coefficients of the derivatives of the dependent variable are functions of the
independent variables only. A general form of a semilinear first order PDE with
two independent varaibles is

0(G,~)DG + 1 (G,~)D~ = 2 (G,~,D).

A first order PDE is called quasi-linear iff the expression � (· · · ) is linear in the
derivatives of the dependent variable. It means, the coefficients of the derivatives are
now allowed to involve the dependent variable. The general first order quasi-linear
PDE with two independent variables looks like

0(G,~,D)DG + 1 (G,~,D)D~ = 2 (G,~,D).

Some examples of quasi-linear PDEs are

G (~2 + D)DG − ~ (G2 + D)D~ = (G2 − ~2)D.
DDG + D~ + D2 = 0.

(~2 − D2)~G − G~D~ = GD.

Sometimes it is possible to use the methods of ordinary differential equations to
solve a PDE. This method is used when all the derivatives can be integrated with
respect to some independent variable, or when by substituting a derivative as a new
variable an ODE results. Usually, the general solution of an =th order PDE would
involve = number of arbitrary functions. See the following examples.

(5.1) Example
Solve DG (G,~) = G + ~.
Integrating with respect to G , where ~ is kept constant, we get

D (G,~) =
∫
(G + ~) 3G =

G2

2
+ G~ + 5 (~).

Here, the constant of integration must not depend on G , but it can depend on ~. So,
we had taken it as 5 (~), an arbitrary function of the variable ~.

(5.2) Example
Solve DG~ (G,~) = 0.
Integrating with respect to ~, we get (G is kept constant)

DG (G,~) = 5 (G).
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Integrating with respect to G , we obtain

D (G,~) =
∫
5 (G) 3G + 6(~).

Since 5 (G) is an arbitrary function, we may write its integral as ℎ(G), where this
ℎ(G) is also an arbitrary function. Hence, the general solution of the PDE is
D (G,~) = ℎ(G) + 6(~) for arbitrary functions ℎ(G) of G and 6(~) of ~.

There can be initial and boundary conditions along with a PDE, and they are taken
care while solving the PDE.

(5.3) Example
Find D (G,~) that satisfies the PDE DGG = ~

2 cos2 G and D (0, ~) = 0 = D (c/2, ~).
Integrating the given equation with respect to G , we get

DG = ~
2
(G
2
+ sin(2G)

4

)
+ 5 (~).

Here, 5 (~) is an arbitrary function of ~ alone. Integrating once more with respect
to G , we obtain

D = ~2
(G2

4
− cos(2G)

8

)
+ 5 (~)G + 6(~).

The condition D (0, ~) = 0 implies

0 = ~2
(
− 1

8

)
+ 6(~) ⇒ 6(~) = ~

2

8
.

Using this expression for 6(~) and using the condition D (c/2, ~) = 0 we get

0 = ~2
(c2

16
+ 1

8

)
+ 5 (~)c

2
+ ~

2

8
⇒ 5 (~) = −

(c
8
+ 1

2c

)
~2.

Hence, the solution is

D (G,~) = ~2
(G2

4
− cos(2G)

8

)
−

(c
8
+ 1

2c

)
G~2 + ~

2

8
.

Solutions of PDEs with a dependent variable and two independent variables
are also called integral surfaces. In such a case, e usually write the independent
variables as G,~ and the dependent variable as I to rhyme with the geometrical
language.

5.2 Lagrange method
We will consider the method of characteristics by Lagrange for solving the quasi-
linear first order PDE. We assume that the coefficient functions are continuous in
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the domain of consideration. Also, we assume that they are not simultaneously 0.
(Otherwise, the PDE is no more a PDE.) Lagrange’s method is encapsulated in the
following theorem.

(5.4) Theorem (Lagrange’s method of characteristics)
Suppose 0(G,~,D), 1 (G,~,D) and 2 (G,~,D) are continuous and they are not simul-
taneously 0 at any point in a domain. Then, the general solution of the first order
quasi-linear PDE

0(G,~,D)DG + 1 (G,~,D)D~ = 2 (G,~,D) (5.2.1)

is given by 5 (q,k ) = 0, where 5 is an arbitrary function of two variables, and
q (G,~,D) = 21, k (G,~,D) = 22, for arbitrary constants 21, 22, are solutions of

3G

0(G,~,D) =
3~

1 (G,~,D) =
3D

2 (G,~,D) . (5.2.2)

Equations in (5.2.2) are called the characteristic equations of the PDE (5.2.1).
Their solutions q (G,~,D) = 21 and k (G,~,D) = 22 are called the characteristic
curves. Lagrange’s method of characteristic reduces the problem of solving the
quasi-linear first order PDE to solving two ODEs.

Proof. Suppose q (G,~,D) = 21 and k (G,~,D) = 22 are solutions of (5.2.2). Since
the PDE (5.2.1) has order 1, and 5 (·, ·) is an arbitrary function of two variables,
5 (q,k ) = 0 is the general solution provided it is at all a solution. Now, 5 (q,k ) = 0
is a solution means that if D (G,~) satisfies 5

(
q (G,~,D),k (G,~,D)

)
= 0, then D (G,~)

also satisfies the PDE (5.2.1). We show that this is the case.
So, suppose D (G,~) satisfies 5 (q,k ) = 0. Computing the differentials of q andk

we get

3q = qG3G + q~3~ + qD3D = 0, 3k = kG3G +k~3~ +kD3D = 0.

However, q (G,~,D) = 21 andk (G,~,D) = 22 are solutions of (5.2.2). So,

0qG + 1q~ + 2qD = 0, 0kG + 1k~ + 2kD = 0.

Eliminating 0 from these two equations, we get 1 (qGk~ − q~kG ) = 2 (qDkG − qGkD).
Eliminating 1 we get 0(qGk~ − q~kG ) = 2 (q~kD − qDk~). Hence,

0

q~kD − qDk~
=

1

qDkG − qGkD
=

2

qGk~ − q~kG
. (5.2.3)

Since 5 (q,k ) = 0, differentiating with respect to G and also ~, and using the Chain
rule, we have

5q (qG + qDDG ) + 5k (kG +kDDG ) = 0.
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5q (q~ + qDD~) + 5k (k~ +kDD~) = 0.
Since 5 (q,k ) is an arbitrary function, 5q and 5k are not necessarily the zero functions.
Then, the above two linear equations have a non-trivial solution. So, the determinant
of the system is 0. That is,

(qG + qDDG ) (k~ +kDD~) = (q~ + qDD~) (kG +kDDG ).

It simplifies to

(q~kD − qDk~)DG + (qDkG − qGkD)~~ = qGk~ − q~kG .

By (5.2.3), 0DG + 1D~ = 2.

We remark that for more than two independent variables, the statement in (5.4)
also holds so that Lagrange’s method is still applicable. That is, to solve the
quasi-linear PDE

01D1 + · · · + 0=D= = 2
where D = D (G1, G2, . . . , G=), 08 = 08 (G1, G2, . . . , G=, D), D8 = DG8 (G1, G2, . . . , G=) and
2 = 2 (G1, G2, . . . , G=, D), we form the characteristic equations

3G1
01

=
3G2
02

= · · · = 3G=
0=

=
3D

2
.

We get its solution as q 9 (G1, G2, . . . , G=) = 2 9 for 9 = 1, 2, . . . , =. Then, the general
solution of the PDE is given implicitly by 5 (q1, q2, . . . , q=) = 0 for an arbitrary
function 5 of = arguments.
If q (G,~,D) = 21 and k (G,~,D) = 22 are solutions of the characteristic equations

in (5.2.2), then the general solution may also be written by assuming certain de-
pendence of these two constants. That is, we may write the general solution as
q (G,~,D) = 6(k (G,~,D)) for an arbitrary function 6(·). Notice that this is an explicit
way of writing the same general solution 5 (q,k ) = 0. The implicit way of writing
is more general than the explicit way. However, if one of the characteristic curves is
D = 21, then the explicit way of writing is as general as the implicit way of writing.

(5.5) Example
Find the general solution of the PDE DG + D~ = 1.
The characteristic equations are 3G = 3~ = 3D. Taking them in pairs and integrating,
we have

3G − 3~ = 0 ⇒ G − ~ = 21.

3~ − 3D = 0 ⇒ ~ − D = 22.

Thus, the general solution is 5 (G − ~,~ − D) = 0 for an arbitrary function 5 of
two arguments. We may also write the general solution as ~ − D = 6(G − ~) or
D = ~ − 6(G − ~) for an arbitrary function 6 of one variable.
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(5.6) Example
Find the general solution of the PDE GDG + ~D~ = D.
The characteristic equations are

3G

G
=
3~

~
=
3D

D
.

Taking in pairs and integrating we obtain
~

G
= 21,

D

G
= 22.

Thus, the general solution is 5 (~/G,D/G) = 0 for an arbitrary function 5 (·, ·). We
may also write the general solution as D/G = 6(~/G) or D = G6(~/G).

(5.7) Example
Find the general solution of the PDE G2DG + ~2D~ = (G + ~)D.
The characteristic equations are

3G

G2 =
3~

~2 =
3D

(G + ~)D .

First two equations give G−1 − ~−1 = 21. To get another solution, we subtract the
first two and find that

3G − 3~
G2 − ~2 =

3D

(G + ~)D ⇒
3 (G − ~)
G − ~ =

3D

D
.

Integrating, we get (G − ~)/D = 22. Thus, the general solution is given by
5
(
G−1 − ~−1, (G − ~)/D

)
= 0. Since G−1 − ~−1 is a constant and (G − ~)/D is a

constant, it follows that G~/D is a constant. Thus, we can also write the general
solution as 6(G~/D, (G − ~)/D) = 0.

(5.8) Example
Find the general solution of (~ − I)DG + (I − G)D~ + (G − ~)DI = 0.
The characteristic equations are

3G

~ − I =
3~

I − G =
3I

G − ~ =
3D

0

For ease in integration, instead of pairs of equations, we consider the following
equivalent ones:

3D = 0, 3G + 3~ + 3I = 0, G3G + ~3~ + I3I = 0.

