
Matrices

R denotes the set of all real numbers.

C denotes the set of all complex numbers.

We write F for either R or C.

The numbers in F are called scalars.

A matrix is a rectangular array of symbols arranged in rows and
columns.

The individual symbols in a matrix are called its entries.

All our matrices will use their entries from F. That is, our matrices
will be matrices of scalars.



Matrix-entries

A matrix looks like




a11 · · · a1n

...
...

am1 · · · amn



 .

Call this matrix A. We write A = [aij], where aij ∈ F.

The size of this matrix is m × n.

It has m number of rows and n number of columns.

An m × m matrix is called a square matrix; its order is m.

The entry aij in the ith row and jth column is called (i, j)th entry.

The set of all m × n matrices with entries from F will be denoted by
Fm×n.



Equality

A row vector of size n is a matrix in F1×n.

A column vector of size n is a matrix in Fn×1.

Both F1×n and Fn×1 are written as Fn.
The vectors in Fn will be written as (a1, . . . , an). We will sometimes
write a column vector as [b1 · · · bn]

T , or as (b1, . . . , bn)
T for saving

vertical space.

Two matrices of the same size are considered equal when their
corresponding entries are equal. That is, if A = [aij] ∈ Fm×n and
B = [bij] ∈ Fm×n, then

A = B iff aij = bij for each i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

We write the zero matrix all whose entries are 0 as 0.
To show the size of the zero matrix, we sometimes write 0m×n.



Sum & Scalar multiplication

Sum of two matrices are done entry-wise. That is, if A = [aij] ∈ Fm×n

and B = [bij] ∈ Fm×n, then

A + B = [aij + bij] for each i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

For instance,


1 3 2
2 3 1


+


4 5 6
2 1 3


=


5 8 8
4 4 4


.

A matrix is multiplied by a scalar entry-wise. That is,
A = [aij] ∈ Fm×n and α ∈ F, then

αA = [αaij] for each i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

For instance, 4


1 3 2
2 3 1


=


4 12 8
8 12 4


.



Some properties

The addition and scalar multiplication for matrices satisfy the
following properties:

Let A,B,C ∈ Fm×n. Let α,β ∈ F. Then

1. A + B = B + A.

2. (A + B) + C = A + (B + C).

3. A + 0 = 0 + A = A.

4. A + (−A) = (−A) + A = 0.

5. α(βA) = (αβ)A.

6. α(A + B) = αA + αB.

7. (α+ β)A = αA + βA.

8. I A = A.



Matrix multiplication

Let A = [aik] ∈ Fm×n and B = [bkj] ∈ Fn×r. Then their product AB is
a matrix [cij] ∈ Fm×r, where the entries are

cij = ai1b1j + · · ·+ ainbnj =

n

k=1

aikbkj.





a11 a1k a1n

ai1 · · · aik · · · ain

am1 amk amn









b11 b1j b1r
...

bℓ1 bℓj bℓr
...

bn1 bnj bnr




=





c11 c1j c1r

ci1 cij cir

cm1 cmj cmr





The ith row of A multiplied with the jth column of B gives the (i, j)th
entry in AB.

Notice that AB is defined only when the number of columns in A is
equal to the number of rows in B.



Example 1




3 5 −1
4 0 2

−6 −3 2








2 −2 3 1
5 0 7 8
9 −4 1 1



 =




22 −2 43 42
26 −16 14 6

−9 4 −37 −28



 .

We may view matrix multiplication in another way.
Look at the above product.

The first column of the product is obtained from the entries in the first
column of the second matrix multiplied with the respective columns
of the first matrix, and then taken the sum. That is,




22
26
−9



 = 2




3
4

−6



+ 5




5
0

−3



+ 9




−1

2
2



 .

Similarly, verify other columns in the product.



Commutativity?

A peculiarity: Suppose u ∈ F1×n and v ∈ Fn×1.
Then uv ∈ F but vu ∈ Fn×n.


3 6 1





1
2
4



 =

19


,




1
2
4



 
3 6 1


=




3 6 1
6 12 2

12 24 4



 .

So, matrix multiplication is not commutative.

Commutativity can break down due to various reasons.
◮ Even if AB is defined, BA may not be defined.
◮ AB and BA may not be of the same size.
◮ Even when they have same size, AB may not be equal to BA.



An example

The third case needs an example. It requires square matrices A and B
of the same order where AB ∕= BA.


1 2
2 3

 
0 1
2 3


=


4 7
6 11


but


0 1
2 3

 
1 2
2 3


=


2 3
8 13


.

It does not mean that AB is never equal to BA. In some cases they
may be equal.

Unlike numbers, product of two nonzero matrices can be a zero
matrix. For example,


1 0
0 0

 
0 0
0 1


=


0 0
0 0


.



Matrix multiplication Cont.

Verify the following properties of matrix multiplication:

1. If A ∈ Fm×n, B ∈ Fn×r and C ∈ Fr×p, then (AB)C = A(BC).

2. If A,B ∈ Fm×n and C ∈ Fn×r, then (A + B)C = AB + AC.

3. If A ∈ Fm×n and B,C ∈ Fn×r, then A(B + C) = AB + AC.

4. If α ∈ F, A ∈ Fm×n and B ∈ Fn×r, then
α(AB) = (αA)B = A(αB).

We denote by In, an identity matrix of order n, whose (i, i)th entry is
1 for each i, and all other entries are 0.

Then AIn = ImA = A for any matrix A ∈ Fm×n.

Sometimes, we just write I instead of In, if no confusion arises.

Powers of square matrices can be defined inductively by taking

A0 = I and An = AAn−1 for n ∈ N.



Block form
Suppose A ∈ Fm×n. Write its ith row as Ai Also, write its kth column
as Ak. Then we can write A as a row of columns and also as a column
of rows in the following manner:

A = [aik] =

A1 · · · An


=




A1

...
Am



 .

Write B ∈ Fn×r similarly as

B = [bkj] =

B1 · · · Br


=




B1

...
Bn



 .

Then their product AB can now be written as

AB =

AB1 · · · ABr


=




A1B

...
AmB



 .

When writing this way, we ignore the extra brackets [ and ].



Inverse

A square matrix A of order m is called invertible iff there exists a
matrix B of order m such that AB = I = BA.
Such a matrix B is called an inverse of A.

If B and C are inverses of A, then

C = CI = C(AB) = (CA)B = IB = B.

Therefore, an inverse of a matrix is unique and is denoted by A−1.
We talk of invertibility of square matrices only.
All square matrices are not invertible.
For example, I is invertible but 0 is not. If AB = 0 for nonzero square
matrices A and B, then neither A nor B is invertible. However,
If A,B ∈ Fn×n are invertible matrices, then (AB)−1 = B−1A−1.



Transpose
Given a matrix A ∈ Fm×n, its transpose is a matrix in Fn×m, denoted
by AT , and is defined by

the (i, j)th entry of AT = the (j, i)th entry of A.

Transpose of a row vector is a column vector, and transpose of a
column vector is a row vector.
Transpose of AT is A.
The transpose has the following properties:

1. (AT)T = A.

2. (A + B)T = AT + BT .

3. (αA)T = αAT .

4. (AB)T = BTAT .

5. If A is invertible, then AT is invertible, and (AT)−1 = (A−1)T .

In the above properties, we assume that the matrices are of suitable
size so that the operations are allowed.



Adjoint
We write γ for the complex conjugate of a scalar γ. That is,
α+ iβ = α− iβ for α,β ∈ R.
The adjoint of A ∈ Fm×n is denoted as A∗, and is defined by

the (i, j)th entry of A∗ = the complex conjugate of (j, i)th entry of A.

When A has only real entries, A∗ = AT . For example,


1 2 3
2 3 1

∗
=




1 2
2 3
3 1



 ,


1 + i 2 3

2 3 1 − i

∗
=




1 − i 2

2 3
3 1 + i



 .

The adjoint has the following properties:
1. (A∗)∗ = A.
2. (A + B)∗ = A∗ + B∗.

3. (αA)∗ = αA∗.

4. (AB)∗ = B∗A∗.

5. If A is invertible, then A∗ is invertible, and (A∗)−1 = (A−1)∗.



Diagonal matrix

We now define some special types of matrices.

Let A = [aij] ∈ Fn×n be a square matrix of order n. The entries aii are
called as the diagonal entries of A. All other entries are called
off-diagonal entries.

If all off-diagonal entries of A are 0, then A is called a diagonal
matrix.

For example, I and 0 are diagonal matrices.

If A is a diagonal matrix with aii = di, then we write

A = diag(d1, d2, . . . , dn).

Thus I = diag(1, 1, . . . , 1).



Special types of matrices

The jth column of I is denoted by ej.
The column vectors e1, . . . , en in Fn×1, are called the standard basis
vectors of Fn×1.

A scalar matrix is a diagonal matrix with equal diagonal entries.
Thus αI are the only scalar matrices for α ∈ F.

A square matrix A = [aij] ∈ Fn×n is upper triangular when aij = 0
for i > j.

