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1
First Order ODE

1.1 Introduction

A differential equation is an equation that involves derivatives of a variable that
depends on other independent variables. For instance,

3 4
Z—z = 3x% sin(x + y), %+2(j—z) -y=0
are differential equations, where the variable y is supposed to be the variable that
depends on the independent variable x. When the equation involves only one
independent variable, the equation is said to be an ordinary differential equation,
an ODE.

The order of an ODE is the order of the highest derivative of the dependent
variable. In the above equations, the first one is of first order and the second one is
of third order.

A solution of an ODE is a function which when replaces the dependent variable,
it is seen that the equation is satisfied. If the dependent variable is y and the
independent variable is x in an ODE of order k, then a solution of such an equation
is y = y(x) which is k times differentiable and which satisfies the given equation.
For example, y(x) = 2sinx — % cos(2x) is a solution of the ODE

d2

d_xz +y = cos(2x).

(We also write v for dy/dx, y™ for d"y/dx" etc.) This claim is verified as follows:
. 1 7 2 o
y =2sinx — 3 cos(2x) = y' =2cosx + 3 sin(2x)

4
=y’ =-2sinx+ gcos(2x) = —y + cos(2x).

Often an ODE comes with the restriction that the independent variable varies in a
particular subset of R. In that case, the domain of the dependent variable is assumed
to be that subset. For example, in the ODE

xy+y=0, x#0
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it is assumed that the domain of y = y(x) is R \ {0}. In this case, the function
y(x) = 1/x is a solution. Reason:

d(1/x) 1 1y 1

y=1/x = xy +y=x

It is easy to see that y(x) = ¢/x for any ¢ € R is also a solution. In such a case, we
say that c is an arbitrary constant.

Are there other types of solutions to this equation? Well, suppose, y(x) is a
solution of xy’ +y = 0. Write z(x) = xy. Then

d—zzxy'+1~y:0 = z(x)=c = xy=c = y=c/x.
x
That is, any solution of xy’ + y = 0 is in the form y = ¢/x for x # 0.

Observe that a solution of an ODE need not be unique. However, if we have
another condition on the function y(x) such as y(1) = 1, then substituting x = 1 in
our solution y = c¢/x, we have

I=y(l)=c/l=c.

We thus obtain the unique solution y = 1/x. The condition y(1) = 1 is called an
initial condition for the ODE. In fact, when a condition on the dependent variable
is given by prescribing its value at a single point, it is called an initial condition. An
ODE with a given initial condition is called an initial value problem, an IVP.

It follows that y = ¢/x = 1/x is the only solution to the initial value problem

xy'+y=0, y(l)=1 x=#0.

A general first order ODE may be given by an equation using x, y, y’, which would
then look like

h(x,y.y') =0
for some specific expression h(-, -, -). For simplicity, we may only consider equations
which can be solved for y’; that is, an ODE in the form:

Y =g(x,y)

with a given domain, a subset of R, where x varies. Geometrically, consider the
xy-plane. At a particular point (with an admissible x-value), say (xo, yo), the ODE
gives the value of y’. That s, y’(x9) = g(x0, yo); it is a number which represents the
slope of the tangent to y = y(x) at x = xo. By varying x throughout its domain and
with all possible values of y, the ODE prescribes slopes at each admissible point.
The set of all these slopes is called the direction field for the ODE.

By joining these slopes geometrically we may get many solution curves y = y(x)
to the ODE. In general, we accept continuous curves in the xy-plane as solutions to
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ODEs rather than functions y = y(x). Once an initial value is prescribed, whenever
there exists a unique solution, we would obtain only one solution curve that passes
through the point (x, yo)-

The direction field for the ODE y’ = x + y is plotted in the following figure. Also
plotted are three approximate solution curves passing through the points (0, 1),
(0,0) and (0, —1), respectively.

It is a fact that even all initial value problems do not have unique solutions.
Anything can happen. There are IVPs having no solutions, having more than one
solutions, and there are IVPs having a unique solution. We will use the following
result without proof.

(1.1) Theorem (Existence-Uniqueness)

7]
Let g(x,y) and a—g be continuous in the rectangle R : xy < x < xo+a, |y—yo| < b.
X

Compute M = max{|g(x,y)| : (x,y) € R} and a = min{a, b/M}. Then, the IVP
Yy = g(x,y), y(xo) = yo has a unique solution in the interval xo < x < xp + .

(1.2) Example

Consider the IVP: v’ = sin(2x)y'/3, y(0) = 0.

It has a solution as y(x) = 0, the zero function.

Verify that y(x) = ++/8/27 sin’ x are solutions of the same IVP.

Notice that f(x, y) = sin(2x)y'/3 has no partial derivative at y = 0. 0

1.2 Variables Separable

Sadly, all ODEs of the form y’ = g(x, y) cannot be solved since it would ask us to
integrate g(x, y) with respect to x, where y is an unknown function of x. A simpler
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case, which we may think of solving is when g(x, y) is a function of x alone. So,
we consider an ODE in the form

y = f(x).

Of course, we cannot even solve all equations in this form. For instance, we do not
know how to solve
’_ x2
y=e

since our data base for integrating algebraic expressions does not include such a
function. Knowing this fact very well, we will attempt solving first order ODE:s; in
fact, whichever we can. In general, if we know how to integrate the function f(x),
we can get a solution of the ODE. In fact,

Y = f(x) = y(x) = j Fx) dx.

For example, the ODE y’ = x" for r > —1 may be solved by taking

xr+1
Y= J x"dx = 1 + C for an arbitrary constant C.
r

We can slightly generalize this method to solve most ODEs in the form

9y = f(x) (1.2.1)

by using the differentials. Recall that dy = ¢’ dx. Using this, we obtain

)y = f(x) = j g(y) dy = jg(y)y’ dx = ff(x) dsx.

This amounts to the following formal manipulation:

d
9 E =10 = g dy=fwdx = [gdy=[ reax

Of course, we also add an arbitrary constant to the result of any one integral. This is
the reason, the ODE in (1.2.1) is called a variables separable ODE, and this method
is called the method of variables separable. The solution so obtained this way is
called the general solution of the ODE (1.2.1) since any solution can be put in this
form.

(1.3) Example
Find the general solutions to the following ODEs:
@ v =x*y> b)) y=1+y> () vy = (x+1)e "y
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(a) Separating the variables, we have y?y’ = x?. Integrating,
3

y _x
Jyzdyzszdx = ?:?+C1 = y=x+C

dy
1 +y?

Oy =1+y>= (1+y)y=1= J
= y = tan(x + C).
©y=x+De™yP? = y 2y =(x+1)e* = J y2dy = J(x +1)e ™™ dx
= -y l=—(x+2)e*+C = y=[(x+2)e™* - C]7L. O

:Jldx = tanly=x+C

(1.4) Example
Find solutions to the following IVPs:

@ v =-2xy, y(0) =1.8 (b)eVy =x+x>, y(l) = 1.
@y =-2xy = y 'y =-2x = J y ldy = J(—Zx) dx = logly| = x>+ Cy
= |y| = e 0 = ly| = Ce™ = y= +Ce™.

As C is an arbitrary constant, which may be any real number, y = Ce™.
Then y(0) = 1.8 = Ce® = 1.8 = C = 1.8. Hence, y(x) = 1.8,

x2  x*
(b)eyy':x+x3=>Jeydy:‘[(x+x3)dx:>ey:?+z+c
2 4
ﬁyzlog(%+xz+c) for C > 0.
y(H)=1= e = %+%+C = C:e—%. Hence, the solution is
(x)=1lo (x2+x4+ 3) 0
y=loe{yryreTg)

Most often, the differential equation does not signal in any way that its solutions
are not defined at certain points. This can even happen for IVPs.

(1.5) Example
Solve the IVPs: (a) ¢/ = 1+42 y(0)=0 (b)y' =1+7> y(0)=1.

@y =1+y" = I(1+y2)_1dy:de = tan"'y=x+C = y=tan(x +C).

y(0) =0 = 0=tan(C) = C =0. Hence, the solution is y = tan x.

This solution is not defined at x = +7/2. Yet, the ODE does not signal anything
about this! The solution exists in (- /2, 7/2).
(b) Asin (a), y =tan(x +C). y(0) =1 = 1 =tanC = C = x/4. So, the solution
is y = tan(x + 7 /4). Again, this solution exists in (-37/4, 7/4). 0



6 MA2020 Classnotes

(1.6) Example
Find the solution of the IVP ¢’ = (1 +y)x, y(0) = —1.

d 2
y=10+y)x = ‘[l—yzjxdx = log|1+y|:x—+C.
+y 2

This solution is defined for y # —1. But the initial condition says otherwise. We
observe that y(x) = —1 is a solution. Due to our existence-uniqueness theorem,
y(x) = —1 is the only solution of the IVP. 0

(1.7) Example
Find the solution to the IVP yy’ + (1 +¢?) sinx = 0, y(0) = 1.

yy' + (1+yH)sinx =0 = y(l+y*) 'y = —sinx

2yd
:>J / yZ:—JZSinx = log(1 +y*) =2cosx +C.
I+y

y(0)=1 = log2=2+C = C=1log2-2.
So, log(1 +y?) =2cosx +log2 — 2. Or,

y2 _ p2coosx=2+log2 _ 4 _ 262(cosx—l) 1= 26_4Sin2(x/2) _1.

Since y(0) > 0, we take the positive sign in the square root. That is,

y = V2e—4sin(x/2) _ 1.

This solution is defined for 2e~45" (*/2) However,
26—4sin2(x/2) > 1 o e—4sin2(x/2) >12 & e4sin2(x/2) <2

o 4sin?(x/2) < log2 & |x/2| < sin~! Y22,
That is, the solution exists in the interval (—a, a), where a = sin™! .l(2)g2. 0
(1.8) Example
Find all solutions of ¢y’ = —x/y.
y? 2
y,:—x/y = Jydy:—fxdx = ?:—?+C1 = X2+y2:C.

In this case, we cannot find y as a function of x. However, the solutions are solution
curves in the xy-plane. 0

(1.9) Example
Solve the IVP (1 +¢€¥)y’ =cosx, y(r/2) =3.

(1+e¥)y =cosx = J(1+ey)dy:Jcosxdx = y+e’ =sinx +C.
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y(n/2) =3 = 3+e>=1+C = C=2+¢>. So, the solution is given by
y+el =sinx+2+e.

Here, we cannot express y in terms of x explicitly. In general, we accept solutions
given implicitly. 0

1.3 Reducible to variables separable

Sometimes we use a suitable substitution so that a given ODE will become amenable
to the variables separable method. A specific case is when the ODE looks like

y = f(y/x),

where the right hand side is a an expression depending directly on y/x. In this case,
we substitute u = y/x. Then, u = y/x = y =ux = y = u'x +u. The ODE
becomes

dx
ot

In fact, we do not remember the last formula. It only shows that the substitution
y = ux reduces the ODE to a case of variables separable.

(1.10) Example

Consider the ODE 2xyy’ = y? — x2.
2_ 2

Here, y’:yz;; :%_ZX_y' Take y = ux to get
et u 1 oy 1 +u? _ 2u du 1
Ux+u=—-—-— u'x =— — =
2 2u 2u 1 +u?dx x

Integrating, we obtain

2 d
J 4 du:—J—x:>10g(l+u2):—log|x|+C=>1+u2:
1 +u? x

=10

Since C is arbitrary, we write C/x instead of C/|x|.
Substituting back u = y/x, we get 1 + (y/x)? = C/x or, x> + y*> = Cx or,

(- 5) =5
x—-= =—.
) TV Ty
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The solutions comprise a family of circles passing through the origin with center
on the x-axis. 0

Another type of ODEs can be reduced to variables separable form. They are
equations of the form
dy ax+by+c
dx  ax+by+c’
Here, a, b, c,d’,b’, ¢’ are some real numbers. We consider two cases.

a
Case I: Suppose the coeflicients of x and y are in ratio. That is, — =
a
In this case, the ODE is in the form

;.

dy _ ax+by+c
dx  m(ax +by) +¢’’

We substitute u = ax + by so that ¥’ = a + by’ and the ODE is reduced to

u+c

u=a+by =a+b .
mu +c’

Here, the variables are separated.

b
Case 2: Suppose the the coefficients of x and y are not in ratio. That is, ﬁ; # b
a
In this case, we shift both the independent and dependent variables; that is,
we take x = X +hand y = Y + k for some constants h, k to be determined suitably.

With this change of variables, we have

dY dy ax+by+c = aX+bY+ah+bk+c

dX dx  adx+by+c aX+bY+ah+bk+c

The trick is to take h, k in such a way that the last expression is simplified. So, we
take

ah+bk+c=0, dh+bk+c =0. (1.3.1)
Then, the ODE is simplified to

dY aX+bY a+b(Y/X)

X axipy - arpax LI

Now, the earlier method of substituting Y = uX will separate the variables. Then,
solution curves will be obtained in the form g(X,Y) =0, or, g(x — h,y — k) =0.

(1.11) Example
Solve the ODE (x+y— 1)y’ =2x+2y+ 1.
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Here, the coefficients of x, y are in ratio. We substitute u = x +y so that v’ = 1 + ¢/,
and the ODE is reduced to
,  2u+1 3u

2u+1 du
= =u = +1=

-1 = — = .
u u-—1 dx u—1 u-—1

Integrating, we get

3u 3 3

Substituting u = x + y and simplifying we obtain

-1 1
Ju duzfdxﬁz——log|u|:x+C1.

y—2x—-Cy=loglx+y| = Ce¥ X =x+y
for an arbitrary constant C. This gives the solution curves of the ODE. 0

(1.12) Example

Solve the ODE 3y —7x+7) + (7y —3x+3)y’ = 0.
Tx =3y -7
R
are not in ratio. So, we substitute x = X + h, y = Y + k. Equation 1.3.1 gives
7Th -3k -7 =0=-3h+ 7k + 3. Solving these, we get h = 1, k = 0. That is, we
take x = X + 1, y = Y so that the ODE is reduced to

dY dy 1X-3Y 7-3(Y/X
[3Y—7(x+1)+7]+[7Y—3(X+1)+3]ﬁ =0 = X X7y _3+7((Y/)2)-

The ODE is ¢ = The coefficients of x, y in both linear expressions

Substitute Y = uX so that d—Y = ﬁX +u= 7-3u
dX dX -3 +7u

du 7 —3u _7—3u+3u—7uz_7—7u2

Zx= - = .
X" T 3+7u Y 3+ 7u 3+ 7u

Tu-73 dX
du=| —.
7 — Tu? X

. This gives

Separating the variables, we obtain f

N Tu-173 1 2u N 3 1
ow, = —— — - —
7 — Tu? 2u2-1 14u-1 14u+1

. Then the above gives

—%log|u2— 1] +%10g|u— 1| - 13—410g|u+ 1] =log|X| + C;.
Taking exponential of both sides and simplifying we get
ClIX| = u—=1""u+ 17",
Substituting u = Y/X, X = x — 1, Y = y and simplifying we obtain
(Y+x-1)>@y-x+1)2=C

for some arbitrary constant C. This gives the solution curves. 0
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1.4 Exact Equations

Sometimes observing simple identities about the differentials help in solving ODEs.
For instance, consider the ODE

xy +y—-2x=0.
. dlxy) _ .
Notice that e - Y + y. Then the ODE can be solved as follows:
x
d
(dxy) =2x = Id(xy) = J 2xdx = xy=x>+C.
x

Using differentials, the ODE can be written as
xdy+ydx —2xdx =0.

This can be solved as
d(xy) - d(x?) =0 = J d(xy) - J d(%) =C = xy-22=C.

In fact, we will write an ODE of the first order such as xy" + y — 2x = 0 as
xdy+(y—2x)dx=0
using the differentials. In general, we consider first order ODEs in the form
M(x,y)dx + N(x,y)dy = 0.

This also covers the variables separable case since an ODE in the form g(y)y’ = f(x)
can be rewritten as

—f(x)dx+g(y)dy = 0.

We can solve the general ODE above provided we find that the expression on the
left is a differential d(u(x,y)). In this case, we may integrate to obtain the general
solution as u(x,y) = C. So, the question is when can we get a function u(x, y) so
that

d(u(x,y)) = Mdx+Ndy

is true. First, we look for some necessary conditions. Suppose that there exists a
function u(x, y) such that
du=Mdx+ Ndy

From calculus we know that
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Hence, the necessary condition is that

du du
= N

M=—, =—.
ox ay

If we assume that the second derivatives of u(x, y) are continuous, then Uxy = Uyy.
The above condition would imply that

oM oN
— = Uy = —.
oy Y ox

In fact, this condition is also sufficient as the following result shows.

(1.13) Theorem

Let M(x,y) and N(x,y) be real valued functions having continuous partial deriva-
tives on the rectangle R : a < x < b, ¢ <y < d. Then, the following are equivalent:

(1) There exists a function u(x,y) defined on R such that du = M dx + N dy.
(2) My = Ny holds in R.
(3) There exists a function u(x,y) satisfying M =u, and N = u,.

Proof. (1)= (2): Suppose du = M dx + N dy is true in R. Then, u,, and u,, exist
and are continuous. By the Chain rule, du = u,dx + u,dy. Comparing these two
equations, we get M = u, and N = uy. Thus, My = uy, and Ny = uy,. Since u,, and
uyy are continuous, they are equal. Hence, M, = N, holds in R.

(2) = (3): Suppose that M, = N,. Integrate with respect to x to get

N(x,y) = J M, dx +g(y).

Here, g(y) is an arbitrary function of y alone. Define

u(x,y) = ” M(x,y) dx + J 9(y) dy.

J

Then,

a r°
Uy = M(x,y) + P 9(y)dy = M(x,y) +0 = M(x,y).

J

uy = I M, dx +g(y) = N(x,y).

(3)= (1): Suppose that there exists u(x,y) such that M = u, and N = u,. Then
Mdx + N dy = u, dx +uydy = du. ]

In view of this result, we say that



12 MA2020 Classnotes
the ODE M(x,y) dx + N(x,y) dy = 0 is an exact equation iff M, = N,.

The proof of (1.13) shows how to compute a function u(x,y) if the condition
My = N, is satisfied. It is:

u(x,y) = J M(x, y) dx + J 9(y) dy
:JM(x,y)dx+IN(x,y) dy — J J M, dx dy.

Since this formula holds under the assumption M, = Ny, we also have

u(x,y) :JM(x,y)dx+fN(x,y)dy—JJNxdydx.

We will not memorize these formulas. Instead, we understand the method and
then use it in any particular problem. This understanding gives rise to three ways
of solving an exact equation. So, let the given exact equation be

M(x,y)dx + N(x,y)dy = 0.

The exactness implies that M;, = N,, which, due to (1.13) guarantees the existence
of a function u(x, y) such that M = u, and N = u,.

First method: Since M = u,, we have u = f M(x,y) dx + g(y). Differentiating with
respect to y, we get

) oM
g (y) :uy—JMde=N(x,y)—ja—ydx.

Then, we determine g(y) from this and substitute back to get u(x,y). Recall that
the solution curves are given by u(x,y) = C.

Second method: As N = u,, we have u = JN (x,y) dy + h(x). Differentiating with
respect to x, we obtain

) ON
h(x)zux—JNxdy:M(x,y)—‘[gdy.

We determine h(x) from this and substitute back to obtain u(x, y).

Third method: Using both M = u, and N = u,, we get

u(x,y) = j M(x.y)dx +9(y),  u(x.y) = f N(x.y) dy + h(x).

Inspecting these two expression, we determine ¢g(y), h(x); and then u(x, y).
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(1.14) Example
Find the general solution of the ODE 3y + ¥ + (3x + cosy)y’ = 0.

The ODE is Mdx + Ndy = 0 with M =3y + e* and N = 3x + cos y.
We find that M, =3 and N, = 3. So, it is an exact equation. Hence, there exists a
function u(x, y) such that

(a) M=3y+e" =u,(x,y), (b) N=3x+cosy=uy(x,y).
We illustrate the three methods to determine u(x, y).

First method: Integrating (a) with respect to x, we get

u= J(?)y +e¥)dx =3xy+e* +g(y).
Differentiating with respect to y and using (b), we have
uy =3x+4'(y) = 3x+cosy=3x+4(y) = ¢ (y) =cosy = ¢g(y) =siny.

Here, we need not consider the constant of integration, since in the solution this
constant will re-appear as u(x,y) = C. Also, we need just one such g(y).

Then, u = 3xy + e* + g(y) = 3xy + e* + siny. The solution curves are given by
u(x,y) =Cor, 3xy+e*+siny =C.

Second method: Integrate (b) with respect to y to get
u= J(3x +cosy) dy = 3xy +siny + h(x).
Differentiate with respect to x and use (a) to get
uy =3y+h(x) = 3y+e* =3y+h(x) = h(x) =¢ = h(x) =¢".
Again, we neglect the constant of integration. It says that
u(x,y) =3xy +siny + h(x) = 3xy + siny + e*.

And, the solution curves are given by u(x,y) = C or, 3xy + siny + e* = C.

Third method: We integrate (a) with respect to x and also integrate (b) with respect
to y to obtain

u= J(3y +e¥)dx =3xy+e* +9(y), u= ‘[(3x + cos y)dy = 3xy + siny + h(x).

Matching them we find that g(y) = siny and h(x) = e*. Then u = 3xy + e* + siny
gives the solution curves as 3xy + e* + siny = C. O

Out of the three, the third method is the easiest provided one is able to guess
correctly. One should also get familiarized with other methods.
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(1.15) Example
Solve cos(x +y) dx + (3y* + 2y + cos(x + y)) dy = 0.

Here, M = cos(x + y) and N = 3y? + 2y + cos(x + y). Then M, = —sin(x +y)
and N, = —sin(x +y) = M,. Hence, it is an exact equation. Thus, there exists a
function u(x, y) such that

(a) uy=M=cos(x+y), (b) uy=N-= 3y2 + 2y +cos(x +y).

We determine u(x, y) by inspection (Third method) as follows.
Integrate (a) with respect to x and integrate (b) with respect to y to get

u=sin(x+y)+9g(y), u= y3 + y2 +sin(x + y) + h(x).

Matching these, we find that g(y) = y> + 4> and h(x) = 0. Then the solution curves
are given by u(x,y) = C or, sin(x +y) +y° + y> = C. 0

(1.16) Example
Solve the IVP (cosysinhx + 1) dx — sinycoshxdy =0, y(1) = 2.

Here, M = cosysinhx + 1 and N = —sinycoshx. It gives M, = —siny sinh x and
Ny = —sinysinhx. As My = Ny, the ODE is exact. Then, there exists a function
u(x,y) such that u, = M and u, = N. To determine u, we integrate u, = M with
respect to x to obtain

u =cosycoshx +x +g(y).

Differentiating with respect to y and using u, = N, we have
uy = —sinycoshx+g'(y) = ¢'(y) = —sinycoshx+sinycoshx =0 = g(y) =K.
Since we need only one such u, we take K = 0 so that

u(x,y) = cosycoshx + x + g(y) = cosycoshx + x.

A general solution is cos y coshx+x = C. Using y(1) = 2, we have cos2cosh 1+1 =
C. Then the solution to the IVP is given by

cosycoshx +x =cos2cosh 1+ 1. 0

(1.17) Example

Solve the IVP 3x%y + 8xy? + (x + 8x%y + 12y%)y’ = 0, y(2) = 1.

Here, M = 3x%y + 8xy?> and N = x> + 8x%y + 12¢>. Then My, = 3x? + 16xy and
N, = 3x2 + l6xy + 0 = M. So, the ODE is exact. Then, there exists a function
u(x,y) such that

(@) uy =3x°y+8xy>,  (b) uy = x> + 8x%y + 12¢°.
Y ) y Y C)
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Integrating (a) and (b) with respect to x and y, respectively, we get
u=xy+4x** +g(y), u=x>y+4x*y? +4y° + h(x).

Matching these we have ¢g(y) = 4y and h(x) = 0. Then the solution curves are
givenby u(x,y) = Cor, x> y+4x?y>+4y> = C. Using the initial condition: y(2) = 1,
we see that

22 1+44.22.1°+4-1°=C = C=28.

Hence, the solution to the IVP is x’y + 4x%y? + 4y> = 28. 0

1.5 Integrating factors

We must be cautious while using the three methods discussed in the last section.
Remember that the methods work for exact equations. If the ODE is not exact, then
the methods need not give solutions to the ODE, or even, they may fail towards
obtaining a solution. See the following example.

(1.18) Example
Solve the ODE —ydx +xdy = 0.

here, M = —y and N = x. We find u(x,y) so thatuy, = M = —y and uy, = N = x.
Integrating first with respect to x, we get u = —xy + ¢g(y). Differentiating with
respect to y, we have u, = —x +¢'(y). Since u, = x, we have ¢'(y) = —2x. There is
something wrong, since our method assumes that g(y) is a function of y alone.

We find that the ODE is not exact, because M, = —1 whereas N, = 1. Thus, none
of the three methods above are applicable.

However, we can separate the variables and solve it as follows:

xdyzydx:f%zji—x:>10g|y|:10g|x|+C1:>y:Cx. 0

So, before applying any one of the three methods, one must check that the ODE
is exact.

Though the ODE in (1.18) is not exact, it can be made exact. Look at the solution
curves. They are y/x = C. So, our function of two variables is u(x, y) = y/x. Now,
its differential is

dy

du:uxdx+uydy:—%dx+—.
x X

The ODE is given as —ydx + xdy = 0. Comparing these, we find that if we
multiply 1/x? to the given ODE, we would obtain an exact equation. We explore
this possibility further.
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For the ODE M dx + N dy = 0, a function p(x, y) is called an integrating factor
iff p(x, y)M dx + p(x,y)N dy = 0 is an exact equation; that is, multiplying p(x, y)
the new ODE becomes exact.

Notice that p(x, y)M dx + pu(x,y)N dy = 0 is exact when

u(x,y)M] _ a[u(x,y)N]|

oy ox

Using the Chain rule, it means that u(x,y) is an integrating factor of the ODE
Mdx + Ndy = 0iff
oy oM oy oN
M—+p—=N—+pu—.
ay oy ox ox
However, solving such an equation for determining u(x,y) may be more difficult
than solving the original ODE. So, we look for some special cases.
We ask whether it is possible for the function p(x,y) to depend on x alone?
What could be the conditions that yield this situation? When p = u(x), its partial
derivative with respect to y becomes 0 so that the above equation simplifies to

oM d ON d M, — N.
ay dx ox dx N

M, —
Notice that this expression is meaningless unless % is a function of x alone.

So, suppose
M, — N.
y x
= ).

Then p is obtained by solving i/ (x) = f(x)u. We need just one such y; so we ignore
the constants of integration. By separating the variables, we have

Ji—”: Jf(x)dx = logp:jf(x)dx = u(x) :exp(‘[f(x)dx).

Here, we do not bother about taking |u| since our requirement is one such y. Our
method boils down to the following:

Integrating factor 1: If the ODE M dx + N dy = 0 is not exact and

M, — Ny

=),

a function of x alone, then p(x) = exp ( J f(x) dx) is an integrating factor of the
ODE.

Similarly, we have the following method when an analogous expression is a
function of y alone.
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Integrating factor 2: If the ODE M dx + N dy = 0 is not exact and
My — Ny

T 9(y),

a function of y alone, then u(y) = exp (— f g(y) dy) is an integrating factor of the
ODE.
We illustrate these methods in the following examples.

(1.19) Example
2
Solve the ODE yj +2ye* + (y+e*)y’ =0.
Here, M = y*/2 + 2ye*, N =y +e* = M, =y +2¢*, Ny = ¢* # M,. Hence, it is
not an exact equation. Now,
My - Nx _ Yy + e
N  y+e

=1=f(x).

It is a function of x alone. Hence, y = exp ([ f(x)dx) = exp ([ dx) = €* is an
integrating factor. There exists a function u(x, y) such that

— — exyZ 2x _ X 2x
(a) uy = uM = > +2ye™, (b) uy = puN =ye* +e.
Integrating (a) with respect to x and (b) with respect to y, we have
xy2 ex 2
u=— +ye* +g(y), u= > +ye?* + h(x).
Matching these, we take g(y) = h(x) = 0 to get the solution curve as u(x,y) = C
x,,2
or, 22 4 ye™ = C. 0

(1.20) Example
Solve the IVP (e**¥ + ye¥) dx + (xe¥ — 1) dy = 0, y(0) = —1.
Here, M = e*"¥ + ye¥, N = xe¥ —1 = M, — N, = e*"¥ +ye¥. So, it is not an exact

equation. We find that
My - Nx _ ex+y + yey

N T oxev—1
is not a function of x alone. And,
My — Ny Y +yeY
- =1=9(@)
e*7Y + yey

is a function of y alone. So, we take the integrating factor as

p(y) = exp ( - J 9(v) dy) = exp ( - I dy) =e.
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Multiplying it with the ODE, we have
(e“+y)dx+(x—e¥)dy=0.
Since it is an exact equation, there exists a function u(x, y) such that
(Auy=e"+y, (b)u,=x-e".
Integrating (a) with respect to x and (b) with respect to y we get
u(x,y) =e*+xy+g1(y), ulxy)=xy+e?+h(x).

Matching these we see that g;(y) = e™Y and h;(x) = e*. Then the solution curves
are given by u(x,y) = C or,

e +xy+e?¥=C.

Since y(0) = —1, we get e* + 0(=1) +e! = C = C = 1 +e. Then the solution of
the IVP is givenby e* +xy+e ¥ =1 +e. 0

1.6 Linear equations

A very special type of ODE that often comes up in applications is a linear equation.
A linear first order ODE is an ODE in the form

y +p(x)y = r(x).

When the right hand side is 0, that is, r(x) = 0, the equation is called a linear first
order homogeneous ODE.
The linear ODE can be written in the differential form as

(p(x)y - r(x))dx +dy = 0.

Here, M = p(x)y —r(x), N = 1 so that M, — N, = p(x). Thus, the equation is exact
when p(x) = 0. In that case, the equation is y’ = r(x) whose solution can be written
asy = f r(x)dx + C. In case p(x) # 0, we should seek an integrating factor. We

observe that
M, — Ny _rX)

N 1
is a function of x alone. Hence, an integrating factor is given by

= p(x)

1(x) = exp (Jp(x) dx).
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Multiplying the ODE with p(x), we have p(x) (p(x)y — r(x))dx + p(x) dy = 0, or,
p(x)p(x)y dx + p(x) dy = p(x)r(x) dx.

We see that
w0 = exp ([ peodx) =ex ([ o ax) ([ o dx) = pp).
Thus, the ODE reduces to
f (x)ydx + p(x) dy = p(x)r(x) dx = d(p(x)y) = p(x)r(x) dx.

Integrating, we obtain p(x)y = f u(x)r(x) dx. Along with the constant of integra-
tion, we obtain

y = [u(x)]"! ” 1(x)r(x) dx + c], where p(x) = exp (Jp(x) dx).

This is the general solution of the linear first order ODE. We need not remember
this formula, but use the method by multiplying the linear ODE with the integrating
factor p(x). It is enough remember that p'(x) = u(x)p(x).

(1.21) Example
Find the general solution of the ODE vy’ — 2xy = x.