The solutions are D = 21, G +~ + I = 22, G
2 +~2 + I2 = 23. The general solution can

be written as D = 6(G + ~ + I, G2 + ~2 + I2) for an arbitrary function 6(·, ·).
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(5.9) Example
Find a function D (G,~) that satisfies GD~ = ~DG and D (0, ~) = ~2.
The characteristic equations are

3G

~
=
3~

−G =
3D

0
.

Taking in pairs and integrating, we get

G3G + ~3~ = 0 = 3D ⇒ G2 + ~2 = 21, D = 22.

So, the general solution of the PDE is 5 (G2 + ~2, D) = 0. Since D (0, ~) = ~2, we
have 5 (02 + ~2, ~2) = 0. One such 5 is 5 (E,F) = E − F . Thus, D = G2 + ~2 is a
general solution satisfying the given condition.
If we write the general solution in an explicit way, it is given by 22 = 6(21) or,

D = 6(G2 + ~2) for an arbitrary function 6(·). The associated condition D (0, ~) = ~2

implies that 6(02 + ~2) = ~2. One such 6 is 6(D) = D. Then a general solution
satisfying the given condition is D = G2 + ~2 as earlier.

(5.10) Example
Find a solution of the PDE GD~ = ~DG which contains the circle D = 1, G2 +~2 = 4.
From the last example, we see that the general solution of the PDE is 5 (G2+~2, D) = 0.
Since it contains the given curve, we have 5 (4, 1) = 0.
One such 5 is 5 (E,F) = E − 4F in which case, a solution is given by G2 +~2 = 4D.

Another 5 is 5 (E,F) = E −F − 3, in which case a solution is G2 + ~2 − 3 = D. One
more is 5 (E,F) = E +F2 − 5 in which case a solution is G2 + ~2 + D2 = 5. In fact,
there are infinitely many such solutions.

(5.11) Example
Find a solution of D (G + ~)DG + D (G − ~)D~ = G2 + ~2, where D = 0 on the line
~ = 2G .
The characteristic equations are

3G

D (G + ~) =
3~

D (G − ~) =
3D

G2 + ~2 .

The equations imply (We require two equations.)

~3G + G3~ − D3D = 0, G3G − ~3~ − D3D = 0.

Writing as differentials, these are

3

(
G~ − D

2

2

)
= 0, 3

(G2 − ~2 − D2

2

)
= 0.
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Integrating we get 2G~ − D2 = 21 and G2 − ~2 − D2 = 22. We write the general
solution in the form 22 = 5 (21), that is,

G2 − ~2 − D2 = 5 (2G~ − D2)

for an arbitrary function 5 (·). Since D (G,~) also satisfies the given condition, we
substitute ~ = 2G and D = 0 simultaneously to get

G2 − 4G2 = 5 (4G2) ⇒ 5 (4G2) = −3G2.

We may take 5 (D) = −3
4D which satisfies this condition. So, one solution is

given by G2 − ~2 − D2 = −3
4 (2G~ − D

2) or 4(G2 − ~2 − D2) + 3(2G~ − D2) = 0 or,
7D2 = 6G~ + 4(G2 − ~2).

For nonlinear PDEs of first order, there does not exist any such general method as
Lagrange’s. However, numerical techniques exist to solve nonlinear PDEs, which
you will learn elsewhere.

5.3 Second order linear PDEs
A general second order linear PDE with two independent variables is given by

0DGG + 1DG~ + 2D~~ + 3DG + 4D~ + 5 D = 6 (5.3.1)

where 0, . . . , 6 are functions of G and ~ that do not vanish simultaneously at any
point of the domain of definition of D (G,~). We also assume that these functions
and the function D have continuous second order partial derivatives on this domain.
Some examples are:

DCC = :
2DGG One-dimensional wave equation

DC = :
2DGG One-dimensional heat equation

DGG + D~~ = 0 Two-dimensional Laplace equation
DGG + D~~ = 5 (G,~) Two-dimensional Poisson equation
DCC = :

2(DGG + D~~) Two-dimensional wave equation

The linear second order PDE (5.3.1) is called homogeneous iff 6(G,~) is the
zero function; else it is called non-homogeneous. Just like ODEs, if D1(G,~) and
D2(G,~) are two solutions of a homogeneous linear second order PDE, then their
linear combination D = 21D1 + 22D2, for constants 21, 22, is also a solution of the
same homogeneous PDE. Sometimes we can use the method of ODEs to solve these
PDEs if it is so possible.
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(5.12) Example

1. Solve the PDE DGG (G,~) − D (G,~) = 0.
Since derivatives are taken with respect to G only, we can use ODE methods.
Integrating with respect to G , we get D (G,~) = q (~)4G +k (~)4−G . Observe that
the constants of integration are now functions of ~. The functions q (~) and
k (~) are arbitrary. In a second order PDE, it is expected that there will be two
arbitrary functions.

2. Solve DG~ + DG = 0.
We assume that D is a function of G and ~. Let DG = E . Then, the equation is
E~ = −E whose solution is E = q1(G)4−~ . Observe that since integration is with
respect to ~, the constant of integration can be a function of G , in general. Now,
DG = E = q1(G)4−~ gives

D = 4−~
∫
q1(G) 3G +k (~).

Since q1(G) is an arbitrary function, so is its integral, which we then write as
q (G). Hence, the general solution of the PDE isD (G,~) = 4−~q (G) +k (~), where
q (G) andk (~) are arbitrary functions of G, ~, respectively.

The ODE methods suggest that we try to determine certain transformations so
that a linear second order PDE may take one of the following forms:

DGG = q (G,~,D,DG , D~), DG~ = q (G,~,D,DG , DD), D~~ = q (G,~,D,DG , D~).

Here, q (G,~,D,DG , D~) is an expression which is linear in D, DG and D~ . That is,
q (G,~,D,DG , D~) = 51(G,~) + 52(G,~)D + 53(G,~)DG + 54(G,~)D~ for some functions
51, 52, 53 and 54.
However, all linear second order PDEs cannot be transformed to these two forms.

The ones which cannot be transformed to one of the above two forms can be
transformed to the forms

DGG + D~~ = q (G,~,D,DG , D~), DGG − D~~ = q (G,~,D,DG , D~).

Further, we can show that any PDE in the formDGG −D~~ = q (G,~,D,DG , D~) can also
be transformed to the form

DG~ = q (G,~,D,DG , D~).

These forms of linear second order PDEs are called standard forms or canonical
forms.
To find out which types of PDEs can be transformed to which form, we look

at the discriminant 12 − 402 of the PDE (5.3.1). Depending on the sign of the
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discriminant, we classify the linear PDEs. We say that the linear second order PDE
(5.3.1) is
hyperbolic iff 12 − 402 > 0,
parabolic iff 12 − 402 = 0, and
elliptic iff 12 − 402 < 0.
Notice that 12 − 402 is a function of G and ~. Its sign is required to be same

thorough out the domain of interest. It is quite possible that a linear second order
PDE is of one type in some domain and of another type in another domain.
We see that the discriminant concerns the coefficients of DGG , DG,~ and D~~ only.

Let us look at the signs of the discriminants of the PDEs in standard form. They
are as follows:

Canonical form 0, 1, 2 12 − 402 Type
DG~ = q 0 = 0, 1 = 1, 2 = 0 > 0 Hyperbolic
DGG − D~~ = q 0 = 1, 1 = 0, 2 = −1 > 0 Hyperbolic
DGG = q 0 = 1, 1 = 0, 2 = 0 = 0 Parabolic
DGG + D~~ = q 0 = 1, 1 = 0, 2 = 1 < 0 Elliptic

As you may be surmising the type of the PDE should remain the same while
transforming one to its standard form. It means that the sign of the discriminant
will not change when we change the independent variables. We show this key fact
below.

Reduction to Standard Form: To transform (5.3.1) to its standard form, we change
the independent variables, say,

b = b (G,~), [ = [ (G,~).

We assume that the functions b and [ have continuous second order partial deriva-
tives and the Jacobian

� = bG[~ − b~[G ≠ 0

in the concerned region. This assumption � ≠ 0 guarantees that G and ~ can be
determined from given b and [. To change the variables, we compute the derivatives
as follows:

DG = DbbG + D[[G
D~ = Dbb~ + D[[~
DGG = Dbbb

2
G + 2Db[bG[G + D[[[2

G + DbbGG + D[[GG
DG~ = DbbbGb~ + Db[ (bG[~ + b~[G ) + D[[[G[~ + DbbG~ + D[[G~
D~~ = Dbbb

2
~ + 2Db[b~[~ + D[[[2

~ + Dbb~~ + D[[~~ .

Substituting these in (5.3.1) and grouping together terms, we obtain

�Dbb + �Db[ +�D[[ + �Db + �D[ + �D = � (5.3.2)
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where �, . . . ,� are functions of b and [ and they are given by

� = 0b2
G + 1bGb~ + 2b2

~

� = 20bG[G + 1 (bG[~ + b~[G ) + 2b~[~
� = 0[2

G + 1[G[~ + 2[2
~

� = 0bGG + 1bG~ + 2b~~ + 3bG + 4b~ (5.3.3)
� = 0[GG + 1[G~ + 2[~~ + 3[G + 4[~
� = 5 (G (b, [), ~ (b, [))
� = 6(G (b, [), ~ (b, [)) .

Notice that on the right side, 0, . . . , 4 should first be expressed in terms of b and [
so that �, . . . , � are also expressed in terms of b and [. And, there is no change in �
and � ; they are now expressed in terms of b and [.
Computing the discriminant �2 − 4�� for the new equations, we find that

�2 − 4�� =
(
bG[~ − b~[G

)2(12 − 402).