A square matrix A = [aij] ∈ Fn×n is lower triangular when aij = 0
for i < j.



Triangualr matrices

A square matrix A = [aij] ∈ Fn×n is triangular if it is upper triangular
or lower triangular.

L =




1
2 3
3 4 5



 , U =




1 2 3

3 4
5



 .

L is lower triangular; U is upper triangular. Both are triangular.

Transpose of a lower triangular matrix is upper triangular; and
transpose of an upper triangular matrix is lower triangular.



Special Matrices

Let A ∈ Fn×n. It is called
◮ hermitian iff A∗ = A.
◮ skew hermitian iff A∗ = −A.
◮ symmetric iff AT = A.
◮ real symmetric iff F = R and A is hermitian.
◮ skew symmetric iff AT = −A.
◮ unitary iff A∗A = I = AA∗.

◮ orthogonal iff F = R and ATA = I = AAT .

◮ normal iff A∗A = AA∗.



Special Matrices Cont.

B =




1 2 3
2 3 4
3 4 5



 , C =




0 2 −3

−2 0 4
3 −4 0



 , D =




1 −2i 3
2i 3 4
3 4 5



 ,

E =




0 2 + i 3

−2 + i i 4i
−3 4i 0



 , F =
1
2


1 + i 1 − i
1 − i 1 + i


, G =

1
3




2 1 2

−2 2 1
1 2 −2



 .

B is symmetric, also hermitian.
C is skew-symmetric, also skew-hermitian.
D is hermitian.
E is skew-hermitian.
F is a unitary.
G is an orthogonal matrix. Also, G is unitary.



Special Matrices Cont.

A skew-symmetric matrix must have a zero diagonal.

The diagonal entries of a skew-hermitian matrix must be 0 or purely
imaginary.

Reason: aii = −aii ⇒ 2Re(aii) = 0.

Any square matrix is a sum of a symmetric and a skew-symmetric
matrix.

A =
1
2
(A + AT) +

1
2
(A − AT).

Also, a sum of a hermitian and a skew hermitian matrices:

A =
1
2
(A + A∗) +

1
2
(A − A∗).



Orhogonal matrices

The following are examples of orthogonal 2 × 2 matrices:

O1 :=


cos θ − sin θ
sin θ cos θ


, O2 :=


cos θ sin θ
sin θ − cos θ


.

O1


a
b


=


a cos θ − b sin θ
a cos θ + b sin θ


.

Thus, O1 is said to be a rotation by an angle θ.

O2


a
b


=


a cos θ + b sin θ
a sin θ − b cos θ


.

Thus, O2 is called a reflection by an angle θ/2 along the x-axis.

Take an angle θ, plot the points (a, b)T , O1(a, b)T and O2(a, b)T to
see the geometry.



Inner product of two vectors
The inner product is a generalization of the familiar dot product in the
plane or space.

The inner product of two vectors u = (a1, . . . , an) and
v = (b1, . . . , bn) in Fn is defined as

〈u, v〉 = a1b1 + · · ·+ anbn.

In particular, if F = R, then u, v ∈ Rn and bi = bi so that

〈u, v〉 = a1b1 + · · ·+ anbn.

For instance, if u = (1, 2, 3) ∈ R3 and v = (2, 1, 3) ∈ R3, then their
inner product is 〈u, v〉 = 1 × 2 + 2 × 1 + 3 × 3 = 13.

If x = (1 + i, 2 − i, 1) ∈ C3 and y = (1 − i, 1 + i, 1) ∈ C3, then

〈x, y〉 = (1 + i)(1 + i) + (2 − i)(1 − i) + 1 × 1

= 1 + i2 + 2i + 2 + i2 − 3i + 1 = 2 − i.



Using matrix product

When we consider row or column vectors, their inner product can be
given via matrix multiplication.

Let u, v ∈ F1×n. Then 〈u, v〉 = uv∗.

Reason: Suppose u =

a1 · · · an


and v =


b1 · · · bn


. Then

uv∗ =

a1 · · · an





b1
...

bn



 = a1b1 + · · ·+ anbn = 〈u, v〉.

In particular, if u, v ∈ R1×n then 〈u, v〉 = uvT .



Using matrix product Contd.

Similarly, if u, v ∈ Fn×1 then 〈u, v〉 = v∗u.

Verification: Suppose u =




a1
...

an



 and v =




b1
...

bn



 . Then

v∗u =

b1 · · · bn





a1
...

an



 = b1a1 + · · ·+ bnan = 〈u, v〉.

In particular, when u, v ∈ Rn×1, 〈u, v〉 = vTu.

Notice that the inner product of two vectors in Fn is a scalar; it is an
element of F.



Properties of Inner product

Verify that the inner product satisfies the following properties:

Let x, y, z ∈ Fn and let α,β ∈ F.
1. 〈x, x〉 ≥ 0.

2. 〈x, x〉 = 0 iff x = 0.

3. 〈x, y〉 = 〈y, x〉.
4. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.
5. 〈z, x + y〉 = 〈z, x〉+ 〈z, y〉.
6. 〈αx, y〉 = α〈x, y〉.
7. 〈x,βy〉 = β〈x, y〉.



Norm of a vector

If u ∈ Fn, we define its norm as u =


〈u, u〉.

Hence, if u = (a1, . . . , an), then

u =
√

a1a1 + · · ·+ anan =


|a1|2 + · · ·+ |an|2.

In particular, when u ∈ Rn, u =


a2
1 + · · ·+ a2

n.

For instance,

u =

1 2 3


⇒ u =


12 + 22 + 32 =

√
14.

v =

2 3 4

T ⇒ v =


22 + 32 + 42 =
√

29.

x =

1 + i 2 − i 1


⇒ x =


|1 + i|2 + |2 − i|2 + |1|2 =

√
8.

y =

1 − i 1 + i 1

T ⇒ x =


|1 − i|2 + |1 + i|2 + |1|2 =
√

5.



Properties of norm

The norm satisfies the following properties:

Let x, y ∈ Fn and let α ∈ F.
1. x ≥ 0.

2. x = 0 iff x = 0.

3. αx = |α| x.
4. |〈x, y〉| ≤ x y. (Cauchy-Schwartz inequality)

5. x + y ≤ x+ y. (Triangle inequality)

First three properties follow from those of the inner product.

We will prove the last two properties.



Proof of Cauchy-Schwartz

If y = 0, then the inequality clearly holds. Else, 〈y, y〉 ∕= 0.

Write α = 〈x,y〉
〈y,y〉 . Then α = 〈y,x〉

〈y,y〉 and α〈x, y〉 = |α|2y2.

That is, α〈y, y〉 − 〈y, x〉 = 0, and

0 ≤ 〈x − αy, x − αy〉
= 〈x, x〉 − α〈x, y〉+ α


α〈y, y〉 − 〈y, x〉



= x2 − α〈x, y〉
= x2 − |α|2y2

= x2 − |〈x, y〉|2
y4 y2.

Hence, |〈x, y〉| ≤ x y. □



Proof of Triangle inequality

Notice that

x + y2 = 〈x + y, x + y〉 = x2 + y2 + 〈x, y〉+ 〈y, x〉.

Using Cauchy-Schwartz inequality, we get

x + y2 ≤ x2 + y2 + 2x y =

x+ y

2
.

Hence, x + y ≤ x+ y. □
Let x, y ∈ Fn. We say that the vectors x and y are orthogonal, and we
write this as x ⊥ y, when 〈x, y〉 = 0.
That is, x ⊥ y iff 〈x, y〉 = 0. Thus 0 ⊥ x for each vector x.

If x ⊥ y, then the above computation shows that
x + y2 = x2 + y2.



Pythagoras law

Let x, y ∈ Fn. we have proved the following:

Pythagoras Law: If x ⊥ y, then x + y2 = x2 + y2.

The converse of Pythagoras law holds when F = R.
Reason: Suppose F = R. Our earlier computation shows that

x + y2 = 〈x + y, x + y〉 = x2 + 2〈x, y〉+ y2.

It follows that 〈x, y〉 = 0.

The converse does not hold, in general, for F = C.

For instance, in C, take x = 1 and y = i. Then,

x + y2 = 1 + i2 = 2 = |1|2 + |i|2 = x2 + y2.

But 〈x, y〉 = 〈1, i〉 = 1(−i) = −i ∕= 0.



Adjoint & inner product

Theorem: Let A ∈ Fm×n, x ∈ Fn×1, and let y ∈ Fm×1. Then

〈Ax, y〉 = 〈x,A∗y〉, 〈A∗y, x〉 = 〈y,Ax〉.

Proof: Here, 〈u, v〉 = v∗u, Ax ∈ Fm×1 and A∗y ∈ Fn×1.

We are using the same notation for both the inner products in Fm×1

and in Fn×1. Then

〈Ax, y〉 = y∗Ax = (A∗y)∗x = 〈x,A∗y〉.

Similarly,
〈A∗y, x〉 = x∗A∗y = (Ax)∗y = 〈y,Ax〉.