It is a linear first order ODE with p(x) = —2x. Its integrating factor is

u(x) =exp (I p(x) dx) = exp ( J (—2x) dx) e,
Multiplying it with the equation, we get
2, 2 2 _2\ _
ey —2xye™ =xet = (exy) = xe
Integrating, we obtain

1 1
e_xzy = J xe™ dx = —Ee_xz +C = y= Ce* - 3

(1.22) Example
Solve the IVP ¢’ +2xy = x, y(1) =
It is a linear first order ODE with p(x) = 2x so that its integrating factor is

u(x) =exp (Jp(x) dx) = exp (J 2xdx) = e*.
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Multiplying with the equation, we have

2 2 2 2 2
ey +e 2xy=¢e"x = (e'y) =xe*.

Integrating, we obtain

2

1
exzy = J xe* dx = Eex +C.

As y(1) =2, we get el 2= %el +C = C= 376 Hence, the solution of the IVP is
y= Ce™ + % = %el_xz + % 0
(1.23) Example
Solve the IVP ¢’ + ytanx = sin(2x), y(0) = 1.
It is a linear first order ODE with p(x) = tan x. Its integrating factor is

u(x) =exp (J tan x dx) = exp(log sec x) = sec x.
Multiplying it with the equation, we get

secxy’ +secxtanxy =2sinx = (secxy)’ = 2sinx.

Integrating, we obtain

secxy=-2cosx+C = y= —2cos? x + Ccos x.

Now, y(0) =1 = -2+C =1 = C = 3. Then the solution to the IVP is
y =3cosx —2cos’ x. 0

There are many ODE:s that can be reduced to linear ODEs by suitable substitutions.
One such is the Bernoulli equation:

Y +p(x)y = g(x)y”.

Notice that this first order ODE is linear for « = 0, 1. So, suppose @ # 0 and a # 1.
Substitute z(x) = [y(x)]'~*. Then

Z(x)=(1-a)y ™y = (1 -a)y ™ *[g(x)y* - p(x)y]
= (1-a)(9(x) = p(x)y' ™) = (1 - @) (g(x) — p(x)z(x))
=—(1 - a)p(x)z(x) + (1 = )g(x).

That is, we have the linear first order ODE

Z(x) + (1 —a)p(x)z(x) = (1 - a)g(x).
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(1.24) Example
Solve the Logistic equation y’ = Ay — By?.

Observe that it is a Bernoulli equation with & = 2. We substitute z(x) = y~!. Then
7 = —y_zy’ = —y_z(Ay - Byz) =B - Ay_1 =B-Az = Z +Az=B.

For this linear first order ODE, the integrating factor is u = exp(f Adx) = e,
Multiplying, we have

e + Aez = B = (esz)/ = B,
It gives
Ax Ax B Ax B —Ax
ez=| e¥Bdx=—-e"+C = z=—+Ce .
A A

Substituting z = y~!, we gety = (B/A + Ce—Ax)—l_
Notice that this general solution does not include the solution y(x) = 0. 0
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Second Order ODE

2.1 Introduction

As we have seen all first order equations could not be solved. We could only solve
exact equations and those which could be reduced to exact equations in two special
cases. The second order equations put more difficult challenges. In general, a
second order equation looks like

fxu.y,y") =0.

A special case is when we can solve such an equation for the second derivative. It
then looks like

Yy =9(xy.y).
Unfortunately, there is no method to solve even this special type. General methods

are available to solve a still special class, and that to partially. The special class is
the second order linear ODEs, which have the form

Y +p(x)y" +q(x)y = r(x).

Whenr(x) = 0, such an ODE is called homogeneous, otherwise, non-homogeneous.
The initial value problems or IVPs involving second order equations come with
two conditions given at a point such as

Initial values : y(x0) = yo, y'(x0) = yj.
Thus, the initial, value problem with a homogeneous linear second order ODE looks
like
Y +p(x)y +q(x)y =0, y(x0) =yo, ¥ (x0) =y (2.1.1)

for some given real numbers xy, yo, and yé. We are interested in finding a solution of
the IVP in an open interval that contains the point xy. The existence and uniqueness
of a solution to such an initial value problem is guaranteed under certain mild
conditions.

22
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(2.1) Theorem (Existence-Uniqueness)

Let the functions p(x) and q(x) be continuous in the open interval a < x < b and
let a < xo < b. Then, there exists a unique function y = y(x) defined on the interval
a < x < b satisfying the IVP (2.1.1).

We will not prove this theorem. Observe that, in particular, if the initial conditions
are zero conditions, that is, if yo = 0 = y;, then y(x) is the zero function. This
means, if y(x) satisfies the homogeneous linear ODE and for some xj in the open
interval, y(xp) = 0 = y’(xp), then at all points x in the same open interval y(x) = 0.

2.2 The Wronskian

Before actually solving the homogeneous linear second order ODE

Y’ +p(x)y" +q(x)y=0 (2.2.1)

we will discuss some important properties of the solutions, or rather, properties of
the set of all solutions. This will help us in solving the ODE. Due to the Existence-
uniqueness theorem, we assume that p(x) and g(x) are continuous functions in a
nontrivial open interval.

(2.2) Theorem

Let y1(x) and y2(x) be two solutions of the ODE (2.2.1). Let cy, c3 be two constants.
Then y(x) = c1y1(x) + coya2(x) is also a solution of (2.2.1).

Proof. Since y;(x) and y,(x) are solutions of (2.2.1), we have

y! +p(0)yy +q(x)y1 = 0 = y5 + p(x)y5 + q(x) .

Then multiplying the first equation with c¢; and the second with ¢;, and adding, we

obtain

(c1y1 + c2y2)” + p(x) (c1y1 + c2y2)” + q(x) (c1y1 + c212) = 0. !

Of course, the above result does not hold for non-homogeneous ODEs.

(2.3) Example

The ODE y” +y = 0 has solutions y; (x) = cosx and y>(x) = sinx. From (2.2) it
follows that y(x) = Acosx + Bsinx is also a solution of the ODE. Indeed,

y” = (Acosx + Bsinx)” = (~Asinx + Bcosx)’ = (—Acosx — Bsinx) = —y.
It verifies what the theorem states. 0

We will show that any solution of this ODE is in the form y(x) = A cos x+ B sin x.
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Instead of cos x and sin x suppose we take any two distinct functions, say, y;(x)
and y(x), with y;(x) # y2(x) for some x. For instance, take y; = cosx and
y» = 2cosx. Then they are distinct functions but the solution sinx cannot be
written as c¢; cos x + ¢»(2 cos x). Thus, we need some condition on the functions y;
and y, in order to write any solution as cjy; + 3.

Let y;(x) and y>(x) be two continuously differentiable functions defined on a
nontrivial open interval I. The Wronskian of y; (x) and y (x), written W[y, y2] (x),
is defined by

Wy, 121 (x) = y1(x)y5(x) — 3} (0)y2(x).

Notice that the Wronskian is a function of x. The reason for defining this is the
following result.

(2.4) Theorem

Let y1(x) and y,(x) be two solutions of the ODE (2.2.1) on a nontrivial open interval
I with Wy, y2](x) # O for some x € I. Then the general solution of the ODE
(2.2.1) is y(x) = c1y1(x) + cay2(x), where cy, ca are arbitrary constants.

Proof. Let y(x) be a solution of (2.2.1). We need to find two constants cy, ¢; such
that y(x) = c1y1(x) + coya2(x) for each x € I. To this end, let xo € I be such that
Wy1,y2](x0) # 0. Let yo denote y(xo) and let yj denote y'(xo). If such constants
c1, ¢p exist, then evaluating at xo, we must have

c1y1(x0) + c2ya(x0) = yo,  c1y;(x0) + c2y5(x0) = yj.

Since W[y, y2](x0) # 0, we have y1(x0)y5(x0) — ¥ (x0)y2(x0) # 0. It follows that
there exist unique constants cy, c; satisfying the above two linear algebraic equations.
Now, define

z(x) = c1y1(x) + coy2(x) fora < x < b.

Due to (2.2), z(x) is a solution of (2.2.1). Further,

z(x0) = c1y1(x0) + cay2(x0) = y(x0), 2'(x0) = c1y](x0) + c295(x0) = yj.

That is, z(x) is a solution to the IVP consisting of (2.2.1) and the initial conditions
z(x0) = yo and z’(x0) = y;. But y(x) is also a solution to the same IVP. Hence, by
the Existence-uniqueness theorem, y(x) = z(x). That is, y(x) = cjy;(x) + c2y2(x)
fora < x < b. |

Look at the statement in (2.4). It looks that the same conclusion will hold
irrespective of whether the Wronskian is nonzero at xo or at x; as long as xgp, x1 € I.
In fact, if the Wronskian of two solutions of (2.2.1) is nonzero at some point in I,
then it is nonzero at each point of I. We show this fact below.
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(2.5) Theorem

Let W(x) be the Wronskian of two solutions y(x) and y»(x) of the ODE (2.2.1).
Then W’ (x) + p(x)W(x) = 0.

Proof. Since y; and y, are solutions of (2.2.1), we have

yl = —p(x)y; —q(N)y1, vy = —p()yh - q(x)y>.

Using these, we obtain

W (x) = (1195 — y1y2) = yiy5 + Y195 — yy2 — Y195
=Yy =y = yi( - p(0)y; — ¢(X)y2) + (p(x0)y] + q(x)y1)y2
= —p(0) (Y195 — yiy2) = —p(X)W (x). 1
(2.6) Theorem

Let p(x) and q(x) be continuous on a nontrivial open interval I. Let y;(x) and
y2(x) be two solutions of the ODE (2.2.1). Then, W [y1, y2](x) is either identically
zero, or is never zero for any x € I.

Proof. Takeany xy € I. Write W(¢) = W[y, y2](t). By (2.5), W(t) = —p(t)W(¢)
for t € I. Separating the variables and integrating from xj to any x € I, we have
X W/(t)
x W(1)

= W)= Wolewp (- [ pir)ar)

dt== [ pwdr = tog W)| - tog W) = - [ p(oyae

The exponential term is never zero. Thus, W(x) = 0 iff W(xg) = 0. That is, W(x)
is either identically zero or is never zero for any x € I. 1

The formula |[W (x)| = |[W (x0)| exp ( — Lfo p(t) dt) derived in the proof of (2.6) is
called Abel’s formula.

Caution: The Wronskian of any two arbitrary functions need not have the property
proved in (2.6). It so happens only for solutions y; and y, of a homogeneous linear
second order ODE. For instance, consider y;(x) = x and y>(x) = sinx. We find
that
W(x) = W[y, y2](x) = x(sinx)” — x" sin x = x cos x — sin x.

Then W(0) = 0 but W(x/2) = —1. That is, W(x) is neither identically zero nor
that it is never zero. It means that the functions y; (x) = x and y,(x) = sin x cannot
both be solutions of the same homogeneous linear second order ODE.

Suppose y(x) is a solution of (2.2.1). Then for any constant c, the function
y2(x) = cyp(x) is also a solution. We see that their Wronskian

Wyt y21(x) = yi(ey1)’ — yj(cyr) = 0.
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That is, when one solution is a constant multiple of the other, then their Wronskian
is zero. We show that the converse is also true.

(2.7) Theorem

Let yy(x) and y,(x) be solutions of the ODE (2.2.1) on a nontrivial open interval
L. Suppose W[y, y2](x0) = O for some xo € 1. Then, one of these solutions is a
constant multiple of the other.

Proof.  Since W [y1, y2](x0) = (4195 —y;y2) (x0) = 0, the linear algebraic equations

c1y1(x0) + c2y2(x0) =0, 1y (x0) + c2y5(x0) =0

have a nontrivial solution. That is, there exist constants cj, ¢ not both zero such
that both the equations above are satisfied. With this choice of cy, c¢p, write y(x) =
c1y1(x) + cay2(x). By (2.2), y(x) is a solution of (2.2.1). The above two equations
imply that y(xg) = 0 and y’(xp) = 0. Thus, by the Existence-uniqueness theorem,
the IVP consisting of (2.2.1) and these two initial conditions has a unique solution.
However, the zero function is a solution of this IVP. Hence, y(x) = 0, the zero
function. That is,

c1y1(x) + coy2(x) =0 foreach x € I.

Now, if ¢; # 0, then y;(x) = —(c2/c1)y2(x); and if c¢; # 0, then yr(x) =
—(c1/e2)y1(x). In either case, one is a multiple of the other. |

Again, we must remember that the above result is true only for solutions y; (x), y» (x)
of a homogeneous linear second order ODE. It need not be true for arbitrary func-
tions y; (x) and yo(x).

Let y;(x) and y»(x) be two functions defined on an open interval a < x < b. We
say that the functions y, y» are linearly dependent iff one of them is a constant
multiple of the other. We say that y, y, are linearly independent iff they are not
linearly dependent.

Further, two solutions y; (x) and y,(x) of (2.2.1) are said to form a fundamental
set of solutions iff any solution of the ODE is expressible in the form c;y; + c2y»
for suitable constants cy, ¢s.

Using these terminology, we can summarize our results as in the following.

(2.8) Theorem

Let y1(x) and y(x) be solutions of the ODE (2.2.1) in a nontrivial open interval
I, where the functions p(x) and q(x) are continuous. Then the following are
equivalent:

(1) y1(x) and y2(x) are linearly independent.

(2) Wly1,y2](x) # 0 for some x € I.
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(3) Wlyi,y2](x) # 0 for every x € L.
(4) y1(x) and yo(x) form a fundamental set of solutions for (2.2.1).

(2.9) Example

The ODE y” +y = 0 has solutions y;(x) = cosx and y>(x) = sinx. So,
y(x) = Acosx + Bsinx is also a solution of the ODE. We compute the Wronskian
of y;(x) and y,(x) for any x in a nontrivial open interval I :

Wyt y2](x) = y1y5 — yjy2 = cosx - cosx — (—sinx) sinx = 1 # 0.

Therefore, these two functions form a fundamental set; that is, any solution of the
ODE y” +y =0 is in the form ¢ cos x + ¢; sin x for some constants ¢; and ¢. []

2.3 Constant coefficients

Consider the simpler case of the ODE (2.2.1), where both p(x) and q(x) are
constants. We may rewrite the simpler case as

ay” + by’ +cy =0. (2.3.1)

Since the ODE is of second order, we implicitly assume that a # 0. The theorems
of the last section say that there are two linearly independent solutions which may
be used to express all solutions. Unfortunately, the results do not tell us how to
obtain a solution. We will have some sort of guess work. Observe that the functions
y(x), y'(x) and y”(x) should be such that they cancel among themselves and give
us 0.

For example, if y(x) is x”, then ¢/ (x) is a constant times x® and y” is a constant
times y’. They cannot cancel to give us 0. If y(x) is cosx, then y’(x) will be a
constant multiple of sinx and y” a constant multiple of cos x. Again, this is not a
right candidate. If y(x) is an exponential, say e, then y’(x) and y”(x) are also
constant times e’*. It looks this is a possible choice. So, let us try y(x) = e**. Then
y'(x) = 2e’ and y” = A%e**. Substituting these in (2.3.1), we get

a(e™)” +b(e™) +ce™* =0 = (aA’>+bA+c)e™ =0.
Thus, y(x) = e* is a solution of (2.3.1) iff
ar’ +b)+c=0. (2.3.2)

This equation is called the characteristic equation of (2.3.1). It has two roots
A1, Ay given by

—b + Vb2 — 4ac ] —b — Vb2 —4ac
= 5 2 = .

A
: 2a 2a
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Depending on the sign of b? — 4ac we have three different cases.

Case 1 (Distinct Real Roots): First, suppose that b> — 4ac > 0.
Then A1, A, € Rand A # A;. We know that y;(x) = eM* and yp(x) = ¥ are two
distinct solutions of (2.3.1). Now,

Wly1, o] (x) = (%) = (%) 2 = (d = e+,

As b # A1, Wy, ya](x) # O for any x. By (2.8), these two solutions form a
fundamental set. That is, the general solution of the homogeneous linear second
order ODE (2.3.1) is given by

y(x) = cle’hx + cze’bx.

Before discussing other cases, we solve some examples.

(2.10) Example
Find the general solution of y” + 5y" + 4y = 0.

It is a homogeneous linear second order ODE with constant coefficients. Its char-
acteristic equation is

P +5044=0= (A+1)(1+4) =0.

So, the characteristic roots are A1 = —1 and A, = —4; these are distinct and real.
Thus, y;(x) = e™* and y,(x) = e~* form a fundamental set of solutions. That is,
the general solution is given by

y(x) =ciy1 + oy = cre” ¥ + cze_4x

where ¢y, ¢y are arbitrary constants. N

(2.11) Example
Solve the IVP: y” +vy' -2y =0, y(0) =4, y’(0) = -5.
It is a homogeneous linear second order ODE with constant coefficients. Its char-
acteristic equationis A2+ 1 —-2=0 = (1 —1)(1+2) = 0. The characteristic roots
are A1 = 1 and A, = —2. So, the general solution is
y(x) = c1e* + cre >,

The initial conditions give

y(0)=ci+cx=4, y'(0)=c; —2c2=-5.
Solving these equations, we have c¢; = 1, ¢; = 3. Thus, the solution to the IVP is
y(x) = e +3e7 %, 0

(2.12) Example

Find the general solution of the ODE y” + 4y’ — 2y = 0 and then solve the IVP
y'+4y -2y =0,y(0) =1,y (0) =2.
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It is a homogeneous linear second order ODE with constant coefficients. Its char-
acteristic equation is

AP +4)-2=0.
Since 4% — 4(1)(=2) > 0, there are two distinct real characteristic roots

-4+ V16 +8 -4 -V16+8
:—+ * _—2+\/6, AZZ * :_2_\/6

2 2

The fundamental set of solutions comprise y;(x) = e** and y2(x) = e’*. The
general solution is

M

(=2+V6)x (-2-V6)x

y(x) = c1y; + coyp = cre + coe

for arbitrary constants cy, ¢. Using the initial conditions, we have
cir+ep=1, (-2+ \/g)cl +(-2- \/6)02 =2.

Solving these equations, we get ¢; = 2/V6 and ¢; = 1/2 — 2/v6. Then the solution
of the IVP is
y(x) = (1 + i)e(—2+\/6)x(l ~ i)e‘(“‘/g)x.
2 Ve 2 e
Case 2 (Complex Conjugate Roots): Suppose that b*> — 4ac < 0.
Then the characteristic roots Ay, A, are given by

Vdac - b

2
M=a+pi, ld=a-pi a:—ieR, B = e R\ {0}.

2a 2a
For the time being, pretend that we be satisfied with complex solutions. Then, as in
Case 1, the two solutions will be

z1 = e(a+iﬁ)x’ 2= e(a—iﬁ)x‘

Their linear combinations, that is, any expression of the form cz; + ¢yz; is also a
solution. In particular,
zZ1+z 71—z
Y = 1 > 2 = e cos(px), yr= 12‘ 2 = e sin(fx)
i
are also solutions. Notice that yy, y; are real solutions. This suggests we try to show
directly that yy, y, are solutions of the ODE. For y; we proceed as follows, using

the values of «, § as obtained earlier:

Yy = e** cos(fx)
Y, = e (acos(fx) — fsin(fx))
y] = ae™(acos(fx) — fsin(fx)) + e (- afsin(fx) — B> cos(px))
= ay| +by| + cy
= e“x(cos(ﬁx) (ac® — af® + ba +c) — (2aa + b) sin(ﬂx))

ax b?  dac-b? -b
=e (a(@_T)+bZ+C) COS(ﬂX) =0.
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That is, y; (x) is a solution to the ODE. Similarly, it is easily verified that y,(x) is
also a solution of the ODE. Clearly, these two solutions are linearly independent.
Hence, the general solution is given by

y(x) = €™ (c1 cos(fx) + ¢z sin(fx)).

Observe that @)% = y;(x) + iys(x) and e F)* = ¢ (x) — iy2(x). Thus, the
two linearly independent solutions are the real and imaginary parts of e’ where A
is a complex characteristic root.

(2.13) Example
Find the general solution of 4y” + 4y’ + 5y = 0.

It is a homogeneous linear second order ODE with constant coefficients. Its char-
acteristic equation is A2 + 41 + 5 = 0; its characteristic roots are

1 1
/1]:—54'1., /12:—5—1'.

Hence, the two linearly independent solutions are

x/2 x/2

yi(x) =e 7 cosx, yo(x)=e"“sinx.

Thus, the general solution is y(x) = e™*/?(c| cos x + ¢; sin x). 0
(2.14) Example
Find the solution of the IVP: y” +2y" +4y =0, y(0) =1, y’(0) = 1.

The characteristic equation is A2+ 24 +4 = 0. The characteristic roots are —1 + V3 i.
Hence, the two linearly independent solutions are

yi(x) = e cos(V3x), 1o(x) =e *sin(V3x).

The general solution is y(x) = e *(c; cos(V3x) + ¢ sin(\/gx)).
The constants ¢y, ¢y are determined from the initial conditions

1 = y(O) =y, 1 = y,(o) =—C + \/§C2~

They give ¢; = 1 and ¢, = 2/V3. So, the solution to the IVP is
y(x) = e‘x[cos(\/gx) +(2/V3) sin(\/gx)]. 0

Case 3 (Equal Roots): Suppose b> — 4ac = 0.

Then the characteristic roots are real and equal; that is, A; = Ay = —=b/(2a). We
have at least one solution, namely, y;(x) = eMX = ¢[~0/(20)x  The second solution,
namely, e™* is same as y;(x); and we would not obtain a fundamental set. We use
this known solution to obtain the second one in a clever way.
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If y»(x) is another solution so that y; (x) and y,(x) are linearly independent, then
y2(x)/y1(x) is not a constant function. So, we start with y»(x) = y;(x)u(x) and
try to determine u(x) from the ODE ay” + by’ + cy = 0. With this substitution, we
have

’ ’ ’ ” ” ’.r ”
Y2 = Yyiu, y2:y1u+ylu, yZ :y1u+2y1u +ylu .

Since y, satisfies the ODE, we get

0 = ay) + by, +cy
=a(yju+2yju" +yiu”) + b(yju+yiu') + cyiu
=a(y] + by| + cy))u + ayiu” + (ay; + by;)u’.

As y; also satisfies the ODE, we have ay{’ + by + cy; = 0. Further,

/ -b
2ay; + by = 2a(e_%x) 4+ be%* = 2q- Z—e_%x 4 be %* = ().
a
Then the above equation reduces to ayju” = 0. Also, ay; # 0. Hence u” = 0 of
which one solution is u(x) = x.

It follows that y5 (x) = xy; (x) is another solution of the same ODE. Clearly, y; (x)
and y(x) are linearly independent. Therefore, the general solution of (2.3.1) is
given by

b

y(x) = (c1 + 2x)y1 (x) = (¢ +c2)eM*, A = ~35°

As a caution, we should remember that this y(x) is not a solution of the ODE if 1;
is not a double root of the characteristic equation.

Observe that we could have tried this solution in the beginning and got it imme-
diately. However, it is good to familiarize with the method followed above. We will
see the use of this method later in a more general setting.

(2.15) Example
Solve the IVP y” +4y’ +4 =0, y(0) = 1, y/(0) = 3.

The characteristic equation is A2 +4) +4 = 0. So, the characteristic roots are
A1 = Ay = =2. Thus, the general solution is

y(x) = (1 + cox)e .
The initial conditions imply that
1=y0)=c, 3=y"(0)=-2c1+c2 = c1 =1, cp=5.

So, the general solution of the IVP is y(x) = (1 + 5x)e™%*. 0
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2.4 Higher Order Linear ODEs and Systems

We have learnt how to solve linear homogeneous second order ODEs with constant
coefficients. The same method can be used to solve higher order linear homogeneous
ODEs with constant coefficients and also a similar method can be used to solve
homogeneous systems of linear ODEs with constant coefficients.

A linear homogeneous ODE with constant coefficients of order n is of the form

any(n) + an—ly(n_l) 4+ aly’ +apy = 0.
Its characteristic equation is
ap A" + ap_ AN+ @A+ a9 = 0.

1. If A is a simple real root of the characteristic equation, then corresponding to

it we take the solution as e**.

2. If ¢ +if and « — iff are a pair of complex roots of the characteristic equa-
tion, then corresponding to this pair, the two linearly independent complex
solutions are e(®#* and e(**/)*  The real and imaginary parts of one of
them coincides with those of the other. They are a** cos(fx) and e** sin(fx),
which form two linearly independent real solutions.

3. If A is a root of the characteristic equation having multiplicity m > 1, then
corresponding to this, we take the m linearly independent solutions as e”*,
xe’™, ... and x™ let*,

4. If a pair of complex roots a +iff and a — i} are repeated, then we compute the
corresponding complex solutions as explained in Step 3, and then take their
real and imaginary parts as real solutions.

As earlier, the general solution is obtained by multiplying these solutions with
arbitrary constants and adding them together. In other words, we take a linear
combination of all linearly independent solutions thus obtained to get the general
solution.

(2.16) Example

Find the general solution of y® +y®3) —7y” — ¢/ + 6y = 0.
The characteristic equation is A* + > =712 =1+ 6 =0.

Its roots are A = 1, —1, 2 and —3. Thus, the general solution is

2x

y(x) =cre’ +cre™ +c3e” + cpe X, 0

(2.17) Example
Find the solution of the IVP

y W (x) —y(x) =0, y(0)=7/2, y'(0) = -4, y’(0) = 5/2, y(0) = 2.
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The characteristic equation is A —1=0.Ttsrootsare A = 1, —1, i and —i. Thus,
the general solution is

y(x) = cre* + cpe™ +c3c08x + ¢y sin x.

We find that

¥ — ¢38inx + ¢4 cos x,

y =cref —cle”
y” =cre’ +cre”* —c3c08x — ¢g8inx,

y(3) =c1e* —cre ¥ + c38inx — ¢4 COS X.
Using the initial values, we get
7/2=y(0) =cy+c2+c3
4=y 0)=ci—cr+cy
5/2=y"(0) =ci+c2—c3
-2 = y(3)(0) =Cl —C— (4.

Solving these equations we obtain ¢y =0, ¢ =3, c3 =1/2and ¢4 = —1.
Hence the solution of the IVP is y(x) = 3e™ + % cos x — sin x. 0

(2.18) Example
Find the general solution of the ODE

y® —10y® + 54y — 132" + 137y — 50y = 0.
The characteristic equation is
2> —10A% + 5427 — 13227 + 1374 - 50 = 0.
Trying 1 and 2 as possible values of A, we factor the left hand side as follows:

22— 102% +5420%3 — 13222 + 1371 = 50 = (A — 1)(A* = 94 + 451> — 871 + 50)
=A=DA=1D)A> =812 +371-50) = (A = D*(A = 2)(1% = 61 +25)
= (A= 1A -2)((A—-3)* +4%).

Hence, the characteristic equation has a simple root as A; = 2, a double root as
A2 = A3 = 1, and a pair of complex conjugate roots A4 = 3+4i and A5 = 3 —4i. The
corresponding linearly independent solutions are

2x

3
yy=e, p=e, y3s=xe", yu=e

* cos(4x), ys = e sin(4x).

Therefore, the general solution is
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y(x) = c1e¥ + (ca + c3x)e* + €3 (ca cos(4x) + cs sin(4x)). 0

A homogeneous system of first order linear ODEs with constant coefficients
looks like

yi (x) =anyr +any2+---+anyn
Y5(x) = axiy1 + axnyo + - - + a2l

y;z(x) =anyi tan2y2 + -+ applYn.

Here, each of the n functions y;(x), ..., y,(x) are the dependent variables and x is
the only independent variable; further, a;; are given real numbers. We rewrite the
system of ODE:s as follows:

Y1 y ari -+ ain
Y =Ay, where y=y(0)=|i|. y@=|:| A=

’
Yn Y, anl ** *Ann

—_—~

We call this n X n matrix A as the system matrix. Our goal is to solve this system,
that is, to find functions y;(x), ..., yn(x), as general as possible, which satisfy the
above equations simultaneously. In some cases, it is possible to eliminate n — 1
dependent variables and obtain an n-th order ODE in the remaining variable. We
first illustrate this method; and then proceed to the general method of solution.

(2.19) Example
Solve the first order linear system of ODEs y’1 =y + 1y yé =4y + yo.

We try to eliminate one of the dependent variables, say, y,. From the first equation
we have

Y2 =Y Y.
Substituting this in the second equation we get
Ayi=mp-vh=y -y — (Y —y) =y — v -y +y)
This simplifies to
vy —2y; = 3y1 =0.

Its characteristic equation is A2 —2)1 =3 =0. The roots are A = 3, —1. Then, the
general solution is

yi(x) = c1e’* + cre ™.

As y = y| — y1, we obtain

px) =y, -y = 3c1eX — cre ™ — e — cpe ™ = 2c1e° — 2c0e 7",
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This general solution of the system of ODESs can also be written as

Y1 1 3x 1] -x
x) = =c e’ +c e .
= o] = of e D
Notice that in Example 2.19, the system of ODEs can be written as
’ _ 11 . |y
y—l4 l]y, w1thy—[y2].
The characteristic polynomial of the system matrix is
-1 1| 2 3
' 4 1_/1‘—(1—/1) -4=(-A-1)(3B-1).
Thus, the eigenvalues of the system matrix are A = —1, 3. Observe that these

eigenvalues match exactly with the roots of the characteristic equation obtained by
eliminating one of the variables. Further, we find that

EIE A A [ R S

1 . . . .
and [_ are eigenvectors associated with the eigenvalues

1

2 2
3 and —1, respectively. These eigenvalues and the eigenvectors can be used now
directly to write the general solution in the form as obtained earlier.

It so happens that a general solution of the system y’ = Ay can be computed by
using the information of eigenvalues and eigenvectors of the system matrix. We
describe this eigenvalue-eigenvector method of solving a system of ODE as in the
following.

Consider computing a general solution of the first order system of linear homo-
geneous ODEs

That is, the vectors

y = Ay,
where y = [y1(x),...,yn(x)]" and A is an n X n matrix with real entries. Let
AL, ..., Ay be the eigenvalues of A. Notice that there can be repetitions and also

there can be complex numbers in this list of eigenvalues.

Case 1: Suppose that A is a real eigenvalue of A which is never repeated in the
list of eigenvalues. Let v € R™! be an eigenvector associated with A. Then, a
corresponding solution of the system is given by e**v.

Case 2: Suppose that A = a +if is an eigenvalue of A, where f # 0. Let u + iv

be an eigenvector associated with A, where u,0 € R™!  Notice that A is also an
eigenvalue of A associated with the eigenvector u — iv. Corresponding to this pair of
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eigenvalues, namely, A and A, the two linearly independent solutions of the system
are given by
e By +iv) and TP (u - iv).

Both the real parts and the imaginary parts of these solutions give the real solutions
of the ODE. Notice that the two real solutions obtained from the first one are exactly
the same obtained from the second one. So, we may consider only one of the
complex solutions and proceed to take its real and imaginary parts. These two
linearly independent real solutions of the ODE are

e™ (cos(fx)u — sin(fx)v) and €™ (sin(fx)u + cos(fx)o.

Case 3: Suppose that A is a real eigenvalue of A which is repeated m times. We
find the maximum number of linearly independent eigenvectors associated with A;
suppose these are vy, . . ., 0,,1. The corresponding m number of linearly independent
solutions of the system are given by

Ax Ax
e, .., e Uy,

If m; = m, then the process stops here with m number of linearly independent
solutions corresponding to the eigenvalue A. If m; < m, then we look for nonzero
vectors u which are solutions to

(A= AD*u=0, (A—ADu # 0.