Since � = bG[~ − b~[G ≠ 0, the sign of the discriminant remains invariant. Hence,
the type of the PDE remains same under such a general transformation. We thus
need to choose particular b and [ for reducing a PDE to its standard form. Our
choice will depend on the type of the problem. Observe that if 0 ≠ 0, then � and �
in (5.3.3) can be factored as follows:

� = (40)−1 [20bG + (
1 +

√
12 − 402

)
b~

] [
20bG +

(
1 −

√
12 − 402

)
b~

]
� = (40)−1 [20[G + (

1 +
√
12 − 402

)
[~

] [
20[G +

(
1 −

√
12 − 402

)
[~

]
.(5.3.4)

Hyperbolic type: Suppose the PDE (5.3.1) is hyperbolic; that is, 12 − 402 > 0 in
the region of interest. If both 0 = 0 = 2, then the PDE is already in its standard
form. Else, assume that 0 is nonzero. To bring the PDE to its standard form, we
put � = � = 0. To obtain two different solutions, we take different factors in the
factorizations of � and � in (5.3.4). That is, we set

20bG +
(
1 +

√
12 − 402

)
b~ = 0, 20[G +

(
1 −

√
12 − 402

)
[~ = 0.

Solving these first order PDEs by Lagrange’s method, we have the characteristic
equations as

3G

20
=

3~

1 +
√
12 − 402

,
3G

20
=

3~(
1 −
√
12 − 402

) . (5.3.5)

If the solutions of the characteristics are respectively q (G,~) = 21 andk (G,~) = 22,
then we take the transformation as

b = q (G,~), [ = k (G,~).
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As we see, this will make � = 0 = �, � ≠ 0 in (5.3.2-5.3.3) so that the PDE (5.3.1)
is transformed to its standard form

Db[ =
1
�

(
� − �Db − �D[ − �D

)
. (5.3.6)

This is called the first standard form of a hyperbolic PDE. Notice that by this choice
of b and [, their Jacobian remains nonzero.
By taking new independent variables as U = b+[ and V = b−[, the above standard

form is again transformed to

DUU − DVV =
1
�

(
� − (� + �)DU − (� − �)DV − �D

)
(5.3.7)

where �, . . . ,� are expressed in terms of U and V. That is, we replace b = (U + V)/2
and [ = (U − V)/2 in the earlier expressions of �, . . . ,� to express those in terms
of U and V, and use the resulting expressions here. This standard form is called the
second standard form of a hyperbolic PDE.
If 0 = 0, then 2 is nonzero, and we switch the roles of G and ~. That is, we

interchange G and ~, proceed as above. Notice that the standard form will involve
b and [. Since Db[ = D[b , interchanging G and ~ there will have no effect. But this
interchange will affect the transformations b and [. See (5.15) below.

(5.13) Example
Reduce the PDE DGG + 8DG~ + 7D~~ + DG + 2D~ + 3D + ~ = 0 to its standard form.
As per the notation in (5.3.1), 0 = 1, 1 = 8, 2 = 7, 3 = 1, 4 = 2, 5 = 3 and 6 = ~ so
that the discriminant 12 − 402 = 82 − 28 = 36 > 0. The PDE is hyperbolic on the
whole of R2. Now, 1 ±

√
12 − 402 = 8 ± 6 = 14, 2. By (5.3.5), the characteristic

equations are

3G

2
=
3~

14
,

3G

2
=
3~

2
⇒ 3~ − 73G = 0, 3~ − 3G = 0.

Its solutions are ~ − 7G = 21 and ~ − G = 22. Thus, we take

b (G,~) = ~ − 7G, [ (G,~) = ~ − G .

One can proceed directly from this place to get the derivatives and substitute in the
PDE to get one in standard form. We use the formula given in (5.3.6) as in the
following.
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bG = −7, b~ = 1, [G = −1, [~ = 1, G = ([ − b)/6, ~ = (7[ − b)/6.
� = 20bG[G + 1 (bG[~ + b~[G ) + 22b~[~
= 2(−7) (−1) + 8

(
(−7) (1) + (1) (−1)

)
+ 2(7) (1) (1) = −36.

� = 0bGG + 1bG~ + 2b~~ + 3bG + 4b~ = −7 + 2 = −5.
� = 0[GG + 1[G~ + 2[~~ + 3[G + 4[~ = −1 + 2 = 1.
� = 3, � = −~ = (b − 7[)/6.

Then the PDE is transformed to its first standard form:

Db[ =
1
�

(
� − �Db − �D[ − �D

)
.

=
1
−36

(b − 7[
6
− (−5)Db − (1)D[ − 3D

)
=

1
36

(
− 5Db + D[ + 3D + 1

6
(7[ − b)

)
.

For the second standard form, we take U = b +[ and V = b−[. Thus, b = (U +V)/2
and [ = (U − V)/2. Except � , all other coefficients in (5.3.7) are constants. Now,

� =
b − 7[

6
=

1
6

(U + V
2
− 7

U − V
2

)
=

4V − 3U
6

.

By (5.3.7), the transformed PDE with independent variables U, V is,

DUU − DVV =
1
�

(
� − (� + �)DU − (� − �)DV − �D

)
=

1
−36

(4V − 3U
6

− (−5 + 1)DU − (−5 − 1)DV − 3D
)

=
1
−36

(4V − 3U
6

+ 4DU + 6DV − 3D
)
.

(5.14) Example
Transform the PDE ~2DGG − G2D~~ = 0 for G~ ≠ 0, to its standard form.
Here, 0 = ~2, 1 = 0, 2 = −G2, 3 = 0, 4 = 0, 5 = 0 and 6 = 0. Now, 12 − 402 =

4G2~2 > 0 since G~ ≠ 0. And, 1 ±
√
12 − 402 = ±2G~. The characteristic equations

are
3G

2~2 =
3~

2G~
,

3G

2~2 =
3~

−4G2~2 ⇒ ~3~ − G3G = 0, ~3~ + G3G = 0.

Their general solutions are (~2 − G2)/2 = 21 and (~2 + G2)/2 = 22, respectively. We
use the transformation

b =
~2 − G2

2
, [ =

~2 + G2

2
.
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Instead of using the formula, let us compute the derivative directly. We have

DG = DbbG + D[[G = −GDb + GD[ .
D~ = Dbb~ + D[[~ = ~Db + ~D[ .
DGG = Dbbb

2
G + 2Db[bG[G + D[[[2

G + DbbGG + D[[GG
= G2Dbb − 2G2Db[ + G2D[[ − Db + D[ .

D~~ = Dbbb
2
~ + 2Db[b~[~ + D[[[2

~ + Dbb~~ + D[[~~
= ~2Dbb + 2~2Db[ + ~2D[[ + Db + D[ .

Substituting these in the given PDE and simplifying we obtain the standard form:

Db[ =
[

2(b2 − [2)
Db −

b

2(b2 − [2)
D[ .

(5.15) Example
Reduce the PDE 4DG~ + D~~ + D~ = 0 to its standard form.
This is a hyperbolic PDE with the coefficient of DGG as 0. We interchange the
variables G and ~ to get

DGG + 4DG~ + DG = 0.

Here, 0 = 1, 1 = 4, 2 = 0, 3 = 1 and 4 = 5 = 6 = 0. Now, 1 ±
√
12 − 402 = 4 ± 4 =

8, 0. By (5.3.5) the characteristics are

3G

2
=
3~

8
,

3G

2
=
3~

0
⇒ 3~ − 43G = 0, 3~ = 0.

The solutions are ~ − 4G = 21 and ~ = 22. We take the transformations as b = ~ − 4G
and [ = ~. Then bG = −4, b~ = 1, [G = 0 and [~ = 1. By (5.3.3),

� = 20bG[G + 1 (bG[~ + b~[G ) + 2b~[~ = 4(−4) = −16.
� = 0bGG + 1bG~ + 2b~~ + 3bG + 4b~ = −4
� = 0[GG + 1[G~ + 2[~~ + 3[G + 4[~ = 0
� = 5 (G (b, [), ~ (b, [)) = 0
� = 6(G (b, [), ~ (b, [)) = 0.

The first standard form is

Db[ =
� − �Db − �D[ − �D

�
=

4Db
−16

⇒ Db[ +
1
4
Db = 0.

Interchanging G and ~ retains the above standard form. But the transformations
change to b = G − 4~ and [ = G . You can verify that if we take this transformation
directly, then the given PDE reduces to Db[ + 1

4Db = 0 as earlier.
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Parabolic type: Suppose the PDE (5.3.1) is parabolic; that is, 12 − 402 = 0 in the
region of interest. From (5.3.4), we obtain

� = 0b2
G + 1bGb~ + 2b2

~ =
1
40

(
402b2

G + 401bGb~ + 402b2
~

)
=

1
40

(
402b2

G + 401bGb~ + 12b2
~

)
=

1
40
(20bG + 1b~)2.

Computing similarly for �, we find that

� =
1
40
(20[G + 1[~)2.

Now, both 20bG +1b~ = 0 and 20[G +1[~ give the same characteristic
3G

20
=
3~

1
or,

1 3G − 20 3~ = 0. (5.3.8)

It says that parabolic equations have only one characteristic curve. Suppose the
general solution of this characteristic is q (G,~) = 21. We choose [ = q (G,~). This
will make� = 0. Since �2 − 4�� = 0, it will force � = 0. The only nonzero term is
the remaining Dbb so that the reduced PDE will be in the standard form. Recall that
this computation assumes that the Jacobian is nonzero. Hence, after choosing [ we
choose b in such a manner that the Jacobian

� = bG[~ − b~[G ≠ 0.

We thus have G = G (b, [) and ~ = ~ (b, [) and the reduced PDE is

�Dbb = � − �Db − �D[ − �D. (5.3.9)

Here again,�, . . . ,� in (5.3.7) are expressed in terms of b and [ by using G = G (b, [)
and ~ = ~ (b, [).

(5.16) Example
Reduce the PDE DGG + 4DG~ + 4D~~ + DG + 3G = 0 to its standard form.
Here, 0 = 1, 1 = 4, 2 = 4, 3 = 1, 4 = 0, 5 = 0 and 6 = −3G . The discriminant
12 − 402 = 0. So, it is a parabolic PDE with 0 ≠ 0 and 2 ≠ 0. The characteristic
curve is, by (5.3.8),

1 3G − 20 3~ = 0 ⇒ 43G − 23~ = 0 ⇒ ~ − 2G = 21.