□



Theorem

Let A ∈ Cn×n be a unitary or an orthogonal matrix.

1. For each pair of vectors x, y, 〈Ax,Ay〉 = 〈x, y〉. In particular,
Ax = x for any x.

2. The columns of A are orthogonal and each is of norm 1.

3. The rows of A are orthogonal, and each is of norm 1.

Proof: (1) 〈Ax,Ay〉 = 〈x,A∗Ay〉 = 〈x, y〉.
Take x = y for the second equality.

(2) Since A∗A = I, the ith row of A∗ multiplied with the jth column
of A gives δij. However, this product is simply the inner product of
the jth column of A with the ith column of A.

(3) It follows from (2).
Also, considering AA∗ = I, we get this result. □



Linear Combinations

If v = (a1, . . . , an)
T ∈ Fn×1, then v = a1e1 + · · ·+ anen.

We generalize and give a name to such an expression.

Let v1, . . . , vm, v ∈ Fn. We say that v is a linear combination of the
vectors v1, . . . , vm iff there exist scalars α1, . . . ,αm ∈ F such that

v = α1v1 + · · ·+ αmvm.

In F2×1, one linear combination of v1 = (1, 1)T and v2 = (1,−1)T is
(3, 1)T . Why?

2


1
1


+ 1


1

−1


=


3
1


.

Is (4,−2)T a linear combination of v1 and v2? Yes, since


4
−1


= 1


1
1


+ 3


1

−1


.



Linear Independence

In fact, every vector in F2×1 is a linear combination of v1 and v2.
Reason: 

a
b


=

a + b
2


1
1


+

a − b
2


1

−1


.

However, every vector in F2×1 is not a linear combination of (1, 1)T

and (2, 2)T . Reason?
Any linear combination of these two vectors is a multiple of (1, 1)T .
Then (1, 0)T is not a linear combination of these two vectors.

The vectors v1, . . . , vm in Fn are called linearly dependent iff at least
one of them is a linear combination of others.
The vectors are called linearly independent iff none of them is a
linear combination of others.



A Characterization

For example, (1, 1), (1,−1), (4,−1) are linearly dependent vectors
whereas (1, 1), (1,−1) are linearly independent vectors.

Theorem: The vectors v1, . . . , vm ∈ Fn are linearly independent iff for
α1, . . . ,αm ∈ F,

α1v1 + · · ·+ αmvm = 0 implies α1 = · · · = αm = 0.

Proof: If the vectors v1, . . . , vm are linearly dependent then one of
them is a linear combination of others. That is, we have an
i ∈ {1, . . . ,m} such that

vi = α1v1 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αmvm.

α1v1 + · · ·+ αi−1vi−1 + (−1)vi + αi+1vi+1 + · · ·+ αmvm = 0.



Proof Contd.

Conversely, suppose we have scalars α1, . . . ,αm not all zero such that

α1v1 + · · ·+ αmvm = 0.

Suppose αj ∕= 0. Then

vj = −α1

αj
v1 − · · ·− αj−1

αj
vj−1 −

αj+1

αj
vj+1 − · · ·− αm

αj
vm.

That is, v1, . . . , vn are linearly dependent. □
Caution: To show linear independence, you should start with the
assumption that a1v1 + · · ·+ anvn = 0. Then, conclude that
a1 = 0, . . . , an = 0.



Example 2

Are the vectors (1, 1, 1), (2, 1, 1), (3, 1, 0) linearly independent?

Let
a(1, 1, 1) + b(2, 1, 1) + c(3, 1, 0) = (0, 0, 0).

Comparing the components, we have

a + 2b + 3c = 0, a + b + c = 0, a + b = 0.

The last two equations imply that c = 0. Substituting in the first, we
see that a + 2b = 0. This and the equation a + b = 0 give b = 0.
Then it follows that a = 0.

We conclude that the given vectors are linearly independent.



LI is helpful

Consider the system of linear equations:

x1 +2 x2 −3 x3 = 2
2 x1 − x2 +2 x3 = 3
4 x1 +3 x2 −4 x3 = 7

Here, we find that the third equation is redundant, since 2 times the
first plus the second gives the third. Take the coefficients as row
vectors:

v1 = (1, 2, −3, 2), v2 = (2, −1, 2, 3), v3 = (4, 3, −4, 7).

We see that v3 = 2v1 + v2, as it should be.
Here, the vectors v1, v2, v3 are linearly dependent.
But the vectors v1, v2 are linearly independent.
Thus, solving the given system of linear equations is the same thing as
solving the system with only first two equations.



Orthogonality

Let v1, . . . , vn ∈ Fn. We say that these vectors are orthogonal iff
〈vi, vj〉 = 0 for all pairs of indices i, j with i ∕= j.

Theorem: Any orthogonal list of nonzero vectors in Fn is linearly
independent.

Proof: Let v1, . . . , vn ∈ Fn be nonzero vectors.

For scalars a1, . . . , an, let a1v1 + · · ·+ anvn = 0.

Take inner product of both the sides with v1.

Since 〈vi, v1〉 = 0 for each i ∕= 1, we obtain 〈a1v1, v1〉 = 0.

But 〈v1, v1〉 ∕= 0. Therefore, a1 = 0.

Similarly, by taking inner product of a1v1 + · · ·+ anvn with vi, it
follows that each ai = 0. □



Span

We denote the set of all linear combinations of vectors v1, . . . , vn by
span(v1, . . . , vn); and read it as the span of the vectors v1, . . . , vn.

For example, in R2, span(1, 1) = {α(1, 1) : α ∈ R}.

This is a straight line passing through the origin and the point (1, 1).

Similarly, in R3, span

(1, 1, 0), (0, 1, 2)


is the plane passing through

the origin and the points (1, 1, 0), (0, 1, 2).

In C2, span(1, 1) = {α(1, 1) : α ∈ C}.

We cannot describe it as we have done in the case of R2.

Notice that Fn = span(e1, . . . , en).



Advantage of having orthogonal vectors

Suppose v1, . . . vm are orthogonal vectors in Fn. v ∈ span(v1, . . . , vm)
implies v = a1v1 + · · ·+ amvm. Then 〈v, vi〉 = ai〈vi, vi〉.

Therefore, assuming that vi ∕= 0, we get ai =
〈v,vi〉
〈vi,vi〉 , i.e., each

coefficient can be expressed using v and vi.

To understand the linear combination and hence the span, it is highly
advantageous to have orthogonal vectors.

Suppose we are given with m number of vectors from Fn. How do we
construct orthogonal vectors v1, . . . , vk such that the span is retained?



How to orthogonalize?

We aim at constructing orthogonal vectors v1, . . . , vk from the given
vectors u1, . . . , um ∈ Fn so that

span(v1, . . . , vk) = span(u1, . . . , um), k ≤ m.

Consider just two vectors, say u1, u2 on the plane.
Assume that they are linearly independent.

Keep v1 = u1.
Take out the projection of u2 on u1 to get v2. Then v2 ⊥ v1.

What is the projection of u2 on u1?
Its length is 〈u2, u1〉. Its direction is that of u1, i.e., u1/u1. Thus

v1 = u1, v2 = u2 −
〈u2, v1〉
〈v1, v1〉

v1.

We may continue this process of taking out projections if more than
two vectors in Fn are given.



Gram-Schmidt Orthogonalization

Theorem: Let u1, u2, . . . , um ∈ Fn. Define

v1 = u1

v2 = u2 −
〈u2, v1〉
〈v1, v1〉

v1

...

vm = um − 〈um, v1〉
〈v1, v1〉

v1 − · · ·− 〈um, vm−1〉
〈vm−1, vm−1〉

vm−1.

In the above process, if vi = 0, then both ui and vi are ignored for the
rest of the steps. After ignoring such ui and vis suppose we obtain the
vectors as vj1, . . . , vjk. Then vj1, . . . , vjk are orthogonal and
span(vj1, . . . , vjk) = span{u1, . . . , um}.
Further, if vi = 0 for i > 1, then ui ∈ span{u1, . . . , ui−1}.



Sketch of Proof

We verify algebraically our geometric intuition:

v1 = u1, v2 = u2 −
〈u2, v1〉
〈v1, v1〉

v1.

Hence

〈v2, v1〉 =

u2 −

〈u2, v1〉
〈v1, v1〉

v1, v1

= 〈u2, v1〉 −

〈u2, v1〉
〈v1, v1〉

〈v1, v1〉 = 0.

If v2 = 0, then u2 is a scalar multiple of u1.

If v2 ∕= 0, then u1, u2 are linearly independent.

By induction, we can prove that for each i ≥ 1, vi+1 is orthogonal to
v1, . . . , vi.

We need to prove that both the sets spans the same set.



Sketch of Proof Contd.

If x1, . . . , xr ∈ span(y1, . . . , ys), then
span(x1, . . . , xr) ⊆ span(y1, . . . , ys).

For, if v = α1x1 + · · ·+ αrxr and xi = ai1v1 + · · · aisvs, then
substituting for each xi in the previous expression and combining
terms, we get

v =

s

i=1

(α1a1i + · · ·+ αrari)vi ∈ span(v1, . . . , vs).