If there are m; number of linearly independent solutions of these equations, say,
ui, ..., Um,, then the corresponding m, number of linearly independent solutions of
the system are

e (uy + x(A = ADuy), . .., " (U, + x(A = ADup,).

Linear Algebra guarantees that if m; < m, then my # 0 and m; + my < m. If
m; + my = m, then we have got m linearly independent solutions. Otherwise
m1 + my < m. Then, we look for nonzero vectors w satisfying

(A-ADw =0, (A-2AD)*w #0.
If there are m3 number of linearly independent solutions of these equations, say,

W1, ..., Wn,, then the corresponding m3 number of linearly independent solutions
of the system are

X x2 X x2
et (w1+x(A—)LI)w1+2—!(A—)LI)2w1), e (wm3+x(A—/U)wm3+2—!(A—)LI)Zwm).

The process continues until all m linearly independent solutions are obtained.
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Finally, a general solution of the system is obtained by taking a linear combination
of all solutions obtained by the above method.

Notice that the process becomes complicated when a complex root is repeated.
Of course, the earlier method of taking the real and imaginary parts of complex
solutions give us the real solutions.

The vectors u, w,... obtained in the above process are called the generalized
eigenvectors of the matrix A. Essentially, it leads to computing the Jordan form of
the matrix A, and then computing e* from the Jordan form.

We remark that a linear homogeneous nth order ODE with constant coefficients
can be converted to a linear system of ODEs in the form

y/:Ay with y2=y’1, Y3 :y/z,--"yn:y;z—l'

Conversely, not all linear homogeneous systems of the form y’ = Ay can be con-
verted to a higher order linear homogeneous ODE. The linear system of ODEs in
Example 2.19 is an exception. Thus, we need to familiarize ourselves with this
eigenvalue-eigenvector method of solution of y’ = Ay as outlined earlier.

(2.20) Example
Find the general solution of the system of ODEs y| = y1 + 12y, v, = 3y; + v».
The characteristic polynomial of the system matrix A is

1-14 12
3 1-

A‘:(I—A)2—36:(A—7)(A+5).

Thus, the eigenvalues are A = 7, —5. We compute the corresponding eigenvectors.
For A =7, we solve the linear system

LR

for a nonzero solution. It gives a + 12b = 7a, 3a+ b = 7b, or a = 2b. One such
solution is the eigenvector [2 1]. The corresponding solution is y(x) = e’*[2 1]*.
For A = -5, we solve the linear system

a a

R

1 12

31
for a nonzero solution. It gives a + 12b = —5a, 3a+b = —5b, or a = -2b.
One such solution is the eigenvector [-2 1]'. The corresponding solution is
y(x) = e [-2 1]".

Notice that the two solutions obtained are linearly independent. The general

solution is given by a linear combination of these two. That is the general solution
of the system of ODE:s is
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Tx

Or, y1(x) = 2c1e’™ — 2c2e™%, ya(x) = cre’™ + cre™*, 0

In the above example, it is possible to convert the system to a higher order ODE
by eliminating one of the variables. We choose to eliminate y,. The equations
Y, = y1 + 12y2, y) = 3y; +yo imply that 12y, = y| — y;. Differentiating this we get
12y} = y{ — y}. Using the second equation, we get

y;, - y; = 12(31/1 + y2) = 36y1 + 12y2 = 36y1 + y’] -y
It gives
yy —2y; — 35y =0.
Its characteristic polynomial as A2 -21-35= (X =T7)(1+5). The characteristic

roots are A = 7, —5. Then the general solution is

y1(x) = cre’™ +cre .

Then, 12y, = y’1 -y = Tcre’™® = 5¢0e7% — ¢1e’* — cre™>* . Or,
1 1
yr(x) = Ecleh - zcze_sx

We have thus obtained the general solution of the system. To see that it is the same
as obtained in Example 2.20, replace c¢; with 2¢; and ¢, with —2¢;. This can be
done since the constants are arbitrary. We then get

Tx S5x

yi(x) = 2cie’™ — 2che, yr(x) =cre’™ + cpe”

as obtained by the eigenvalue-eigenvector method in Example 2.20.

(2.21) Example

Find the general solution of the system vy} = y1 —y2, ¥, = y1 + y>.

Here, it is possible to convert the system to a higher order ODE by eliminating one
of the variables. However, we illustrate the eigenvalues and eigenvector method of
finding the general solution. The system of ODE:s is in the form

’ I -1 yl(x)
= Ay, where A= , = .
e [1 1] J [yz(x)

The characteristic polynomial of A is

1-1 -1
I 1-

1 N2
A‘_(l A+ 1.

Its roots are A = 1 +i. We find an eigenvector corresponding to one of the
complex conjugate pairs. For A = 1 + i, we seek a nonzero complex solution of
Ala b]' = Ala b]'. This is the linear system

a

bl

-
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Or,a-—b=(1+ia a+b=(1+i)b = 2a=(1+i)(a+b) = (1+1i)*b. One
nonzero solution is obtained by taking b = 1 and a = (1 +i)%/2 = i.

Thus, a complex solution corresponding to this pair of complex conjugate roots
is

e(l+i)x [i] =¥

The real part and the imaginary part of this complex solution are the linearly
independent solutions of the system, which are

i(cosx +isinx) + |—sinx +icosx L+ |—sinx Lier |08 ¥
;o =e . =e e | . :
cosx +isinx cosx +isinx cosx sin x

—sinx
Ccos x

X X

>

CcoS X
sinx |’

Hence, the general solution of the system is

y= [yl(x)] _ et [— sin x

y2(x) cos x

. [cos x]
+ Ccre . .
sin x
It is same as y;(x) = e*(—c; sinx + ¢z cos x), y2(x) = e*(c] cos x + ¢ sin x). 0

(2.22) Example

Find the general solution of y} =y2 +y3, Y, =y1 +y3, Y5 = y1 + 2.

It does not seem possible to eliminate two of the dependent variables so that the
system could be converted to a higher order ODE. We write the system in the form
Yy’ = Ax as follows:

0
y =1
1

—_— O =
O = -
Ny

The characteristic polynomial of the matrix is

A1 1
1 A 1|=-(1=2)(A+1)%
1 1 -2

Thus the eigenvalues of the matrix are 2, —1, —1. Notice that —1 is repeated twice.
However, the matrix is real symmetric; thus, there are two linearly independent
eigenvectors associated with the repeated root —1. We compute the eigenvectors.
Fpr A = 2, we seek a, b, ¢ not all zero such that

01 1f]a a b+c=2a
1 0 1{[b|=2]|b] = a+c=2b.
1 1 0ffc c a+b=2c
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Solving the linear equations gives a = b = c¢. One solution is the eigenvector
[1 1 1]
Corresponding to the eigenvalue A = 2, we have a solution as
e>[1 1 1]

For the eigenvalue —1, we have

01 1]]|a a b+c=-a
1 0 1{[bl=-1[b] = a+c=-b.
1 1 0]fc c a+b=-c

Two linearly independent solutions of these equations (actually only one equation
a+b+c=0)are
[1 o-1], [o 1 -1]"

Thus, the two linearly independent solutions corresponding to the eigenvalue —1
are

e[1 0 1], e*[0 1 -1]".
Then, the general solution is obtained by taking a linear combination of all the
linearly independent solutions. It is

i (%) I 1 0
y=|ypx)|= cre® (1| +ce™ |0 | +cze™| 1
y3(x) I -1 -1
This can be alternatively written as
yi1(x) = cre® + cre™™, y2(x) = cre2 + cze™™, y3(x) = cre® — (co +c3)e”™. 0

(2.23) Example
Find the general solution of the system of ODE:s:

Yy =2y1+y2+3ys, v =22 — 3, y3 = 2u.
The characteristic polynomial of the system matrix A is

2-1 1 3
JA-Al=| 0 2-1 -1 |=(2-1)°>
0 0 2-2

The only eigenvalue is 2 repeated 3 times. We will get three linearly independent
solutions. For the first such solution, we compute the eigenvector of A. So, we
solve (A —2I)v = 0. Witho = [a b c]’, we have the linear equations given by

a 01 3]]a 0
(A=2I)|b[=100-1{|b| =10].
c 00 Of|c 0
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The linear equations are b+ 3c = 0, —c = 0. This gives b = 0, ¢ = 0 and a is
arbitrary. Thus there is only one linearly independent eigenvector. Choosing a = 1,
we get one such, which is [1 0 0]’. The corresponding solution is

e |0].
0

For other linearly independent solutions, we solve (A —2I)?u = 0 but (A—2I)u # 0.
Withu = [a b c]’, the equations are

01 3][01 3 0 0-1][a] [0
(A-2D%*u=10 0 -1{|0 0 =1|lu=1]0 0 Of]|b|=]0].
00 0[l00 O 00 0ffc] 1O

It gives ¢ = 0 and both a, b arbitrary. We choose a = 0 and b = 1 so that the vector
u=1[0 1 0] satisfies (A —2I)?>u = 0 and (A — 2I)u # 0. The corresponding
solution is

0 01 310 0 1 x
e 1 +xe2 |0 0 =1 [1] = 1| +e*x |0] =¥ |1
0 00 00 0 0 0

We have got only two linearly independent solutions. So, we proceed further
following the same method. We solve the linear equations (A — 2I)3w = 0 with
(A =2I)%w # 0. As (A - 2I)3 = 0, the zero matrix, any nonzero vector w satisfies
(A-2D)3w = 0. As (A-2D*w # 0, we choose w = [0 O 1]*. Then, the
corresponding solution is

2
e [w +x(A—2D)w + %(A —21)%w]

0] 01 3][0] , [0 0-1]]o0
—e ol +xe [0 0 =1||ol+Ze>[0 0 o]0

1 o0 ollt] 2 loo olln

0 3 ,  [-1 3x —x2/2
=2 |0 +xe® |—1]| + 22| 0] = e —x

1 o| 2 0 1

Since we have got 3 linearly independent solutions, the general solution is obtained
by taking a linear combination of these linearly independent solutions. It is given
by
y1(x) 1 x 3x —x%/2
y=|px))|= c1e¥ 10| + cpe®* 1] + cze™ -x
y3(x) 0 0 1
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We can write the general solution as

y1(x) = (c1 + cax + c3(3x — x2/2))e*, y2(x) = (c2 — e3x)e?, y3(x) = cze*.  [1

2.5 Euler-Cauchy Equation

A particular type of ODE, called the Euler-Cauchy equations, do not have constant
coeflicients but they can be solved by the methods suitable for constant coefficients.
The Euler-Cauchy equation is a linear second order ODE of the form

Xy +axy +by=0 for x>0 (2.5.1)

where a and b are constants. Notice that it is a linear second order ODE but not of
constant coefficients type.
Substitute ¢ = log x so that x = e. Using the chain rule, we get

dy _dydt _dyl _dy _,

dx dide dix _dt’

2

dy d(dy ) d(dy )dt (dy_ dy( _t))
dx2  dx\dt dt \dt dx dt?

2
(C(fl? - %)x2

Substituting these in (2.5.1), we obtain

@ dy dy d*y

2. ’ _
0=x"y" +axy +by_dt2_dt 7 +by = )

+(a—1)—+by

Thus, we have got a linear homogeneous second order ODE with constant coeffi-
cients, whose characteristic equation is

AP +(@a-1D)A+b=0.
Notice that this equation can also be written as
AA=1)+ad+b=0.

This equation being the characteristic equation for the ODE with the new variable
t, is called the Auxiliary equation for the original ODE (2.5.1).

We solve the above ODE with constant coefficients having the independent vari-
able as t, and then substitute back to obtain a solution to (2.5.1) with the independent
variable as x. The three ensuing cases are as follows.
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Case 1: Suppose A # A, are the two real roots of the auxiliary equation. Then the
general solution is given by

Al Aot A1 log x

t+C2€ =cje /lzlogx A

=cixM + czx’lz.

y(x) =cre + coe

Indeed, it is easily verified that y; = x* and y, = x™ satisfy the ODE (2.5.1).
Case 2: Suppose A, = a +if,, .o = a —if for a, f € R. Then the general solution
is given by (with t = log x)

y(x) = e [c1 cos(ft) + ¢ sin(,Bt)] =x% [c1 cos(flogx) + ¢ sin(f log x)].

Also, we can directly verify that y; = x* cos(flogx) and y» = x*sin(f log x) are
solutions of (2.5.1).

Case 3: Suppose A, = A; € R. Then the general solution is given by (¢ = log x)

At

y(x) = (c1+cat)e’ =(c1+c2 logx)x’h.

Again, this fact can be verified without going through the details of derivation.

Notice that finally, one solution is obtained in the form x* instead of e** as used
to be for the constant coefficients case. This is also easy to guess since the second
order derivative is multiplied with x? and the first order derivative is multiplied with
x. If we try a solution in the form y = x*, then the equation (2.5.1) yields

0=x*(xM +ax(x") +b(x") = x}(A(A = 1) + ad +b).

Since x*

is not the zero function, we get the auxiliary equation
AA=1)+arl+b=0.

This is another heuristic way to solve the Euler-Cauchy equation.

(2.24) Example
(1) The ODE 2x?y” + 3xy’ — y = 0 is the Euler-Cauchy equation

Xy’ +(3/2)xy - (1/2)y = 0.

Its auxiliary equation A(A—1)+(3/2)A—(1/2) =0hasroots A} =1/2and A; = —1.
As in Case 1, the general solution is

y=rc Vx + ¢ /x.
(2) The ODE 100x%y” + 60xy’ + 1604y = 0 is the Euler-Cauchy equation

xy” +0.6xy" +16.04y = 0.



44 MA2020 Classnotes

Its auxiliary equation A(A — 1) + 0.64 + 16.04 = 0 has roots A; = 0.2 + 4i and
A>» = 0.2 — 4i. As in Case 2, the general solution is

y = x%2 [01 cos(4logx) + c; sin(4 log x)].
(3) The Euler-Cauchy equation
x*y” = Sxy+9y =0

has the auxiliary equation A(A—1) —54+9 = 0. The roots of the auxiliary equation
are A} = A = 3. Asin Case 3, the general solution is

y=x>(c; +cylogx). 0
(2.25) Example
Solve the ODE 4x%y” + 4axy’ + (a — 1)’y =0 for x > 0.

This is an Euler-Cauchy equation with a = « and b = (« — 1)?/4. The auxiliary
equationis A(A—=1)+adl+ (a—=1)2/4=00r A2+ (a— DA+ (a—1)?/4=0. Its
roots are 1| = A = (1 — «)/2. Hence, the general solution is

y=x"1"92(¢c; + ¢y log x). 0

2.6 Reduction of order

Consider the homogeneous linear second order ODE

Y +p(x0)y +q(x)y = 0. (2.6.1)

In this ODE, the coefficients of y and y’ are functions of x. The method of taking
characteristic equations will not apply to this case. Unfortunately, there is no simple
method to solve these “variable coefficients" type of ODEs. However, methods
exist to get a second solution if one solution is known so that the two would become
linearly independent. This method is a simple adaptation of the same for the
"constants coefficients" case.

So, suppose y; (x) is a solution to (2.6.1). That means

Yy +p(x)y) +q(x)y; = 0.

We wish to determine a second solution y,(x) so that y; and y, are linearly inde-
pendent. That means, if y»(x) = y;(x)u(x), then the function u(x) should not be a
constant function. We thus assume that

y2(x) = y1 (x)u(x)
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for some function u(x) which we wish to find. Now,
vy =yiu+yi, vi =yju+ 2y +yu”.
Then the ODE (2.6.1) becomes
0=y5 +p(x)yy +q(x)y>
= yiu+2y1u + yiu” + p(x) (yyu + yivd) + q(x)y1u

=y + (24 + p()y1)u’ + (y] + p(x)y] + q(X)y1)u
=y’ + 2y + p()y1)u’

We see that y> (x) = y; (x)u(x) is asolution of (2.6.1) provided v(x) = u’(x) satisfies
y10"+ (24 + p(x)y1)o = 0.

This is a linear first order equation. Its solution is

v(x) =cexp (—J (2 zi Ei; +p(x)) dx)

:cexp(—Jp(x)dx) exp(—2J %dx)
cexp(— fp(x) dx)

yi(x)

Since we are interested in only one function u(x), we set the constant ¢ = 1 in the
above and obtain

exp ( - fp(x) dx)

Y7 (x)
Integrating this and setting the arbitrary constant to 0, we obtain the function u(x).
Therefore, the second solution y,(x) is given by

U (x) =o(x) =

exp ( - fp(x) dx)
yi(x) '

In this method, we solve a second order equation by solving another first order
equations in o(x). This is the reason, the method is named as the method of
reduction of order. However, it applies when we have already got one solution of
the ODE.

P (%) = 1 () = 11 (x) f o(x)dx, o(x) =

(2.26) Example
Find the solution of the IVP

(1-x2)y" +2xy’ =2y =0, y(0) =3, y(0)=—4 for —1<x<1.
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We see that y;(x) = x is a solution of the ODE. To get another solution, we use
the method of reduction of order. So, let y»(x) = y;(x)u(x). Since in (2.6.1) the

coefficient of y” is taken as 1, we rewrite the ODE as
- 2x 2
Y 1 —x2 y 1-x
Now, p(x) = 2x/(1 — x?) and g(x) = 1/(1 — x?). Our formula for the second
solution gives

’

5y =0.

exp ( - fp(x) dx) exp ( - f 1%’;2 dx) glog(1-x%) | _,2
y3(x) B x? '

y2(x) = y1(x)u(x) = xJ o(x)dx = xJ

Therefore, the general solution is

o(x) =

1 —x2

dx = —x(i +x) = —(1+x?).

y(x) =cix —ca(1 + x2).
The initial conditions imply that
3=y(0)=-c2, —4=y(0)=c.
Hence the solution to the IVP is y(x) = 3 — 4x + 3x2. 0

(2.27) Example

Given that y; (x) = e** is a solution of the ODE xy” — (1 +3x)y’ + 3y = 0 for some
a € R, find the general solution.

Substituting y = e** in the ODE, we get
xa’e™ — (1+3x)ae* +3e™ =0 = (a—3)(xa—1)=0.

Since a € R, a constant, we have a = 3. So, y;(x) = e,
The ODE is re-written as

” 1 ’ 3 _
V= (53 + (S)u=o
so that p(x) = —(1/x + 3) and q(x) = 3/x.
For the second solution, we set y>(x) = yj(x)u(x) and v(x) = u'(x). By the
method of reduction of order, we have
exp ( - fp(x) dx) exp ( - f(—l/x +3) dx)
Y (x) B =

= e ™ exp(log x — 3x) = xe~~.

y2(x) = y1(x) J o(x) dx = e J (xe ™) dx = e3X( _ g + 8_11)6—9x

v(x) =

1 —6x
= ﬁ(l —9x)e ™.
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Then, the general solution is y(x) = cre® +cr(1 — 9x)e o, 0

2.7 Non-homogeneous second order linear ODE

Before proceeding to discuss any method to to solve the general non-homogeneous
linear second order ODE, we will discuss some properties of such equations. These
properties will help us in finding general solutions. We will consider the non-
homogeneous ODE

v +p(x)y +q(x)y=r(x) for x el (2.7.1)

where I is an open interval and the right hand side function r(x) is not the zero
function. Corresponding to this we will consider the homogeneous ODE on the
interval I:

y" +p(x)y +q(x)y=0 for x €I (2.7.2)

We assume that the functions p(x), g(x) and r(x) are continuous on I so that the
corresponding IVPs with initial conditions y(x0) = yo and y’(xo) = y;, have unique
solutions for a given xp € I.

Relations between solutions of the solutions of (2.7.1-2.7.2) is given by the
following results.

(2.28) Theorem
The difference of any two solutions of (2.7.1) is a solution of (2.7.2).

Proof. Let u;(x) and u(x) be two solutions of (2.7.1). Then
ul + p(x)uy +q(x)uy =r(x), uf +p(x)u) +q(x)ur = r(x).
Subtracting the second from the first, we get
(ur —w)” + p(x)(u; —up)" + q(x)(u; —up) = 0.
That is, u; — uy is a solution of (2.7.2). |

(2.29) Theorem

Let y1 (x) and y(x) be two linearly independent solutions of the homogeneous equa-
tion (2.7.2) and let ¢(x) be any one (particular) solution of the non-homogeneous
equation (2.7.1). Then every solution of (2.7.1) is in the form

y(x) = c1y1(x) + c2y2(x) + P(x)

for some constants c| and c;.
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Proof. Let y(x) be any solution of (2.7.1). By (2.28), y(x) — ¢(x) is a solution of
(2.7.2). By (2.8), y1(x) and y»(x) form a fundamental set of solutions of (2.7.2).
So, y(x) — ¢(x) = c1y1(x) + cay2(x) for some constants ¢; and c,. It then follows

that y(x) = c1y1(x) + c2y2(x) + Pp(x). |

Notice that this theorem reduces the problem of finding a general solution of
the non-homogeneous problem to finding two linearly independent solutions of the
homogeneous problem and just one solution of the non-homogeneous problem.

(2.30) Example
Find the general solution of the ODE y” +y = x.
The functions y; (x) = cos x and y» (x) = sin x are two linearly independent solutions

of y” +y = 0. The function ¢(x) = x satisfies the ODE y” +y = x. Hence, the
general solution of the given ODE is

y(x) =c1cosx +cysinx + x. 0

(2.31) Example

If p1(x) =x, ¢2(x) =x+e€* and #3(x) = 1 + x + e* are three solutions of a certain
non-homogeneous linear second order ODE, then find its general solution.

By (2.28), ¥1(x) = ¢o — ¢1 = €* and ¢ (x) = @3 — ¢ = 1 satisfy the corresponding
homogeneous linear second order ODE. Also, ;(x) and y»(x) are linearly inde-
pendent. The function ¢; (x) is a particular solution of the non-homogeneous ODE.
By (2.29), the general solution is given by

y(x) = c1y1(x) + 22 (x) + P1(x) = cre” + e +x
where cy, c; are arbitrary constants. N

To sum up, we know how to solve a homogeneous linear second order ODE with
constant coefficients. For the variable coeflicients case, if we already know one
solution, then we can find another solution linearly independent with the known one
by the method of reduction of order. For the non-homogeneous case, we also need
a particular solution.

2.8 Variation of parameters

How do we find a particular solution of a non-homogeneous linear second order
ODE? We discuss a method that can compute such a particular solution from the
two linearly independent solutions of the corresponding homogeneous ODE.
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We consider the non-homogeneous ODE
Yy +p(x)y +q(x)y=r(x) for x el (2.8.1)

where the functions p(x), q(x) and r(x) are continuous on the open interval I.
Let y;(x) and y>(x) be two linearly independent solutions of the corresponding
homogeneous ODE

Yy +p(x)y +q(x)y=0 for x € I. (2.8.2)

We know that any function in the form cjy; (x) + coy2(x) is a solution of (2.8.2).
Idea : if we treat the constants ¢, ¢ as functions, then probably we will be able to
satisfy (2.8.1). So, we try to determine two functions u; (x) and u;(x) so that

$(x) = u1(X)y1(x) +uz(x)y2(x)

is asolution of (2.8.1). Itlooks that the idea is a bogus one, since for determining one
function ¢ (x) we now need to determine two functions u;(x) and uy(x). However,
it also implicitly says that we have probably some freedom in choosing these two
functions. That is, if necessary we can impose some more conditions suitably so
that our work becomes simple. With ¢(x) in the above form, we see that

¢'(x) = (u1y1 +uwpyy) = (uly'1 + uzyé) + (u'lyl + u’zyg).

We will also require ¢”(x). It will involve the second order derivatives of the
unknown functions u; and u;. In order to make our work simple, we impose the
condition that

uy (0)y1(x) +u; (x)ya2 (x) = 0.
Then, ¢'(x) = u1y| + uay,. As @(x) satisfies (2.8.1),we have

r(x) =¢"(x) + p(x)¢’(x) + q(x)$(x)

= (w1y) +w2y5) + p(x) (ury; +w2ys) + () (w1 +u212)

=iy, +upys +un (Y + pyy + qur) +ua (Y3 + pys + qua)

= Uy + Uy,
The last equality follows since both y; (x) and y,(x) are solutions of (2.8.2). To sum
up, we see that ¢(x) = ujy; +uoy; is a solution of (2.8.1) provided that u; (x), uz(x)
satisfy

iy +youy =0, yiu) +yhuh = r(x).

We need to solve these linear equations in the unknowns u} and w). So, multiply
the first equation by v} and second by v, then subtract to get

(y1v5 — yyy2)u) = —r(x)ys.
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Similarly, multiplying the first by y} and the second by y;, then subtracting we get

(v193 = yiy2)us = r(x)y1.
Recall that the Wronskian is W[y, y2](x) = y1y5 — yy2. Hence, we obtain

r(x)y2(x) r(x)yi(x)
Wiy y2](x)’ Wyt y2](x)’
Finally, we get u;(x) and uy(x) by integrating these. Of course, we can take
any suitable constant of integration to make our choices of uj,u, simple. This
method of determining a particular solution for a non-homogeneous equation from
a fundamental set of solutions for the corresponding homogeneous equation is called
the method of variation of parameters due to Lagrange.

uj(x) = - uy(x) = — (2.8.3)

(2.32) Example
Solve the IVP y” +y =tant for —n/2 <t < x/2; with y(0) = 1 = ¢'(0).

The corresponding homogeneous equation y” + y = 0 has two linearly independent
solutions as y; = cosx and y, = sinx. To get a particular solution of the given
non-homogeneous equation, we first compute the Wronskian. Now,

Wy, y2](x) = y195 — yjy2 = cosx(cos x) — (—sinx) sinx = 1.
Using variation of parameters, we seek a particular solution ¢(x) in the form
P (x) = ur(x)y1 + uz(x)y2 = uy (x) cos x + up(x) sinx
where due to (2.8.3),
uj(x) = —tanxsinx, u)(x) = tanxcosx.

Integrating and ignoring the constants of integration, we have

cos?x —1

ui(x) = J tan x sin x dx = J de = sinx — log(sec x + tan x).

ur(x) = ‘[ tan x cos x dx = J sinxdx = —cosx
d(x) = [sinx —log(sec x + tanx)] COS X — COS X Sin x
= —cos x log(sec x + tan x).
Then, the general solution of the ODE is given by
y(x) = c1y1 + coya + ¢ = ¢ cos x + ¢3 sin x — cos x log(sec x + tan x).
The initial conditions give
l=y(0)=c, 1=y (0)=c2-1 = c1=1, =2

Thus, the solution of the IVP is

y(x) = cos x + 2 sinx — cos x log(sec x + tan x). 0
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2.9 Method of undetermined coeflicients

The variation of parameters is a very general method to determine a solution of
the non-homogeneous equation. If the coefficients of the unknown variable y and
its derivatives are constants and the right hand side function involves exponentials,
polynomials, or trigonometric functions of certain particular forms, then a particular
solution can be determined without resorting to integration.
We consider the non-homogeneous linear second order ODE with constant coef-
ficients:
ay” +by +cy=r(x), a#0. (2.9.1)

Its characteristic equation is
aA* +bA+c=0.

The method of undetermined coefficients asserts that when r(x) is in certain form,
the particular solution ¢ (x) of the ODE (2.9.1) is of certain form. These statements,
written as ‘Rules’ below follow from the method of variation of parameters. They
are as follows.

Rule 1: Suppose r(x) = p,(x)e*™, where p,(x) is a polynomial of degree n. Then,
the particular solution ¢ (x) of (2.9.1) is in the following form, where u, (x) is some
polynomial of degree at most n:

(A) If « is not a root of the characteristic equation, then ¢(x) = u,(x)e*~.

(B) If @ is a simple root of the characteristic equation, then ¢(x) = xu,(x)e**.

(C) If « is a double root of the characteristic equation, then ¢(x) = x?u,(x)e®~.

A particular case of Rule 1 is worth mentioning. In Rule 1, if « = 0, then we get
the following.

Rule 2: Suppose r(x) = p,(x), a polynomial of degree n. Then, the particular
solution ¢(x) of (2.9.1) is in the following form:

(A) If c # 0, then ¢(x) = up(x).
(B) If c =0, b # 0, then ¢(x) = xu,(x).
(C) If ¢ = 0 = b, then ¢(x) = x°u,(x).
As earlier, u,(x) is a polynomial of degree at most n.

Rule 3: Suppose r(x) = e** [p(x) cos(fx) + q(x) sin(ﬁx)] , where p(x), q(x) are
polynomials. Then, the particular solution ¢(x) of (2.9.1) is in the following form:

(A) If a +ip is not a root of the characteristic polynomial, then

d(x) = e™* [u(x) cos(fx) +v(x) sin(ﬁx)].
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(B) If a + if is a root of the characteristic polynomial, then
d(x) = xe** [u(x) cos(fx) +v(x) sin(ﬁx)].

Here, u(x) and v(x) are some polynomials whose degrees are at most the highest
degree of the polynomials p(x) and g(x).

We emphasize that if one of the polynomials p(x) or g(x) is equal to O, then
r(x) involves only one of the terms cos(fx) or sin(fx). In that case, ¢(x) may still
involve both thee terms cos(fx) and sin(fx).

This rule says that we must try to determine the coefficients in u,(x) by plugging
in this ¢(x) in (2.9.1).

In Rule 3, if @ = 0 and the polynomials p(x) and g(x) are constants, we get the
following important case.

Rule 4: Suppose r(x) = dj cos(fx) +d, sin(fx) for some constants d; and d,. Then
¢(x) is in the following form:

(A) If Biis not a root of the characteristic equation, then
¢(x) = Acos(fx) + Bsin(fx).
(B) If Bi is a root of the characteristic equation, then
d(x) = x[A cos(fx) + B sin(ﬁx)].

We remark that if r(x) is a sum of functions, then their corresponding ¢(x) are
to be added.

(2.33) Example
Find a particular solution of the ODE y” + 1 + y = x°.

By Rule 2, a particular solution may be tried in the form ¢(x) = A + Bx + Cx?. As
¢ satisfies the ODE, we obtain

x> = ¢"+¢ +¢=2C+ (B+2Cx) + A+ Bx +Cx?

= (A+B+2C) + (B+2C)x + Cx?
= A+B+2C=0,B+2C=0,C=1=> A=0,B=-2,C=1

Hence, ¢(x) = —2x + x%isa particular solution. 0

(2.34) Example
Find a particular solution of the ODE y” — 3y’ + 2y = (1 + x)e’*.

To use Rule 1, we should check whether 3 is a root of the characteristic equation.
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The characteristic equation is A2 =31 +2 =0, and 3 is not its root. So, by Rule
1(A), ¢(x) = (A + Bx)e>*. Then
(1+x)e¥* = ¢ =3¢ +2¢
= e ((9A+ 6B +9Bx) — 3(3A + B+ 3Bx) + 2(A + Bx))
= ¢ ((2A +3B) + 2Bx)
= 2B=1,2A+3B=1 = A=-1/4, B=1/2.

Hence, a particular solution is ¢(x) = (=1/4 + x/2)e’*. 0

(2.35) Example

Solve the ODE y” — 7y’ + 6y = (x —2)e~.