Thus, we take [ = ~ − 2G . Here, [G = −2 and [~ = 1. We choose b = G so that
bG = 1 and b~ = 0. This makes Jacobian

� = bG[~ − b~[G = 1 · 1 − 0 · (−2) = 1 ≠ 0.
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From (5.3.3) we get

� = 0b2
G + 1bGb~ + 2b2

~ = 1.
� = 0bGG + 1bG~ + 2b~~ + 3bG + �b~ = 1.
� = 0[GG + 1[G~ + 2[~~ + 3[G + 4[~ = −2.
� = 5 (G (b, [), ~ (b, [)) = 0.
� = 6(G (b, [), ~ (b, [)) = −3b .

By (5.3.9), the PDE is transformed to the standard form

�Dbb = � − �Db − �D[ − �D ⇒ Dbb = −3b − Db + 2D[ .

(5.17) Example
Reduce the PDE G2DGG − 2G~DG~ + ~2D~~ + GDG + ~D~ = 0 for G > 0 to its standard
form.
Here, 0 = G2, 1 = −2G~, 2 = ~2, 3 = G , 4 = ~, 5 = 6 = 0 so that 12 − 402 =

4G2~2 − 4G2~2 = 0. It is a parabolic PDE. By (5.3.8), the characteristic is

1 3G − 20 3~ = 0 ⇒ −2G~ 3G − 2G2 3~ = 0 ⇒ ~3G + G3~ = 0 ⇒ G~ = 21.

Thus, [ = G~. Then [G = ~ and [~ = G . We choose b = G so that bG = 1, b~ = 0 and
the Jacobian � = bG[~ − b~[G = G is nonzero. Also, G = b and ~ = [/G = [/b . By
(5.3.3),

� = 0b2
G + 1bGb~ + 2b2

~ = 0 = G2 = b2.

� = 0bGG + 1bG~ + 2b~~ + 3bG + 4b~ = 3 = G = b .

� = 0[GG + 1[G~ + 2[~~ + 3[G + 4[~ = 1 + 3~ + 4G = −2G~ + G~ + G~ = 0.
� = 5 (G (b, [), ~ (b, [)) = 0.
� = 6(G (b, [), ~ (b, [)) = 0.

By (5.3.9), the PDE is transformed to the standard form

�Dbb = � − �Db − �D[ − �D ⇒ b2Dbb = −bDb ⇒ Dbb + 1
b
Db = 0.

Elliptic type: Suppose that the PDE (5.3.1) is elliptic; that is, 12 − 402 < 0 in
a region of interest. The factors of � and � in (5.3.4) are now complex. Thus,
elliptic PDEs have no characteristics. The standard form of an elliptic PDE have
the coefficient of Db[ as 0 and the coefficients of Dbb and D[[ are equal. It means, in
(5.3.2), we must have � −� = � = 0. That is, using (5.3.3), we have

� −� = 0(b2
G − [2

G ) + 1 (bGb~ − [G[~) + 2 (b2
~ − [2

~ ) = 0
� = 20bG[G + 1 (bG[~ + b~[G ) + 2b~[~ = 0.
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Multiply the second with 8, add to the first, and write q = b + 8[ to obtain

0 = (� −�) + 8�
= 0(b2

G − [2
G ) + 8

(
20bG[G

)
+ 1 (bGb~ − [G[~) + 81 (bG[~ + b~[G ) + 2 (b2

~ − [2
~ ) + 82b~[~

= 0(bG + 8[G )2 + 1 (bG + 8[G ) (b~ + 8[~) + 2 (b~ + 8[~)2

= 0q2
G + 1qGq~ + 2q2

~ .

Since 0 ≠ 0, we can factor the last equation as

1
40

[
20qG +

(
1 + 8

√
402 − 12) q~] [

20qG +
(
1 − 8

√
402 − 12) q~] = 0.

We are interested in real solutions, and each of these factors will give rise to same
pair of real solutions as their real and imaginary parts. So, we consider the first
factor:

20qG +
(
1 + 8

√
402 − 12) q~ = 0.

Using Lagrange’s method, we set its corresponding ODE:

3G

20
=

3~

1 + 8
√

402 − 12
.

We rewrite it as follows and refer to it by telling the complex characteristic :(
1 + 8

√
402 − 12)3G − 20 3~ = 0. (5.3.10)

Suppose q (G,~) = 21 is the general solution of (5.3.11). Then, we use the change
of variables as b = Re(q) and [ = Im(q). In this case, it can be shown that the
Jacobian is nonzero so that we will be able to uniquely determine G = G (b, [) and
~ = ~ (b, [). This change of variables will make � = � and � = 0. Hence, the given
elliptic PDE (5.3.1) is reduced to

�Dbb +�D[[ + �Db + �D[ + �D = � (5.3.11)

where the coefficients �, �, �, �,� are as in (5.3.3) expressed in terms of b and [.

(5.18) Example
Reduce the PDE 5DGG − 2DG~ + 2D~~ + 2D~ + 4~ = 0 to its standard form.
As per the notation in (5.3.1), 0 = 5, 1 = −2, 2 = 2, 3 = 0, 4 = 2, 5 = 0 and 6 = −4~.
The discriminant 12 − 402 = 4 − 40 = −36 < 0; so the PDE is elliptic on the whole
R2. By (5.3.10), the complex characteristic is(

1 + 8
√

402 − 12)3G − 20 3~ = 0 ⇒ (−2 + 68) 3G − 103~ = 0.
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Its general solution is (−2 + 68)G − 10~ = 21 or q (G,~) = (G + 5~) − 8 (3G) = 22.
Thus, the change of variable is

b = Re(q) = G + 5~, [ = Im(q) = 3G .

Then, we find that G = [/3, ~ = (3b − [)/15, bG = 1, b~ = 5, [G = 3 and [~ = 0. By
(5.3.3), we have

� = 0b2
G + 1bGb~ + 2b2

~ = 45.
� = 0bGG + 1bG~ + 2b~~ + 3bG + 4b~ = 10.
� = 0[GG + 1[G~ + 2[~~ + 3[G + 4[~ = 0.
� = 5 (G (b, [), ~ (b, [)) = 0.
� = 6(G (b, [), ~ (b, [)) = −4(3b − [)/15.

By (5.3.11), the PDE has the standard form�(Dbb +D[[) +�Db +�D[ +�D = � which
gives

Dbb + D[[ +
2
9
Db +

4
225

b − 4
675

[ = 0.

(5.19) Example
Reduce the PDE DGG + GD~~ = 0 for G > 0, to its standard form.
Here, 0 = 1, 1 = 0, 2 = G , 3 = 4 = 5 = 6 = 0 so that 12 − 402 = −4G < 0 for
G > 0. Hence it is an elliptic PDE on the given region. By (5.3.10), the complex
characteristic is (

1 + 8
√

402 − 12)3G − 20 3~ = 0.
It gives 8 (2

√
G) 3G − 23~ = 0 ⇒ 8 4

3G
3/2 − 2~ = 21 or, G3/2 + 8 3

2~ = 22 With
q = G3/2 + 8 3

2~, the transformation is given by

b = Re(q) = G3/2, [ = Im(q) = 3
2
~.

Then, G = b2/3, ~ = 2
3[, bG =

3
2G

1/2, [~ = 3
2 , and by (5.3.3),

� = 0b2
G + 1bGb~ + 2b2

~ =
9
4
G =

9
4
b2/3.

� = 0bGG + 1bG~ + 2b~~ + 3bG + 4b~ =
3
4
G−1/2 =

3
4
b−1/3.

� = 0[GG + 1[G~ + 2[~~ + 3[G + 4[~ = 0.
� = 5 (G (b, [), ~ (b, [)) = 0.
� = 6(G (b, [), ~ (b, [)) = 0.

By (5.3.11), the PDE has the standard form�(Dbb +D[[) +�Db +�D[ +�D = � which
gives

9
4
b2/3 (Dbb + D[[ ) + 3

4
b−1/3Db = 0 ⇒ Dbb + D[[ +

1
3b
Db = 0.
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Reduction of linear second order PDEs to standard forms helps in solving the PDE,
at least in hyperbolic and parabolic cases. We illustrate this idea in the following
examples.

(5.20) Example
Obtain the general solution of the PDE 3DGG + 10DG~ + 3D~~ = 0.
Here, 0 = 3, 1 = 10, 2 = 3, 3 = 4 = 5 = 6 = 0 so that 12−402 = 64 > 0 implies that
the PDE is hyperbolic on R2. Now, 1 ±

√
12 − 402 = 10± 8 = 18, 2. By (5.3.5), the

characteristics are given by

3G

6
=
3~

18
,

3G

6
=
3~

2
⇒ 3~ − 3G = 0, 3~ − 3G

3
= 0.

Their solutions are ~ − 3G = 21 and ~ − G/3 = 22. Thus, the transformation is

b = ~ − 3G, [ = ~ − G
3
.

We have bG = −3, b~ = 1, [G = −1/3, [~ = 1, and from (5.3.3),

� = 20bG[G + 1 (bG[~ + b~[G ) + 2b~[~ = −73/3.
� = 0bGG + 1bG~ + 2b~~ + 3bG + 4b~ = 0.
� = 0[GG + 1[G~ + 2[~~ + 3[G + 4[~ = 0.
� = 5 (G (b, [), ~ (b, [)) = 0.
� = 6(G (b, [), ~ (b, [)) = 0.

By (5.3.9), the first standard form is

Db[ =
� − �Db − �D[ − �D

�
= − 3

73
× 0 = 0.

Its general solution is D (b, [) = ℎ1(b) + ℎ2([). In terms of the original variables,
the general solution may be given by

D (G,~) = ℎ1(~ − 3G) + ℎ2

(
~ − G

3

)
where ℎ1 and ℎ2 are arbitrary functions of one argument each.