If ui is a linear combination of u1, . . . , ui−1, then
span(u1, . . . , ui−1) = span(u1, . . . , ui).

Now observe inductively that v1, . . . , vi ∈ span(u1, . . . , ui).

From the algorithm, it can also be observed, using induction, that
u1, . . . , ui ∈ span(v1, . . . , vi).

Therefore, span(u1, . . . , ui) = span(v1, . . . , vi) for each i ≥ 1. □



Example 3

Orthogonalize u1 = (1, 0, 0), u2 = (1, 1, 0), u3 = (1, 1, 1).

v1 = (1, 0, 0).

v2 = u2 −
〈u2, v1〉
〈v1, v1〉

v1 = (1, 1, 0)− (1, 1, 0) · (1, 0, 0)
(1, 0, 0) · (1, 0, 0)

(1, 0, 0) = (0, 1, 0).

v3 = u3 −
〈u3, v1〉
〈v1, v1〉

v1 −
〈u3, v2〉
〈v2, v2〉

v2

= (1, 1, 1)− (1, 1, 1) · (1, 0, 0)(1, 0, 0)− (1, 1, 1) · (0, 1, 0)(0, 1, 0)

= (1, 1, 1)− (1, 0, 0)− (0, 1, 0) = (0, 0, 1).

The set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is orthogonal; and span of the
new vectors is the same as span of the old ones, which is R3.



Example 4

Use Gram-Schmidt orthogonalization on the vectors u1 = (1, 1, 0, 1),
u2 = (0, 1, 1,−1) and u3 = (1, 3, 2,−1).

v1 = (1, 1, 0, 1).

v2 = u2 −
〈u2, v1〉
〈v1, v1〉

v1 = (0, 1, 1,−1).

v3 = u3 −
〈u3, v1〉
〈v1, v1〉

v1 −
〈u3, v2〉
〈v2, v2〉

v2

= (1, 3, 2,−1)− (1, 1, 0, 1)− 2(0, 1, 1,−1) = (0, 0, 0, 0).

Now, u1, u2 are already orthogonal, Gram-Schmidt process returned
v2 = u2.
Next, u3 = u1 + 2u2.



Example 5

Consider orthogonalizing u1 = (1, 2, 2, 1), u2 = (2, 1, 0,−1),
u3 = (4, 5, 4, 1) and u4 = (5, 4, 2,−1).

v1 = (1, 2, 2, 1).

v2 = ( 17
10 ,

2
5 ,−

3
5 ,−

13
10).

v3 = (0, 0, 0, 0).

So, we ignore v3; and mark that u3 is a linear combination of u1 and
u2. Next, we compute

v4 = u4 −
〈u4, v1〉
〈v1, v1〉

v1 −
〈u4, v2〉
〈v2, v2〉

v2 = 0.

Therefore, we conclude that u4 is a linear combination of u1 and u2.
In fact, u3 = 2u1 + u2 and u4 = u1 + 2u2. Finally, we obtain the
orthogonal vectors v1, v2 such that span(u1, u2, u3, u4) = span(v1, v2).



Trace
The sum of all diagonal entries of a square matrix is called the trace
of the matrix.

If A = [aij] ∈ Fm×m, then tr(A) = a11 + · · ·+ amm =
m

k=1 akk.

tr(Im) = m and tr(0) = 0.
The trace satisfies the following properties:

Let A,B ∈ Fm×m. Let β ∈ F.
1. tr(βA) = β tr(A).
2. tr(AT) = tr(A) and tr(A∗) = tr(A).
3. tr(A + B) = tr(A) + tr(B) and tr(AB) = tr(BA).
4. tr(A∗A) = 0 iff tr(AA∗) = 0 iff A = 0.

The last one follows from the observation that

tr(A∗A) =
m

i=1

m

j=1

|aij|2 = tr(AA∗).

Find two square matrices A,B such that tr(AB) ∕= tr(A) tr(B).



Determinant

Besides trace, one more quantity associated with a square matrix is
very helpful. It is called the determinant.

Let A = [aij] ∈ Fn×n. Its determinant, written as det(A), is defined
inductively as follows:

If n = 1, then det(A) = a11.

If n > 1, then det(A) =
n

j=1(−1)1+j a1j det(A1j)

where the matrix A1j ∈ F(n−1)×(n−1) is obtained from A by deleting
the first row and the jth column of A.

We also use two vertical closing bars to denote the determinant.

Example 6:

a11 a12
a21 a22

 = (−1)1+1a11det[a22]+(−1)1+2a12det[a21] = a11a22−a12a21.



Example 7

det




1 2 3
2 3 1
3 1 2



 =



1 2 3
2 3 1
3 1 2



= (−1)1+1×1×

3 1
1 2

+(−1)1+2×2×

2 1
3 2

+(−1)1+3×3×

2 3
3 1



= 1 ×

3 1
1 2

− 2 ×

2 1
3 2

+ 3 ×

2 3
3 1



= (3 × 2 − 1 × 1)− 2 × (2 × 2 − 1 × 3) + 3 × (2 × 1 − 3 × 3)

= 5 − 2 × 1 + 3 × (−7) = −18.

Fact: The determinant of a triangular matrix is the product of its
diagonal entries.



Adjugate

Let A ∈ Fn×n.

The sub-matrix of A obtained by deleting the ith row and the jth
column is written as Aij.

The (i, j)th co-factor of A is (−1)i+jdet(Aij); it is denoted by Cij(A).

The adjugate of A is the n × n matrix obtained by taking transpose of
the matrix whose (i, j)th entry is Cij(A); it is denoted by adj(A).

That is, adj(A) ∈ Fn×n is the matrix whose (i, j)th entry is the (j, i)th
co-factor Cji(A).

Denote by Aj(x) the matrix obtained from A by replacing the jth row
of A by a (new) row vector x ∈ Fn×1.

We list some important facts about the determinant.



Determinant: facts

Let A ∈ Fn×n. Let i, j, k ∈ {1, . . . , n}. Then the following statements
are true:

1. det(A) =


i aijCij(A) =


i aij(−1)i+j det(Aij) for any fixed j.

2. For any j ∈ {1, . . . , n},
det(Aj(x + y) ) = det(Aj(x) ) + det(Aj(y) ).

3. For any α ∈ F, det(Aj(αx) ) = α det(Aj(x) ).

4. For A ∈ Fn×n, let B ∈ Fn×n be the matrix obtained from A by
interchanging the jth and the kth columns, where j ∕= k. Then
det(B) = −det(A).

5. If a column of A is replaced by that column plus a scalar multiple
of another column, then determinant does not change.

6. Columns of A are linearly dependent iff det(A) = 0.

7. All of (2)-(6) are true for rows instead of columns.



Facts Contd.

8. det(A) =


j aijCij(A) =


j aij(−1)i+j det(Aij) for any fixed i.

9. If A is a triangular matrix, then det(A) is equal to the product of
the diagonal entries of A.

10. det(AB) = det(A) det(B) for any matrix B ∈ Fn×n.

11. If A is invertible, then det(A) ∕= 0 and det(A−1) = (det(A))−1.

12. If B = P−1AP for some invertible matrix P, then
det(A) = det(B).

13. A is invertible iff columns of A are linearly independent iff rows
of A are linearly independent iff det(A) ∕= 0.

14. det(AT) = det(A).

15. A adj(A) = adj(A)A = det(A) I.



Example 8 (Using row operations)



1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1



R1
=



1 0 0 1
0 1 0 2
0 −1 1 2
0 −1 −1 2



R1: Replace 2nd, 3rd, 4th rows with those plus first.

With R2: Replace 3rd and 4th with those plus 2nd,

R2
=



1 0 0 1
0 1 0 2
0 0 1 4
0 0 −1 4



R3
=



1 0 0 1
0 1 0 2
0 0 1 4
0 0 0 8


= 8.

R3: Replace 4th with that plus 3rd.
Then, its values is 8, since we have got a triangular matrix, whose
determinant is the product of diagonal entries.



Theorem on Determinant of special matrices

1. If A is hermitian, then det(A) ∈ R.
2. If A is unitary, then |det(A)| = 1.

3. If A is orthogonal, then det(A) = ±1.

Proof: (1) Let A ∈ Cn×n be hermitian. Then A = A∗. It implies

det(A) = det(A∗) = det(A) = det(A).

Hence, det(A) ∈ R.

(2) Let A ∈ Cn×n be unitary. Then A∗A = AA∗ = I. Now,

1 = det(I) = det(A∗A) = det(A)det(A) = det(A)det(A) = |det(A)|2.

Hence |det(A)| = 1.