The characteristic equation is A2 — 71 + 6 = 0 whose roots are 6 and 1. Here, the
right hand side is in the form p; (x)e* and & = 1 is a simple root of the characteristic

equation. So, we seek a particular solution in the form ¢(x) = x(A + Bx)e~.
Plugging in the equation, we obtain

(x —2)e* = ((Ax + Bx?) + (2A +4Bx) + 2B — 7(Ax + Bx?)
—7(A + 2Bx) + 6(Ax + sz))ex
(=5A +2B - 10Bx)e*

= —5A+2B=-2, —-10B=1 = A=9/25 B=-1/10.

Hence, ¢(x) = x(9/25 — x/10)e* is a particular solution. The general solution of
the ODE is y(x) = c1e® + coe* + x(9/25 — x/10)e*. 0
(2.36) Example

Find a particular solution of the ODE y” + 4y = sin(2x).

The characteristic equation A> + 4 = 0 has roots +2i. By Rule 4(B), a particular
solution is in the form ¢ (x) = x [A cos(3x)+B sin(3x)] . Plugging it in the equation,
we get
sin(2x) = ¢” + 4¢
= x[ —4Acos(2x) — 4B sin(2x)] + [ —2Asin(2x) + 2B cos(2x)]
+[ — 2Asin(2x) + 2B cos(2x)] +4x [A cos(2x) + B sin(2x)]

= —4Asin(2x) + 4B cos(2x)
Comparing the left and the right hand sides, we get A = —1/4 and B = 0. Then, a
particular solution is given by ¢(x) = —(x/4) cos(2x). 0
(2.37) Example

Solve the IVP y” + 2y’ + 0.75y = 2 cos x — 0.25 sin x + 0.09x,
y(0) =2.78, y’(0) = —0.43.
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The characteristic equation is A> + 21 + 0.75 = 0 having roots as A; = —1/2 and
Ay = =3/2. Hence, two linearly independent solutions of the homogeneous equation
are y; = e /% and yp = e~ 3/2,

The non-homogeneous term is r(x) = (2 cos x — 0.25 sin x) + 0.09x. We first find
a particular solution ¢ (x) for

y” + 2y +0.75y = 2 cos x — 0.25 sin x.

Since 1 is not a root of the characteristic equation, by Rule 4(A), we try a particular
solution in the form ¢(x) = Acosx + Bsinx. Plugging it in the ODE, we get

2cosx —0.25sinx =¢” +2 "+0.75¢
= (—Acosx — Bsinx) + 2(—Asinx + Bcos x) + 0.75(A cos x + Bsin x)
=(=A+2B+0.75)cosx + (—B—2A+0.75) sinx

= -A+2B+0.75=2, -B-2A+0.75 = -0.25

= A=0, B=1.

So, ¢(x) = sinx. Next, we find a particular solution y/(x) for
y” + 2y +0.75y = 0.99x.
By Rule 2, we try ¢/(x) = C + Dx. As ¢’ = D and ¢ = 0, we get
0.09x = ¢" + 2y +0.75¢ =2D +0.75(C + Dx) = C =-0.32, D =0.12.
Hence, /(x) = 0.12x — 0.32. Therefore, a particular solution of the ODE is
¢+ =sinx+0.12x — 0.32.

That is, the general solution of the ODE is

y(x) = cre™? + cre3/? +sinx + 0.12x — 0.32.

The initial conditions imply
, 1 3
278 =y(0) =c;1+c2—-0.32, -04 =94'(0) = ~561 " 50 +1+0.12.
Solving it, we obtain ¢; = 3.1 and ¢, = 0. So, the solution of the IVP is

y =3.1e7? +sinx +0.12x - 0.32. 0

(2.38) Example
Find the general solution of y” — 4y’ +4y = (1 + x + x% - - + x?°)e**.
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The characteristic equation is A2 —4)+4 =0 of which the roots are A; = A, = 2.
Hence, y;(x) = ¢** and y,(x) = xe?* are two linearly independent solutions of
the corresponding homogeneous equation. A particular solution ¢(x) is in the form

¢(X) = xz(A0+A1x+ Ce +A25x25)62x

It is of course sheer waste of time to plug in such a ¢(x) in the ODE and try to
evaluate Ay, Ay, .. ., Aps. Following the method of variation of parameters, we rather
write

$(x) = u(x)e™
and plug it in the ODE. It gives
' (x) = (u'(x) + 2u(x))ezx, ¢"(x) = (u"(x) + 44 (x) + 4u(x))ezx.
As ¢(x) satisfies the ODE, we get
¢ — 4P +4¢p =u" (x)e* = (1+x+ x4 xzs)ezx.

2

Thatis, u”(x) = 1 +x+x2---+x%. Integrating twice and setting the constants of

integration to 0, we have

52 3 527
=——+—+ -+ .
“N=13%23 2627
Hence, the general solution is
2 3 27
y(x)=(C1+czx+%+2xf3+---+26x.27)e2x 0
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Series Solutions

3.1 Introduction

To recall, we could solve a linear homogeneous second order ODE with constant
coeflicients some what satisfactorily. For such an ODE with variable coeflicients,
we could only get a second solution provided a first solution is already known. How
do we get this first solution? We relied on guess work. The main aim of this chapter
is to obtain a first solution by using power series. We recall some facts about power
series.

A power series about x = xy is in the form

a0+a1(x—xo)+a2(x—x0)2+~-:Zan(x—xo) (3.1.1)
n=0

where ag, ay, . . . are constants.

Each power series has an interval of convergence. That is, there exists r > 0 such
that the power series (3.1.1) converges for all x with |x — xp| < r and diverges for
all x with |x — xo| > r. This number r is called the radius of convergence of the
power series (3.1.1).

If Tim

n—e |ap.|

exists, then the limit is equal to the radius of convergence of (3.1.1).

Also, the radius of convergence of (3.1.1) is equal to ( 11330 |an|! ”) provided this
limit exists in R U {oo}. ’

Two power series ), ao(x — xo)" and 7" b,x" are equal iff a, = b, for
each n =0,1,2,.... In particular, }.7°,a,(x —xp)" = 0 iff a, = 0 for each
n=012,...

Two power series can be added and multiplied the following way:

o)

> an(x - xo>"+Zb(x x0)" = Z(anwn)(x x0)".

n=0

(ian(x—xo))(ib(x x0)") = ch(x_x0>n
n=0

n=0

where ¢, = apb, + a1b,—1 +--- + anbo.

56
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apt+ayx+---

The power series (3.1.1) can be differentiated and integrated term by term and the
resultant series has the same radius of convergence. In particular,

If by # 0, then the quotient of two power series is a power series.

(o] (o)
’
/ —
(Zanx”) = (ap + arx +apx* +---) :a1+2a2x+---:Znanx” L
n=0 n=0

A function f(x) is said to be analytic at x = x iff there exist constants ag, aj, ay, . . .
such that for all x in a neighborhood of x,

(o)

f(x) =ag+ai(x—xo) +ar(x —xp)> +- - = Zan(x - x0)".
n=0
This series is called the Taylor series of the function f(x) at x = xp and the
coefficients satisfy
an(n!) = £ (x0).
When x( = 0, the Taylor series is called the Maclaurin series. We are familiar with
the following Maclaurin series:

(l—x)_IZZx":1+x+x2+x3+~~- for |x| < 1.
n=0
— x" x2 %3
e’ = —=1l+x+—+—+--- for xeR.
L4l 2 73
_ 0 (_1)nx2n _ x2 x4
Cosx—gw—l—a-i'ﬂ—"' for x eR
. _ o0 (_1)nx2n+l _ x3 xS
smx—;)m—x—a+§—--' for x € R.

3.2 Regular and singular points

Our plan is to plug in a power series in place of y(x) in a linear second order
homogeneous ODE and try to evaluate the coefficients a,. We hope that if a
solution of the ODE has an analytic solution at a point, then we should be able to
find out the coefficients. Before discussing what will be the general case, let us
consider an example, and try to execute our ideas.

(3.1) Example
Find a power series solution of the first order ODE y" —y = 0.
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Assume that y(x) = 37 anx" is a solution of the ODE. Plugging it in the ODE
and using term by term differentiation, we get

o [ee) [ee) oo [ee]
0 = Z nx" Z apx" = Z nx" 1 - Z ap1x" ! = Z(nan — app)x™!
n=1

n=1 n=0 n=1 n=1

an—1
= aq,=—— for n>1.
n

We obtain a recurrence relation between the coefficients. It gives

ap aj ap a ap ao
al=—, ) =—=—,0d3=—=—, ..., Qp = —

1 2 2T 3 T3y n’

Notice that the constant ap remains arbitrary. Then

o (o] o0 n
agp x .
y(x):Zanx Z— aOZ—:aoe.
! n!
n=0 n=0

n=0

We see that we have obtained the general solution of the ODE. 0

We wish to apply the power series method to linear second order ODEs. For this
purpose, we consider the following linear second order homogeneous ODE:

Y +p(x0)y +q(x)y = 0. (3.2.1)

When the coeflicient of y” is 1 as in (3.2.1), we say that the ODE is in its standard
form. The central fact about such equations is that the nature of solutions depend
on the nature of the coefficient functions p(x) and q(x). The ease of obtaining a
solution depends on how smooth are the coefficient functions. To demarcate the
cases, we will need some terminology.

A point xq is said to be an ordinary point of the ODE (3.2.1) iff both the functions
p(x) and g(x) are analytic at x = xp. An ordinary point is sometimes called a regular
point.

A point xg is called a singular point of the ODE iff it is not an ordinary point of
the ODE. At a singular point at least one of p(x) or g(x) fails to be analytic.

A singular point x( of the ODE (3.2.1) is called a regular singular point iff both
the functions (x — xo)p(x) and (x — x0)>q(x) are analytic at x.

A singular point xq of the ODE (3.2.1) is called an irregular singular point iff
at least one of the functions (x — xo)p(x) or (x — x¢)?q(x) fails to be analytic at x.

Roughly speaking at a regular singular point xq, p(x) is not worse than (x — xg) ™!
and g(x) is not worse than (x —x() 2. The reason for defining regular singular point
is that we can still obtain a solution to the ODE which involves a power series at xj.
We will soon see this in the guise of a theorem.

We should take care to bring a given equation to the form of (3.2.1), which is
called the standard form while deciding about a point being ordinary or singular.
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Further, in some ODEs we will require the behavior of a solution as x approaches
co. Thus, we need to determine whether xo = oo is an ordinary point or a regular
singular point or neither. In such a case, we transform the ODE to one by taking
t = 1/x and then find what kind of a point ¢t = 0 is. So, write Y(¢) = y(x) = y(1/t).
Then

, dY /dt ,dY
= :_t -
Y= jar di
d dy d*Y dY
” 2 2 4 3
=—t"—|—t"— )=t —5 + 2t —.
Y (x) tdt( tdt) tdt2+ tdt
Then the ODE (3.2.1) reduces to
d*Y dy
4 32
I — 2t° —t 1/t))— 1/t)Y(t) =0.
o+ (26 = Pp(1/0) T+ q(1/DY ()

Next, we say that x = co is an ordinary, a regular singular , or an irregular singular
point of the original ODE according as t = 0 is a respective point of the above ODE.

3.2) Example

1. Consider the ODE xy” — y = 0. In the standard form of (3.2.1), p(x) = 0 and
q(x) = —1/x. Thus xo = 1 is an ordinary point. But xyp = 0 is a singular point.
Further, xp(x) = 0 and xq(x) = —1 are analytic at xop = 0. Hence xp = O is a
regular singular point.

2. The Legendre’s equation (1 — x?)y” — 2xy’ + 6y = 0, in standard form, is

. 2x 6

- "+ =0.
S L A

Here, p(x) = —2x/(1 — x?) and g(x) = 6/(1 — x?). The point x = 0 is
an ordinary point of the ODE. In fact every point other than x = +1 is an
ordinary point of the ODE. The points x = +1 are its singular points. Further,
(x=1)p(x) = 2x/(1+x) and (x—1)%q(x) = 6(1—x)/(x+1) are analytic at xy = 1.
Hence, xo = 1 is a regular singular point. Similarly, (x + 1)p(x) = 2x/(x — 1)
and (x + 1)%2g(x) = 6(x + 1)/(1 — x) are analytic at x = —1. So, xo = —l is a
regular singular point.

3. Consider the ODE (x + 1)’y” + ¢ —y = 0. Here, p(x) = (x + 1)~ and
q(x) = —(x + 1)~2. Any point xy # —1 is an ordinary point. The point xo = —1
is a singular point. Now, (x + 1)p(x) = (x + 1)~! is not analytic at xo = —1.
Hence, xo = —1 is an irregular singular point.

4. Consider Airy’s equation y” — xy = 0. To classify the point at infinity, we put
t = 1/x. Here p(x) = 0 and g(x) = —1. The ODE is reduced to

2 d’Y 2dYy 1

d-Y dY
42 - L (342 4+ (=DY() = —+—-———-—=Y(t) =0.
t P + (267 = t7(0)) 7 +(-DY(t)=0 or o +tdt 3 (H)=0
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Here, p(t) =2/t and q(t) = —1/t3. Since t?>q(t) = —1/t is not analytic at ty = 0,
we conclude that top = O is an irregular singular point. Therefore, xp = co is an
irregular singular point of Airy’s equation. 0

In the following two sections, we discuss how to obtain a series solution of (3.2.1)
about an ordinary point, and also about a regular singular point. Unfortunately, we
do not have any general method for finding a series solution of a linear homogeneous
second order ODE with variable coefficients when the concerned point is an irregular
singular point.

3.3 Power series solution at an ordinary point

We assume that the point x( is an ordinary point of the ODE (3.2.1). That is, the
coefficient functions p(x) and g(x) have power series expansions at xo. Due to
(3.3), we assume that y(x) = ag + a; (x — xp) + az(x — x9)> + - - - is a solution of the
ODE. Using term by term differentiation, we get the series expansions of y’(x) and
y”(x). Substituting these expressions in to (3.2.1) and comparing the coefficients
of powers of x, we determine the coeflicients a, except possibly two. These two
constants will remain arbitrary and we would obtain a general solution of (3.2.1).

The following result guarantees that the above method works.

We will use the following result without proof.

(3.3) Theorem
Let xo be a regular point of the ODE (3.2.1). Then the following are true:
(1) There exists a solution y(x) of (3.2.1) which is analytic at xy.

(2) The IVP consisting of the ODE (3.2.1) and the initial conditions y(xo) = yo,
y'(x0) = y;, for Yo, y; € R has a unique solution y(x) which is analytic at x.

(3) If p(x) and q(x) have Taylor series expansions about x = xy convergent for
all x with |x — xo| < p for some p > 0, then in both (1)-(2), the radius of
convergence of the Taylor series for y(x) is at least p.

(3.4) Example
Solve Legendre’s equation (1 — x?)y” — 2xy’ + 2y = 0 by power series method.

Here p(x) = —2x/(1 — x?) and q(x) = 2/(1 — x?) are analytic at x = 0. By (3.3),
there exists a power series solution to the ODE about x = 0. So, we assume

o)

y(x) = Z anx".

n=0
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Plugging it in the ODE, we obtain

0=(1-x?) Z n(n—1)ax"2 - 2x Z na,x" ' +2 Z apx"
n=0 n=0 n=0

= Z n(n—1)ax"2 + Z[—n(n —1) - 2n+2]ax"
n=0

n=0

= i(n +2)(n+ 1)ayx" - i(n -1 (n+2)ax"
n=0 n=0

n—1
n+1

This recurrence relation gives a3 = 0, a5 = %a3 = 0,.... That is, all odd
coeflicients except a; are 0. And,

So, coefficient of each power of x is 0. It gives a,42 = a, for n>0.

1 1 3 13 1
ay=-—ap, a4 = Ay = —=ap, d¢ = =4 = —=—do = =4y, . . .
2 0, ¢4 3 2 3 0, U6 5 4 35 0 5 0
The even coeflicients are given by az, = — 1% Hence,
n —_—
o 14 1
y(x) =aix+ap(l —x"—=x" — —x" —--+).
3 5 0
3.5) Example
Determine two linearly independent solutions of
", 3x N ~0
ST i T

Then, find the solution y(x) of the ODE that satisfies the initial conditions y(0) = 2
and y'(0) = 3.

We will use the power series method for solving the IVP. The functions 3x/(1 +x?)
and 1/(1 + x?) are analytic at x = 0. Due to (3.3), we try a solution in the form

o

y(x):Zanx":ao+a1x+a2x2+---
n=0

Instead of plugging in the expression for y in the ODE, we multiply the ODE with
(1 + x?) and then put the series for y(x). This will make our computations simpler.
Then
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0=(1+x2)y” +3xy +y
= (1 +x?) Z n(n— 1ax"2 +3x Z na,x" ! + Z apx"
n=0 n=0 n=0

= Z n(n—Dax"2 + Z[n(n —1)+3n+ 1]ax"
n=0 n=0

(o)

= Z(n +2)(n+ 1)azx" + Z(n + 1)%a,x".
n=0

n=0

So, the coefficient of like powers of x is 0 it gives (n+2) (n+1)a 2+ (n+1)%a, = 0.
Hence

(n+1)%a, _ (n+1Da,
T (n+2)(n+1)  n+2
This is a recurrence relation to express ap, as, . . . in terms of ag and a;. We choose
two simplest cases: (i) ap = 1, a; = 0; (ii) ap = 0, a; = 1 to obtain two linearly
independent solutions.

for n > 0.

any2 =

(i) agp =1, a; =0. Now, a3 = 0, as = 0; in fact, all odd coeflicients are 0. The even
coeflicients are determined from
ap 1 3ap 1-3
a2:——:——, a4:__:_

2 2 4 2.4

Proceeding inductively, we find that

5-.-2n-=1)

3--(2n=1)
4-6---(2n) '

2"n!

= (1) = (-1y"-

Thus,

— 1-3...2n-1) 2 1-3
yl(x)=20(—1> = e AR

(ii) ag = 0, a; = 1. In this case, all even coeflicients are 0, and the odd coeflicients

are determined from

2ay 2 day 2-4
a3:——:——’a5:——: s

3 3 5 3.5

Proceeding inductively, we find that

2-4---2n) (-2l
3-5---2n+1)  3-5---2n+1)

n

a1 = (—1)
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Thus,

(=DMl
y2(x) = L35 v

+
=
I

UOIBJ

W

ul-lk
(9}

It is easily verified that both the power series for y;(x) and y>(x) converge for
|x| < 1 and diverge for |x| > 1.
Further, observe that by construction, the solutions y; (x) and y»(x) satisty

y1(0) =1, 47(0) =0, y2(0) =0, y5(0) = 1.
Therefore, the initial conditions y(0) = 2 and y’(0) = 3 are satisfied by the solution
y(x) = 2y1(x) + 3y2(x). 0

(3.6) Example
Solve the IVP: (x? = 2x)y” +5(x — )y’ +3y =0, y(1) =7, v/ (1) = 3.
The initial conditions are given at x = 1. So, we try a solution as a power series

about x = 1. Sety(x) = >, a,(x — 1)". Plugging it in the ODE, we obtain
n=0

0= (x? —2x)y"+5(x—l)y +3y

= ((x-1)%2=1) Z n(n—Day(x — D" 2 +5(x - 1) Z nay(x — 1)*! +3Z an(x — 1"

n=0

- - Z n(n—Day(x — 1) 2+ Z n(n— Day(x — 1)" + Z(Sn +3)an(x — 1)"

n=0

= —Z(n+ 2)(n+ Dapa(x — )"+ Z(n2 +4n+ 3)an(x - D™
n=0 n=0

So, the coefficient of all powers of (x — 1) are 0. It gives

n+4n+3 n+3 Q >0
ansy2 = an = a, or n > 0.
2T +2)(n+ )" n+2

Now, ap = y(1) =7 and a; = y’(1)/1! = 3. Using the above recurrence relation,

3 3 5 5-3 7 7-5-3
a2:5a0—5-7,a4 Za2—427,a6=6a4:6.4.2-7,.
4 4 6 6-4 8 8-6-4
a3:§a1=§-3,a5:§a3—7-3,a7=?a5:7.5.3-3,.
Proceeding inductively, we find that
5---2n+1) 4-6---(2n+2)

T, a1 =3, Ayl =

:73 n: - :
w="ha 4. (2n) 3.5--(2n+1)
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And, y(x) = Z a,(x — 1)", where a,s are as shown above. 0
n=0

We remark that in the recurrence relation for the coefficients, it can very well
happen that a,, depends on a,_;, a, and a,+;. In such a case, we may not be able
to write a,4> as an expression in n.

3.4 Series solution about a regular singular point

Suppose x = 0 is a regular singular point of the ODE (3.2.1). Then xp(x) and
x2g(x) have Maclaurin series expansion. This means

p(x):%+p1+p2x+p3x2+---

a +q2+q3x+q4x2+--~

q0
= — 4+ —
g(x)= 5+

Moreover, po, qo and q; are nonzero, so that p(x) and g(x) are not analytic at x = 0.
In this case, we cannot apply (3.3). In fact, for such equations we do not have a
power series solution at x = 0. The following result shows that in such a case a
solution can be obtained in the form of x" times a power series for some real number
r. But this also is guaranteed only under some more restrictions.

(3.7) Theorem (Frobenius)

Let x = 0 be a regular singular point of the ODE (3.2.1) so that the functions xp(x)
and x*q(x) are analytic at x = 0 with power series expansions

xP(x):po+p1x+p2x2+---, xzq(x):q0+q1x+q2x2+...

which converge for |x| < p for some p > 0. Let r| and ry be the roots of the equation
(called the indical equation)

r(r—1)+ por+qo =0.
Then the ODE (3.2.1) has two linearly independent solutions in the following form
on the interval 0 < x < p:
(@) Ifr;, n € R, ry > ryand ry — ry is neither O nor a positive integer, then

o0

yi(x) =x" ) anx", ya(x) =x" ) byx", ag # 0, b # 0.
n=0 n=0
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(b) If r1, r» € Rand r; — ry is a positive integer, then

o0

y1(x) = x" Z anx",  ya(x) = ay;(x)logx + x" Z b,x", ag#0.
n=0 n=1
Here, the constant a may turn out to be 0.
(c) Ifr;, o e Rand ry = ry, then

o0

y1(x) = x" Z anx", yo(x) = y1(x) log x + x" Z b,x", ag # 0.

n=0 n=1

d) Ifri=a+ifandr, = a —if with f # 0, then

y1(x) =Re(z(x)), y2(x) =Im(z(x)), z(x)= x@Hp Z apx".
n=0

The indical equation referred to in the above result comes from trying a solution
of the ODE in the form x” times a power series. In fact, we will use the above
theorem to determine the form of the series which could be a solution of the given
ODE. Next, we plug in this series in the ODE and setting the coefficients of all
powers to 0, we determine the coefficients.

(3.8) Example

Find two linearly independent solutions of 2xy” + ¢y’ + xy = 0 for x > 0.

Here, p(x) = (2x)~! and q(x) = 1/2. At x = 0, g(x) is analytic, but p(x) is not.
However, xp(x) = 1/2 and x?q(x) = x?/2 are analytic at x = 0. So, x = O is a
regular singular point of the ODE. We use Frobenius method to get a solution of
the ODE. Since po = 1/2 and qo = 0, the indical equation gives

1
r(r—1)+p0x+q0=r2—r+%:r2+%:0 = = r =0.

Since r, —r; is not an integer, by (3.7)(a) the two linearly independent solutions are
in the form

[s¢]

() = ) anx™ % yga(x) = ) bax" ag #0, bo #0,
n=0 n=0

Instead of determining a,s and b,s separately, we take any solution y(x) as

o o
y(x) =x" Z anx" = Z apx™"  where ag # 0
n=0 n=0
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and then try to determine the coeflicients a, by considering two cases r = 0 or
r = 1/2 at an appropriate stage. So, plugging it in the ODE, we obtain

0=2xy" +vy +xy
=2x i(n +r)(n+r—1at™ !+ i(n +r)ant™ !+ x i apx
n=0 n=0 n=0
= [2r(r —1ag + rao]xr_1 + [2(1 +r)ra;+ (1 + r)al]xr
+ i [Z(n +r)y(n+r—1a,+(n+r)a, + an_z]x"+r_1.
n=2

Setting the coeflicient of each power of x to 0, we get

1. 2r(r — ag+rap =r(2r—1)agp =0 = r =0orr = 1/2, as we had got
earlier. In fact, this gives the indical equation.

2. 2(r+ Draj+(r+1a;=(r+1)2r+1)a; =0.

3. 2(n+r)(n+r—1)a,+(n+r)a, = (n+r) [2(n+r) - 1]an = —a,_ forn > 2.
—ap_

n(Tn—zl) forn > 2.

Since a; = 0, all odd coeflicients are 0. The even coeflicients are determined from

(3) and they are:

(a) r = 0. The recurrence formula (3) gives a, =

_ —ag _—ay ao _—aq —ag
T2 3 M T 7T a3 M e 11 2463711

az

Since we will account for constants later, set agp = 1 to get one solution as

3 4

x x - (=1)"x2"
—1- =1 .
%1 (x) 2372437 +;2nn!3.7---(4n—1)

It is easily verified that this series, a power series, converges for all x > 0.
(b) r = 1/2. The recurrence formula (3) gives

—Aan-2 —Aan-2

an = (n+1/2)[2(n+1/2)=1] n@n+1) for n > 2.

All odd coeflicients are 0; and the even coefficients are given by

—ao —a ao —a4 —4ao
— — a4 = = ar = =
2.5 7 4.9 2459 %7 6.13 2.4-6-5-9.13°

a

Again, setting ap = 1, we have

o0 _l)nth
_ 124 (
yax) = x ( +nZ=:42”n!5-9~-(4n+1))'
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It is easily verified that the series here converges for all x > 0. Clearly, y;(x)
and yp(x) are linearly independent. Then the general solution of the ODE is
y(x) = c1y1 (x) + coya(x) for x > 0. O

In the indical equation r(r — 1) + por + qo = 0, the constants py and qo are the
constant terms in the Maclaurin series expansions of xp(x) and x?q(x), respectively.
Thus,

po = lim [xp(x)], g0 = lim [x*q(x)].

Alternatively, the indical equation is obtained from the ODE by substituting the
series y(x) = 2.7, apx"" in the ODE and then setting the coefficient of the least
power in x to 0. In practice, we obtain the indical equation this way.

When the indical equation has a double root or the roots differ by an integer, it
is usually extremely difficult to determine the second solution > (x). In fact, y,(x)
there has been obtained by using reduction of order. Sometimes, it is easier to
get y»(x) by using the method of reduction of order directly once y;(x) is already
available. If that is also difficult, which is often the case, then one only finds a few
terms in the series expansion of y,(x).

(3.9) Example

Solve the ODE (x? — x)y” + (3x — 1)y’ +y = 0 for x > 0 using Frobenius method.
Here, p(x) = (3x — 1)/(x? — x) is not analytic at x = 0. However, xp(x) is analytic
at x = 0 and x?q(x) = x/(x — 1) is also analytic at x = 0. Hence x = 0 is a regular
singular point of the ODE. We try a solution in the form

[ee)

y(x) = Z an,x™", ap #0.
n=0

Substituting this in the ODE, we obtain

0= Z(n +r)(n+r—1Da,x""" - Z(n +r)(n+r—1ax™!
n=0 n=0

(o) o (o]
+3 Z(n +r)ax™" — Z(n +r)ax™ 7+ Z apx™".
n=0 n=0 n=0

Equating the coefficient of the least power of x to 0, we obtain the indical equation
as
0= [—r(r—l)—r]ao = r’=0.

Since r = 0 is a double root, by (3.7)(b), the two linearly independent solutions are
of the form:

o)

yi1(x) = Z anx",  y2(x) = y1(x) logx + Z bux", ap # 0.
n=0 n=0
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To find y; (x), we take r = 0 and equate the coefficient of x” to O in the above to
obtain the following recurrence relation:

n(n-1)a, — (n+ nayy; +3na, — (n+ l)aps +a, =0.

It gives an+1 = a,. By choosing ag = 1, we get one solution as

1
yl(x):1+x+x2+---:1— for |x| < 1.
-x

For the second solution, we use reduction of order. From § 2.6, we have

exp ( - Jp(x) dx)
yi(x)

>

ya(x) = 91 (%) j o(x)dx, o(x) =

where the ODE is in standard form, that is, when the coefficient of y” is 1. For our
ODE, (with x > 0)

3x -1 2 1
_Ip(x)dx_—dex_—J(x_l+;)dx——210g|x—1|—logx.

"= 2zx) exp(=2log [x — 1| ~logx) = (1 - x)*(x(x = )} = ,%

Y

yz(X)=y1(X)JU(X)dx= L[ dx_ logx

1-—x x 1-—x

Hence, the general solution of the ODE is y(x) = (1 — x)~!(c; + ¢z log x). 0

(3.10) Example
Solve the ODE x?y” + 3xy’ + (1 — x)y = 0 by Frobenius method.

Here, p(x) = 3/x and gq(x) = (1 — x)/x?> which are not analytic at x = 0 but
xp(x) = 3 and x%q(x) = 1 — x are analytic at x = 0. Hence, x = 0 is a regular
singular point of the ODE. Here, pp = 3 and go = 1; so the indical equation is

r(r=1D)+3r+1=r—r+2r+1=(+1)>=0= r=-1, n=—1.

Since r = —1 is a double root, by (3.7)(b), the two lienarly independent solutions of
the ODE are in the form

[ee]

y1(x) = Z anx"_l, y2(x) = y1(x) logx + Z b,x" !, ap # 0.
n=0 n=0
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So, let y(x) = Y, a,x™" with ag # 0. Putting it in the ODE gives

n=0
o o (o] (]
0=x? Z(n +r)(n+r—Dax™ 2 +3x Z(n +r)apx™ T + Z apx™" — Z A"
n=0 n=0 n=0 n=0

[(n+r)(n+7r—1+3)+1]ax™" - Z apx
n=0

(o]
(n+r+1)2ax™" — Z ap_1x™"

n=1

Nerkinel)

3
Il
—_

= (r+1)%apx" + Z [(n +r+1)%a, - an_l]x"”.

n=1

Setting the coeflicients of all powers of x to 0, we obtain

an-1
(r+1=0, ay=—"—- fornz1
(n+r+1)
Since r = —1, we have a, = a,_/n*. Then
_ap _a; _a a  a
NPT BR=n = BT "5 -

a
—02. Setting ap = 1 we have a solution of

(n!)

Proceeding inductively, we obtain a, =
the ODE as

R xn—l
y1(x) = HZ:;) W

We do not compute the second solution, but remark that after some cumbersome
computation, the second solution is found to be

o) xn—l 2 o) ann 1 1
yZ(x):;WIOgX—J—C(l'F;W) WhereHn:1+§+"'+E- D

(3.11) Example
Solve the ODE (x> — x)y” — xy/ +y = 0 for x > 1 by Frobenius method.

n+r

Here, x = 0 is a regular singular point. Write y(x) = >,7° a,x"*" and substitute in

the ODE to get

[o0) (o) o
(x? = x) Z(n +r)(n+r—Dax"™ 2 -x Z(n +r)apx™ ! + Z apx"™" = 0.
n=0 n=0 n=0
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Simplifying we get

Z(n +r—12ax™ - Z(n +r)(n+r—1ax"1=0.
n=0 n=0

The lowest power of x is x"~!.

equation. It gives

Equating its coefficient to 0, we get the indical

rr—-1)=0=r=1,r=0.