(5.21) Example
Reduce the PDE G2DGG + 2G~DG~ + ~2D~~ = 0 for ~ ≠ 0, to its standard form and
then find its general solution.
Here, 0 = G2, 1 = 2G~, 2 = ~2, 3 = 4 = 5 = 6 = 0 so that 12 − 402 = 0. So, it is a
parabolic PDE on the whole plane. By (5.3.8), the characteristic is given by

1 3G − 20 3~ = 0 ⇒ 2G~ 3G − 2G2 3~ = 0 ⇒ ~ 3G − G 3~ = 0 ⇒ G

~
= 21.
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We thus take [ = G/~. Now, [G = 1/~ and [~ = −G/~2. Choose b = ~ so that bG = 0
and b~ = 1. Then the Jacobian

� = bG[~ − b~[G = −
1
~
≠ 0.

With this choice of the change of variables b = ~ and [ = G/~, we have G = b[,
~ = b , and

� = 0b2
G + 1bGb~ + 2b2

~ = ~2 = b2.

� = 0bGG + 1bG~ + 2b~~ + 3bG + 4b~ = 0.
� = 0[GG + 1[G~ + 2[~~ + 3[G + 4[~ = 0.
� = 5 (G (b, [), ~ (b, [)) = 0.
� = 6(G (b, [), ~ (b, [)) = 0.

By (5.3.9), the PDE is transformed to the standard form

�Dbb = � − �Db − �D[ − �D ⇒ b2Dbb = 0.

The domain is ~ > 0, that is, b > 0. Hence, the reduced PDE is Dbb = 0. Integrating
the equation with respect to b , we have

Db = ℎ1([) ⇒ D (b, [) = ℎ1([)b + ℎ2([),

where ℎ1([) and ℎ2([) are arbitrary functions of [. Substituting the expressions for
b and [ the general solution is written as D (G,~) = ℎ1

(
G/~

)
~ + ℎ2

(
G/~

)
.



6
Separation of Variables

6.1 Modeling wave
In most engineering problems, we need to model and solve wave propagation and
heat distribution. We start with a very brief introduction to modeling wave in a
vibrating string. An elastic string is fixed at two ends, say at G = 0 and G = !. It is
distorted at some instant of time, say C = 0 and is released to vibrate. The problem
is to determine its deflection D (G, C) at any point G ∈ [0, !] and time C > 0.

For a simple model we assume the following:

1. The string is perfectly elastic; it does not resist to bend.
2. It is homogeneous, i.e., mass of the string per unit length is constant, denote

it by d .
3. The string has been fastened by stretching it and the tension due to the

stretching is so high that the action of gravitation on it is negligible.
4. Every particle of the string moves strictly vertically so that the deflection and

the slope st every point on it remains small in absolute value.

We consider the forces acting on a small portion ΔG of the string. Due to the
above assumptions, the tension on the string is tangential to the initial shape (we
distorted it) of the string at each point. Let )1 and )2 be the tension at the points %
(point G) and & (point G + ΔG) of that portion. There is no horizontal motion, i.e.,
the horizontal components of tension is constant. See the figure. It means

)1 cosU = )2 cos V = ) = constant.

The vertical component at % is downward and at & is upward; so they are −)1 sinU
and )2 sin V. By Newton’s second law, the resultant of these forces is equal to the

119
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mass dΔG times the acceleration DCC evaluated at some point G = G∗ between G and
G + ΔG . Hence,

)2 sin V −)1 sinU = d ΔG DCC (G∗, C).
Dividing by ) and using the previous equation, we get

)2 sin V
)2 cos V

− )1 sinU
)1 cosU

=
dΔG

)
DCC (G∗, C) ⇒

dΔG

)
DCC (G∗, C) = tan V − tanU.

However, tanU is the slope of the (distorted) string at the point G . Similarly, tan V
is the slope at the point G + ΔG . That is,

tanU = DG (G, C), tan V = DG (G + ΔG, C) .

Hence,
DCC (G∗, C) =

)

d

DG (G + ΔG) − DG (G)
ΔG

.

Write ) /d = 22 since it is positive. Take limit of both sides as ΔG → 0. Then,
G + ΔG → G and G∗ → G so that we obtain

DCC = 2
2DGG where 2 > 0. (6.1.1)

This is called the one-dimensional wave equation. It is a linear homogeneous
second order PDE.

6.2 D’Alembert’s solution of wave equation
We consider solving the wave equation in (6.1.1):

DCC − 22DGG = 0.

Notice that D = D (G, C), a function of G and C . As a linear second order PDE,
comparing it with (5.3.1) with ~ there as C here, we find that 0 = −22, 1 = 0,
2 (G, C) = 1, 3 = 4 = 5 = 6 = 0. The discriminant is 12 − 402 = 422 > 0. So, it is a
hyperbolic PDE. By (5.3.5), the characteristics are

3G

20
=

3C

1 +
√
12 − 402

⇒ 3G

−22 =
3C

−22
⇒ G − 2C = 21.

3G

20
=

3C(
1 −
√
12 − 402

) ⇒ 3G

−222 =
3C

22
⇒ G + 2C = 22.

Thus, the transformation is given by

b = G + 2C, [ = G − 2C .
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We find that G = (b + [)/2, C = (b − [)/(22), bG = 1, bC = 2, [G = 1 and [C = −2. By
(5.3.3) with the variable ~ as C , the new coefficients are given by

� = 20bG[G + 1 (bG[C + bC[G ) + 2 (G, 1)bC[C = −322

� = 0bGG + 1bGC + 2bCC + 3bG + 4bC = 0
� = 0[GG + 1[GC + 2[CC + 3[G + 4[C = 0
� = 5 (G (b, [), C (b, [)) = 0
� = 6(G (b, [), C (b, [)) = 0.

By (5.3.6), the PDE is reduced to its standard form

Db[ =
1
�
(� − �Db − �D[ − �D) = 0.

You can also directly compute DCC and DGG using the Chain rule and substitute to get
the same equation Db[ = 0.
Integrating the above equation with respect to [, we get

Db = 51(b)

for an arbitrary function 51 of b . Integrating this equation with respect to b , we get

D (b, [) =
∫
51(b) 3b + 52([).

Since 51(b) ia an arbitrary function, we may write
∫
51(b) 3b as another arbitrary

function, say 53(b). Hence, the general solution of the above equation is D (b, [) =
53(b) + 52([). Going back to the variables G and C , we obtain the general solution of
the wave equation (6.1.1) as

D (G, C) = q (G + 2C) +k (G − 2C) (6.2.1)

where q and k are arbitrary functions of G and C . This solution is known as the
D’Alembert’s solution of the wave equation.
Suppose the initial distortion of the string is given as a function of G , say, 5 (G),

and the initial velocity, when we leave the string to vibrate is given by a function of
G , say, 6(G). In our notation, the wave equation (6.1.1) now comes with two initial
conditions

D (G, 0) = 5 (G), DC (G, 0) = 6(G). (6.2.2)

To get a solution of the initial value problem (6.1.1) and (6.2.2), we start with
D’Alembert’s solution and try to determine the arbitrary functions q and k . From
(6.2.1), we get

DC (G, C) = q′(G + 2C)
m(G + 2C)

mC
−k ′(G − 2C) m(G − 2C)

mC
= 2q′(G + 2C) − 2q′(G − 2C).
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The initial condition imply that

D (G, 0) = q (G) +k (G) = 5 (G), DC (G, 0) = 2q′(G) − 2k ′(G) = 6(G).

Taking the definite integral of the second equation with respect to G varying from
any fixed G0 to any ~ in the range of values of the variable G , we obtain

2
[
q (~) −k (~)

]
− 2

[
q (G0) −k (G0)

]
=

∫ ~

G0

6(B) 3B.

So, we have now q (~) +k (~) = 5 (~) and q (~) −k (~) from the above. Then,

q (~) = 1
2
5 (~) + 1

22

∫ ~

G0

6(B) 3B + 1
2
[
q (G0) −k (G0)

]
.

k (~) = 1
2
5 (~) − 1

22

∫ ~

G0

6(B) 3B − 1
2
[
q (G0) −k (G0)

]
.

Replacing ~ by G + 2C in the first and G − 2C in the second, we obtain

D (G, C) = q (G + 2C) +k (G − 2C)

=
1
2
[
5 (G + 2C) + 5 (G − 2C)

]
+ 1

22

∫ G+2C

G0

6(B) 3B − 1
22

∫ G−2C

G0

6(B) 3B

=
1
2
[
5 (G + 2C) + 5 (G − 2C)

]
+ 1

22

∫ G+2C

G0

6(B) 3B + 1
22

∫ G0

G−2C
6(B) 3B

=
1
2
[
5 (G + 2C) + 5 (G − 2C)

]
+ 1

22

∫ G+2C

G−2C
6(B) 3B.

We observe that two initial conditions as given in (6.2.2) determine the solution of
the wave equation (6.1.1) uniquely.
In particular, when the initial velocity is 0, the function 6(G) is the zero function.

We see that the solution is D (G, C) = [5 (G + 2C) + 5 (G − 2C)]/2.

6.3 Series solution of the wave equation
Physically, the string has two fixed end-points, which we have not considered while
discussing D’Alembert’s solution. The end-points are fixed at G = 0 and G = !; it
means that the deflection is 0 for all time to come. This translates to the boundary
conditions

D (0, C) = 0, D (!, C) = 0, for C ≥ 0. (6.3.1)
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We still have the same initial conditions that initial deflection is 5 (G) and initial
velocity is 6(G), but now, it is valid only for 0 ≤ G ≤ !. That is,

D (G, 0) = 5 (G), DC (G, 0) = 6(G), for 0 ≤ G ≤ !. (6.3.2)

Notice that D’Alembert’s solution is Uniquely determined when the wave equa-
tion is given only the initial conditions. So, that may not satisfy the boundary
conditions (6.3.1). Indeed, D’Alembert’s solution now involves 5 (−2C) which does
not mean anything physically. This solution is valid for all G and not only for
0 ≤ G ≤ !. Potentially, this solution applies to a string that is elongated from −∞
to ∞. Thus, it leaves open the case that when G is restricted to the interval [0, !],
there may or may not exist solutions which will also satisfy the initial conditions.
We will describe the simple and powerful method of separating the variables for

obtaining such a solution. In this method, we use the heuristic that possibly there is
a solution of the wave equation in the form

D (G, C) =
∞∑
==1

�= (G)�= (C)

which also satisfies the initial conditions and the boundary conditions. However, we
do not directly plug it in the wave equation so as to satisfy the initial and boundary
conditions. We rather think of D= (G, C) = �= (G)�= (C) to satisfy the wave equation
and the boundary conditions only. The series would then be required when we try
to satisfy the initial conditions.
So, we start with D (G, C) = � (G)� (C) initially. We plug it in the wave equation to

obtain two ODEs, one for � (G) and the other for � (C). This constitutes Step 1 of
the method. In Step 2, we determine (nonzero) solutions of these ODEs that satisfy
the boundary conditions in (6.3.1) thereby obtaining possibleD= (G, C). In Step 3, we
use a series

∑
0=D= (G, C) to compose the solutions found in Step 2 so that the series

solution satisfies the initial conditions. We execute the plan as in the following.
Step 1: Suppose D (G, C) = � (G)� (C). Differentiating, we get

DCC = �
••

�, DGG = �
′′�.