(3) Let A ∈ Rn×n be an orthogonal matrix. That is, A ∈ Rn×n and A
is unitary. Then det(A) ∈ R and by (2), |det(A)| = 1. That is,
det(A) = ±1. □



Linear Equations

x1 + x2 = 3

x1 − x2 = 1

has a unique solution x1 = 2, x2 = 1. What about

x1 + x2 = 3

x1 − x2 = 1

2x1 − x2 = 3

x1 = 2, x2 = 1 satisfies the third. So the extra equation does not put
any constraint on the solutions that we obtained earlier. What about

x1 + x2 = 3

x1 − x2 = 1

2x1 + x2 = 3

x1 = 2, x2 = 1 is the solution of first two. But third is not satisfied by
it. So, the system has no solution.



Linear equations cont.

What about
x1 + x2 = 3

The old solution x1 = 2, x2 = 1 is still a solution of this system.
But x1 = 1, x2 = 2 is also a solution. It has infinitely many
solutions. What about

x1 + x2 = 3

2x1 + 2x2 = 6

3x1 + 3x2 = 9

It again has infinitely many solutions.
We see that the number of equations really does not matter, but the
number of independent equations does matter.

We will tackle these things in a more systematic way.

Our tools will be matrices.



Three kinds of row operations

While solving a system of linear equations, we add and subtract
equations, multiply an equation with a nonzero constant, and
exchange two equations.

These heuristics give rise to the row operations on a matrix.

There are three kinds of Elementary Row Operations for a matrix
A ∈ Fm×n:

ER1. Exchange of two rows.

ER2. Multiplication of a row by a nonzero constant.

ER3. Adding to a row a nonzero multiple of another row.



Notation

When a matrix B is obtained from A by using an elementary row
operation O, we will write A O−→ B.

For elementary row operations, let α be a nonzero scalar.

1. Ri ↔ Rj : The ith row and the jth row are exchanged.

2. Ri ← αRi : The ith row is multiplied by α.

3. Ri ← Ri + αRj : To the ith row α times the jth row is added.

A finite sequence of elementary row operations is called a row
operation.

In general, when a matrix B is obtained from A by using a row
operation O, we will write A O−→ B as earlier.

In this case, O will be a finite sequence of elementary row operations
instead of just one.



Example 1

See the following computation on the first matrix.



1 1 1
2 2 2
3 3 3



 R3←R3−3R1−→




1 1 1
2 2 2
0 0 0



 R2←R2−2R1−→




1 1 1
0 0 0
0 0 0



 .

We get the second matrix from the first by adding to its third row
(−3) times the first row.

Similarly, the third matrix is obtained from the second by adding to its
second row (−2) times the first.

Therefore, we may write




1 1 1
2 2 2
3 3 3



 O−→




1 1 1
0 0 0
0 0 0



 ,

where O = R3 ← R3 − 3R1, R2 ← R2 − 2R1.



Elementary matrices

We capture elementary row operations as matrix products with the
help of three types of elementary matrices :

1. E[i, j] is the matrix obtained from I by exchanging its ith and jth
rows.

2. Eα[i] is the matrix obtained from I by multiplying α to its ith
row; α ∕= 0.

3. Eα[i, j] is the matrix obtained from I by adding to its ith row α
times the jth row; α ∕= 0.

For instance,

E[1, 2] =




0 1 0
1 0 0
0 0 1



 , E−1[2] =




1 0 0
0 −1 0
0 0 1



 , E2[3, 1] =




1 0 0
0 1 0
2 0 1



 .



Example 2

E[1, 2]A =




0 1 0
1 0 0
0 0 1








1 1 1
2 2 2
3 3 3



 =




2 2 2
1 1 1
3 3 3





A
R1↔R2−→




2 2 2
1 1 1
3 3 3





E−3[2]A =




1 0 0
0 −3 0
0 0 1








1 1 1
2 2 2
3 3 3



 =




1 1 1

−6 −6 −6
3 3 3





A
R2←−3R2−→




1 1 1

−6 −6 −6
3 3 3







Example 2 Contd.

E−3[3, 1]A =




1 0 0
0 1 0

−3 0 1








1 1 1
2 2 2
3 3 3



 =




1 1 1
2 2 2
0 0 0





A
R3←R3−3R1−→




1 1 1
2 2 2
0 0 0





What do you observe?



Observation

Let A ∈ Fm×n. Consider E[i, j], Eα[i], Eα[i, j] ∈ Fm×m for α ∕= 0.
Then the following are true:

1. A
Ri↔Rj−→ E[i, j]A.

That is, E[i, j]A is the matrix obtained from A by exchanging its
ith and jth rows.

2. A Ri←αRi−→ Eα[i]A.

That is, Eα[i]A is the matrix obtained from A by multiplying α to
its ith row.

3. A
Ri←Ri+αRj−→ Eα[i, j]A.

That is, Eα[i, j]A is the matrix obtained from A by adding to the
ith row α times the jth row.



Example 3





1 1 1 2 1
1 2 1 1 1
3 5 3 4 3

−1 0 −1 −3 −1




O1−→





1 1 1 2 1
0 1 0 −1 0
0 2 0 −2 0
0 1 0 −1 0




O2−→





1 1 1 2 1
0 1 0 −1 0
0 0 0 0 0
0 0 0 0 0



 .

Here, O1 = R2 ← R2 − R1, R3 ← R3 − 3R1, R4 ← R4 + R1 and
O2 = R3 ← R3 − 2R2, R4 ← R4 − R2.

The corresponding elementary matrices are

In O1: E−1[2, 1], E−3[3, 1], E1[4, 1] and
In O2: E−2[3, 2], E−1[4, 2].

Hence the third matrix is equal to
E−1[4, 2]E−2[3, 2]E1[4, 1]E−3[3, 1]E−1[2, 1] times the first matrix.



RREF

We use elementary row operations for bringing a matrix to a nice
form.

The first nonzero entry (from left) in a nonzero row of a matrix is
called a pivot. We denote a pivot in a row by putting a box around it.
A column where a pivot occurs is called a pivotal column.

A matrix A ∈ Fm×n is said to be in row reduced echelon form iff the
following conditions are satisfied:

(1) Each pivot is equal to 1.

(2) The column index of the pivot in the (i + j)th row is greater than
the column index of the pivot in the ith row.

(3) In a pivotal column, all entries other than the pivot, are zero.

(4) All zero rows are at the bottom.



Example 4

The matrix




1 2 0 0
0 0 1 0
0 0 0 1



 is in row reduced echelon form,

whereas the following are not in row reduced echelon form:




0 1 3 0
0 0 0 2
0 0 0 0
0 0 0 0



 ,





0 1 3 1
0 0 0 1
0 0 0 0
0 0 0 0



 ,





0 1 3 0
0 0 0 1
0 0 0 1
0 0 0 0




,





0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1




.

Point out which of the defining properties is/are violated.

We will see how to use the elementary row operations and hence
elementary matrices to reduce any matrix to RREF.



Reduction to RREF
1. Set the work region R as the whole matrix A.

2. If all entries in R are 0, then stop.

3. If there are nonzero entries in R, then find the leftmost nonzero
column. Mark it as the pivotal column.

4. Find the topmost nonzero entry in the pivotal column. Suppose it
is α. Box it; it is a pivot.

5. If the pivot is not on the top row of R, then exchange the row of A
which contains the top row of R with the row where the pivot is.

6. If α ∕= 1, then replace top row of R in A by 1/α times that row.

7. Bring all entries, except the pivot, in the pivotal column to 0 by
replacing each row above and below the top row of R using
elementary row operations in A with that row & the top row of R.

8. Find the sub-matrix to the right and below the pivot. If no such
sub-matrix exists, then stop. Else, reset the work region R to this
sub-matrix, and go to Step 2.



Example 5

A =





1 1 2 0
3 5 7 1
1 5 4 5
2 8 7 9




O1−→





1 1 2 0
0 2 1 1
0 4 2 5
0 6 3 9



 O1 =
R2 ← R2 − 3R1,
R3 ← R3 − R1,
R4 ← R4 − 2R1.

R2←1/2R2−→





1 1 2 0

0 1 1
2

1
2

0 4 2 5
0 6 3 9




O2−→





1 0 3
2 − 1

2

0 1 1
2

1
2

0 0 0 3
0 0 0 6




O2 =

R1 ← R1 − R2,
R3 ← R3 − 4R2,
R4 ← R4 − 6R2.

R3←1/3R3−→





1 0 3
2 − 1

2

0 1 1
2

1
2

0 0 0 1
0 0 0 6




O3−→





1 0 3
2 0

0 1 1
2 0

0 0 0 1
0 0 0 0




O3 =

R1 ← R1 + 1/2R3,
R2 ← R2 − 1/2R3,
R4 ← R4 − 6R3.

The final matrix is in RREF, and it is equal to
E−6[4, 3]E−1/2[2, 3]E1/2[1, 3]E1/3[3]E−6[4, 2]E−4[3, 2]

E−1[2, 1]E1/2[2]E−2[4, 1]E−1[3, 1]E−3[2, 1]A.



Example 6

Consider A =




1 0 0
0 1 0
0 0 0



 , B =




1 0 0
0 0 0
0 0 1



 . Then

RREF(A) =




1 0 0
0 1 0
0 0 0



 , RREF(B) =




1 0 0
0 0 1
0 0 0



 .