Since the roots differ by an integer, using (3.7)(3), we compute the first solution
y1(x) as follows.
Taking the r = r; = 1 and setting the coefficient of x™*! to 0, we get

Z [nzan - (n+2)(n+ 1)a,,+1]x"+1 =0.
n=0

It implies the recurrence relation

n2

n = n f ZO
Il = i Dnr )™ 0"

For n = 0, we have a; = 0. Consequently, a, = 0 forall n > 1. Choosing ap = 1 we
get the first solution as y; (x) = apx™" = x.

For the second solution, we use the method of reduction of order. Here, p(x) =
1/(1 —x). Then

—Jp(x)dx:‘[%:logu—ll:log(x—l) asx > 1
exp(—fp(x)dx) Cx-l
¥} (x) S

1 1
= 1y(x) :yl(x)Jv(x) dx :xJ X 5 dx:x(logx+—) =xlogx+1.
x x

= o(x) =

Hence, the general solution of the ODE is y(x) = c¢;x + cx(logx + 1). 0

(3.12) Example
Find a series solution of Euler-Cauchy equation x%y” — xy’ + 10y = 0 for x > 0.

Here, p(x) = —1/x and g(x) = 10/x%. Thus, x = 0 is a regular singular point. We
have pg = lirr(l) xp(x) =—1and qo = lirr(l) x2q(x) = 10. So, the indical equation is
X— X—

rr=1)+(=Dr+10=r>=2r+10=0.
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It has complex roots 1 + 3i. We require now complex solutions of the ODE. We
proceed as earlier for the recurrence relations. Substituting

(o)

z(x) = y(x) = Z apx™"

n=0
into the ODE and setting powers of x to 0, we obtain

(o)

0= Z(n +r)(n+r—1a,x""" - Z(n +r)ax™ + Z 10a,x™"

n=0 n=0

el

=

[(n+7)(n+r—2)+10]a,x""

I
N o

n
(r-=2r+10)ap =0, (n+r)(n+r+10)a, =0 for n > 1.

The first one gives the indical equation. In the second one, with r = 1 + 3i, the
factor (n+r)(n+r+10) # 0. Hence a, = 0 for each n > 1. Thus the complex
solutions are given by

1+3i

z(x) = apx'*¥ = agx exp (log(x*)) = apx(cos(3log x) + i sin(3 log x)).

Setting the constant ap = 1, and using (3.7)(4), the two linearly independent solutions
are
y1(x) = xcos(3logx), y2(x) =xsin(3logx).

Thus, the series solution of the ODE is given by
y(x) = c1y; + cayo = cix cos(3log x) + cox sin(3 log x)

where ¢; and c¢; are arbitrary constants. 0
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Special Functions

4.1 Legendre polynomials

In this chapter we discuss some special types of ODEs whose series solutions give
rise to the special functions. First, we consider the Legendre equation in its general
form. It is

(1=x2)y" =2xy +p(p+1)y=0 for |x| < 1. (4.1.1)

where p is a constant, often called a parameter. So, this equation is actually a family
of ODEs. We should not be surprised if the nature of solutions differs for various
values of p.

The ODE in (4.1.1) has the standard form

p_2x P+
1—x2y 1 —x2

y=0.

The coefficient functions —2x/(1 — x?) and p(p + 1)/(1 — x?) are analytic at x = 0.
That is, x = 0 is an ordinary point of the ODE. Thus, the ODE has a power series
solution in the form

(o)

y(x) = Z anx".

n=0

Substituting it in the ODE and setting the coefficients of x" to 0, we obtain

(1 —x?) Z n(n—1)a,x"2 - ZxZ na,x" '+ p(p + Dax" =0
=0 n=0
= (n+2)(n+ apyp —n(n—1)a, —2na, +p(p+1)a, =0
= (n+2)(n+1)au = (nz—n+2n—p2—p)an = (nz—p2+n—p)a,,
(n—pxp+n+Da
(n+D(n+2) "

= Aap42 = —

The recurrence relation is used to compute the coeflicients of ay, as, ... in terms of

72
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ap and ap, which are left arbitrary. To compute a few,

_ P+ D) o 2=2@+3)_ plp-2)p+Dp+3)

1.2 7 3.4 4!
__=Dlp+2) @ =3p+d) p-Dep-3)p+2)(p+4)
- 2.3 b ®T 4.5 27 51 e

We thus get a formal solution y(x) = apy;(x) + ajy2(x) , where

pp+l) o plp-2(p+D(p+3) 4
2! 41
(p - 1;§p+2)x3 Le-Dp- 3;!(P+2)(P+4)x5 L

yi(x)=1-

Ya(x) =x -

When p is not an integer, the numerators in the coefficients of powers of x do not
vanish. In the series for y; (x), taking the absolute value of ratio of a term and its
preceding term, we find that

2n+2

242X _p-2n)(p+2n+1)

2n+1)(2n+2)

— |x]* as n — oo.

2n

arpnX

Hence, the radius of convergence of the series for y; (x) is 1. Similarly, it is easy to
show that the radius of convergence for the series for y»(x) is also 1 in case p is not
an integer. That is, the formal solution given above is a solution for -1 < x < 1.
Notice that this is the best we can expect since the coefficient functions —2x /(1 —x?)
and p(p + 1)/(1 — x?) are not analytic at x = 1.

Next, we consider the interesting case when p is a non-negative integer. We
consider the cases p = 0, p is nonzero even, and p is nonzero odd separately.

Case 1: Suppose p = 0. Then y;(x) =1 and

D@ 5, DEHO@ 5
3! 5!

Ya(x) =x -

Here, y; (x) is a constant and y,(x) is a power series.

Case 2: Suppose p is nonzero and even, say, p = 2k for some k > 1. Then

%x2+- . .+(_1

)ka(Zk =2 (QQk+1)(2k+3) - 2k +2k - 1)

yi(x) =1- 20!

The next term in the series for y; (x) has in the numerator the factor (p — 2k) = 0.
All succeeding terms are then 0. Therefore, y;(x) terminates there, and it is a
polynomial. In this case, y»(x) is a power series.

Case 3: Suppose p is odd, say, p = 2k + 1 for some k > 0. Then

LQRCk3) 5 GHRE=2) @k QK45 Qh kD)

Y2 (x) = x 3 (2k+1)!
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The next term in the series for y(x) is O since the numerator has a factor
(p — (2k + 1)) = 0. All succeeding terms are then 0. Therefore, y»(x) termi-
nates there, and it is a polynomial. In this case, y; (x) is a power series.

We thus find that if p is an integer, then exactly one of y;(x) or y»(x) is a
polynomial.

When p = 0, the ODE is (1 — x?)y” — 2xy’ = 0. Since p = 0, the polynomial
solution of this ODE is y;(x) = 1. This polynomial y;(x) is of degree 0 with
yi(1) =1

When p = 2, the ODE is (1 — x?)y” — 2xy’ + 6y = 0. Since p is even, the
polynomial solution of this ODE is (with p = 2k, k = 1)

yi(x)=1- @xz =1-3x>
This polynomial y; (x) is of degree 2 with y;(1) =1 -3 = -2.

It continues this way for even p. Let us look at a few cases when p is odd.

When p = 1, the ODE is (1-x?)y” —2xy’+2y = 0. Since p is odd, the polynomial
solution is (with p =2k + 1, k = 0)

2 (x) = x.

This polynomial y,(x) is of degree 1 with y,(1) = 1.
When p = 3, the ODE is (1 — x?)y” — 2xy’ + 12y = 0. The polynomial solution
is(withp=2k+1, k=1)

_DC+3) 5 O

Ya(x) = x 3 3

This polynomial y,(x) is of degree 3 with y»(1) =1 -5/3 = -2/3.
As we see from the above cases, the polynomials when evaluated at x = 1 give
the values as follows:

Parameter p: 0 1 2 3
Degree of polynomial: 0 1 2 3
Which solution: U ) Y1 Y2
Its value at 1: 1 1 -2 -2/3

Notice that since y;(x) is a solution of an appropriate Legendre equation, any
constant multiple of y;(x) is also a solution of the same Legendre equation. The
same is also true for y,(x). In particular, the polynomials and there constant
multiples are also solutions of suitable Legendre equations. Thus, we can choose
to multiply an appropriate constant in each case so that the resulting polynomial
when evaluated at 1 will give the value 1. Such polynomials are called Legendre
polynomials.
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Thus, the Legendre polynomial of degree n, denoted by P,(x), is the polynomial
of degree n that satisfies the Legendre equation

(1-x*)y” =2xy +n(n+y=0 with y(1) = 1.

We find that if n is even, then P,(x) = y;(x) and it does not have any odd power
of x; and if n is odd, then P,(x) = y»(x) and it does not have any even power of
x. Further, these polynomials satisfy P,(1) = 1. Using the above computations, we
obtain the following:

Po(x) = y1(x) (withp =0) = 1.
Pi(x) = ya(x) (withp = 1) = x.
Py(x) =yi(x) (withp=2) = L(1-3x%) = 1(3x* - 1).

P3(x) = yo(x) (withp =3) = -3 (x - §x3) = 1(5x% - 3x).

3

There is another way to choose these constants so that the condition P,(1) = 1
is satisfied. This way we may be able to express Legendre’s polynomials in close
form. The idea is to assume certain nice form of the coefficient of highest power of

x in P,(x). So, suppose a, is the coefficient of x" in P,(x). We choose the constants
in such a way that

L @mr _1-3-5---2n-1)
toon(n? n!

for n > 0.

Using our recurrence relation for the coefficients derived earlier, we have

_n(n=-1)  n(r-1)2n)! (2n -2)!
e - D" T T 22n- ()2 2%(n-Di(n-2)!"
_ (n=-2)(n-3) 3 (2n—4)!
et T T T 2n—3) 2T i —2)l(n-4)
anok = (=1)F (2n — 2k)! for n > 2k.

2nkl(n—k)!(n - 2k)!

Using this, Legendre polynomial of degree n may be written as

m

B Nk (2n = 2k)! N2k B
Pn(x)—;( 1) TR ek where m = [n/2]
_ @2n)! (2n - 2)! e

T2t T - Din-2) 7 4.1.2)

To see that it is the same P, (x) we have defined earlier we need only to check that
P,(1) = 1 for each n. We will show it later in (4.1.4).
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Though P,(x) is a polynomial, it is treated as a special function because it has
some nice properties and it comes in various disguises. One of its useful form is
the following:

1 d"

2 n
S (= D" (4.1.3)

Rodrigue’s formula: P,(x) =

To see that the formula is correct, notice that

dn 2 2k (2n—2k)' 2k
" _— for 0 <k <m=[n/2].
dx"x (n—2k)’ or 0 <k <m=[n/2]

Thus, P,(x) is rewritten as

) o (2n - 2k)!
Py(x) = Z( )znkv(n_k)!(n—Zk)!x

! 2n—2k
2”n'dx” Z( )!x ’

When k > m = [n/2], any term in the sum above is a polynomial of degree less
than n so that its nth derivative is 0. Hence, the sum above can be extended from
m + 1 to n without changing the value on the left hand side. So,

d" < n! 1 d
_k -2k _ 2_ )
2nn! dxn kzzo( S Hm—or sl X D

n—2k

Pu(x) =

The last equality follows from the Binomial expansion of (x> — 1)".

Various useful properties of Legendre polynomials follow from Rodrigue’s for-
mula with the help of Leibniz rule for computing the nth derivative of a product of
two functions. Leibniz’s rule says that

d*(f9) _ Zn: nl  d'fd"*yg
dx" k!(n—k)!dxk dxn=*’

where the Oth derivative of a function is taken as the function itself.
In Rodrigue’ formula writing (x> — 1)" = (x + 1)"(x — 1)" and applying Leibniz
rule we obtain

d*[(x+ D" d"*[(x - D"

Po(x) =
(x) 2"n!;k!(n—k)! ok dxnk

The first term in the above sum is

d°[(x+1)"] d'[(x-1)"]
dx0 dxn

= (x+1)"n!.
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Each of the remaining terms contains the factor (x — 1). Thus, when evaluated at
x = 1, each term except the first in the sum becomes 0. Thus,

P.(1) = —(1+1)”n‘ = 1. 4.1.4)

It is often helpful to get the generating function for the Legendre polynomials.
We will show that the generating function is (1 — 2xt + t?)~!. That is,

(1-2xt+12)7"7 = D Pa()t". (4.1.5)
n=0

To see this, we apply the Binomial theorem on the left hand side expression.
Recall that the Binomial theorem asserts that

(1+z)r:ir(r_l)'”(r_””)z" for |z < 1.

n!
n=0

Taking z = t> — 2xt = t(t — 2x) and assuming that [t> — 2xt| < 1, we obtain

o Ly 3y, . (=1 _
(1—2xt+t2)‘1/2—2( 2)(=3) n( 2 n+1)t"(t—2x)"

!

- G-y

n

D"GEn)! n-
Z 22n(ny)nz (Z k!( t( 2x) k)

R (—l)k(2n)- nt e
=2, Z 2kl (n = k)1 (@),

n=0 k=0

In general, if Cy, is any expression depending on k and n, we have

o n oo [n/2]
2, 2, Cont™ = 2 ) Crnt”
n=0 k=0 n=0 k=0

Using this on the above sum, we obtain

oo [n/2] k 00
1)k (2n = 2k)! .
1 = 2xt l’2 1/2 _ ( o 2k _ P, o
(I=2xt+1%)" Z‘) kZ‘) 2K (n—k)(n-2k! Z‘o (x)

An important property of the Legendre polynomials is that they are orthogonal
to each other. It means

1
J P (x)Py(x)dx =0 for m # n. (4.1.6)
-1
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To see this we use the fact that Legendre polynomials are solutions of the Legendre
ODE, which can be rewritten as

[(1=x*)y] +p(p+ 1)y =0.
Therefore,
[(1=xD)PL(x)] +m(m+1)=0, [(1-x*)P,(x)]+n(n+1)=0.
Multiply the first with P, and the second with P,,, subtract, and integrate to get
1 1
J (Pl (1=xP)P},) = Pu[(1=xH)P,]) dx = [m(m+1) —n(n+1)] J PP, dx = 0.
-1 -1
Evaluate the first integral by using integration by parts. It gives
1
| @t =ey =l - py) ax
-1
1 5 1
- [P,,(l - x2)P,'n] - [Pm(l _x )P,;] |

1
—I [P, (1= x*)P,, — P, (1 -x*)P,] dx =0.
-1
Hence, If m # n, then f_ll P (x)Py(x)dx = 0.

What happens when m = n? We use Rodrigue’s formula and integration by parts
as follows:

1 1 n
J [Pa(x)]” dx = J P (x) 2 (x>~ 1)"dx
1

-1 _ dx
1
~ 2np)

1 1 dn—l
=0 J Py (x)——— (x* = )" dx

C ol dx

dn—l
dxn—l

1 n—1
(x2 - 1)"]1 ! Lp,g(x) dn_l(x2 — 1)"dx

| 2np! dx

|P(x)

1y

o J_ll [Py(0)] ™ fl ) (62 - 17 d
- (2_nln)!n _11 (22’:3" (1-x7)"dx
= %Ll(l —x*)"dx (put x = sin 0)
[
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2(2n)! 2 /2
= (2n) " J cos” 1 0do
22n(n))2 2n+1 J
_2(2m)! 2n 2n-2 zjﬂ/zcosede
T2 2n+12n—-1 3 ),
_2@2m)! 2n 2n-2 2 2
T 22(p))22n+12n-1 3 2n+1
Hence,
Jl [Pa(x)]” dx = 2 4.1.7)
4 - 2n+1 "

Many problems in engineering depend on the possibility of expanding a given
function in a series of Legendre polynomials. It is easy to see that a polynomial
can always be expanded this way. For example, consider a polynomial of degree at
most 3, say

p(x) = by + by x + byx? + bax>.

With Py(x) = 1, Pi(x) = x, Pr(x) = %(3x2 - 1), P3s(x) = %(Sx3 — 3x), we see that

1 2 3 2
1 = Py(x), x = Py (x), x> = §Po(x) + §P2(x), x> = §P1 (x) + §P3 (x).

Hence,

p(x) = (b0 2)PoC) + (b1 + 22 )Pr(x) + 22 Pa() + 2Py ).
Similarly, x" can be expanded as 3;_ axPx(x) for some constants aj. It looks that
if a function has a power series expansion, then it can also be expanded in terms
of Legendre polynomials P,(x). However, some conditions my be required so that
the obtained series is convergent. We rather concentrate on how to compute the
coeflicients in such a series expansion if it exists.

When a function f(x) for —1 < x < 1, can be written in the form

(o)

FGx) =) anPa(x)

n=0

we say that f(x) has a Legendre series expansion. Our question is, if f(x) has a
Legendre series expansion, then how do we compute the coefficients a,?

We multiply the above with P,,(x), integrate term by term (assuming that this is
permissible), and use (4.1.6-4.1.7) to obtain

2a,
2m+ 1

J_ll f(x)Pm(x) dx = ;an J_ll Py (x)Py(x) dx =
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Therefore,
1 1
ap = (n + 5) J f(x)Py(x) dx.
-1

Many other properties of Legendre polynomials are included in the exercises. As
a convention, when P, (x) is treated as a function, we assume that —1 < x < 1.

4.2 Bessel Functions

The linear homogeneous second order ordinary differential equation
xzy” + xy’ + (x2 — V2)y =0 4.2.1)

is called the Bessel’s equation with non-negative parameter v. (It is nu not vee.) It
arises many where in applications. In standard form, the equation is

’ 2
44 y v
y +;+(1—;)y:0.

The point x = 0 is a regular singular point of the ODE. Hence the ODE has a
solution in the form

(o)

y(x) = Z a7 with ag # 0.
k=0

Substituting it in (4.2.1), we obtain

Z(k +r)(k+r—Dapx™" + Z(k +r)apx T
k=0 k=0

oo [ee]
+ Z akxk+r+2 _2 Z akxk+r - 0.
k=0 k:O

Thus coefficients of x”, x"*! and x**" for k > 2, are 0. It follows that
1. r(r = Dag + rag — v?ag = 0.
2. (r+ Draj+ (r+Da; —v?
3. (k+r)(k+r—Dag + (k+r)ag + ax_s — v?ar =0 for k > 2.

al =0.

The first one gives the indical equation as (r + v)(r — v) = 0. The roots are r| = v
and r, = —v. Corresponding to r = v, the first solution of the ODE is

(o)

y1(x) = Z apx<r.

k=0
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We must find the coefficients a;. For r = v, the second equation above implies
P +v+v+1-1)a; = 2v+1)a; =0 = a; =0.
Substituting r = v in the third equation, we obtain

(k+v)(k+v—1)ak+(k+v)ak+ak_2—v2ak=0
= [(k+v)(k+v—1+1)—v2]ak+ak_2:0

= k(k+2v)ap+ar,=0
ag—2

= % T+ 2

Since a; = 0 it follows that all odd coefficients are 0. For even coeflicients, say,
k = 2m, the above recurrence looks like

arm-2

=——=— form=1273,...
“2m 22m(v +m) "
It implies that
ag az ag
a = -, aqs = — = e e
2T T2vx 1) YT T (ve2) 220(v+ (v +2)

Proceeding inductively, we get

(=1)™aq

— for m=1,23,...
il (v ) (v+2) - (vim)

am

By choosing the constant ay, all even coefficients are evaluated. It is customary to

choose
1

=T+ 1)

Here,

I'(x) = f e 't 1dt for x > 0.
0

Notice that I'(v + 1) is well defined since v is non-negative. Some useful properties
of the gamma function are as follows:

I'(x+1)=xT(x), T(1/2)=+r, T(n+1)=n!for n=0,1,2,....
It then follows that

(x+D(x+2)---(x+mT(x+1)=T(x+m+1) formeNU/{0}.
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With the above choice of ag, we obtain
(=1)™ag
22mml(v+ D) (v+2) - (v+m)
_ =n=
222 T(v+ D (v+ D(v+2) - (v+m)
(=H™

- 2vE2mmIT(v+m+ 1)

arm =

for m=1,2,3,....

With these coefficients, the solution y; (x) = 3.7, apx**" is written as J,(x), and is

called the Bessel function of first kind with order v. Thus,

[ee)

_1\ym,2m
S =x"y (D" . 4.2.2)

— 2v2mmIT (v + m+ 1)

The absolute value of the ratio of a term to its succeeding term in the seris for
Jv(x) is given by

Arm-2 22m(v +m)

= — oo for any nonzero x.
2

arm X

The ratio test implies that the series in J,(x) is convergent. Notice that the con-
vergence of the series is fast since factorials are in the denominator. The series
obviously converges for x = 0. Hence, J,(x) is well defined for all x.

In particular, when v =n € NU {0}, we have I'(v+ 1) =T'(n + 1) = n!. Thus,

1
2"n!

apg =

(=™ _ (="

22mmIT(v+m+ 1) 272mm(n+m)!

arm = for m=1,2,,3,....

The odd coefficients are O as earlier. Therefore, the first solution y; (x) of Bessel’s
equation
2y +xy + (x> —n®)y=0, neNU{0}
is given by
0 —1)m x2m
h1(0 = Ju(x) = xS D

m=0

for n e NU {0}. 4.2.3)

2n2mml(n + m)!

Of course, this expression is directly obtained from (4.2.2) by taking v = n. For
instance, the Bessel functions of first kind and order O and 1 are as follows.

( 1)m 2m x2 x4 x6
Jo(x) = Z Pmmh? O 2(102 T 2322 28312

a (_l)mx2m+1 I x3 x5 x7

OEDY P iml(m+ ! 2 2210121 T 252131 273141

m=0
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1

Notice that J,(0) = 0 for n > 1. It can be shown that

2
Ju(x) = 4/ — cos (x o z) for large x.
X 2 4

For a general solution of Bessel’s equation (4.2.1), we consider two cases.

Case 1: Suppose the non-negative parameter v is not an integer. Then the second
solution y,(x) of Bessel’s equation (4.2.1) is given by

(o]

ya(x) = Jo(x) = Y

m=0

(_1)mx2m—v
22m—vmIT(m—v+1)

4.2.4)

This follows from a derivation similar to that of J,(x). Also, by substituting v with
—vin (4.2.2), we obtain this expression for J_, (x).

Observe that any power of x in J,(x) is x*™" and any power of x in J_,(x) is
x>™~V_ Since v is not an integer, no power of x in J, (x) matches with any power
of x in J_,(x). Hence J,(x) and J_,(x) are linearly independent. Therefore, any
solution y(x) of Bessel’s equation with non-integral parameter v is given by

y(x) = Cl]v(x) + CZJ—v(x) for v ¢ Z.

Case 2: Suppose v = n is an integer. We know the first solution as J,(x) for n > 0.
For the second solution, let us look at J_,(x). From (4.2.4) we have

[Se]

Jalx) =)' Gl (4.2.5)

2Zm=nm\(m —n)!’

m=0

We can also get J_, (x) from (4.2.4) another way. In (4.2.4), let v approach a positive
integer n. Then the Gamma function in the first n terms approach oo so that the
coeflicients in the first n terms approach 0. The summation starts from m = n as
the Gamma function there is equal to I'(m —n+ 1) = (m — n)! for m > n. Then,
shifting the index with k = m — n, we obtain

o0

( -1 )n+kx2k+n

~ (_1)mx2m—n B s
Jon(x) = Z 2m-nml(m —n)! ; 22k+nfe) (k +n)!

m=n
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Comparing the last expression with (4.2.5) we find that it is (—1)"J,(x). Therefore,
Jn(x)=(-D"J.(x) for ne€Z. (4.2.6)

It implies that J,(x) and J_,(x) are linearly dependent. Thus, we cannot take the
second solution y,(x) as J_,(x). The second solution, denoted by Y,(x) can be
obtained by using reduction of order; it is fairly complicated. We only mention the
final result:

(_1)m—1 (hm + hm+nx2m
2Zminm | (m + n)!

Y, (x) = %Jn(x)(logg "‘Y) + x;" i
m=0

S (n—m—1)x?m
N e m e D x50 4.2.7)
m 22m=nm |

wheren=0,1,2,...,hg=0,h; =1, b = 1+%+---+%,andy:klim(hk—10gk)
is Euler constant. In particular,

(o)

[Jo (x) (log(x/2) +y) + ) |

m=1

(_l)m—lhmx2m

Yo(x) = >
xX) =—
0 1 22m(m!)2
It can be seen that Yy(x) behaves like log x for small x and Yy(x) — —oco when
x — 0.

In fact, both the cases above can be unified to obtain a function Y, (x) which is a

second solution of Bessel’s equation. It is as follows:

Y, (x) = cosec(vrn) []V (x) cos(vr) — ]_V(x)].
With this definition, it can be seen that

lim Y, (x) = Y,(x).
v—n

But remember that when v is not an integer, it does not say that J_,(x) is equal to
Y_,(x). In fact for v ¢ Z, Y_,(x) = aJ,(x) + bJ_,(x) for some nonzero a and b.
Nonetheless, J,(x) and Y, (x) are linearly independent and Y, (x) is also a solution of
Bessel’s equation (4.2.1). This function Y, (x) is called Bessel function of second
kind of order v. With the help of this function we thus say that the general solution
of Bessel’s equation (4.2.1) is given by

y(x) = c1fy(x) + Yy (x)

for all values of v and for x > 0.
The complex solutions of Bessel’s equation may be given by

H"(x) = J,(x) + Yo (x),  H (%) = J(x) = iY ().

These two linearly independent complex solutions of Bessel’s equation are called
Bessel functions of third kind of order v.
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4.3 Properties of J, and J,

In what follows we write J, to indicate that the parameter v in J, is an integer n. In
this section we discuss some well known properties of J,(x) and of J,(x).
Multiply (4.2.2) by x” to get

) ) 00 (_l)mx2v+2m
x'Ju(x) = r;) 2v+2mm!r(v +m+1) ‘

Differentiate with respect to x, cancel 2, pull out x2~1 and use the relation
(v+m)I'(v+m) =T(v+m+ 1) to obtain

Z ( l)m 2(V+m)x2v+2m—l B i (_l)mx2m
=X X

2v2mm T (v+m+ 1) o 2veZm=ImI\T (v + m)

x ]v(x)

Comparing the last expression with (4.2.2), we find that

(x"Jo(x))" = x"Jom1 (). 4.3.1)

Multiply (4.2.2) by x7", differentiate with respect to x, cancel 2m, and shift the
index by taking m = k + 1, to obtain

0 (_l)mx2m—l 0 (_1)k+1x2k+l

() = ), 2T (m — )T (v+m+1) ; 2T (v k+2)

m=1

Now, in (4.2.2) take v as v + 1 and m as k so that you get the last expression as
—x7"J,4+1(x). Therefore,

() = =x 7 T (x). 4.3.2)
From (4.3.1)-(4.3.2), we get

Jo1(x0) = %7V (" () = x 7 [T () + v (0] = ) +vx T ().
Jos1 (%) = =x" (x7"J,(x))" = =x"[x o (x0) = vx T (0] = =T () + v ().

Subtracting the second from the first, we obtain

Jo—1(x) = Jop1(x) = 2] (x). (4.3.3)

And, adding those two equalities, we get

2
Tt (x) + Ty (x) = ;VMx). (4.3.4)
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This identity can be rewritten as

2
ot (%) = ;va(x) — Joo1(x). (4.3.5)

Now, we can use it to compute Bessel functions of higher order from lower ones.
Recall that T'(1/2) = +/z. Then,

_ o0 (_l)mx2m ~ \/E o0 (_1)mx2m+1
Jia(x) = \/;,;) 2mH 2D (m+3/2)  Vx r;) 2m I (m+ 1/2)

However,

2"m! =2m(2m —2)---4-2
2" (m+1/2) =2 (m+ 1/2)(m - 1/2) --- (3/2) - (1/2)T(1/2)
=C2m+1)2m—-1)---3-1-+/x.
22 D(m+1/2) = [2"m!] [2™T(m + 1/2)] = Cm + 1)V7.

( 1)m 2m+1 2 '
Jipp(x) = Z s (2m 1 1)'\/_ — sinx. (4.3.6)

Multiply by +/x, differentiate with respect to x, and use (4.3.1) with v = 1/2 to
obtain

Hence,

(VxJi2(x)) = \/% cosx, (VxJija(x)) = VxJija-1(x).

2
Jo1j2(x) = \/E COS X. 4.3.7)

Due to (4.3.5) Jx/2(x) for any integer k, can be expressed as a product of some
rational function and a trigonometric function.

To find a generating function for J,(x) and J_,(x), let us expand the function
exp [tx/2 — x/(2t)]. We find that

tx X
xP (E - Z)

Therefore,

r=0 s=0
(S 46) ) (S 56
=23 5
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For n > 0, the coefficient of ¢" in the above expression is

( 1)5 X\ n42s . s (—1)53623 B
Z (s'(n+s)'( ) =X ;m—]n(x)-

And, for n > 0, the coefficient of t™" is (shifting the index with k = s — n):

- (-1)° —n+2s ( 1)k+n a2
Zs'(n—s>'(x) Z(n+k)'k'( )" = D) = L)

We thus conclude that the generating function for J,(x) forn € Z is

(3 -5)
It means
exp(— - —) Z Tt (4.3.8)

Some more properties of Bessel functions of first kind are to be found in the
exercises.

The zeros of Bessel functions of first kind play an important role in modeling
of vibrations. It is known that there are infinite number of positive zeros of J,(x).
It is also known that between any two zeros of J,(x) there exists a unique zero of

]n+1 (x)

4.4 Sturm-Liouville problems

We have seen that the Legendre polynomials are orthogonal in the sense that

f_ll Py (x)P,(x)dx = 0 when m # n. A similar relation holds for Bessel func-

tions. There is a generalization of all these types of functions that are defined by a

second order ODE. We will discuss this generalization here. Later we will conclude

many useful properties about Bessel functions using this generalized problem.
Any ODE in the following form is called a Sturm-Liouville equation:

[p(x)y']/ +[q(x) +Ar(x)]y=0 for a<x<b (4.4.1)
Here, A € R is a parameter.

(4.1) Example

1. The simple harmonic motion equation y” +n”y = 0 is a Sturm-Liouville equation
with p(x) = 1, g(x) =0, r(x) = 1 and A = n’.
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2. The Legendre equation (1 — x?)y” — 2xy’ + p(p + 1)y = 0 is a Sturm-Liouville
equation with p(x) =1 -x2%,q(x) =0, r(x) = land A = p(p + 1).
3. The Bessel’s equation
12 d’y  dy

ﬁﬁ'taﬁ'(tz—l/z)yzo for t >0

is a Sturm-Liouville equation. To see this, put t = kx for k > 0. We have
@ - k@ @ - 2@
dx dt’  dx? de?’
Then the above Bessel equation is reduced to
kzxZ% + kx% + (K2x? - vz)y =0 or,
Xy +xy + (K*x* =)y = 0.
However, x(xy’)’ = x(xy” +1’) = x*y” +xy’. Hence, the above ODE is rewritten

as
2

(xy") + ( - V; +)Lx)y =0 where A =k".