Here, the dot denotes derivative with respect to C and prime denotes derivative with
respect to G . Then the wave equation DCC = 22DGG in (6.1.1) takes the form

�
••

� = 22� ′′� ⇒
••

�

22�
=
� ′′

�
.

The left side is independent of G and the right side is independent of C . So, both are
independent of G and C , that is, it is a constant, say, : . Of course, the constant : is
yet unknown. We then have

� ′′ − :� = 0,
••

� − 22:� = 0. (6.3.3)
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Step 2: We are interested in nonzero solutions. The boundary conditions in (6.3.1)
take the form

D (0, C) = � (0)� (C) = 0 ⇒ � (0) = 0, D (!, C) = � (!)� (C) = 0 ⇒ � (!) = 0.

These are conditions on � (G) only. Again, � (G) = 0 satisfies these conditions but
we require nonzero solutions. The ODE � ′′ − :� = 0 for � in (6.3.3) involves an
unknown constant : .
If : = 0, then � = 0G + 1 for constants 0 and 1. Now, � (0) = 0 ⇒ 1 = 0. So,

� (G) = 0G . And, � (!) = 0 ⇒ 0! = 0 ⇒ 0 = 0. So, � (G) is the zero function,
which we do not require.
If : > 0, then � (G) = 04

√
:G +14−

√
:G . The conditions � (0) = 0 = � (!) imply that

0 + 1 = 0, 04
√
:! + 14−

√
:! = 0 ⇒ 0 = 0 = 1.

So, � (G) is the zero function, which we do not require.
So, : < 0; and we write : = −?2 for ? > 0. Notice that ? is yet to be determined.

Now, the equation of � (G) is � ′′ + ?2� = 0. Its general solution is

� (G) = 0 cos(?G) + 1 sin(?G).

Now, � (0) = 0 ⇒ 0 = 0. So, � (G) = 1 sin(?G). Then, � (!) = 0 ⇒ 1 sin(?!) = 0.
By taking 1 = 0, we get only trivial solution. So, we take the other alternative
sin(?!) = 0. It gives

?! = =c ⇒ ? =
=c

!
for = = 1, 2, 3, . . . .

Corresponding to each value of ?, we obtain a solution. These are:

�= (G) = 1= sin
(=cG
!

)
for = = 1, 2, 3, . . . . (6.3.4)

Now that the possible values for ? has been obtained, we use these values to solve the
equation for� (C) in (6.3.3). Notice that: = −?2 = −

(
=c/!

)2 ⇒ 22: = −
(
2=c/!)2.

The equation
••

� − 22:� = 0 for � (C) now reads as
••

� + _2
=� = 0, _= =

2=c

!
for = = 1, 2, 3, . . . .

Its general solution is

�= (C) = 2= cos(_=C) + 3= sin(_=C) for = = 1, 2, 3, . . . .

Then D= (G, C) = �=�= = 1= sin(=cG/!)
[
2= cos(_=C) + 3= sin(_=C)

]
. However, we do

not expect any of these D=s to satisfy the initial conditions, in general. So, we will
be taking a series D (G, C) = ∑∞

==1 0=D= (G, C) and try to satisfy the initial conditions.
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In that case, notice that we do not require so many constants like 0=, 1=, 2= and 3=.
Only 2= and 3= will suffice. It is enough to consider D (G, C) = ∑∞

==1D= (G, C), where

D= (G, C) =
[
2= cos(_=C) + 3= sin(_=C)

]
sin

(=cG
!

)
for = = 1, 2, 3, . . . . (6.3.5)

The numbers _= = 2=c/! are called the eigenvalues and the corresponding func-
tions D= (G, C) above are called the eigenfunctions of the vibrating string. The set
{_1, _2, . . .} of eigenvalues is called the spectrum.
Observe that each D= represents a harmonic motion with frequency as _=/(2c)

cycles per unit time. This motion is called the normal mode of the string. The first
mode, corresponding to = = 1, is called the fundamental mode and the others are
called the overtones. Since sin(=cG/!) = 0 for G = !/=, 2!/=, . . . , (= − 1)!/=,
the =th normal mode has =−1 nodes. Like the end-points, the string does not move
at the nodes. This is expected due to the wave-like movement of the string, from
which the name for the equation in (6.1.1) comes.
Step 3: We have seen that the eigenfunctions in (6.3.5) satisfy the wave equation
and the boundary conditions. We do not expect a single D= (G, C) to satisfy the initial
conditions. As discussed earlier, we set

D (G, C) =
∞∑
==1

D= (G, C) =
∞∑
==1

[
2= cos(_=C) + 3= sin(_=C)

]
sin

(=cG
!

)
. (6.3.6)

With this D (G, C), the first initial condition in (6.3.2) gives

D (G, 0) =
∞∑
==1

2= sin
(=cG
!

)
= 5 (G) for 0 ≤ G ≤ !.

It says that 5 (G) has been expanded in its Fourier sine series. Thus,

2= =
2
!

∫ !

0
5 (G) sin

(=cG
!

)
3G for = = 1, 2, 3, . . . . (6.3.7)

For the second initial condition, we first differentiate D (G, C) in (6.3.6), evaluate it at
C = 0 to get

DC (G, 0) =
[ ∞∑
==1

[
− 2=_= sin(_=C) + 3=_= cos(_=C)

]
sin

(=cG
!

)]
C=0

=

∞∑
==1

3=_= sin
(=cG
!

)
= 6(G).

Hence, 6(G) is expanded in its Fourier sine series. Thus,

3=_= =
2
!

∫ !

0
6(G) sin

(=cG
!

)
3G .
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Putting back the value of _= = 2=c/! we get

3= =
2
2=c

∫ !

0
6(G) sin

(=cG
!

)
3G for = = 1, 2, 3, . . . . (6.3.8)

To summarize, the solution of the wave equation (6.1.1) with boundary conditions
in (6.3.1) and initial conditions in (6.3.2) is given by (6.3.6) with _= = 2=c/!, where
2= and 3= are as in (6.3.7-6.3.8).
It can be shown that the series in (6.3.6) is convergent for 0 ≤ G ≤ ! and all

C ≥ 0. Further, the solution D (G, C) in the above series form is a solution of the wave
equation with the initial and boundary conditions if 5 (G) is twice differentiable on
0 < G < !, and it has one-sided second derivatives at the end-points G = 0 and
G = !, which are equal to 0.

(6.1) Example
Find the solution of the wave equation DCC = 22DGG satisfying D (0, C) = 0 = D (!, C),
DC (G, 0) = 0 and D (G, 0) = 2:G/! for 0 ≤ G ≤ !/2, D (G, 0) = 2: (! − G)/! for
!/2 < G ≤ !.
According to (6.3.6), the solution is given by

D (G, C) =
∞∑
==1

[
2= cos(_=C) + 3= sin(_=C)

]
sin

(=cG
!

)
where _= = 2=c/! and by (6.3.7-6.3.8),

2= =
2
!

∫ !

0
5 (G) sin

(=cG
!

)
3G

=
2
!

∫ !/2

0

2:
!
G sin

(=cG
!

)
3G + 2

!

∫ !

0

2:
!
(! − G)B8=

(=cG
!

)
3G

=
8:
=2c2 sin

(=c
2

)
3= =

2
2=c

∫ !

0
6(G) sin

(=cG
!

)
3G = 0.

Since sin(=c/2) is 0 for even =, 1 for = = 4< + 1, and −1 for = = 4< + 3, we find
that

D (G, C) = 8:
c2

[ 1
12 sin

cG

!
cos

c2C

!
− 1

32 sin
3cG
!

cos
3c2C
!
+ · · ·

]
.

(6.2) Example
Suppose the vibration of a stretched string of length 1 unit is clamped at each end
and starts from rest with the initial shape D (G, 0) = :G (1 − G). Here, : > 0 is such
that the maximum transverse displacement is small. Find the vibration D (G, C).
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The function D (G, C) satisfies DCC = 22DGG for some constant 2 depending on the
material of the string, the boundary conditions are D (0, C) = 0 = D (1, C), and
the initial conditions are D (G, 0) = :G (1 − G) and DC (G, 0) = 0. Here, ! = 1,
5 (G) = :G (1 − G) and 6(G) = 0. By (6.3.6),

D (G, C) =
∞∑
==1

[
2= cos(_=C) + 3= sin(_=C)

]
sin

(=cG
!

)
where _= = 2=c/! = 2=c , and

2= =
2
!

∫ !

0
5 (G) sin

(=cG
!

)
3G, 3= =

2
2=c

∫ !

0
6(G) sin

(=cG
!

)
3G.

Since 6(G) = 0, we have 3= = 0. And,

2= = 2
∫ 1

0
:G (1−G) sin(=cG) 3G = 2

2:
=3c3

(
1−cos(=c)

)
=

{
0 if = even
8:/(=3c3) if = odd.

Since only odd terms remain, we write = = 2< + 1 for< = 0, 1, 2, 3, . . .. Then

D (G, C) = 8:c−3
∞∑
<=0
(2< + 1)−3 sin

(
(2< + 1)cG

)
cos

(
(2< + 1)2cC

)
.

In this section we have discussed how to use the method of separation of variables
for solving the wave equation. The same method can be used to solve first order
PDEs. You can work out the details by solving the exercises.