AB =




1 0 0
0 0 0
0 0 0



 , RREF(AB) =




1 0 0
0 0 0
0 0 0



 .

RREF(A)RREF(B) =




1 0 0
0 0 1
0 0 0



 ∕= RREF(AB).

RREF of a product need not be equal to the product of RREFs.



Elementary matrices Invertible?

Theorem
A square matrix is invertible iff it is a product of elementary matrices.

Proof: E[i, j] is its own inverse, E1/α[i] is the inverse of Eα[i], and
E−α[i, j] is the inverse of Eα[i, j]. So, any product of elementary
matrices is invertible.

Conversely, suppose that A is invertible. Let EA−1 be the RREF of
A−1. If EA−1 has a zero row, then EA−1A also has a zero row. That
is, E has a zero row. Wrong, since E is invertible. So, EA−1 does not
have a zero row. Then each row in the square matrix EA−1 has a
pivot. But the only square matrix in RREF having a pivot at each row
is the identity matrix. Therefore, EA−1 = I. That is, A = E, a product
of elementary matrices. ✷



RREF is unique

Suppose A is an m × n matrix. Instead of using our algorithm for
RREF reduction, suppose you use another algorithm for reducing A to
RREF. But restrict yourself to using only elementary row operations
in any order you like in this reduction. Then, it is guaranteed that you
end up with the same matrix in RREF.

This fact is encapsulated by the following result.

Theorem: Let A ∈ Fm×n. There exists a unique matrix in Fm×n in row
reduced echelon form obtained from A by elementary row operations.

The proof of this fact uses the result that elementary matrices are
invertible and their inverses are also elementary matrices. Further, it
uses the fact that each invertible matrix is a product of elementary
matrices.

See the classnotes for its proof.



Proof of uniqueness of RREF

Observe that elementary matrices are invertible and their inverses are
also elementary matrices.
We see that B = E1A and C = E2A for some invertible matrices
E1,E2 ∈ Fm×m.
Now, B = E1A = E1(E2)

−1C.
Write E = E1(E2)

−1 to have B = EC, where E is invertible.

We consider a particular case first, when n = 1. Here, B and C are
column vectors in RREF.
Thus, they can be zero vectors or e1.
Since B = EC, where E is invertible, it cannot happen that one is the
zero vector and the other is e1.
Hence, either both are zero vectors or both are e1. In either case,
B = C.



Proof Cont.
For n > 1, assume, on the contrary, that B ∕= C.
Then there exists a column index, say k ≥ 1, such that the first k − 1
columns of B coincide with the first k − 1 columns of C, respectively;
and the kth column of B is not equal to the kth column of C.
Let u be the kth column of B, and let v be the kth column of C.
We have u = Ev and u ∕= v.

Suppose the pivotal columns that appear within the first k − 1
columns in C are e1, . . . , ej.
Then e1, . . . , ej are also the pivotal columns in B that appear within
the first k − 1 columns.
Since B = EC, we have C = E−1B; and consequently,

e1 = Ee1 = E−1e1, . . . , ej = Eej = E−1ej.

The column vector u may be a pivotal column in B or a non-pivotal
column in B. Similarly, v may be pivotal or non-pivotal in C.

If both u and v are pivotal columns, then both are equal to ej+1. This
contradicts u ∕= v.



Proof Cont.

So, assume that u is non-pivotal in B or v is non-pivotal in C.

If u is non-pivotal in B, then u = α1e1 + · · ·+ αjej for some scalars
α1, . . . , αj. (See it.) Then

v = E−1u = α1E−1e1 + · · ·+ αjE−1ej = α1e1 + · · ·+ αjej = u.

This contradicts u ∕= v.

If v is a non-pivotal column in C, then v = β1e1 + · · ·+ βjej for some
scalars β1, . . . , βj. Then

u = Ev = β1Ee1 + · · ·+ βjEej = β1e1 + · · ·+ βjej = v.

Here also, u = v, which is a contradiction.

Therefore, B = C. ✷



RREF-Observations

Suppose A has been reduced to its RREF.

Let Ri1, . . . ,Rir be the rows of A which have become the nonzero
rows in the RREF, and other rows have become the zero rows.

Also, suppose Cj1, . . . ,Cjr for j1 < · · · < jr, be the columns of A
which have become the pivotal columns in the RREF, other columns
being non-pivotal.





− Ri1 −
...

− Rir −
0 0 0




,




∗ | ∗ | · · · | ∗

∗ Cj1 ∗ Cj2
... Cjr ∗

∗ | ∗ | · · · | ∗



 .



Observations Contd.

Using the last theorem, we see that the following are true:

1. All rows of A other than Ri1, . . . ,Rir are linear combinations of
Ri1, . . . ,Rir.

2. The columns Cj1, . . . ,Cjr have respectively become e1, . . . , er in
the RREF.

3. All columns of A other than Cj1, . . . ,Cjr are linear combinations
of Cj1, . . . ,Cjr.

4. If e1, . . . , ek are all the pivotal columns in the RREF that occur to
the left of a non-pivotal column, then the non-pivotal column is
in the form (a1, . . . , ak, 0, . . . , 0)T . Further, if a column C in A
has become this non-pivotal column in the RREF, then
C = a1Cj1 + · · ·+ akCjk.

5. If A is a square matrix, then A is invertible iff its RREF is I.



Example 7

Consider the matrix and its RREF in Example 5. There, we had

A =





1 1 2 0
3 5 7 1
1 5 4 5
2 8 7 9




RREF−→





1 0 3/2 0
0 1 1/2 0
0 0 0 1
0 0 0 0




.

Our observation implies that

1. R4 is a linear combination of R1, R2, R3. Indeed,
R4 = 3R1 − R2 + 2R3.

2. The pivotal columns in the RREF are e1, e2, e3.

3. col(3) is a liner combination of the pivotal columns, which are
col(1), col(2) and col(4).

4. Specifically, col(3) of A = 3/2 col(1) + 1/2 col(2).



Rank of a matrix

The number of pivots in the RREF of a matrix A is called the rank of
A, and it is denoted by rank(A).

Since RREF of a matrix is unique, rank is well-defined.

Further, a matrix in RREF is invertible iff it is equal to the identity
matrix.

Reason: Suppose B is a matrix in RREF.
If B is invertible, then its RREF does not have a zero row.
So, the RREF is equal to I.
But B is already in RREF. So, B = I.
Conversely, if B = I, then it is in invertible, and also it is in RREF.



Invertibility & Rank

Theorem A square matrix is invertible iff its rank is equal to its order.

Proof: Let A be a square matrix of order n. Let B be the RREF of A.
Then B = EA, where E is invertible.

Let A be invertible. Then B is invertible.
Since B is in RREF, B = I. So, rank(A) = n.

Conversely, suppose rank(A) = n.
Then B has n number of pivots. Thus B = I.
In that case, A = E−1B = E−1; and A is invertible. ✷



If not invertible?

Suppose A is an n × n matrix.
If rank(A) = r < n, then there are r number of linearly independent
columns in A and other columns are linear combinations of these r
columns.

The linearly independent columns correspond to the pivotal columns
in the RREF of A.

Also, there exist r number of linearly independent rows of A such that
other rows are linear combinations of these r rows.

The linearly independent rows correspond to the nonzero rows in the
RREF of A.



Example 8

Let A =





1 1 1 2 1
1 2 1 1 1
3 5 3 4 3

−1 0 −1 −3 −1




RREF−→





1 0 1 3 1
0 1 0 −1 0
0 0 0 0 0
0 0 0 0 0



 .

From the RREF, we conclude that rank(A) = 2.

row(1), row(2) are linearly independent, and

col(1), col(2) are linearly independent.

col(3) = col(5) = col(1), col(4) = 3 col(1)− col(2).

Notice also that
row(3) = row(1) + 2 row(2), row(4) = row(2)− 2 row(1).
However, the RREF does not give this information.



Extracting linearly independent vectors

Given m number of vectors from Fn:

u1 = (u11, . . . , u1n), . . . , um = (um1, . . . , umn).

How to extract linearly independent vectors retaining the span?

Form the matrix A with rows as u1, . . . , um.

Reduce A to its RREF, say, B.

Suppose there are r number of nonzero rows in B.

Then the rows corresponding to those rows in A are linearly
independent.

The other rows, which have become the zero rows in B, are linear
combinations of those r rows.



Example 9

From among the vectors (1, 2, 2, 1), (2, 1, 0,−1), (4, 5, 4, 1),
(5, 4, 2,−1), find linearly independent vectors; and point out which
are the linear combinations of these independent ones.





1 2 2 1
2 1 0 −1
4 5 4 1
5 4 2 −1




O1−→





1 2 2 1
0 −3 −4 −3
0 −3 −4 −3
0 −6 −8 −6





O2−→





1 0 −2/3 −1
0 1 4/3 1
0 0 0 0
0 0 0 0





O1 = R2 ← R2 − 2R1, R3 ← R3 − 4R1, R4 ← R4 − 5R1 and
O2 = R2 ← −3R2, R1 ← R1 −2R2, R3 ← R3 +3R2, R4 ← R4 +6R2.