This is a Sturm-Liouville equation with p(x) = x, q(x) = —v?/x, r(x) = x for
x > 0.
Notice that J,(Ax) satisfies this ODE. 0

With the Sturm-Liouville equation, we associate one of the following conditions:

kiy(a) + koy'(a) =0, £y(b) + 6y’ (b)) =0 (4.4.2)
p(a)=p(b), yla)=y). y(a)=y(b). (4.4.3)
p(a) =0, fyb)+ 6y (b) =0, y(x) remains bounded. (4.4.4)
kiy(a) +koy'(a) =0, p(b) =0, y(x) remains bounded. (4.4.5)

Here, k1, ko, £1, £ are constants where at least one k is nonzero and at least one ¢ is
nonzero, p(x), p’(x), g(x), r(x) are continuous on a < x < b, and p(x) is a non-zero
function. We also assume that either r(x) > O for all x € [a, b] or r(x) < O for all
x € [a,b].

The conditions in (4.4.2)-(4.4.5) are prescribed at two points instead of at one
single point; thus these conditions are called boundary conditions. Accordingly,
the Sturm-Liouville equation (4.4.1) along with one of these boundary conditions
is called a Sturm-Liouville problem. The names associated with these problems
are as follows:
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regular Sturm-Liouville problem: (4.4.1) and (4.4.2)
periodic Sturm-Liouville problem: (4.4.1) and (4.4.3)
singular Sturm-Liouville problems: (4.4.1) with any one of (4.4.4) or (4.4.5)

We must remember that if a solution of the BVP exists, then it must be well defined
over the interval [a, b].

If the zero function is a solution of a Sturm-Liouville problem, then it is called
the trivial solution. We are interested in getting non-trivial solutions.

Suppose a Sturm-Liouville problem is given. Corresponding to each value of
the parameter A, there may or may not exist a nontrivial solution of the problem.
Those values of A for which the problem has a non-trivial solution are called
eigenvalues. Corresponding to an eigenvalue A, the non-trivial solutions y(x) are
called eigenfunction.

4.2) Example
Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

y'+Ay=0, y(0)=0, y(r)=0.

This is a regular Sturm-Liouville problem with a =0, b = 7z, p(x) = 1, g(x) =0,
r(x) =1,and k; = £; = 1, kp = £, = 0. Since the boundary conditions are given
at x = 0 and at x = 7, the eigenfunctions if exist, must be defined over the interval
[0, 7].

For A = 0, the equation is y” = 0 giving the general solution as y(x) = ¢; + cox.
Now, y(0) = 0 = ¢; = 0. So, y(x) = c;x. Then, y(x) = 0 = ¢, = 0.
So, y(x) = 0, the zero function. Thus, A = 0 is not an eigenvalue; it means that
corresponding to A = 0, there does not exist any eigenfunction (non-trivial solution).

Let A < 0. Write 1 = —a? for nonzero € R. The ODE is y” = a?y. Its general
solution is y = c1e®* + cpe”**. The boundary conditions imply that ¢; + ¢ = 0 and
cie” + coe”™ = 0. The solution of these two linear equations in cy, ¢; is unique and
itis c; = 0 = ¢p. Consequently, y(x) = 0, the zero function. Hence, no negative
number is an eigenvalue of this Sturm-Liouville problem.

Let A > 0. Write = VA. The ODE is y” + %y = 0. Its general solution is y(x) =
c1 cos(fx) +cy sin(fx). Now, y(0) = O implies ¢; = 0. So, y(x) = ¢y sin(fx). Then
y(r) = cpsin(pr). If ¢; = 0, then y(x) = 0, the zero function. Thus, in order that
y(x) be non-trivial, we must have ¢, # 0. Then, sin(fx) =0 = S € Z.

Write f = n € Z. Then A = n? for n € Z, are the eigenvalues. That is, the
eigenvalues are A = n?forn=0,1,2,3,... and the corresponding eigenfunctions
are y(x) = sin(nx) defined over the interval [0, ]. 0

4.3) Example

Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

y"+Ay=0, y(0)=0, y'(x)=0.
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This is again a regular Sturm-Liouville problem. As earlier, we consider three cases.

If A = 0, then the general solution is y(x) = ¢; + cox. Now, y(0) =0 = ¢; =0.
Then y(x) = cox = y'(x) = co. Then, y'(71) =0 = ¢ = 0. So, y(x) = 0.
Therefore, 0 is not an eigenvalue.

If 1 < 0, then write A = —a? for « > 0. The general solution is y(x) =
cr1e™ + cpe”* so that y'(x) = cjae™ — coae™**. The boundary conditions imply
ci+c¢ =1 and cjae® —coae™ " = 0. It gives ¢; = ¢ = 0 so that y(x) = 0, the zero
function. Hence, negative numbers are not eigenvalues.

So, let A = % for B > 0. The general solution is y(x) = ¢; cos(fx) + ¢ sin(Bx).
Now, y(0) =0 = c¢; = 0sothaty(x) = cp sin(fx). Theny’(x) = cpfcos(pfx). The
boundary condition y’(7) = 0 implies ¢ cos(fr) = 0. Now, ¢, = 0 would give
only trivial solution. Otherwise, fcos(fir) =0 = cos(fr) =0 = f=n+1/2
for n € Z. Thus, the eigenvalues are

2n+1)?
/1,,:[)’2:(n+) for n=0,1,2,3,...

Notice that negative values of n give rise to already listed eigenvalues. The corre-
sponding eigenfunctions are

Yn(x) =sin(px) =sin(n+1/2)x for n=0,1,2,3,....

(4.4) Example
Find the eigenvalues and eigenfunctions of the periodic Sturm-Liouville problem

Yy +Ay=0, y(0)=y(0), y(0) =y ()

where ¢ > 0 is given.

If A = 0, then the general solution is y(x) = ¢; + cox. Now, y(0) = y(£) = ¢ =
ci+cf = ¢ =0 = y(x) = ¢y, which is a nonzero function for ¢; # 0. Thus,
A = 0is an eigenvalue and y(x) = 1 is a corresponding eigenfunction.

IfA <0,say, A = —a? for a > 0, then the general solution is y(x) = cje* +cre™**.
The boundary conditions imply

ci(1—e™) =cp(e™ = 1), e1(1 = ™) = —ca(e™™ = 1).

Solving these, we get ¢c; = 0 = c¢;. This leads to the trivial solution. So, no negative
number can be an eigenvalue.

If A >0,say, A = ﬁ2 for f > 0, then the general solution is y = ¢ cos(fx) +
¢y sin(fx). The boundary conditions give

c1(1 = cos(Bt)) = casin(Be), c1(1 — cos(BE)) = —cy sin(B¢).
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Eliminating c,, we obtain 2c;(1 — cos(f¢)) = 0. It implies either ¢; = 0 or
cos(pf) = 1.

If ¢c; = 0, then ¢; = 0 so that y(x) is the trivial solution. This does not give any
eigenvalue. So, let cos(f¢) = 1. Then, ¢ = 2nx for n € Z. Then,

o= P> =4n’n%/e> for n=0,1,2,3,...
are the eigenvalues. The corresponding solutions are
Yn(x) = ¢y cos(fBnx) + o sin(fBpx), P =2nx/t for n=0,1,2,3,...

Thus, both the functions cos(f,x) and sin(f,x) are eigenfunctions associated with
the eigenvalue 2. That is, the eigenvalues and the corresponding eigenfunctions
are

4 2.2 2 2
An = mr , y,ll(x) = cos( nﬂx), y%(x) = sin( mrx)
Tz ¢
forn=20,1,2,3,..., defined over [0, £]. 0

(4.5) Example

Find the eigenvalues and eigenfunctions of the regular Sturm-Liouville problem

Y +Ay=0, y(0)=¢'(0), y(l)+y'(1)=0.

Notice that the eigenfunctions must be well defined over [0,1]. As earlier we
consider the three cases.

If A = 0, then the general solution is y(x) = ¢ + cox. The boundary conditions
givec; = ¢, 2c1+¢c3 =0 = ¢; =0 =cp. So, y(x) =0. Hence, A = 0 is not an
eigenvalue.

Let A < 0. Write A = —a? for @ > 0. The general solution is y(x) = cje® +cye”**.
The boundary conditions give

ci(l—a)=—-c(l+a), c [(1 +a)e” +c(1 - a)e_“] =0.

If @ = 1, then the first equation gives c¢; = 0; then the second equation gives c¢; = 0.
It leads to the trivial solution. So, let « # 1. Eliminating c¢; from the above
equations, we get

c1 [(1 +a)%e® — (1 - a)ze_“] =0.

Since the bracketed term is nonzero, c¢; = 0. It then follows that ¢, = 0 so that there
is no non-trivial solution. In any case, no non-trivial solution exists. So, a negative
number cannot be an eigenvalue.

Then, consider A > 0. Write A = % for § > 0. The general solution is
y(x) = cj cos(fx) + ¢ sin(fx). The boundary conditions give

c1 = Pca, cycosPB+cysinf— Beysin B+ Beycos f=0.
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Eliminating c¢;, we have ¢ [2ﬁ cos B+ (1 — %) sinﬁ] =0. If c; =0, then ¢; =
0 and it leads to the trivial solution. For a non-trivial solution, we must have
2B cos B+ (1 — %) sinf = 0. It gives

2p
tan ff = .
That is, the eigenvalues are 32, where S satisfies the above equation. The corre-
sponding eigenfunctions are y' (x) = cos(fx) and y?(x) = sin(fx). 0

(4.6) Example

Find the eigenvalues and eigenfunctions of Bessel’s equation
2
t2%+t%+(t2—vz)y:0 for t >0
with the condition that the solution remains bounded on the interval [0, a] and
y(a) =0.
See Example 4.1(3); taking t = kx for k > 0, the ODE is transformed to the
Sturm-Liouville equation

2
(xy") + ( - V; +)Lx)y =0 where A=k’

Notice that p(0) = 0 so that this is a singular Sturm-Lioville problem, where
y(a) = 0.

The linearly independent solutions of the above Bessel equation are J,(¢) and
Y,(t). Hence, the general solution of the Sturm-Liouville equation is

y(x) = Cl]n(kx) + CZYn(kx)-

Recall that Y, (kx) — oo as x — 0. Since we need only bounded solutions, we must
set ¢ = 0. Thus, the required non-trivial solution is y(x) = ¢y J,(kx).

Write R = a/k. When t = a, we have kx = a = x = R. The boundary condition
says that J,(a) = 0 or

J.(kR) = 0.
This condition is satisfied when kR is a zero of J,(x). Denote the zeros of J,(x) by
zn, With r = 1,2,3, .. .. [Itis known that there are infinite number of zeros of J,(x)]

Then, the values of k are

k=22 for r=1,23,...
R
As A = k?, the eigenvalues and the corresponding eigenfunctions are

Znr\2 ZnpX
A = (%) () :]n(%) for r=1,23,...

where z,, is the rth positive zero of J,(x). O
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4.5 Orthogonality

The most important property of eigenfunctions of a Sturm-Liouville problem is that
the eigenfunctions are orthogonal. For the plane vectors, orthogonality is obtained
via the dot product. To generalize this notion, we introduce the so called inner
products of funtions.

Let y1(x),y2(x), ... be functions defined on an interval [a,b]. Let r(x) be a
positive function defined on [a, b], that is, r(x) > O for each x € [a,b]. Let
m,n € N. The inner product with weight r(x) of y,,(x) and y,(x) is denoted by
(Ym» yn) and is defined as

b

Yo ) = j () Yo (3) Y (x) dx.

a

It follows that when m = n, (Y, y,) > 0. The norm of a function y,,(x) is denoted
by ||ym|| and is defined as

b
1ymll = VG ) = \/J () [ym ()12 dx.

We say that y,, and y,, are orthogonal to each other with weight r(x) iff (y,, yn) = 0.
The functions y;(x), y2(x), ... are called orthogonal with weight r(x) iff y,,(x) is
orthogonal to y,(x) for all m,n € N, m # n. The functions y;(x),y2(x), ... are
called orthonormal with weight r(x) iff they are orthogonal and the norm of each
y; is 1. This happens when for all m,n € N, we find that

b 0 if m#n

1 if m=n.

Cym ) = |

(%) Ym(x) Yyn(x) dx = S = {
(4.7) Example

The functions y;(x) = sin(jx), j = 1,2,... are orthogonal on the interval [—r, 7]
with the weight function r(x) = 1. Indeed, if m # n, then

(Ym: Yn) = J

/4

T T T

1
cos(m—n)x dx—i J cos(m+n)x dx = 0.

=T

1
sin(mx) sin(nx) dx = > J

Also, we find that ||ym|* = (Ym, Um) = J sin?(mx) dx = 7.

sinx sin(2x) sin(3x)
Vr' o Nm T oNm
In general, if y; (x), y2(x), y3(x), . . . are orthogonal, then the normalized functions

yi(x) 1(x) y3(x)
lyll™ Nyl ™ Nyl

are orthonormal. 0

Hence, the functions
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are orthonormal. Similar to the last example, if m # n, then

J 1 - cos(mx)dx =0, J 1 -sin(mx)dx =0, f cos(mx) cos(nx) dx =0,

hv/% -7 -7

I cos(mx) sin(nx) dx = 0, J sin(mx) sin(nx) dx = 0, and

/A -

f 1dx =2, J cos?(mx) dx = , J sin?(mx) dx = 7.

v/ - -

1 cos(mx) sin(mx)
VxR \m

We mention an important fact about Sturm-Liouville problems.

(4.8) Theorem

Consider the Sturm-Liouville problem (4.4.1) either with p(a) = p(b) = 0 or with
one of the boundary conditions in (4.4.2)-(4.4.5). Let p(x), q(x), r(x), p'(x) be
continuous and r(x) > 0 on a < x < b. Then all eigenvalues are real, and they
may be arranged in order as Ay < Ay < A3 < ---, where lim A, = co. Further, if

n—oo

Ym(x) and y,(x) are eigenfunctions corresponding to distinct eigenvalues A, and
An, respectively, then y,, and y, are orthogonal with weight function r(x). That is,

Hence, form=1,2,3,... are orthonormal.

b
J r(x) Yym(x) yn(x)dx =0 for m # n.

Proof. 'We prove only the orthogonality of the eigenfunctions corresponding to
distinct eigenvalues. So, let A,, # A, be eigenvalues with corresponding eigenfunc-
tions as y,,(x) and y,(x). These eigenfunctions satisfy the Sturm-Lioville equation.
That is,

(PYm) + (@ +Ar)ym =0,  (py,) + (q+Ar)y, =0.
Multiply the first with y,, the second with —y,,, and add to get
()Lm - )Ln)rymyn = ym(Py;)/ - yn(Py;n),
Howeyver,
[ Woym = Yt | = [ym(pY,) = vn oy = [ym(py)] = [y (P |
= Y (PYn) + Ym(PY,) = Yn(PYm) = Yn(pY5)" = Ym(pYn)" = yn(pyp,)"-
Hence, (Am = An)rYmyn = [p(Y)ym — y,’nyn)]'. Integrating from a to b, we obtain
b b
¢ = (Am — An) J TYmyn dx = [p(y;ym - yinyn)]a
= p(B) [y, (D) ym(b) — ¥ (B)yn(b)| = p(@) [y (@ ym(a) — Y}, (@) yn(a)].
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The orthogonality of the eigenfunction is proved if ¢ evaluates to 0. We show that
this is the case by breaking into following cases:

Case I: p(a) =0 = p(b). Then, $ = 0.

Case 2: p(a) # 0, p(b) = 0. Then ¢ = —p(a) [y;(a)ym(a) — y;n(a)yn(a)]. The
boundary conditions in (4.4.5) are applicable. Since y,, and y, are solutions of the
BVP, we have

kiym(a) + k2yp,(a) = 0 = kiya(a) + kaoyp,(a).

At least one of ki, k» is nonzero. Suppose k» # 0. Multiply the first equation by
ym(a), the second by —y,(a) and add to get

k2 [47,(a)ym(a) =y, ()yn(a)] = 0.
As ky # 0, we get [y;[(a)ym(a) - y;n(a)yn(a)] = 0 so that ¢ = 0. A similar proof is
given when k; # 0.
Case 3: p(a) =0, p(b) # 0. This case is similar to Case 2.

Case 4: p(a) # 0, p(b) # 0, p(a) # p(b). We use both the conditions in (4.4.2)
and proceed as in Case 2.

Case 5: p(a) = p(b). The condition (4.4.3) says that y(a) = y(b) and y’'(a) =y’ (D).
These are satisfied for both y = y,, and y = y,,. Then, ¢ evaluates to 0. ]

4.9) Example
Consider the Sturm-Liouville problem of (4.3):

y"+Ay=0, y(0)=0, y'(x)=0.
Here, p(x) = 1, q(x) = 0 and r(x) = 1. We found the eigenvalues and eigenfunc-
tions as
_ (2n+1)?
= Y
By (4.8), we conclude that

An Yn(x) :sin[(n+%)x], n=0,1,23,...

J sin[(m+%)x] sin[(n+%)x]dx:0 for m # n.
0

Of course, it is easy to verify this directly. 0

(4.10) Example

Legendre’e equation (1—x2)y” —2xy’ +p(p+1)y = 0 is a Sturm-Liouville equation
with p(x) =1 -x2, q(x) =0, r(x) = L and A = p(p + 1). Here, p(~1) = p(1) = 0.
Hence, this is a singular Sturm-Liouville problem on the interval =1 < x < 1. We
know that P,(x) is a solution of this equation for A = n(n+1), wheren =0, 1,2,.. ..
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That is, corresponding to the eigenvalue A, = n(n + 1), the eigenfunction is P,(x).
By (4.8), these eigenfunctions are orthogonal with weight r(x) = 1. It means that

1
J P,(x)P,(x)dx =0 for m # n.
-1

We have seen that this is the case. 0

(4.11) Example

As we have seen in (4.6), the Bessel’s equation

d? d

207y Yy 22\

t W-HE-'_U -vi)y=0 for t>0

with the condition that the solution remains bounded on [0, a] and y(a) = 0O is the
Sturm-Liouville problem (Take ¢ = kx.)

2
(xy") + ( - V; +)Lx)y =0 where A =k”.

Here, p(0) = 0 so that this is a singular Sturm-Lioville problem, where y(R) = 0
with R = a/k. Its eigenvalues and eigenfunctions have been found to be

ZnrX

R

A = (@)2’ yr(x) :Jn(

: ) for r=1,2.3,...

where z,, is the rth positive zero of J,(x).
By (4.8), the eigenfunctions are orthogonal with weight r(x) = x on the interval
[0, R]. That is,

R n,m Zp,jX
[ n(E) 0 a0

We see that the permissible values of k in the transformation t = kx are z,,/R.

Notice that for fixed n and a fixed R > 0, we have infinitely many orthogonal
Zn,mX
R

convenience, but it is to be fixed. 0

functions ]n( ) The R in this orthogonality can be chosen according to our

The above example shows that there are infinitely many orthogonal sets of Bessel
functions, one for each of Jy, Ji, J, ... on an interval 0 < x < R with a fixed
positive R of our choice and with the weight function r(x) = x.

We have only proved the orthogonality of the Bessel functions. In fact, the norms
of those can also be computed from the following result, which is left as an exercise.

WE) [l e Sl s
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Orthogonality helps in expanding functions as series of eigenfunctions just like
Fourier series. We have seen in § 4.1 how to express a function defined on [—-1, 1]
as a series involving the Legendre polynomials. By using orthogonality of Bessel
functions, similar series expansion can be obtained.

Fix n € NU{0}. Let f(x) be areal valued peicewise smooth function defined on
an interval 0 < x < R. A Fourier-Bessel series of f(x) using the Bessel function
J» may be written as

f(x) = i am]n(zn’lr;x) = Cll.]n(%) + az]n(%) +

m=1

ZpeX
R

Jy ern (5 ) = 2 [ (25 (57

Due to orthogonality, the integral in the above summand is 0 when m # £. So, we
obtain

Fix ¢ € N. Multiply the above equation with x ]n(
get

) and integrate from O to R to

R 2

[t = 50 e

The last equality follows from (4.5.1). This gives the coefficient a, for £ € N. Thus,
the Fourier-Bessel series for f(x) on an interval [0, R] is given as follows:

f(x) = i am]n(%), where a,, = RZJZ;(Z) LR xf(x)]n(zn};nx) dx.
" e 4.5.2)

Notice that we have written f(x) is equal to its Fourier-Bessel series for deriving
the coefficients. However, the series so obtained may or may not converge to the
function f(x). This question of convergence is answered by the following result,
which we mention without proof.

(4.12) Theorem (Convergence of Fourier-Bessel series)

Let f(x) be a piecewise smooth function defined on the interval 0 < x < R. Then
the Fourier-Bessel series (4.5.2) of f(x) converges to g(x), where

f(x) if f iscontinuous at x
g(x) =

% [f(x+) + f(x—)] if f isdiscontinuous at x.

It thus follows that if f(x) is continuous on 0 < x < R, then its Fourier-Bessel
series converges to f(x).
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(4.13) Example
Find the Fourier-Bessel series for the function f(x) =1on0 < x < 1.

Here, R = 1; we choose n = 0. By (4.5.2), the Fourier-Bessel series of f(x) =1 is
given by (Write z, as zp,.)

[ee]

Z amJo(zmx)

m=1
where z,, for m = 1,2,3, ... are the positive zeros of Jy(x) and the coefficients ay,
are given by

am =

2 J :

xJo(zmx) dx.
12 (zm) Jo "
We use the identity [x gi (x)] "= xJo (x) givenin (4.3.1) to evaluate the above integral.
Substitute ¢t = z,,x. Then, dt = z,, dx, and when x varies from O to 1, t varies from
0 to z,,. Hence,

__ 2 __ 2 i 2zn)i(zm) 2
am_zw(zm)ﬁ) th(0dt = 5 ()] = TPl Y

Since f(x) is continuous everywhere on (0, 1), by the convergence theorem,

— i ZJO(me)
— ZmJ1(Zm) ‘
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Partial Differential Equations

5.1 Introduction

Suppose u(x,y) is a function of two independent variables. Instead of derivatives
ou ou

we now think of its partial derivatives u, = E and u, = 0" We may also have
x Y

higher order partial derivatives such as uyy, thxy, Uyx, Uyy, Uxxx, ELC.

An equation involving x, y, u and some of its partial derivatives is called a partial
differential equation, or PDE for short. The order of the highest order derivative
of u is called the order of the PDE.

Usually, we will be concerned with first and second order PDEs. Of course, there
can be more than two independent variables. We will be generally taking two or
three independent variables and one dependent variable.

The general form of a first order PDE with dependent variable u and two inde-
pendent variables x, y is

F(x,y,u,ux,uy) =0

where F is an expression (also a function) involving x, y, u, u, and u,. Similarly,
a general first order PDE with one dependent variable u and three independent
variables x, y, z may be written as

F(x,y,z, u, uy, uy, u;) = 0.

If such a function F is linear in the dependent variable and its derivatives, then it is
called a linear PDE. Notice that in a linear PDE, the coefficients of the dependent
variable and its derivatives must be functions of x,y only. The general first order
linear PDE with two independent variables looks like

a(x, y)uy + b(x, y)uy +c(x,y)u = d(x,y).
When d(x,y) = 0, the linear PDE is called homogeneous, else, it is called a
non-homogeneous PDE. For example, the following are first order linear PDEs:
Xuy +yuy —u =0.
Uy + (x +y)uy — Su = e*.
YUy + XYy = XY.
(y—2)ux + (z = x)uy + (x —y)u, = 0.

99
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The first and the fourth are homogeneous, whereas the second and the third are
non-homogeneous.

A PDE which is not linear is called nonlinear. Among the nonlinear PDEs there
are some easier classes of problems. A first order PDE is called semilinear iff
the coeflicients of the derivatives of the dependent variable are functions of the
independent variables only. A general form of a semilinear first order PDE with
two independent varaibles is

a(x, y)uy + b(x, y)uy = c(x,y,u).

A first order PDE is called quasi-linear iff the expression F(---) is linear in the
derivatives of the dependent variable. It means, the coefficients of the derivatives are
now allowed to involve the dependent variable. The general first order quasi-linear
PDE with two independent variables looks like

a(x, y, wuy + b(x, y, wuy = c(x,y,u).
Some examples of quasi-linear PDEs are

x(y2 +U)uy — y(x2 +u)uy = (x2 - yz)u.
uux+uy+u2 =0.
(y? — u?)yy — XYuy = XU.
Sometimes it is possible to use the methods of ordinary differential equations to
solve a PDE. This method is used when all the derivatives can be integrated with
respect to some independent variable, or when by substituting a derivative as a new

variable an ODE results. Usually, the general solution of an nth order PDE would
involve n number of arbitrary functions. See the following examples.

(58.1) Example

Solve uy(x,y) = x+y.

Integrating with respect to x, where y is kept constant, we get
¥2

we) = [y =T e 2y £

Here, the constant of integration must not depend on x, but it can depend on y. So,
we had taken it as f(y), an arbitrary function of the variable y. 0

(5.2) Example
Solve uy, (x,y) = 0.

Integrating with respect to y, we get (x is kept constant)

ux (%, y) = f(x).
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Integrating with respect to x, we obtain

u(x,y) = Jf(x) dx +g(y).

Since f(x) is an arbitrary function, we may write its integral as h(x), where this
h(x) is also an arbitrary function. Hence, the general solution of the PDE is
u(x,y) = h(x) + g(y) for arbitrary functions h(x) of x and g(y) of y. 0

There can be initial and boundary conditions along with a PDE, and they are taken
care while solving the PDE.

(5.3) Example
Find u(x, y) that satisfies the PDE uy, = y?cos’>x and u(0,y) =0 = u(7/2,y).
Integrating the given equation with respect to x, we get

2(x sin(2x)
Uy =

S )+ fW).

Here, f(y) is an arbitrary function of y alone. Integrating once more with respect
to x, we obtain

2(x2 cos(2x)
u=y* = -

4 8
The condition u(0, y) = 0 implies

) + f(y)x +9(y).

1 2
0=y2(— g) +9(y) = g(y) = %-

Using this expression for g(y) and using the condition u(z/2,y) = 0 we get

2 2
_zﬂ_l) Ty :_(z L)z
0=y (Te+3)+fT+5% = o =—(F+52)s
Hence, the solution is
2 2
2 x__cos(2x))_(z i) 2 Y
”(x’y)‘y(4 8 g8 T2 Ty .

Solutions of PDEs with a dependent variable and two independent variables
are also called integral surfaces. In such a case, e usually write the independent
variables as x,y and the dependent variable as z to rhyme with the geometrical
language.

5.2 Lagrange method

We will consider the method of characteristics by Lagrange for solving the quasi-
linear first order PDE. We assume that the coefficient functions are continuous in
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the domain of consideration. Also, we assume that they are not simultaneously 0.
(Otherwise, the PDE is no more a PDE.) Lagrange’s method is encapsulated in the
following theorem.

(5.4) Theorem (Lagrange’s method of characteristics)

Suppose a(x,y,u), b(x,y,u) and c(x,y,u) are continuous and they are not simul-
taneously 0 at any point in a domain. Then, the general solution of the first order
quasi-linear PDE

a(x, y, u)uy, + b(x, y,u)uy = c(x,y,u) (5.2.1)

is given by f(¢,¢¥) = 0, where f is an arbitrary function of two variables, and
d(x,y,u) = c1, Y(x,y,u) = co, for arbitrary constants cy, ca, are solutions of

dx«  dy  du
a(x,yu)  blxyu)  clxyu)

(5.2.2)

Equations in (5.2.2) are called the characteristic equations of the PDE (5.2.1).
Their solutions ¢(x,y,u) = ¢; and ¥(x,y,u) = cp are called the characteristic
curves. Lagrange’s method of characteristic reduces the problem of solving the
quasi-linear first order PDE to solving two ODE:s.

Proof.  Suppose ¢(x,y,u) = c¢; and ¥/ (x,y,u) = ¢ are solutions of (5.2.2). Since
the PDE (5.2.1) has order 1, and f(,-) is an arbitrary function of two variables,
f(¢,¥) = 0 is the general solution provided it is at all a solution. Now, f(¢,¢) =0
is a solution means that if u(x, y) satisfies f(¢(x,y, u), ¥(x,y,u)) = 0, then u(x,y)
also satisfies the PDE (5.2.1). We show that this is the case.

So, suppose u(x, y) satisfies f(¢, ) = 0. Computing the differentials of ¢ and ¢
we get

d¢p = ¢pdx + pydy + ¢, du =0, dy = Ydx +Yydy + ¢, du = 0.
However, ¢(x,y,u) = c; and ¢ (x,y,u) = c; are solutions of (5.2.2). So,
ady +bdy +cdy, =0, ayy +byy +cyy, = 0.

Eliminating a from these two equations, we get b(¢.y, — ¢yx) = c(Pufx — Pxthu).
Eliminating b we get a(dxy — ¢y¥x) = c(dy¥u — du¥y). Hence,

a b c

¢y¢u - ¢u¢y - ¢u¢x - ¢X¢u B ¢x¢y - ¢y¢x'

Since f(¢, ) = 0, differentiating with respect to x and also y, and using the Chain
rule, we have

(5.2.3)

f;ﬁ(gbx + ¢uux) + f(ﬁ(wx + ¢uux) =0.
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Jo(by + Pury) + fy (Y + Yuuty) = 0.
Since f(¢, 1) is an arbitrary function, fs and f;, are not necessarily the zero functions.
Then, the above two linear equations have a non-trivial solution. So, the determinant
of the system is 0. That is,

(fx + Putiy) (‘//y + wuuy) = (¢y + ¢uuy)(¢x + Yuliy).

It simplifies to

(‘ﬁywu - ¢u¢y)ux + (Pu¥x — ¢xl//u)yy = Putly — ¢y¢x~
By (5.2.3), auy + bu, = c. |

We remark that for more than two independent variables, the statement in (5.4)
also holds so that Lagrange’s method is still applicable. That is, to solve the
quasi-linear PDE

ajuy +---+ayuy, =¢

where u = u(xy,x2,...,%4), @i = a;(x1,%X2, ..., %n, U), Uj = Uy, (x1,%2,...,%x,) and
¢ = c(x1,x2, ..., xp, u), we form the characteristic equations

dx1  dxy dx, du

aj as a, c’
We get its solution as ¢;(x1,x2,...,x,) = c; for j = 1,2,...,n. Then, the general

solution of the PDE is given implicitly by f(¢1,¢2,...,¢,) = O for an arbitrary
function f of n arguments.

If (x,y,u) = c; and ¥(x,y,u) = cp are solutions of the characteristic equations
in (5.2.2), then the general solution may also be written by assuming certain de-
pendence of these two constants. That is, we may write the general solution as
¢ (x,y,u) = g(¥(x,y,u)) for an arbitrary function ¢g(-). Notice that this is an explicit
way of writing the same general solution f (¢, ) = 0. The implicit way of writing
is more general than the explicit way. However, if one of the characteristic curves is
u = c1, then the explicit way of writing is as general as the implicit way of writing.

(5.5) Example
Find the general solution of the PDE u, +u, = 1.
The characteristic equations are dx = dy = du. Taking them in pairs and integrating,
we have
dx—dy=0 = x—-y=cy.
dy—-du=0= y-u=cy.
Thus, the general solution is f(x — y,y — u) = 0 for an arbitrary function f of

two arguments. We may also write the general solution as y — u = g(x — y) or
u =y — g(x — y) for an arbitrary function g of one variable. 0
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(5.6) Example
Find the general solution of the PDE xu, + yu, = u.