6.4 One-dimensional heat flow
Consider the temperature in a long thin metal wire of constant cross sectional area.
Assume that it is perfectly insulated so that heat flows in one direction only. Call
the direction of flow as the G-axis. Write the temperature as D (G, C), where C is time.
Write  for the thermal conductivity, 2 for the thermal diffusivity, f for specific
heat, and d for the density of the wire. Then 22 =  /df and the heat flow is
governed by the heat equation

DC = 2
2DGG . (6.4.1)

Suppose that the wire is of length ! and its ends prescribed by G = 0 and G = ! are
kept at zero temperature. This gives the boundary conditions

D (0, C) = 0, D (!, 0) = 0 for C ≥ 0. (6.4.2)
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In particular, D (0, 0) = D (!, 0) = 0. Further, assume that the initial temperature on
the wire at time C = 0 is given as a function of G ; say, 5 (G). Then

D (G, 0) = 5 (G) for 0 ≤ G ≤ !. (6.4.3)

Notice that due to the boundary conditions, the function 5 (G) cannot be arbitrary,
but it must satisfy 5 (0) = 5 (!) = 0.
We will use the method of separation of variables to get a series solution of (6.4.1)

satisfying (6.4.2) and (6.4.3).
Step 1: Let D (G, C) = � (G)� (C). Substitute in (6.4.1) to get

•

�

22�
=
� ′′

�
.

The left side is independent of G and the right side is independent of C . So, each is
equal to a constant. As in the case of wave equation, if this constant is 0 or positive,
we would get only the trivial solution D (G, C) = 0. So, suppose that each ratio in the
above equation is negative, that is, it is equal to −?2 for ? > 0. Then, we get two
ODEs

� ′′ + ?2� = 0,
•

� + 22?2� = 0.

Step 2: Solving the equation for � we get

� (G) = 0 cos(?G) + 1 sin(?G).

From the boundary condition (6.4.2), we have

D (0, C) = � (0)� (C) = 0, D (!, C) = � (!)� (C) = 0.

We do not take � (C) = 0 since it leads to the trivial solution D (G, C) = 0. So,
� (0) = 0 and � (!) = 0. Now, � (0) = 0 ⇒ 0 = 0 ⇒ � (G) = 1 sin(?G). Then,
� (!) = 0 ⇒ 1 sin(?!) = 0. Again, 1 = 0 ⇒ � (G) = 0 which leads to the trivial
solution. So, sin(?!) = 0. Since ? > 0, it gives

? =
=c

!
for = = 1, 2, 3, . . . .

The corresponding solutions for � (G) are given by

�= (G) = sin
(=cG
!

)
for = = 1, 2, 3, . . . .

For ? = =c/!, the equation for � (C) becomes

•

� + _2
=� = 0 where _= =

2=c

!
.
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Corresponding to each =, the general solution is 1= exp(−_2
=C). Since constants will

be accommodated later, we set 1= = 1 to obtain

�= (C) = exp(−_2
=C)

as possible non-trivial solution for� (C) corresponding to the value=c/! of ?. Then,

D= (G, C) = �= (G)�= (C) = sin
(=cG
!

)
exp(−_2

=C) for = = 1, 2, 3, . . .

is a possible solution corresponding to the value =c/! of ?. This function D= (G, C)
is called an eigenfunction with respect to the eigenvalue _= = 2=c/!, as earlier.
Step 3: None of the D=s may satisfy the initial condition. So, we propose to have
our solution as a series of eigenfunctions. So, let

D (G, C) =
∞∑
==1

0=D= (G, C) =
∞∑
==1

0= sin
(=cG
!

)
exp(−_2

=C), where _= =
2=c

!
.

(6.4.4)
The initial condition (6.4.3) now gives

D (G, 0) =
∞∑
==1

0= sin
(=cG
!

)
= 5 (G) .

So, 0=s are the Fourier coefficients of the Fourier sine series for 5 (G). Thus,

0= =
2
!

∫ !

0
5 (G) sin

(=cG
!

)
3G for = = 1, 2, 3, . . . . (6.4.5)

It can be verified that D (G, C) of (6.4.4) in series form is a solution of the heat
equation (6.4.1) satisfying the conditions in (6.4.2)-(6.4.3) if 5 (G) is piecewise
continuous on 0 ≤ G ≤ !, and has one-sided derivatives at all points of discontinuity.

(6.3) Example
Find the temperature D (G, C) in a laterally insulated copper bar 80 cm long if the
initial temperature is 100 sin(cG/80)◦C. Assume the following physical data for the
bar: density is 8.92 g/cm3, specific heat is 0.992 cal/(g◦C), thermal conductivity
is 0.95 cal/(cm sec◦C). How long it will take for the maximum temperature in the
bar to drop to 50◦C?
Here, ! = 80, 5 (G) = 100 sin(cG/80), 22 =  /(df ) = 0.95/(0.092 × 8.92) =
1.158 cm2/sec◦C. Computing the coefficients from (6.4.5), we find that

01 =
2
80

∫ 80

0
100 sin2

(=cG
80

)
3G = 100, 0= = 0 for = ≥ 1.
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Thus, we need only _2
1 which equals 1.158 × 9.870/802 = 0.001785[sec−1] .

Hence, the solution is given by

D (G, C) = 100 sin
(cG
80

)
4−0.001785 C .

The maximum temperature in the bar is achieved when sin(cG/80) = 1. It drops to
50 implies 1004−0.001785 C = 50 ⇒ C = log(0.5)/(−0.001785) = 388 [sec].

(6.4) Example
Find the temperature in a laterally insulated bar of length ! whose ends are kept at
temperature 0 assuming that the initial temperature is 5 (G) = G for 0 ≤ G ≤ !/2
and 5 (G) = ! − G for !/2 < G ≤ !.
We compute the coefficients from (6.4.5) as follows:

0= =
2
!

(∫ !/2

0
B sin

=cG

!
3G +

∫ !

!/2
(! − G) sin =cG

!
3G

)
=


0 if = even

4!
=2c2 if = = 4< + 1
− 4!
=2c2 if = = 4< + 3.

Hence, the solution is

D (G, C) = 4!
c2

[
sin

cG

!
exp

[
−

(
2c/!

)2
C
]
− 1

9
sin

3cG
!

exp
[
− (32c/!)2 C

]
+ · · ·

]
.

Notice that this is a decreasing function of C . Physically this happens because the
ends are kept in zero temperature.

(6.5) Example
Find the solution D (G, C) of the heat equation DC = 22DGG satisfying the conditions
DG (0, C) = DG (!, C) = 0 for all C , and D (G, 0) = 5 (G) for 0 ≤ G ≤ !.
We set D (G, C) = � (G)� (C). As earlier we reach at

� (G) = 0 cos(?G) + � sin(?G),
•

� + 22?2� = 0.

Then

� ′(G) = −0? sin(?G) + 1? cos(?G) ⇒ � ′(0) = 1?, � ′(!) = −0? sin(?!).

The boundary conditions give

DG (0, C) = � ′(0)� (C) = 1? = 0, DG (!, C) = � ′(!)� (C) = −0? sin(?!) = 0.

Since we need a non-zero solution, we assume that � (C) ≠ 0 and at least one of 0
or 1 is equal to 0. To obtain a series solution, we take 1 = 0 and 0 ≠ 0. Further,
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constants will get accommodated in a series. So, we take 0 = 1. Then we have
? = 0 or sin(?!) = 0. It implies the possibilities for ? as

? = ?= =
=c

!
for = = 0, 1, 2, 3, . . . .

Neglecting the coefficients, we get �= (G) = cos(=cG/!). This does not disturb�=s.
That is, as earlier,�= (C) = exp(−_2

=C), where_= = 2=c/!. Hence, the eigenfunctions
are

D= (G, C) = �= (G)�= (C) = cos
=cG

!
exp(_2

= C) for = = 0, 1, 2, 3, . . . .

Notice that comparing these eigenfunctions with those in (6.4.4), we have an ex-
tra eigenvalue, namely _0 = 0 and corresponding to it the extra eigenfunction
D0 = constant. Notice that this is also a solution of the problem when 5 (G) is a
constant function.
As earlier, we have the solution as

D (G, C) =
∞∑
==0

0=D= (G, C) =
∞∑
==0

0= cos
=cG

!
4−_

2
= C , where _= =

2=c

!
.

The coefficients are obtained from the initial condition D (G, 0) = 5 (G). However,
D (G, 0) = ∑∞

==0 0= cos(=cG/!). Thus, 0=s are the Fourier coefficients of the Fourier
cosine series of 5 (G). That is,

00 =
1
!

∫ !

0
5 (G) 3G, 0= =

2
!
5 (G) cos

=cG

!
3G = = 1, 2, 3, . . ..

When the two ends of the wire are kept in constant temperatures, we get the
boundary conditions as D (0, C) = � and D (!, C) = �. We try a solution in the form
D (G, C) = � + � −�

!
G + E (G, C). Then, E (G, C) will satisfy the heat equation with

homogeneous boundary conditions. We use the method of separation of variables
for determining E (G, C). You may need this trick to solve some problems from the
exercises.

6.5 Laplace equation
Instead of a metal rod, consider heat distribution on a metal plate. Wemay approach
the problem of modeling in a way similar to the derivation of one-dimensional wave
and heat equations. We would arrive at the two-dimensional heat equation

DC = 2
2(DGG + D~~).
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When the steady state is achieved, we find that DC = 0 and it yields the Laplace
equation

DGG + D~~ = 0.

When the metal plate is rectangular, the Cartesian coordinates system is suitable.
Similarly, if the plate is circular, it may be easier to use the polar coordinates. We
need to express the Laplacian DGG + D~~ in polar coordinates.
The relation between Cartesian and the polar coordinates is expressed by

G = A cos\, ~ = A sin\, A =

√
G2 + ~2, tan\ =

~

G
.

Suppose D = D (G,~, C) is a function of G,~ and C . We are interested in computing
DGG + D~~ in A, \ form. By the chain rule,

DG = DAAG + D\\G .