Example 9 Contd.

Notice that no row exchanges have been applied in this reduction.

The nonzero rows are the first and the second rows.

Therefore, the linearly independent vectors are

(1, 2, 2, 1), (2, 1, 0,−1).

The third and the fourth are linear combinations of these.

Indeed,
(4, 5, 4, 1) = 2(1, 2, 2, 1) + 1(2, 1, 0,−1).

(5, 4, 2,−1) = 1(1, 2, 2, 1) + 2(2, 1, 0,−1).

Also, the span of all the four rows is equal to

span

(1, 2, 2, 1), (2, 1, 0,−1)



which is also equal to span

(1, 2, 2, 1), (0, 1, 4/3, 1)


.



More is not good
Why there cannot be more than 3 linearly independent vectors in R3?

Theorem: Let u1, . . . , uk, v1, . . . , vm ∈ Fn. Suppose each of
v1, . . . , vm is a linear combination of u1, . . . , uk. If m > k, then
v1, . . . , vm are linearly dependent.

Proof: Consider all vectors as row vectors. Form the matrix A by
taking its rows as u1, . . . , uk, v1, . . . , vm in that order. Now,
r = rank(A) ≤ k.
Similarly, construct the matrix B by taking its rows as
v1, . . . , vm, u1, . . . , uk, in that order. Since one is obtained from the
other by re-ordering the rows, both A and B have the same RREF.
Therefore, rank(B) = rank(A) = r ≤ k.
If m > k, then m > r = rank(B). Thus, out of v1, . . . , vm at most r
vectors can be linearly independent. It follows that v1, . . . , vm are
linearly dependent. ✷

Theorem: Given any n vectors in Fm there exists a unique r ≤ n such
that some r of these n vectors are linearly independent, and other
n − r vectors are linear combinations of these r vectors.



AB = I ⇒ BA = I

Let A and B be square matrices satisfying AB = I.
Let EA be the RREF of A, where E is a suitable product of elementary
matrices.
If A is not invertible, then EA has a zero row.
Then EAB also has a zero row.
However, EAB = E does not have a zero row.
Thus A is invertible; B = A−1 is invertible, and BA = I. ✷

This is not true for non-square matrices, in general:


2 0 −1
1 1 −1




1 1
0 1
1 2



 =


1 0
0 1


,




1 1
0 1
1 2






2 0 −1
1 1 −1


=




3 1 −2
1 1 −1
4 2 −3



 .



A and PAQ

Let u1, . . . , ur, u ∈ Fm×1. Let a1, . . . , ar ∈ F. Observe that

u = a1u1 + · · ·+ arur iff Pu = a1Pu1 + · · · arPur.

Taking u = 0, we see that the vectors u1, . . . , ur ∈ Fm×1 are linearly
independent iff Pu1, . . . ,Pur are linearly independent.

Now, if A ∈ Fm×n, then its columns are vectors in Fm×1. The above
equation implies that if there exist r number of columns in A which
are linearly independent and other columns are linear combinations of
these r columns, then the same is true for the matrix PA.
Similarly, let Q ∈ Fn×n be invertible. If there exist r number of rows
of A which are linearly independent and other rows are linear
combinations of these r rows, then the same is true for the matrix AQ.



Rank and Linear independence

These facts, our observation on RREF, and the last theorem can be
used to prove the following theorem.

Theorem: Let A ∈ Fm×n. Then

rank(A) = the maximum number of linearly independent rows in A

= the maximum number of linearly independent columns in A

= rank(At)

= rank(PAQ), where P ∈ Fm×m and Q ∈ Fn×n

are any invertible matrices.



Using elementary row operations

Let A ∈ Fn×n be invertible.

Its inverse can be computed using elementary row operations.

Form the augmented matrix [A | I].

Apply elementary row operations on the augmented matrix so that the
matrix A there reduces to I.

Then the I portion there has been reduced to A−1.



Why does it work?

Since A is invertible, there exists an invertible matrix P such that PA is
I. But P is a product of elementary matrices. And

P[A | I] = [PA |PI] = [I | P] = [I | A−1].

Notice that this reduction is same as reducing A to its RREF.

Of course, if A is invertible, then its RREF is I.

And, if A is not invertible, then during this reduction process, the
matrix in A portion of the augmented matrix [A | I] will have a zero
row.



Example 10

Find B−1 if it exists, where

B =





1 −1 2 0
−1 0 0 2

2 1 −1 −2
0 −2 0 2



 .

The augmented matrix [B | I] with the first pivot looks like:





1 −1 2 0 1 0 0 0
−1 0 0 2 0 1 0 0

2 1 −1 −2 0 0 1 0
0 −2 0 2 0 0 0 1



 .



Example 10 Cntd.

Use elementary row operations. Since a11 = 1, we leave row(1)
untouched. To zero-out the other entries in the first column, we use
the sequence of elementary row operations
R2 ← R2 + R1, R3 ← R3 − 2R1. It gives





1 −1 2 0 1 0 0 0
0 −1 2 2 1 1 0 0
0 3 −5 −2 −2 0 1 0
0 −2 0 2 0 0 0 1



 .

The pivot is −1 in (2, 2) position. Use R2 ← −R2 to get the pivot as 1.





1 −1 2 0 1 0 0 0
0 1 −2 −2 −1 −1 0 0
0 3 −5 −2 −2 0 1 0
0 −2 0 2 0 0 0 1



 .



Example 10 Cntd.

And then R1 ← R1 + R2, R3 ← R3 − 3R2, R4 ← R4 + 2R2 gives





1 0 0 −2 0 −1 0 0
0 1 −2 −2 −1 −1 0 0
0 0 1 4 1 3 1 0
0 0 −4 −2 −2 −2 0 1



 .

Next pivot is 1 in (3, 3) position. Now,
R2 ← R2 + 2R3, R4 ← R4 + 4R3 produces





1 0 0 −2 0 −1 0 0
0 1 0 6 1 5 2 0
0 0 1 4 1 3 1 0
0 0 0 14 2 10 4 1




.



Example 10 Cntd.

Next pivot is 14 in (4, 4) position. Use R4 ← 1/14R4 to make it 1:




1 0 0 −2 0 −1 0 0
0 1 0 6 1 5 2 0
0 0 1 4 1 3 1 0
0 0 0 1 1/7 5/7 2/7 1/14




.

Use R1 ← R1 + 2R4, R2 ← R2 − 6R4, R3 ← R3 − 4R4 to zero-out
the entries in the pivotal column:





1 0 0 0 2/7 3/7 4/7 1/7
0 1 0 0 1/7 5/7 2/7 −3/7
0 0 1 0 3/7 1/7 −1/7 −2/7
0 0 0 1 1/7 5/7 2/7 1/14




.



Example 10 Cntd.

Therefore,

B−1 =
1
7





2 3 4 1
1 5 2 −3
3 1 −1 −2
1 5 2 1

2



 .

Verify: B−1B = BB−1 = I.



Example 11





1 −1 2 0
−1 0 0 2

2 1 −1 −2
1 −2 4 2





We want to find the inverse of this matrix if at all it is invertible.

Augment it with an identity matrix to get




1 −1 2 0 1 0 0 0
−1 0 0 2 0 1 0 0

2 1 −1 −2 0 0 1 0
1 −2 4 2 0 0 0 1



 .

Use elementary row operations. Since a11 = 1, we leave row(1)
untouched. To zero-out the other entries in the first column, we use an
appropriate sequence of elementary row operations.



Example 11 Cntd.

Use R2 ← R2 + R1, R3 ← R3 − 2R1, R4 ← R4 − R1 to obtain




1 −1 2 0 1 0 0 0
0 −1 2 2 1 1 0 0
0 3 −5 −2 −2 0 1 0
0 −1 2 2 −1 0 0 1



 .

The pivot is −1 in (2, 2) position. Use R2 ← −R2 to make it 1.





1 −1 2 0 1 0 0 0
0 1 −2 −2 −1 −1 0 0
0 3 −5 −2 −2 0 1 0
0 −1 2 2 −1 0 0 1



 .



Example 11 Cntd.

Use R1 ← R1 + R2, R3 ← R3 − 3R2, R4 ← R4 + R2 to zero-out all
non-pivot entries in the pivotal column to 0:





1 0 0 −2 0 −1 0 0
0 1 −2 −2 −1 −1 0 0
0 0 1 4 1 3 1 0
0 0 0 0 −2 −1 0 1




.

Since a zero row has appeared in the portion where the original matrix
was, we conclude that the given matrix is not invertible.



Linear System

A system of linear equations, also called a linear system with m
equations in n unknowns looks like:

a11x1 + a12x2 + · · · a1nxn = b1

a21x1 + a22x2 + · · · a2nxn = b2
...

am1x1 + am2x2 + · · · amnxn = bm

As you know, using the abbreviation

x = (x1, . . . , xn)
T , b = (b1, . . . , bm)

T , A = [aij],

the system can be written in the compact form:

Ax = b.