The characteristic equations are

dx dy du
x Yy u
Taking in pairs and integrating we obtain

u

— =C1, — =0
X X

Thus, the general solution is f(y/x,u/x) = 0 for an arbitrary function f(-,-). We
may also write the general solution as u/x = g(y/x) or u = xg(y/x). 0

(5.7) Example

Find the general solution of the PDE x?u, + y*u, = (x + y)u.
The characteristic equations are
dx dy  du
X2 2 (x+yu
First two equations give x~! — y~! = ¢;. To get another solution, we subtract the
first two and find that
dx—dy  du :d(x—y)_du
xz—yz_(x+y)u x—y u’

Integrating, we get (x — y)/u = c¢p. Thus, the general solution is given by
f(x' =y (x—y)/u) = 0. Since x™' —y~! is a constant and (x — y)/u is a
constant, it follows that xy/u is a constant. Thus, we can also write the general
solution as g(xy/u, (x —y)/u) = 0. 0

(5.8) Example
Find the general solution of (y — z)uy + (z — x)uy + (x — y)u, = 0.
The characteristic equations are

dx dy dz__du

y—z_z—x:x—y_ 0
For ease in integration, instead of pairs of equations, we consider the following
equivalent ones:
du=0,dx+dy+dz=0, xdx+ydy+zdz=0.
2

The solutions are u = ¢, x+y+z = ¢, x2+ y2 + z“ = c3. The general solution can
be written as u = g(x + y + z, x> + y* + z%) for an arbitrary function g(-, -). 0
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(5.9) Example
Find a function u(x, y) that satisfies xu, = yu, and u(0,y) = y>.

The characteristic equations are

de_dy _du

y -x 0
Taking in pairs and integrating, we get
xdx+ydy=0=du = x> +y> =c}, u = .

So, the general solution of the PDE is f(x? + y?,u) = 0. Since u(0,y) = y>, we
have f(O2 + yz, yz) = 0. One such f is f(v,w) = v —w. Thus, u = x% + y2 is a
general solution satisfying the given condition.

If we write the general solution in an explicit way, it is given by ¢ = g(cy) or,
u = g(x* + y?) for an arbitrary function g(-). The associated condition u(0,y) = y>
implies that g(0%> + y?) = y>. One such g is g(u) = u. Then a general solution
satisfying the given condition is u = x? + y? as earlier. 0

(5.10) Example

Find a solution of the PDE xu, = yu, which contains the circle u = 1, x> +y? =4,
From the last example, we see that the general solution of the PDE is f(x2+y?, u) = 0.
Since it contains the given curve, we have f(4,1) = 0.

One such f is (v, w) = v — 4w in which case, a solution is given by x* + > = 4u.
Another f is f(v,w) = v —w — 3, in which case a solution is x% + y2 —3 =u. One
more is (v, w) = v + w? — 5 in which case a solution is x> + y*> + u> = 5. In fact,
there are infinitely many such solutions. 0

(5.11) Example

Find a solution of u(x + y)uy + u(x — y)uy, = x? + 4%, where u = 0 on the line
y = 2x.

The characteristic equations are

dx  dy  du
u(x+1y) B u(x—y) B x2+y?

The equations imply (We require two equations.)
ydx + xdy —udu =0, xdx —ydy—udu=0.

Writing as differentials, these are
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2 2 _

Integrating we get 2xy — u®> = ¢y and x> — y> — u> = c;. We write the general
solution in the form ¢; = f(c;), that is,

xz—y2 —u? :f(2xy—u2)

for an arbitrary function f(-). Since u(x,y) also satisfies the given condition, we
substitute y = 2x and u = 0 simultaneously to get

x? —4x? = f(4x?) = f(4x?) = =3x>.

We may take f(u) = —%u which satisfies this condition. So, one solution is
given by x? — y? — u? = —%(2xy —u?) or 4(x? — y?> — u?) +3(2xy — u?) = 0 or,
Tu? = 6xy + 4(x? — ). 0

For nonlinear PDE:s of first order, there does not exist any such general method as
Lagrange’s. However, numerical techniques exist to solve nonlinear PDEs, which
you will learn elsewhere.

5.3 Second order linear PDEs

A general second order linear PDE with two independent variables is given by
AUy + buyy + cuyy +duy +euy + fu=g (5.3.1)

where a, ..., g are functions of x and y that do not vanish simultaneously at any
point of the domain of definition of u(x,y). We also assume that these functions
and the function u have continuous second order partial derivatives on this domain.
Some examples are:

U = K2ty One-dimensional wave equation

U = kP Uyy One-dimensional heat equation
Uy +Uyy =0 Two-dimensional Laplace equation
Uyx + Uyy = f(x,y) Two-dimensional Poisson equation
Uy = k* (U + Uyy) Two-dimensional wave equation

The linear second order PDE (5.3.1) is called homogeneous iff g(x,y) is the
zero function; else it is called non-homogeneous. Just like ODEs, if u;(x,y) and
uy(x,y) are two solutions of a homogeneous linear second order PDE, then their
linear combination u = cju; + caup, for constants ¢y, ca, is also a solution of the
same homogeneous PDE. Sometimes we can use the method of ODEs to solve these
PDEs if it is so possible.
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(5.12) Example
1. Solve the PDE uy,(x,y) —u(x,y) =0.

Since derivatives are taken with respect to x only, we can use ODE methods.
Integrating with respect to x, we get u(x,y) = ¢(y)e* + ¥(y)e . Observe that
the constants of integration are now functions of y. The functions ¢(y) and
¥ (y) are arbitrary. In a second order PDE, it is expected that there will be two
arbitrary functions.

2. Solve uyy +u, = 0.

We assume that u is a function of x and y. Let u, = v. Then, the equation is
vy = —v whose solution is v = ¢;(x)e™¥. Observe that since integration is with
respect to y, the constant of integration can be a function of x, in general. Now,
uy =0 = ¢1(x)e? gives

u=e [ i ax+y).

Since ¢;(x) is an arbitrary function, so is its integral, which we then write as
¢(x). Hence, the general solution of the PDE is u(x, y) = e Y¢(x) +¢(y), where
¢(x) and ¥ (y) are arbitrary functions of x, y, respectively. 0

The ODE methods suggest that we try to determine certain transformations so
that a linear second order PDE may take one of the following forms:

uxx = ¢(x: ya u, ux: uy), uxy = ¢(x5 y, u; uX) uu), uyy = ¢(x; y: ua ux; Uy).

Here, ¢(x,y,u, uy, uy) is an expression which is linear in u, u, and u,. That is,
P(x, Yy, u, ux, uy) = fi(x,y) + H(x, y)u + f3(x, y)ux + fa(x, y)u, for some functions

f1, f, f3 and fa.

However, all linear second order PDEs cannot be transformed to these two forms.
The ones which cannot be transformed to one of the above two forms can be
transformed to the forms

Uy +Uyy = (X, Y, U, Uy, Uy), Uy — Uyy = P(X, Y, U, Uy, Uy).

Further, we can show that any PDE in the form u,, —uyy = d(x, Y, U, iy, uy) can also
be transformed to the form

Uy = P(x, Y, U, Uy, Uy).

These forms of linear second order PDEs are called standard forms or canonical
forms.

To find out which types of PDEs can be transformed to which form, we look
at the discriminant b> — 4ac of the PDE (5.3.1). Depending on the sign of the
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discriminant, we classify the linear PDEs. We say that the linear second order PDE
(5.3.1)is

hyperbolic iff b> — 4ac > 0,
parabolic iff b2 — 4ac = 0, and
elliptic iff b — 4ac < 0.

Notice that b*> — 4ac is a function of x and y. Its sign is required to be same
thorough out the domain of interest. It is quite possible that a linear second order
PDE is of one type in some domain and of another type in another domain.

We see that the discriminant concerns the coefficients of uyy, uy, and uy, only.
Let us look at the signs of the discriminants of the PDEs in standard form. They
are as follows:

Canonical form ab,c b% — dac Type

Uy = P a=0b=1c=0 >0 Hyperbolic
Uy — Uyy = a=1,b=0,c=-1 >0 Hyperbolic
Upyx = @ a=1,b=0,c=0 =0 Parabolic
Ugx + Uy = @ a=1b=0,c=1 <0 Elliptic

As you may be surmising the type of the PDE should remain the same while
transforming one to its standard form. It means that the sign of the discriminant
will not change when we change the independent variables. We show this key fact
below.

Reduction to Standard Form: To transform (5.3.1) to its standard form, we change
the independent variables, say,

E=Exy), n=nlxy).

We assume that the functions ¢ and # have continuous second order partial deriva-
tives and the Jacobian

J=&nmy —&ne 20

in the concerned region. This assumption J # 0 guarantees that x and y can be
determined from given ¢ and 5. To change the variables, we compute the derivatives
as follows:

Uy = Uy + Uy
Uy = Ugly + Uy
Uyy = uggé‘,zc + 2ugpExny + u,mlyyzc + Uglix + Uplxx
Uny = Uggbaly + Uy (Extpy + Eylx) + gty + Uelay + UnTxy

2 2
Uyy = uge&y + 2uggEyny + upyy + uslyy + uphyy.

Substituting these in (5.3.1) and grouping together terms, we obtain

Augg + Bugy + Cupy + Dug + Euy + Fu =G (5.3.2)
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where A, ..., G are functions of ¢ and 5 and they are given by

A= al] + bl + k]

B =2aén, + b(&ny + Eyny) +c&yny

C = ang + by + cn,

D = abyy + by + cEyy + dE + € (5.3.3)
E = anyx + by + cipyy + dny + eny

F=f(x(&n).y&n)

G =g(x(&n).y(& ).

Notice that on the right side, q, ..., e should first be expressed in terms of &£ and
so that A, ..., E are also expressed in terms of & and 1. And, there is no change in F
and G; they are now expressed in terms of & and 7.

Computing the discriminant B> — 4AC for the new equations, we find that

B? — 4AC = (Eumy — Eyx)” (B? — 4ac).

Since J = &xny — &ynx # 0, the sign of the discriminant remains invariant. Hence,
the type of the PDE remains same under such a general transformation. We thus
need to choose particular ¢ and n for reducing a PDE to its standard form. Our
choice will depend on the type of the problem. Observe that if a # 0, then A and C
in (5.3.3) can be factored as follows:

A= (4a)[2a, + (b + Vb2 — dac)§,] [2a&, + (b — Vb2 — dac )]
C = (4a) ' [2an, + (b + Vb2 — dac ) ny | [2ans + (b — Vb2 — 4ac ), | (5.3.4)

Hyperbolic type: Suppose the PDE (5.3.1) is hyperbolic; that is, b> — 4ac > 0 in
the region of interest. If both a = 0 = ¢, then the PDE is already in its standard
form. Else, assume that a is nonzero. To bring the PDE to its standard form, we
put A = C = 0. To obtain two different solutions, we take different factors in the
factorizations of A and C in (5.3.4). That is, we set

2aé, + (b+ Vb2 — 4ac)§y =0, 2any+(b-Vb> - 4ac)17y =0.

Solving these first order PDEs by Lagrange’s method, we have the characteristic

equations as
dx dy dx dy

2a _b+ Vb2 —4gc  2a - (b— Vb2—4ac)'

If the solutions of the characteristics are respectively ¢(x,y) = c; and ¢/(x,y) = ¢,
then we take the transformation as

E=d(xy), n=y(xy).

(5.3.5)
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As we see, this will make A =0 = C, B # 0in (5.3.2-5.3.3) so that the PDE (5.3.1)
is transformed to its standard form

1
Ugy = E(G—Dug—Eu,] — Fu). (5.3.6)

This is called the first standard form of a hyperbolic PDE. Notice that by this choice
of £ and 7, their Jacobian remains nonzero.

By taking new independent variables as « = £+1 and f = £ —n, the above standard
form is again transformed to

1
Ugq — Upp = ]—3(6 — (D +E)uy — (D - E)ug — Fu) (5.3.7)
where B, ..., G are expressed in terms of @ and f. That is, we replace & = (a+ f)/2
and n = (@ — f)/2 in the earlier expressions of B, ..., G to express those in terms

of a and f, and use the resulting expressions here. This standard form is called the
second standard form of a hyperbolic PDE.

If a = 0, then c is nonzero, and we switch the roles of x and y. That is, we
interchange x and y, proceed as above. Notice that the standard form will involve
& and 7. Since ug,; = uy, interchanging x and y there will have no effect. But this
interchange will affect the transformations & and . See (5.15) below.

(5.13) Example
Reduce the PDE uyy + 8uyy + Tuyy + uy + 2uy + 3u+y = 0 to its standard form.

As per the notation in (5.3.1),a=1,b=8,c=7,d=1,e=2,f =3 and g =y so
that the discriminant b — 4ac = 82 — 28 = 36 > 0. The PDE is hyperbolic on the
whole of R%. Now, b + Vb2 —4ac = 8 + 6 = 14, 2. By (5.3.5), the characteristic
equations are

dx dy dx dy B _
> =1 T_T:dy—%ix—o, dy —dx =0.

Its solutions are y — 7x = ¢ and y — x = ¢2. Thus, we take
Exy)=y-7x, n(xy) =y-x

One can proceed directly from this place to get the derivatives and substitute in the
PDE to get one in standard form. We use the formula given in (5.3.6) as in the
following.
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&=-7 &=1 m=-1 n=1 x=@n-§/6, y=(n-9]e.
B =2a&n, + b(fxny + §y}7x) +2céyny
=2(-7)(=1) +8((=7) (1) + () (=1)) +2(7)(1)(1) = -36.
D = a&yy + b&ey + c&yy +déy +e&y = -T+2=-5.
E=anc +bny +enyy +dne +eny =-1+2=1.
F=3, G=-y=(&-Tn)/6.
Then the PDE is transformed to its first standard form:
1
Ugy = E(G - Dug — Eu,7 — Fu).
1 &=y
- —_36(T — (=5)ug — (L)uy — 3u)
1 1
= %( — Sug +uy +3u+ 6(717 - §))

For the second standard form, we take @ = £+npand f = E—n. Thus, & = (a+)/2
and n = (a — f)/2. Except G, all other coefficients in (5.3.7) are constants. Now,

_§—7n_1(a+ﬁ 7a—ﬁ) 46 - 3a
6 6\ 2 2 6
By (5.3.7), the transformed PDE with independent variables «, f is,

G

1
Uge — Upp = E(G — (D +E)ug — (D - E)ug — Fu)

1 (48 -3«
:__36(ﬁ6 — (=5+ Dug = (=5 = Dy - 3u)
1 (46 - 3a
_—_36( 6 +4ua+6uﬁ—3u). 0

(5.14) Example

Transform the PDE y?u,, — xzuyy =0 for xy # 0, to its standard form.
Here,a:yz, b=0c=-x%d=0e=0, f=0and g =0. Now, b? — 4dac =
4x*y? > O since xy # 0. And, b + Vb2 — 4ac = +2xy. The characteristic equations
are

d d d d
xz:_y’ _x:—y:ydy—xdx:O, ydy + xdx = 0.
242 2xy  2y%  —dx2y?

Their general solutions are (y* — x?)/2 = ¢1 and (y* + x?) /2 = ¢, respectively. We
use the transformation
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Instead of using the formula, let us compute the derivative directly. We have

Uy = Ul + Uply = —XUg + XUy,
Uy = ugy + uphy = yug + yuy,.
Uyy = uérgf)zc + 2ugpExnx + u,mmzc + Upbyx + Uplxx
= xzugg - 2x2u§,7 + xzu,i,7 — Uz + uy.
2 2
Uyy = Uge&y + 2ugy Eylly + Upnty + Uebyy + yTyy
= y2u§§ + 2y2u§,7 + y2u,7,7 +ug + uy.
Substituting these in the given PDE and simplifying we obtain the standard form:

ug = 7 ug— § Uy,.
TT22-p) "t 22-p2) "

(5.15) Example
Reduce the PDE 4u,y + uy, +u, = 0 to its standard form.

This is a hyperbolic PDE with the coefficient of u,, as 0. We interchange the
variables x and y to get
Uxx + 4ty +uy = 0.

Here,a=1,b=4,c=0,d=1ande=f=¢g=0. Now, b+ Vb2 —dac =4 +4 =
8, 0. By (5.3.5) the characteristics are

dx dy dx dy

- = = _— = — d—4d :O d:O

278 20 WTTEER @
The solutions are y —4x = ¢; and y = c. We take the transformations as & = y —4x
andn =y. Then & = -4,¢&, = 1,9, =0and n, = 1. By (5.3.3),

B =2a&n, +b(&eny + Eyny) +céyny = 4(=4) = —16.
D = alyy + b&yy + c&yy +déy + &y = —4

E = anyy + biyy + cnyy +dny +eny =0
F=f(x(&n).y&n) =0

G =g(x(&n).y(&m) =0.

The first standard form is
G — Dug — Euy — Fu  4us 1
Ugy = B = 6 = u§U+Zu§:O.
Interchanging x and y retains the above standard form. But the transformations

change to £ = x — 4y and n = x. You can verify that if we take this transformation
directly, then the given PDE reduces to ug, + }‘ug = 0 as earlier. 0
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Parabolic type: Suppose the PDE (5.3.1) is parabolic; that is, b> — 4ac = 0 in the
region of interest. From (5.3.4), we obtain

1
A= al + bl + k) = 5(4612;% +4abé. &, +4act))
1 242 242 1 2
= %(461 £ +4abtk, +b7E) = 1o (2akc +bE)”.
Computing similarly for C, we find that

1 2
C= %(Zaqx +bny)”.

d d
Now, both 2aé, + b&, = 0 and 2an, + by, give the same characteristic 2_x = % or,
a
bdx —2ady =0. (5.3.8)

It says that parabolic equations have only one characteristic curve. Suppose the
general solution of this characteristic is ¢(x, y) = ¢;. We choose n = ¢(x,y). This
will make C = 0. Since B> —4AC = 0, it will force B = 0. The only nonzero term is
the remaining ug so that the reduced PDE will be in the standard form. Recall that
this computation assumes that the Jacobian is nonzero. Hence, after choosing n we
choose & in such a manner that the Jacobian

J = &ny = &ynx # 0.
We thus have x = x(, 1) and y = y(¢&, n) and the reduced PDE is
Augg = G — Dug — Euy — Fu. (5.3.9)
Here again, 4, ..., G in (5.3.7) are expressed in terms of ¢ and n by using x = x(&, )
and y = y(&,n).

(5.16) Example
Reduce the PDE uyy + 4uyy + 4uyy + u, + 3x = 0 to its standard form.

Here,a=1,b=4,c=4,d=1,e=0, f =0and g = -3x. The discriminant
b> —4ac = 0. So, it is a parabolic PDE with a # 0 and ¢ # 0. The characteristic
curve is, by (5.3.8),

bdx —2ady=0 = 4dx-2dy=0 = y—-2x=c.

Thus, we take n = y — 2x. Here, n, = =2 and 5, = 1. We choose & = x so that
& = 1 and &, = 0. This makes Jacobian

]:fxﬂy_fyﬂle'l—O'(—Z)zl750.
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From (5.3.3) we get

A=all +bécky +c8) = 1.

D = alyx + b&y + c&yy +dé, + EEy = 1.
E = anyy + by + chpyy + dny + eny = =2.
F=f(x(&mn).y(&n)=0.

G =g(x(&n).y(&n) = -3¢

By (5.3.9), the PDE is transformed to the standard form
Augs = G — Dug — Euy — Fu = uge = =3& —ug + 2uy. 0

(58.17) Example

Reduce the PDE x2u,, — 2xyuyy + yzuyy + xuy +yuy =0 for x > 0 to its standard
form.

Here,a:xz,b:—2xy,c:yz,d:x,e:y,f:g:OSothatb2—4ac:

4x%y? — 4xy? = 0. It is a parabolic PDE. By (5.3.8), the characteristic is
bdx —2ady=0 = —2xydx -2x*dy=0 = ydx+xdy=0 = xy=cy.

Thus, n = xy. Then 5, = y and 5, = x. We choose ¢ = x so that & = 1, & = 0 and
the Jacobian J = &1y — &nx = x is nonzero. Also, x = {and y = n/x = n/&. By
(5.3.3),

A=af] +bEk +cl =a=x" =&

D = alyx + b&xy +c&yy +déy +eéy=d=x=¢.

E = anyx + by + cnyy +dnye +eny = b+ dy + ex = —2xy + xy + xy = 0.
F=f(x(&m).y(&n) =0.

G =g(x(&m).y(&n) =0.

By (5.3.9), the PDE is transformed to the standard form
Auéfg =G - Du§ - Eun —Fu > §2u§§ = —§u§ = U + %ug =0. 0

Elliptic type: Suppose that the PDE (5.3.1) is elliptic; that is, b*> — 4ac < 0 in
a region of interest. The factors of A and C in (5.3.4) are now complex. Thus,
elliptic PDEs have no characteristics. The standard form of an elliptic PDE have
the coeflicient of ug, as 0 and the coefficients of uy; and u,, are equal. It means, in
(5.3.2), we must have A — C = B = 0. That is, using (5.3.3), we have

A=C=a(&—n2) +b(Eky —nany) + (& —12) =0
B =2aé:nx + b(&ny + &ynx) + c&yny = 0.
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Multiply the second with i, add to the first, and write ¢ = £ + in to obtain

0=(A—C)+iB

a(&; = n7) +i(2akene) + b(Ecy = neny) +ib(Exny + Egny) + (& —ny) +icéyny
a(éx +ine) + b(E + ine) (& + iny) + c(& + iny)

ady + by + cgy.

Since a # 0, we can factor the last equation as
1
— [2agy + (b + iVdac - b2) ¢, ] [2ads + (b — iVdac - b2) ¢,] = 0.
a
We are interested in real solutions, and each of these factors will give rise to same
pair of real solutions as their real and imaginary parts. So, we consider the first

factor:
2a¢y + (b + iVdac — b2) ¢y, = 0.

Using Lagrange’s method, we set its corresponding ODE:

dx _ dy
20 pyiVdac— b2

We rewrite it as follows and refer to it by telling the complex characteristic :

(b +iVdac — bz)dx —2ady =0. (5.3.10)

Suppose ¢(x,y) = c is the general solution of (5.3.11). Then, we use the change
of variables as ¢ = Re(¢) and n = Im(¢). In this case, it can be shown that the
Jacobian is nonzero so that we will be able to uniquely determine x = x(&, 1) and
y = y(& n). This change of variables will make A = C and B = 0. Hence, the given
elliptic PDE (5.3.1) is reduced to

Auge + Aupy + Dug + Euy + Fu = G (5.3.11)

where the coefficients A, D, E, F, G are as in (5.3.3) expressed in terms of ¢ and 7.

(5.18) Example

Reduce the PDE Suyy — 2uyy + 2uy, + 2uy + 4y = 0 to its standard form.

As per the notationin (5.3.1),a=5,b=-2,c=2,d =0,e =2, f =0and g = —4y.
The discriminant b? — 4ac = 4 — 40 = —36 < 0; so the PDE is elliptic on the whole
R2. By (5.3.10), the complex characteristic is

b+iVdac — b?)dx —2ady=0 = (-2 +6i)dx —10dy = 0.
Y Y
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Its general solution is (-2 + 6i)x — 10y = ¢ or ¢(x,y) = (x + 5y) — i(3x) = c3.
Thus, the change of variable is

E=Re(¢p) =x+5y, n=Im(¢)=73x.
Then, we find that x = /3,y = (3¢ —n)/15, &, =1, &, =5, 5, = 3 and n, = 0. By
(5.3.3), we have

A= afl +bEE, + k) = 45.

D = aéyx + b&yy + c&yy + déy + &y = 10.

E = anyx + bnyy + cipyy + dny +eny = 0.

F=f(x(&n),y(&n) =0.

G =g(x(&n).y(&n) =-43BE-n)/15.
By (5.3.11), the PDE has the standard form A(ugs +uy,) + Dug + Eu, + Fu = G which
gives

+ +2 + 4§ 4 =0
UEE T U ¥ QUET 5555 T g5 T T

(5.19) Example

Reduce the PDE uy, + xu,, = 0 for x > 0, to its standard form.
Here,a=1,b=0,c=x,d =e = f = g = 0 so that b*> — 4ac = —4x < 0 for
x > 0. Hence it is an elliptic PDE on the given region. By (5.3.10), the complex

characteristic is
(b +iVdac — b?)dx — 2ady = 0.

It gives i(2Vx)dx —2dy = 0 = i%‘x3/2 —2y = ¢ or, x>? + i%y = ¢y With
¢ =x3%+ i%y, the transformation is given by

3
£=Re(g) =x"% y=Im(¢) =Ty
Then, x = &3,y = 3n, & = 3x'/2, 5, = 3, and by (5.3.3),

9 9
A=all +bEkEy + k) = X = Z§2/3.

3 _ 3
D = adyx + boxy + cGyy +dEx + ey = i = Zg 13,

E = afyx + by + cipyy + dny + eny = 0.
F=f(x(&n),y(&n)) =0.
G=g(x(&n),y(&n)) =0.

By (5.3.11), the PDE has the standard form A (ugs +uy,) + Dug + Eu, + Fu = G which
gives
9

3 1
152/3 (ugg + u,m) + Z§_I/3u§ =0= Uge + Upy + 3—§u§ =0. 0



Partial Differential Equations 117

Reduction of linear second order PDEs to standard forms helps in solving the PDE,
at least in hyperbolic and parabolic cases. We illustrate this idea in the following
examples.

(5.20) Example

Obtain the general solution of the PDE 3uy, + 10uyy + 3uyy = 0.
Here,a=3,b=10,c=3,d=e=f=¢g= 0 so that b2 — 4ac = 64 > 0 implies that
the PDE is hyperbolic on RZ. Now, b + Vb2 —dac = 10+ 8 = 18, 2. By (5.3.5), the
characteristics are given by

dx dy dx dy dx
—_— ==, —=—= dy—-3x=0, dy—-—=0.
6 18 6 2 WYTXTD dm4
Their solutions are y — 3x = ¢; and y — x/3 = ¢;. Thus, the transformation is
x
f=y-3x n=y-3.
We have & =-3,&,=1,n,=-1/3,n, =1, and from (5.3.3),

B =2a&ny + b(&ny + Eyny) +c&yny = =73/3.
D = ayx + b&ey + c&yy +déx + €&y = 0.

E = anyx + bnyy + cipyy +dny +eny = 0.
F=f(x(&n),y(&n) =0.

G=g(x(&n).y(&n) =0.
By (5.3.9), the first standard form is
G—Duér—Eu,?—Fu 3
Ugy = B =-7 x0=0.

Its general solution is u(&, 1) = hy(€) + hp(n). In terms of the original variables,
the general solution may be given by

u(x.y) = hi(y =3x) + ho(y - 5

where h; and h, are arbitrary functions of one argument each. 0

(58.21) Example

Reduce the PDE  x%u,, + 2xyuyy + yzuyy =0 for y # 0, to its standard form and
then find its general solution.

Here, a = x>, b =2xy,c =y*>,d = e = f = g = 0 so that b> — 4ac = 0. So, itis a
parabolic PDE on the whole plane. By (5.3.8), the characteristic is given by

bdx —2ady=0 = 2xydx—2x2dy:0 = ydx—xdy=0 = f:cl.
Yy
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We thus take n = x/y. Now, n, = 1/y and n, = —x/y?. Choose & = ysothat & =0
and &, = 1. Then the Jacobian

1
J= §x’7y_§yf7x = —g # 0.

With this choice of the change of variables ¢ = y and n = x/y, we have x = &,
y = ¢, and

A=af +bEE +cE) =y* = &,
D = aéyx + b&ey + c&yy +déx + €&y = 0.
E = anyx + bnyy + cipyy +dny +eny = 0.

F=f(x(&n),y(&n) =0.
G=g(x(&n),y(&n) =0.

By (5.3.9), the PDE is transformed to the standard form
Aufg =G- Dug - Euq —Fu > §2u§§ =0.

The domain is y > 0, that is, £ > 0. Hence, the reduced PDE is ugzz = 0. Integrating
the equation with respect to £, we have

ug = hi(n) = w(&n) =hMé+ha(n),

where h;(n7) and hy(7) are arbitrary functions of . Substituting the expressions for
£ and 7 the general solution is written as u(x,y) = hi(x/y)y + ha(x/y). 0
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Separation of Variables

6.1 Modeling wave

In most engineering problems, we need to model and solve wave propagation and
heat distribution. We start with a very brief introduction to modeling wave in a
vibrating string. An elastic string is fixed at two ends, say at x = 0 and x = L. It is
distorted at some instant of time, say ¢ = 0 and is released to vibrate. The problem
is to determine its deflection u(x, t) at any point x € [0, L] and time ¢ > 0.
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X+ Ax L

For a simple model we assume the following:

1. The string is perfectly elastic; it does not resist to bend.

2. It is homogeneous, i.e., mass of the string per unit length is constant, denote
it by p.

3. The string has been fastened by stretching it and the tension due to the
stretching is so high that the action of gravitation on it is negligible.

4. Every particle of the string moves strictly vertically so that the deflection and
the slope st every point on it remains small in absolute value.

We consider the forces acting on a small portion Ax of the string. Due to the
above assumptions, the tension on the string is tangential to the initial shape (we
distorted it) of the string at each point. Let T} and T be the tension at the points P
(point x) and Q (point x + Ax) of that portion. There is no horizontal motion, i.e.,
the horizontal components of tension is constant. See the figure. It means

Ty cosa = T cos f = T = constant.

The vertical component at P is downward and at Q is upward; so they are —T; sin
and T sin f. By Newton’s second law, the resultant of these forces is equal to the

119
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mass pAx times the acceleration u;; evaluated at some point x = x* between x and
x + Ax. Hence,
Tsinf— Ty sina = p Ax uy (x™, t).

Dividing by T and using the previous equation, we get

Tysinff Tisina  pAx
Trcosp Ticosa T

Ax
uy(x*, 1) = pT uy(x*, t) = tan § — tan a.

However, tan « is the slope of the (distorted) string at the point x. Similarly, tan f
is the slope at the point x + Ax. That is,

tana = u,(x,t), tanpf = u.(x + Ax,t).

Hence,

Uy (x + Ax) — Uy (x)

T
U (x™,t) = —
p Ax

Write T/p = ¢? since it is positive. Take limit of both sides as Ax — 0. Then,
x + Ax — x and x* — x so that we obtain

Uy = czuxx where ¢ > 0. (6.1.1)

This is called the one-dimensional wave equation. It is a linear homogeneous
second order PDE.

6.2 D’ Alembert’s solution of wave equation

We consider solving the wave equation in (6.1.1):

Uy — czuxx =0.
Notice that u = u(x,t), a function of x and ¢. As a linear second order PDE,
comparing it with (5.3.1) with y there as t here, we find that a = —c?, b = 0,
c(x,t) =1,d =e = f = g = 0. The discriminant is b*> — 4ac = 4c> > 0. So, itis a
hyperbolic PDE. By (5.3.5), the characteristics are

dx dt N dx dt N ,
S — - = x—ct=cy.
2a p+ Vb2 - 4ac —c* -2 1
dx dt dx dt

= = =— = x+ct =c).