Differentiating again, we obtain

DGG = (DA AG )G + (D\ \G )G
= (DA )G AG + DA AGG + (D\ )G \G + D\ \GG
= (DAA AG + DA\ \G ) AG + DA AGG + (D\A AG + D\\ \G ) \G + D\ \GG .

Using the expressions for A and \ in terms of G,~, we obtain

AG =
G√

G2 + ~2
=
G

A
, \G =

1
1 + (~/G)2

× −~
G2 = − ~

A2 .

AGG =
A − G AG
A2 =

1
A
− G

2

A3 =
~2

A3 , \GG = −~ ×
−2
A3 AG =

2G~
A4 .

Assuming that D is two times continuously differentiable with respect to A and \ ,
we get DA\ = D\A . Substituting the expressions above into that of DGG leads to

DGG =
G2

A2DAA −
2G~
A3 DA\ +

~2

A4D\\ +
~2

A3DA +
2G~
A4 D\ .

Similarly,

D~~ =
~2

A2DAA +
2G~
A3 DA\ +

G2

A4D\\ +
G2

A3DA −
2G~
A4 D\ .

Adding the two above and suing the fact that G2 +~2 = A2, we obtain the expression
for the Laplacian in polar coordinates as follows:

DGG + D~~ = DAA +
DA

A
+ D\\
A2 .
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Using these and the method of separation of variables, we solve some problems
on heat distribution on rectangular and circular plates.

(6.6) Example
Find the steady state temperature distribution D (G,~) on the rectangular region
0 ≤ G ≤ c, 0 ≤ ~ ≤ 2, given that on the side ~ = 0, 0 ≤ G ≤ c , D (G, 0) = G sinG ,
and the temperature on the other three sides are maintained at D = 0.
The steady state temperature D (G,~) satisfies the Laplacian

DGG + D~~ = 0.

We try D (G,~) = � (G)� (~). Substituting it in the equation and simplifying, we get

1
�

32�

3G2 = − 1
�

32�

3~2 .

The left side is independent of ~ and the right side is independent of G ; so each is a
constant, say, 2. It then follows that

32�

3G2 = 2�,
32�

3~2 + 2� = 0.

The boundary conditions D (0, ~) = 0 = D (c,~) imply that � (0) = � (c) = 0. When
2 = 0, � = 0 + 1G . These condition on � imply that � (G) = 0, leading to the trivial
solution D (G,~) = 0 which is not the case. If 2 > 0, then � (G) = 04

√
2G + 14−

√
2G .

Again, the conditions � (0) = � (c) = 0 lead to � (G) = 0. So, 2 < 0; then let 2 = −_2

for _ > 0. We now have the equations as

32�

3G2 + _
2� = 0,

32�

3~2 − _
2� = 0.

Then � (G) = 0 cos(_G) + 1 sin(_G). � (0) = 0 ⇒ 0 = 0. So, � (G) = 1 sin(_G).
- (c) = 0 ⇒ sin(_c) = 0 as 1 = 0 leads to the trivial solution. Hence, the
eigenvalues are

_= = = for = = 1, 2, 3, . . . .

The corresponding eigenfunctions are (we take 1= = 1.)

�= (G) = sin(=G) for = = 1, 2, 3, . . . .

Now the equation for � reads as

32�

3~2 − =
2� = 0.
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To show dependence of � on the parameter =, we write its solution as �= (~).
Then, �= (~) = 2 cosh(=~) + 3 sinh(=~). The boundary condition D (G, 2) = 0 gives
� (G)� (2) = 0 ⇒ � (2) = 0. Or,

2 cosh(2=) + 3 sinh(2=) = 0 ⇒ 3 = −2 coth(2=).

Using this in the expression for �= (~) and setting 2 = 1, we obtain

�= (~) = cosh(=~) − coth(2=) sinh(=~) = cosech(2=) sinh(=~ − 2=).

Since constants will be determined later from a series, we choose 2= = sinh(2=) in
obtaining D=. Then,

D= (G,~) = sin(=G) sinh(=~ − 2=) for = = 1, 2, 3, . . . .

To satisfy the other conditions, we set

D (G,~) =
∞∑
==1

0=D= =

∞∑
==1

0= sin(=G) sinh(=~ − 2=).

Now, D (G, 0) = G sinG implies

G sinG =

∞∑
==1

0= sin(=G) sinh(−2=).

Multiply sin(<G) and integrate over 0 ≤ G ≤ c to obtain∫ c

0
G sinG sin(<G) 3G = −0< sinh(2=)

∫ c

0
sin(=G) sin(<G) 3G .

Using the orthogonality property of {sin(=G)} as in evaluating the Fourier coeffi-
cients, we get

01 = − c

2 sinh 2
, 0= =

4=
(
1 + (−1)=

)
(=2 − 1)2c sinh(2=)

for = = 2, 3, 4, . . . .

Substituting these values of 0= in the series, we obtain

D (G,~) = −c sinG sinh(~ − 2)
2 sinh 2

+
∞∑
==2

4=
(
1 + (−1)=

)
(=2 − 1)2c sinh(2=)

sin(=G) sinh(=~ − 2=).
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(6.7) Example
Find the temperature distribution D (A, \, C) in a thin (negligible thickness) semicir-
cular metal plate 0 ≤ A ≤ 1, 0 ≤ \ ≤ c given that its plane faces are insulated to
prevent heat loss through them, the straight edge of the plate formed by the diameter
0 ≤ A ≤ 1, \ = 0 and \ = c is insulated, the semicircular boundary is maintained at
zero temperature, and the initial temperature distribution isD (A, \, 0) = (1−A ) cos\ .
Using the Laplacian in polar coordinates, the heat equation on the plate is

DC = 2
2 (DAA + DA

A
+ D\\
A2

)
.

The bounding diameter is insulated and semicircular boundary is kept at zero
temperature. This means that

D (A, 0, C) = 0, D\ (A, c, C) = 0, D (1, \, C) = 0.

To use the separation of variables, we take D (A, \, C) = � (A )� (\ )� (C). Substituting
in the heat equation above we get

•

�

�
= 22

(�′′
�
+ 1
A

�′

�
+ 1
A2
� (2)

�

)
.

Here �′ = 3�/3A, �′′ = 32�/3A2 and � (=) means 3=�/3\=. The left side is inde-
pendent of A and \ , and the right side is independent of C . Hence, all of them are
independent of A, \, C so that they are equal to a constant. Further, the temperature
decreases with time; so the constant must be negative. We may also consider three
cases of this constant, and verify that non-negative values of this constant lead to
the trivial solution.
Now that each side is equal to some negative constant, say, −_2 with _ > 0, we

obtain two equations:

•

� + 22_2� = 0, A2�
′′

�
+ A �

′

�
+ _2A2 = −�

(2)

�
.

Again, the second equation has a left side independent of \ and the right side
independent of A . Hence, each is a constant. We may verify that for negative values
of this constant, we get only the trivial solution. So, we assume that this constant is
non-negative. We write it as @ ≥ 0. Then, the second equation gives two equations:

� (2) + @� = 0, A2�′′ + A�′ + (_2A2 − @)� = 0.

The general solution for � (\ ) is

� (\ ) = � cos(√@ \ ) + � sin(√@ \ ) .
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The boundary condition D\ (A, 0, C) = 0 implies � (1) (0) = 0 and the condition
D\ (A, c, C) = 0 implies � (1) (c) = 0. The first condition yields � = 0 and the second
leads to sin(√@ c) = 0. Hence, √@ = < for< = 0, 1, 2, 3, . . .. Setting the arbitrary
constant � to 1, we get

� (\ ) = cos(=\ ) for < = 0, 1, 2, 3, . . .

The equation for � (A ) now becomes

A2�′′ + A�′ + (_2A −<2)� = 0.

We recognize this as the Bessel’s equation, whose general solution is

�< (A ) = 0�< (_A ) + 1.< (_A ).

Recall that .< (_A ) → ∞ as A → 0. However, the temperature on the plate remains
finite. Hence, 1 = 0. Further, we will be getting a series solution finally; so, we set
0 = 1 and continue with the solutions

�< (A ) = �< (_A ) for < = 0, 1, 2, 3, . . .

For the boundary condition D (1, \, C) = 0, we must have � (1) = 0. It means,
�< (_) = 0. Hence, the eigenvalues _s are the positive zeros of �<, the Bessel
function. So, we take _= = I<,=, the =th positive zero of �<.
Using these _s in the equation for � (C), which was

•

� + 22_2� = 0, we have

�<,= (C) = 1<,= exp(−I2
<,=2

2C).

Combining the results for � (A ), � (\ ) and � (C), we obtain

D (A, \, C) =
∞∑
<=0

∞∑
==1

1<,= �< (I<,=A ) cos(<\ ) exp(−I2
<,=2

2C).

When C = 0, the initial condition D (A, \, 0) = (1 − A ) cos\ gives

(1 − A ) cos\ =

∞∑
<=0

∞∑
==1

1<,= �< (I<,=A ) cos(<\ ).

This is the Fourier-Bessel series of the left side function. We multiply cos\ and
integrate over 0 ≤ \ ≤ c . Every term on the right hand side vanishes except those
corresponding to< = 1. Thus,

(1 − A ) cos\ =

∞∑
==1

11,= �1(I1,=A ) cos\ ⇒ 1 − A =
∞∑
==1

11,= �1(I1,=A ).
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Multiply the last expression by A �1(I1,BA ) and integrate over 0 ≤ A ≤ 1. Using the
orthogonality of the Bessel functions, we get∫ 1

0
A (1 − A ) �1(I1,BA ) 3A = 11,B

1
2
� 2
2 (I1,B).

This gives 11,B . We write in terms of =:

11,= = 2
[
�2(I1,=)]−2

∫ 1

0
(A − A2) �1(I1,=A ) 3A for = = 1, 2, 3, . . . .

Then the required solution is

D (A, \, C) =
∞∑
==1

11,= �1(I1,=A ) cos\ exp(−I2
1,=2

2C).

To obtain numerical values for specific tuples (A, \, C) one must use the tables for
the zeros of Bessel functions.
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