2a (b — Vb7 — 4ac) 22 2

Thus, the transformation is given by

=X +ct, =Xx —ct.
n
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We find thatx = (¢+1)/2,t =(E-1n)/(2¢),é& =1,& =c¢,ne = 1 and n; = —c. By
(5.3.3) with the variable y as t, the new coeflicients are given by

B =2a&n, + (& + Eny) +c(x, )&y = ~3¢?
D =ab +b& + & +dé+e& =0

E = anyx + bnx + cny + dnx + ey =0
F=f(x(&n),t&n)=0

G=g(x(&m.t(&n) =0.

By (5.3.6), the PDE is reduced to its standard form
1
Ugy = E(G — Dug — Euy — Fu) = 0.

You can also directly compute u;; and u,, using the Chain rule and substitute to get
the same equation ug, = 0.
Integrating the above equation with respect to n, we get

ug = fi(&)

for an arbitrary function f; of £. Integrating this equation with respect to &, we get

u(t.n) = jﬁ(@ dE+ (1),

Since fi(&) ia an arbitrary function, we may write f f1(€) d& as another arbitrary
function, say f3(£). Hence, the general solution of the above equation is u(&, 1) =
(&) + £(n). Going back to the variables x and ¢, we obtain the general solution of
the wave equation (6.1.1) as

u(x,t) =d(x+ct) +(x —ct) (6.2.1)

where ¢ and ¢ are arbitrary functions of x and ¢. This solution is known as the
D’ Alembert’s solution of the wave equation.

Suppose the initial distortion of the string is given as a function of x, say, f(x),
and the initial velocity, when we leave the string to vibrate is given by a function of
x, say, g(x). In our notation, the wave equation (6.1.1) now comes with two initial
conditions

u(x,0) = f(x), wu(x,0)=g(x). (6.2.2)

To get a solution of the initial value problem (6.1.1) and (6.2.2), we start with
D’ Alembert’s solution and try to determine the arbitrary functions ¢ and /. From
(6.2.1), we get

d(x + ct)
ot

d(x — ct)

P (x —ct) Py

=c¢'(x +ct) — cd’(x — ct).

ur(x,t) = ¢'(x +ct)
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The initial condition imply that

u(x,0) = ¢(x) +(x) = f(x),  w(x,0) =cg’(x) — e’ (x) = g(x).

Taking the definite integral of the second equation with respect to x varying from
any fixed xo to any y in the range of values of the variable x, we obtain

c[p() - ()] - c[p(x0) - P(x0)] = jy 4(5) ds.

X0

So, we have now ¢(y) + ¥(y) = f(y) and ¢(y) — ¢(y) from the above. Then,

1 1 (Y 1

00 = 31 W+ 5 | gts)ds e 3[gtx0) ~p)]
| 1 (Y 1

W) =310 = 5 | 99 ds =3[90 -y 0]

X

Replacing y by x + ct in the first and x — ct in the second, we obtain

u(x,t) =¢p(x+ct) +¢(x —ct)

1 1 1
:E[f(x+ct)+f(x—ct)]+z g(s)ds — — g(s)ds

J X0 26 X0
~ x+ct X0

g(s)ds + 2ic J g(s)ds

x—ct

= %[f(x+ct)+f(x—ct)] +2ic

J X0
r x+ct

1 1
:E[f(x+ct)+f(x—ct)]+z g(s) ds.

Jx—ct

We observe that two initial conditions as given in (6.2.2) determine the solution of
the wave equation (6.1.1) uniquely.

In particular, when the initial velocity is 0, the function g(x) is the zero function.
We see that the solution is u(x,t) = [f(x +ct) + f(x —ct)]/2.

6.3 Series solution of the wave equation

Physically, the string has two fixed end-points, which we have not considered while
discussing D’ Alembert’s solution. The end-points are fixed at x = 0 and x = L; it
means that the deflection is O for all time to come. This translates to the boundary
conditions

u(0,t) =0, u(L,t)=0, for t>0. 6.3.1)
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We still have the same initial conditions that initial deflection is f(x) and initial
velocity is g(x), but now, it is valid only for 0 < x < L. That is,

u(x,0) = f(x), u(x,0)=g(x), for 0 <x <L (6.3.2)

Notice that D’ Alembert’s solution is Uniquely determined when the wave equa-
tion is given only the initial conditions. So, that may not satisfy the boundary
conditions (6.3.1). Indeed, D’ Alembert’s solution now involves f(—ct) which does
not mean anything physically. This solution is valid for all x and not only for
0 < x < L. Potentially, this solution applies to a string that is elongated from —co
to co. Thus, it leaves open the case that when x is restricted to the interval [0, L],
there may or may not exist solutions which will also satisfy the initial conditions.

We will describe the simple and powerful method of separating the variables for
obtaining such a solution. In this method, we use the heuristic that possibly there is
a solution of the wave equation in the form

u(x,t) = Z Fo(x) Gu(t)
n=1

which also satisfies the initial conditions and the boundary conditions. However, we
do not directly plug it in the wave equation so as to satisfy the initial and boundary
conditions. We rather think of u,(x,t) = F,(x) G,(t) to satisfy the wave equation
and the boundary conditions only. The series would then be required when we try
to satisfy the initial conditions.

So, we start with u(x,t) = F(x) G(¢) initially. We plug it in the wave equation to
obtain two ODEs, one for F(x) and the other for G(t). This constitutes Step 1 of
the method. In Step 2, we determine (nonzero) solutions of these ODEs that satisfy
the boundary conditions in (6.3.1) thereby obtaining possible u,(x, t). In Step 3, we
use a series ), anuy(x, t) to compose the solutions found in Step 2 so that the series
solution satisfies the initial conditions. We execute the plan as in the following.

Step 1. Suppose u(x,t) = F(x) G(t). Differentiating, we get
uy =FG, uge =F'G.

Here, the dot denotes derivative with respect to ¢t and prime denotes derivative with
respect to x. Then the wave equation u;; = ¢y, in (6.1.1) takes the form

. G F”

FG=cF'G = —— = —.
c2G F

The left side is independent of x and the right side is independent of ¢. So, both are
independent of x and t, that is, it is a constant, say, k. Of course, the constant k is
yet unknown. We then have

F'—kF=0, G-c*kG=0. (6.3.3)
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Step 2: We are interested in nonzero solutions. The boundary conditions in (6.3.1)
take the form

u(0,1) = F(0)G(t) =0 = F(0) =0, u(L,t)=F(L)G(t) =0 = F(L) =0.

These are conditions on F(x) only. Again, F(x) = O satisfies these conditions but
we require nonzero solutions. The ODE F” — kF = 0 for F in (6.3.3) involves an
unknown constant k.

If k = 0, then F = ax + b for constants a and b. Now, F(0) =0 = b = 0. So,
F(x) =ax. And, F(L) =0 = aL =0 = a = 0. So, F(x) is the zero function,
which we do not require.

If kK > 0, then F(x) = aeVk* + pe=VkxThe conditions F(0) =0 = F(L) imply that

a+b=0, ae‘/EL+be_‘/EL:O = a=0=0b.

So, F(x) is the zero function, which we do not require.
So, k < 0; and we write k = —p? for p > 0. Notice that p is yet to be determined.
Now, the equation of F(x) is F” + p°F = 0. Its general solution is

F(x) = acos(px) + bsin(px).

Now, F(0) =0 = a=0. So, F(x) = bsin(px). Then, F(L) =0 = bsin(pL) = 0.
By taking b = 0, we get only trivial solution. So, we take the other alternative
sin(pL) = 0. It gives

pL=nr = p:nfﬂ for n=1,2,3,....
Corresponding to each value of p, we obtain a solution. These are:
Fy(x) = by sin ("LLX) for n=1,23,.... (6.3.4)

Now that the possible values for p has been obtained, we use these values to solve the
equation for G(t) in (6.3.3). Notice thatk = —p? = — (mr/L)2 = ¢’k = —(cnz /L)%
The equation G — ¢%kG =0 for G(t) now reads as

G+212G =0, An:C”T” for n=1,23,....

Its general solution is
Gn(t) = cpcos(Apt) +dysin(A,t) for n=1,2,3,....

Then u,(x,t) = F,G, = b, sin(nxx/L) [cn cos(Ant) +d, sin(/lnt)]. However, we do
not expect any of these u,s to satisfy the initial conditions, in general. So, we will
be taking a series u(x,t) = X7° | anun(x, t) and try to satisfy the initial conditions.
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In that case, notice that we do not require so many constants like a,, b,, ¢, and d,,.

Only c, and d, will suffice. It is enough to consider u(x,t) = 3>, un(x,t), where

up(x,t) = [cn cos(Ant) +d, sin(/'lnt)] sin (”Lﬂ) for n=1,2,3,.... (6.3.5)

The numbers A, = cnz/L are called the eigenvalues and the corresponding func-
tions u,(x, t) above are called the eigenfunctions of the vibrating string. The set
{A1, A2, ...} of eigenvalues is called the spectrum.

Observe that each u, represents a harmonic motion with frequency as A,/(2x)
cycles per unit time. This motion is called the normal mode of the string. The first
mode, corresponding to n = 1, is called the fundamental mode and the others are
called the overtones. Since sin(nzx/L) = 0 for x = L/n, 2L/n, ..., (n—1)L/n,
the nth normal mode has n — 1 nodes. Like the end-points, the string does not move
at the nodes. This is expected due to the wave-like movement of the string, from
which the name for the equation in (6.1.1) comes.

Step 3: We have seen that the eigenfunctions in (6.3.5) satisfy the wave equation
and the boundary conditions. We do not expect a single u, (x, t) to satisfy the initial
conditions. As discussed earlier, we set

oo

uet) = ) un(x,) = i [cn COS(Ant) + dy sin(A,)] sin (”LL") (6.3.6)

n=1 n=1

With this u(x, t), the first initial condition in (6.3.2) gives

u(x,O):icnsm(nZ) f(x) for 0 <x <L

n=1

It says that f(x) has been expanded in its Fourier sine series. Thus,

J £(x) sm )dx for n=1,2,3,. (6.3.7)

For the second initial condition, we first differentiate u(x, t) in (6.3.6), evaluate it at
t =0 to get

[Me

u;(x,0) = [ [— CnAn sin(Ayt) + dyAy cos(Ay t)] sin (nzx)]

1

3
Il

t=0

Mg

dpAy sin (nzx) = g(x).

Il
—_

n

Hence, g(x) is expanded in its Fourier sine series. Thus,

2 (L . (nIX
Aol = = L g(x) sin (T) dx.
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Putting back the value of A, = cnz/L we get

L

i, = > 9 sm( )dx for n=1,2,3,. (6.3.8)
cnr
To summarize, the solution of the wave equation (6.1.1) with boundary conditions
in (6.3.1) and initial conditions in (6.3.2) is given by (6.3.6) with A, = cnx/L, where
¢, and d,, are as in (6.3.7-6.3.8).

It can be shown that the series in (6.3.6) is convergent for 0 < x < L and all
t > 0. Further, the solution u(x, t) in the above series form is a solution of the wave
equation with the initial and boundary conditions if f(x) is twice differentiable on
0 < x < L, and it has one-sided second derivatives at the end-points x = 0 and

x = L, which are equal to 0.

(6.1) Example

Find the solution of the wave equation u;; = c’u, satisfying u(0,t) = 0 = u(L, t),
u;(x,0) = 0 and u(x,0) = 2kx/L for 0 < x < L/2, u(x,0) = 2k(L — x)/L for
L/2 <x < L.

According to (6.3.6), the solution is given by

o0

u(x,t) = Z [cn cos(Ayt) + d, sin(A, t)] sin (m;x)

n=1

where A, = cnr/L and by (6.3.7-6.3.8),

J f(x) s1n ) dx

2 (L2 2k 2k
:—J —Xx sin(n”x)dx J —(L x)sm(nﬂx)dx
L), L L LJ, L
8 . (nx
n271'2 Sln( 2 )
2 (F . (nIX
dn = % o g(X) S1n (T) dx = 0.
Since sin(nx/2) is 0 for even n, 1 for n = 4m + 1, and —1 for n = 4m + 3, we find
that
1 X met 1 . 3nx 3mct

,t = — —SIH—COS——— 1n —— COS
u(x 1) [12 L L 32 L

(6.2) Example

Suppose the vibration of a stretched string of length 1 unit is clamped at each end
and starts from rest with the initial shape u(x,0) = kx(1 — x). Here, k > 0 is such
that the maximum transverse displacement is small. Find the vibration u(x, t).
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The function u(x,t) satisfies u;; = c?u,, for some constant ¢ depending on the
material of the string, the boundary conditions are u(0,t) = 0 = u(1,t), and
the initial conditions are u(x,0) = kx(1 — x) and u;(x,0) = 0. Here, L = 1,
f(x) =kx(1 -x) and g(x) = 0. By (6.3.6),

oo

u(x,t) = Y [ncos(Aut) + dy sin(A,t) | sin (”Lix)

n=1
where A, = cn/L = cnxr, and
L

Cp = % JOLf(x) sin (mg_x) dx, d,= 2 g(x) sin (mg_x) dx.

cni Jo

Since g(x) = 0, we have d, = 0. And,

0 if neven

1 2k
n= 2 kx(1- i dx =2 ——(1- =
c Jo x(1—x) sin(nxx) dx n3n3( COS(””)) 8k/(n37T3) if nodd.

Since only odd terms remain, we write n =2m + 1 form =0,1,2,3,.... Then

u(x, t) = 8k Z(Zm + 1) sin ((2m + 1)7x) cos ((2m + D)ent). 0
m=0
In this section we have discussed how to use the method of separation of variables

for solving the wave equation. The same method can be used to solve first order
PDEs. You can work out the details by solving the exercises.

6.4 One-dimensional heat flow

Consider the temperature in a long thin metal wire of constant cross sectional area.
Assume that it is perfectly insulated so that heat flows in one direction only. Call
the direction of flow as the x-axis. Write the temperature as u(x, t), where ¢ is time.
Write K for the thermal conductivity, ¢ for the thermal diffusivity, o for specific
heat, and p for the density of the wire. Then ¢*> = K/po and the heat flow is
governed by the heat equation

Uy = czuxx. (6.4.1)

Suppose that the wire is of length L and its ends prescribed by x = 0 and x = L are
kept at zero temperature. This gives the boundary conditions

u(0,6) =0, u(L,0)=0 for t>0. (6.4.2)
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In particular, u(0,0) = u(L,0) = 0. Further, assume that the initial temperature on
the wire at time t = 0 is given as a function of x; say, f(x). Then

u(x,0) = f(x) for 0 <x < L. (6.4.3)

Notice that due to the boundary conditions, the function f(x) cannot be arbitrary,
but it must satisfy f(0) = f(L) = 0.

We will use the method of separation of variables to get a series solution of (6.4.1)
satisfying (6.4.2) and (6.4.3).

Step I: Let u(x,t) = F(x)G(t). Substitute in (6.4.1) to get
G ~ F”
2G  F’
The left side is independent of x and the right side is independent of ¢. So, each is
equal to a constant. As in the case of wave equation, if this constant is 0 or positive,
we would get only the trivial solution u(x, t) = 0. So, suppose that each ratio in the
above equation is negative, that is, it is equal to —p? for p > 0. Then, we get two

ODEs
F'+p’F=0, G+c*p’G=0.

Step 2: Solving the equation for F we get
F(x) = acos(px) + bsin(px).
From the boundary condition (6.4.2), we have
u(0,t) = F(0)G(t) =0, u(L,t)=F(L)G(t)=0.

We do not take G(¢) = 0 since it leads to the trivial solution u(x,t) = 0. So,
F(0) =0and F(L) = 0. Now, F(0) =0 = a =0 = F(x) = bsin(px). Then,
F(L) =0 = bsin(pL) = 0. Again, b = 0 = F(x) = 0 which leads to the trivial
solution. So, sin(pL) = 0. Since p > 0, it gives

b= % for n=1,2,3,....
The corresponding solutions for F(x) are given by
Fn(x) = sin (”Lﬂ) for n=1,2,3,....
For p = nx/L, the equation for G(¢) becomes

G+A2G=0 where A, = ch”
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Corresponding to each n, the general solution is b, exp(—A2t). Since constants will
be accommodated later, we set b, = 1 to obtain

Gn(t) = exp(=Az1)

as possible non-trivial solution for G(¢) corresponding to the value nsz/L of p. Then,

un(x, 1) = Fy (x)Gy (1) = sin (”Lﬂ) exp(—12t) for n=1,2,3,...

is a possible solution corresponding to the value nz/L of p. This function u,(x, t)
is called an eigenfunction with respect to the eigenvalue A, = cnx/L, as earlier.

Step 3: None of the u,s may satisfy the initial condition. So, we propose to have
our solution as a series of eigenfunctions. So, let

(o)

_ =N g sin (M) exp(-a2 _ o
u(x,t) = ; antn(x,t) = ; a sm( i )exp( Aut),  where A, =
(6.4.4)
The initial condition (6.4.3) now gives

(o8]

u(x,0) = Zan sin (nLLx) = f(x).

n=1

So, ays are the Fourier coefficients of the Fourier sine series for f(x). Thus,

2 (L . (nIXx
an = L fGosin (25 ) dx for n=1,23,.... (6.4.5)

It can be verified that u(x,t) of (6.4.4) in series form is a solution of the heat
equation (6.4.1) satisfying the conditions in (6.4.2)-(6.4.3) if f(x) is piecewise
continuous on 0 < x < L, and has one-sided derivatives at all points of discontinuity.

(6.3) Example

Find the temperature u(x,t) in a laterally insulated copper bar 80 cm long if the
initial temperature is 100 sin(7zx/80)°C. Assume the following physical data for the
bar: density is 8.92 g/cm?, specific heat is 0.992 cal/(g°C), thermal conductivity
is 0.95 cal/(cmsec°C). How long it will take for the maximum temperature in the
bar to drop to 50°C?

Here, L = 80, f(x) = 100sin(7x/80), ¢ = K/(po) = 0.95/(0.092 x 8.92) =
1.158 cm?/sec®C. Computing the coefficients from (6.4.5), we find that

2 80

“=g 1oosm2(

nmwx

80)dx:100, 4, =0 for n> 1.



130 MA2020 Classnotes

Thus, we need only A7 which equals 1.158 x 9.870/80% = 0.001785[sec™"].
Hence, the solution is given by

X
#) = 100 si ( ) ~0.001785¢
u(x,t) sin 20 e

The maximum temperature in the bar is achieved when sin(zx/80) = 1. It drops to
50 implies 1000001785t — 50 = ¢ =10g(0.5)/(—0.001785) = 388 [sec]. 0

(6.4) Example

Find the temperature in a laterally insulated bar of length L whose ends are kept at
temperature 0 assuming that the initial temperature is f(x) = x for 0 < x < L/2
and f(x) =L—-xforL/2 <x < L.

We compute the coefficients from (6.4.5) as follows:

2
anzz

Hence, the solution is

0 if neven

Lj2 L
J ssin%xdx+ (L—x)sinnLLxdx = n‘z‘# if n=4m+1
0 Lj2

/ —% if n=4m+3.

u(x, t) = %[Sin%xeXp [ (en/L)t] - é sin?)LLxeXp [ - Ben/L)*t] +- ]

Notice that this is a decreasing function of ¢. Physically this happens because the
ends are kept in zero temperature. 0

(6.5) Example

Find the solution u(x, t) of the heat equation u; = c’u,, satisfying the conditions
ux(0,1) = u (L, t) = 0 for all ¢, and u(x,0) = f(x) for 0 < x < L.

We set u(x,t) = F(x)G(t). As earlier we reach at
F(x) = acos(px) + Bsin(px), G+ p’G = 0.
Then
F'(x) = —ap sin(px) + bp cos(px) = F'(0) =bp, F (L) =—apsin(pL).
The boundary conditions give
uy(0,¢) = F(0)G(t) =bp =0, wuy(L,t) =F (L)G(t) = —apsin(pL) = 0.

Since we need a non-zero solution, we assume that G(¢) # 0 and at least one of a
or b is equal to 0. To obtain a series solution, we take b = 0 and a # 0. Further,
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constants will get accommodated in a series. So, we take a = 1. Then we have
p =0orsin(pL) = 0. It implies the possibilities for p as

p:pnzf” for n=0,1,2,3,....

Neglecting the coefficients, we get F,,(x) = cos(nzx/L). This does not disturb G,s.
Thatis, as earlier, G, (t) = exp(—/lﬁ t), where A,, = cnzr/L. Hence, the eigenfunctions
are

un(x,t) = F,(x)G,(t) = cos ”Lﬂ exp(/lﬁ t) for n=0,1,2,3,....

Notice that comparing these eigenfunctions with those in (6.4.4), we have an ex-
tra eigenvalue, namely Ap = O and corresponding to it the extra eigenfunction
up =constant. Notice that this is also a solution of the problem when f(x) is a
constant function.

As earlier, we have the solution as

(o) (o)

nITx _j cnmw
u(x,t) = Z antn(x,t) = Z an COs ¢ At where A, = R
n=0 n=0

The coefficients are obtained from the initial condition u(x,0) = f(x). However,
u(x,0) = 277 ancos(nrx/L). Thus, ays are the Fourier coefficients of the Fourier
cosine series of f(x). That is,

1(* 2
aO:—J f(x)dx, an:—f(x)cos@dx n=123,.... 0
L Joy L L
When the two ends of the wire are kept in constant temperatures, we get the
boundary conditions as u(0,t) = A and u(L,t) = B. We try a solution in the form

u(x,t) = A+
homogeneous boundary conditions. We use the method of separation of variables

for determining v(x, t). You may need this trick to solve some problems from the
exercises.

x + o(x,t). Then, v(x,t) will satisfy the heat equation with

6.5 Laplace equation

Instead of a metal rod, consider heat distribution on a metal plate. We may approach
the problem of modeling in a way similar to the derivation of one-dimensional wave
and heat equations. We would arrive at the two-dimensional heat equation

U = > (tyy + Uyy).
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When the steady state is achieved, we find that u; = 0 and it yields the Laplace
equation
Uxx + uyy = 0.

When the metal plate is rectangular, the Cartesian coordinates system is suitable.
Similarly, if the plate is circular, it may be easier to use the polar coordinates. We
need to express the Laplacian u,, + u,, in polar coordinates.

The relation between Cartesian and the polar coordinates is expressed by

x=rcosf, y=rsinb, r=/x2+y% tanf = 7.
x

Suppose u = u(x,y,t) is a function of x,y and t. We are interested in computing
Uxx + Uyy in 1,0 form. By the chain rule,

Uy = Uy + Ugly.
Differentiating again, we obtain

Uxx = (U Ie)x + (g Ox)x
= (ur)x Fx + Ur T'xx + (uG)x Ox + ug Oxx
= (urr I'x +Urg Qx) Fx +Ur Fxx + (uer I'x + Ugg ex) Ox + U Oxx.

Using the expressions for r and 6 in terms of x, y, we obtain

x X 1 Y y

¥y = —— = —, = —_— = =,

N A gz T 1+ (y/x)? T x2 r2
_roxn 1o oy 2 2y
rxx - r2 - r ]"3 - ]"3, XX — y 3 rx - r4 .

Assuming that u is two times continuously differentiable with respect to r and 0,
we get u,g = up,. Substituting the expressions above into that of u,, leads to

2

x 2xy y? 2 2xy
Uxy = —zur, - —3urg + —4u39 + —3ur + —4u9.
r r r r r
Similarly,
y? 2xy x2 x? 2xy
Uyy = r—zurr + r—3ur9 + r—4u99 + r—3ur - r—4u9.

Adding the two above and suing the fact that x> + > = r?

for the Laplacian in polar coordinates as follows:

, we obtain the expression

_ Ur  Ugg
Usex + Uyy —urr+7+—.
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Using these and the method of separation of variables, we solve some problems
on heat distribution on rectangular and circular plates.

(6.6) Example

Find the steady state temperature distribution u(x,y) on the rectangular region
0<x<m 0<y<2, given that on the side y = 0,0 < x < 7, u(x,0) = xsinx,
and the temperature on the other three sides are maintained at u = 0.

The steady state temperature u(x, y) satisfies the Laplacian
Uxx + Uy = 0.
We try u(x,y) = F(x)G(y). Substituting it in the equation and simplifying, we get

1d°F  1d°G

Fad = Gy
The left side is independent of y and the right side is independent of x; so each is a
constant, say, c. It then follows that
2F 2
d—:cF, d—G+cG:0.
dx? dy?
The boundary conditions u(0,y) = 0 = u(x, y) imply that F(0) = F(x) = 0. When
¢ =0, F = a+ bx. These condition on F imply that F(x) = 0, leading to the trivial
solution u(x,y) = 0 which is not the case. If ¢ > 0, then F(x) = aeVex 4 he~Vex,
Again, the conditions F(0) = F(x) = 0lead to F(x) = 0. So, ¢ < 0; then letc = —A2
for A > 0. We now have the equations as
d°F d*G
— +MF=0, — -A*G=0.
dx? dy?
Then F(x) = acos(Ax) + bsin(Ax). F(0) =0 = a = 0. So, F(x) = bsin(Ax).
X(mr) =0 = sin(Axr) = 0 as b = 0 leads to the trivial solution. Hence, the

eigenvalues are
Ap=n forn=1223,....

The corresponding eigenfunctions are (we take b, = 1.)
Fn,(x) =sin(nx) for n=1,2,3,....

Now the equation for G reads as
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To show dependence of G on the parameter n, we write its solution as G,(y).
Then, G, (y) = ccosh(ny) + d sinh(ny). The boundary condition u(x,2) = 0 gives
F(x)G(2) =0 = G(2) =0. Or,

ccosh(2n) +dsinh(2n) =0 = d = —c coth(2n).
Using this in the expression for G, (y) and setting ¢ = 1, we obtain
Gn(y) = cosh(ny) — coth(2n) sinh(ny) = cosech(2n) sinh(ny — 2n).

Since constants will be determined later from a series, we choose ¢, = sinh(2n) in
obtaining u,. Then,

un(x,y) = sin(nx) sinh(ny —2n) for n=1,2,3,....

To satisfy the other conditions, we set

(o0

u(x,y) = Z Ay = Z an sin(nx) sinh(ny — 2n).

n=1 n=1
Now, u(x,0) = x sin x implies

xsinx = Z a, sin(nx) sinh(-2n).

n=1

Multiply sin(mx) and integrate over 0 < x <  to obtain

J x sin x sin(mx) dx = —a,, sinh(2n) J sin(nx) sin(mx) dx.
0 0

Using the orthogonality property of {sin(nx)} as in evaluating the Fourier coeffi-
cients, we get

o (14 (-1
T 2sinh2 T (n2 = 1)2xsinh(2n)

for n=2,3,4,....

Substituting these values of a, in the series, we obtain

sin(nx) sinh(ny — 2n). [J

u(oy) = _zsinxsinh(y - 2) .\ i (n4n(1 + (=17
n=2

2sinh 2 2 — 1)2xsinh(2n)



Separation of Variables 135

(6.7) Example

Find the temperature distribution u(r, ,t) in a thin (negligible thickness) semicir-
cular metal plate 0 < r < 1, 0 < 0 < 7 given that its plane faces are insulated to
prevent heat loss through them, the straight edge of the plate formed by the diameter
0 <r <1, 6 =0and@ = xis insulated, the semicircular boundary is maintained at
zero temperature, and the initial temperature distribution is u(r, 8,0) = (1—r) cos 6.

Using the Laplacian in polar coordinates, the heat equation on the plate is

u Upo
up = (U + 7’ + 7)

The bounding diameter is insulated and semicircular boundary is kept at zero
temperature. This means that

u(r,0,t) =0, wup(r,mt)=0, u(l,0,t)=0.

To use the separation of variables, we take u(r, 0,t) = E(r)F(0)G(t). Substituting
in the heat equation above we get

G

G Z(E” 1E 1 F<2>)
=¢|l—=+-—=+=—
E rE r?F

Here E’ = dE/dr, E” = d*E/dr? and F™ means d"F/d0". The left side is inde-
pendent of r and 6, and the right side is independent of ¢t. Hence, all of them are
independent of r, 6, t so that they are equal to a constant. Further, the temperature
decreases with time; so the constant must be negative. We may also consider three
cases of this constant, and verify that non-negative values of this constant lead to
the trivial solution.

Now that each side is equal to some negative constant, say, —A> with 1 > 0, we
obtain two equations:
. E” E F(2)
G+c2°G=0, rP—+r=—+Arr=——.
E E F

Again, the second equation has a left side independent of 6 and the right side
independent of r. Hence, each is a constant. We may verify that for negative values
of this constant, we get only the trivial solution. So, we assume that this constant is
non-negative. We write it as ¢ > 0. Then, the second equation gives two equations:

FP +qF=0, r’E'+rE +(*r* -qE=0.
The general solution for F(0) is

F(0) = Acos(4/q0) + Bsin(~/q 0).
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The boundary condition ug(r,0,t) = 0 implies F (1)(0) = 0 and the condition
up(r, m, t) = 0 implies F(V(;r) = 0. The first condition yields B = 0 and the second
leads to sin(+/q ) = 0. Hence, \/g = m form = 0,1,2,3,.... Setting the arbitrary
constant A to 1, we get

F(0) =cos(nf) for m=0,1,2,3,...
The equation for E(r) now becomes
r’E” +rE' + (A*r — m?)E = 0.
We recognize this as the Bessel’s equation, whose general solution is
En(r) = alm(Ar) + bY,,(Ar).

Recall that Y,,(Ar) — oo as r — 0. However, the temperature on the plate remains
finite. Hence, b = 0. Further, we will be getting a series solution finally; so, we set
a = 1 and continue with the solutions

En(r) = Jn(Ar) for m=0,1,2,3,...

For the boundary condition u(1,6,t) = 0, we must have E(1) = 0. It means,
Jn(A) = 0. Hence, the eigenvalues As are the positive zeros of J,, the Bessel
function. So, we take A, = zp,,, the nth positive zero of Jp,.

Using these As in the equation for G(¢), which was G+c2)%G = 0, we have

Gmn(t) = bp €exp(—zp, 1)
Combining the results for E(r), F(6) and G(t), we obtain

u(r,0,6) = 3" bnJm(zmar) cos(mb) exp(—zp, ,¢t).

m=0 n=1

When t = 0, the initial condition u(r, 8,0) = (1 —r) cos @ gives

(I1-=r)cosf = Z Z bmnJm(Zmnr) cos(m@).

m=0 n=1

This is the Fourier-Bessel series of the left side function. We multiply cos # and
integrate over 0 < 6 < x. Every term on the right hand side vanishes except those
corresponding to m = 1. Thus,

(1 — r) cosf = Z bl,n]l (zl,nr) cosd = 1—-r= Z bl,n]l (zl,nr).
n=1 n=1
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Multiply the last expression by rJ(z;sr) and integrate over 0 < r < 1. Using the
orthogonality of the Bessel functions, we get

: 1
[ ra=nnen ar= b3 B,

This gives b ;. We write in terms of n:

1
bin= 2[]2(21,,,)]_2J (r— r2)]1(zl,,,r) dr for n=1,23,....
0
Then the required solution is

u(r,0,t) = Z binJi(z1nr) cos 0 exp(—zinczt).
n=1

To obtain numerical values for specific tuples (r, 6,t) one must use the tables for
the zeros of Bessel functions. N
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