Solvability

If A ∈ Fm×n, x ∈ Fn×1 and b ∈ Fm×1, then the system Ax = b has

m number of equations and n number of unknowns.

The system Ax = b is solvable, also said to have a solution, iff there
exists a vector u ∈ Fn×1 such that Au = b.

Thus, the system Ax = b is solvable iff b is a linear combination of
columns of A.
Also, Ax = b has a unique solution iff b is a linear combination of
columns of A and the columns of A are linearly independent.



Homogeneous System

The homogeneous system corresponding to the system Ax = b is the
system

Ax = 0.

The homogeneous system always has a solution, namely, x = 0.

It has infinitely many solutions iff it has a nonzero solution. Reason?

If u is a solution, so is αu for any scalar α.

To study linear systems, we use the augmented matrix
[A | b] ∈ Fm×(n+1) which has its first n columns as those of A in the
same order, and the (n + 1)th column is b.

We mention some results on Linear systems and postpone their proofs
to Lecture-12.



Theorem on Linear Systems

Let A ∈ Fm×n and let b ∈ Fm×1. The following are true:

1. If [A′ | b′] is obtained from [A | b] by applying a finite sequence
of elementary row operations, then each solution of Ax = b is a
solution of A′x = b′, and vice versa.

2. (Consistency) Ax = b has a solution iff rank([A | b]) = rank(A).

In view of this, we say that a linear system Ax = b is consistent
iff rank([A | b] = rank(A). Only consistent systems have
solutions.

3. If u is a (particular) solution of Ax = b, then each solution of
Ax = b is given by u + y, where y is a solution of the
homogeneous system Ax = 0.



Theorem Contd.

Let A ∈ Fm×n and let b ∈ Fm×1. The following are true:

4 If r = rank([A | b]) = rank(A) < n, then there are n − r
unknowns which can take arbitrary values; and other r unknowns
can be determined from the values of these n − r unknowns.

5 If m < n, then the homogeneous system has infinitely many
solutions.

6 Ax = b has a unique solution iff rank([A | b]) = rank(A) = n.

7 If m = n, then Ax = b has a unique solution iff det(A) ∕= 0.

8 (Cramer’s Rule) If m = n and det(A) ∕= 0, then the solution of
Ax = b is given by xj = det(Aj(b) )/det(A) for 1 ≤ j ≤ n.



Example 12

Is the following system of linear equations consistent?

5x1 + 2x2 − 3x3 + x4 = 7

x1 − 3x2 + 2x3 − 2x4 = 11

3x1 + 8x2 − 7x3 + 5x4 = 8

Reduce the augmented matrix to its RREF:



5 2 −3 1 7
1 −3 2 −2 11
3 8 −7 5 8



 O1−→

With O1 = R1 ← 1/5R1, R2 ← R2 − R1, R3 ← R3 − 3R1, we get



Example 12 Cntd.

O1−→




1 2/5 −3/5 1/5 7/5
0 −17/5 13/5 −11/5 48/5
0 34/5 −26/5 22/5 −19/5





O2−→




1 0 −5/17 −1/17 43/17
0 1 −13/17 11/17 −48/17
0 0 0 0 77/5





Here, O2 = R2 ← −5/17R2, R1 ← R1 − 2/5R2, R3 ← R3 − 34/5R2.

So, rank

[A | b]


> rank(A).

The system is inconsistent. It does not have a solution.



Gauss-Jordan Elimination

Gauss-Jordan elimination converts the augmented matrix to its RREF
for solving linear systems.

Example 13: We change the last equation in Example 12 as follows:

5x1 + 2x2 − 3x3 + x4 = 7

x1 − 3x2 + 2x3 − 2x4 = 11

3x1 + 8x2 − 7x3 + 5x4 = −15

We start with the augmented matrix [A | b] and reduce it to its RREF.



Example 13 Cntd.

Reduction to RREF gives



5 2 −3 1 7
1 −3 2 −2 11
3 8 −7 5 −15





−→




1 0 −5/17 −1/17 43/17
0 1 −13/17 11/17 −48/17
0 0 0 0 0



 .

This expresses the fact that the third equation is redundant.

Now, solving the new system in RREF is easier.



Example 13 Cntd.
Writing as equations, we have

1 x1 − 5
17 x3 − 1

17 x4 = 43
17

1 x2 − 13
17 x3 + 11

17 x4 = − 48
17

The unknowns corresponding to the pivots are called the basic
variables and the other unknowns are called the free variable.

We assign free variables to arbitrary numbers, say xi to αi; and
express the basic variables in terms of the free variables to get a
solution of the equations.

Here, the basic variables are x1 and x2; and the unknowns x3, x4 are
free variables. We assign x3 to α3 and x4 to α4. The solution is
written as follows:

x1 =
43
17

+
5

17
α3+

1
17

α4, x2 = −48
17

+
13
17

α3−
11
17

α4, x3 = α3, x4 = α4.



Result 1

In all the following results, we consider a linear system Ax = b, where
A as an m × n matrix and b is a column vector of size m.

1. If [A′ | b′] is obtained from [A | b] by applying a finite sequence of
elementary row operations, then each solution of Ax = b is a solution
of A′x = b′, and vice versa.

Proof: If [A′ | b′] has been obtained from [A | b] by a finite sequence of
elementary row operations, then A′ = EA and b′ = Eb, where E is the
product of corresponding elementary matrices. The matrix E is
invertible. Now, A′x = b′ iff EAx = Eb iff Ax = E−1Eb = b. ✷



Result 2

2. Ax = b has a solution iff rank([A | b]) = rank(A).

Proof: Due to (1), we assume that [A | b] is in RREF. Suppose Ax = b
has a solution. If there is a zero row in A, then the corresponding
entry in b is also 0. Therefore, there is no pivot in b. Hence
rank([A | b]) = rank(A).

Conversely, suppose that rank([A | b]) = rank(A) = r. Then there is
no pivot in b. That is, b is a non-pivotal column in [A | b]. Thus, b is a
linear combination of pivotal columns, which are some columns of A.
Therefore, Ax = b has a solution. ✷



Results 3 & 4

3. If u is a (particular) solution of Ax = b, then each solution of
Ax = b is given by u + y, where y is a solution of the homogeneous
system Ax = 0.

Proof: Let u be a solution of Ax = b. Then Au = b. Now, z is a
solution of Ax = b iff Az = b iff Az = Au iff A(z − u) = 0 iff z − u is
a solution of Ax = 0. That is, each solution z of Ax = b is expressed
in the form z = u + y for a solution y of the homogeneous system
Ax = 0. ✷

4. If r = rank([A | b]) = rank(A) < n, then there are n − r unknowns
which can take arbitrary values; and other r unknowns can be
determined from the values of these n − r unknowns.



Proof of Result 4

Proof: Let rank([A | b]) = rank(A) = r < n. By (2), there exists a
solution. Due to (3), we consider solving the corresponding
homogeneous system. Due to (1), assume that A is in RREF.
There are r number of pivots in A and m − r number of zero rows.
Omit all the zero rows; it does not affect the solutions.
Write the system as linear equations. Rewrite the equations by
keeping the unknowns corresponding to pivots on the left hand side,
and taking every other term to the right hand side.
The unknowns corresponding to pivots are now expressed in terms of
the other n − r unknowns.
For obtaining a solution, we may arbitrarily assign any values to these
n − r unknowns, and the unknowns corresponding to the pivots get
evaluated by the equations. ✷



Result 5

5. If m < n, then the homogeneous system has infinitely many
solutions.

Proof: Let m < n. Then r = rank(A) ≤ m < n. Consider the
homogeneous system Ax = 0. By (4), there are n − r ≥ 1 number of
unknowns which can take arbitrary values, and other r unknowns are
determined accordingly. Each such assignment of values to the n − r
unknowns gives rise to a distinct solution resulting in infinite number
of solutions of Ax = 0. ✷



Result 6 & 7

6. Ax = b has a unique solution iff rank([A | b]) = rank(A) = n.

Proof: Recall that (4) says: If r = rank([A | b]) = rank(A) < n, then
there are n − r unknowns which can take arbitrary values; and other r
unknowns can be determined from the values of these n − r
unknowns. This would give rise to non-unique solutions. On the other
hand, if rank([A | b]) = rank(A) = n, then A is invertible, and we have
the unique solution as x = A−1b. ✷

7. If m = n, then Ax = b has a unique solution iff det(A) ∕= 0. In this
case, the unique solution is given by x = A−1b.

Proof: If A ∈ Fn×n, then it is invertible iff rank(A) = n iff det(A) ∕= 0.
Then use (6). ✷



Result 8
8. If m = n and det(A) ∕= 0, then the solution of Ax = b is given by
xj = det(Aj(b) )/det(A) for each j ∈ {1, . . . , n}.

Proof: Recall that Aj(b) is the matrix obtained from A by replacing
the jth column of A with the vector b. Since det(A) ∕= 0, by (6),
Ax = b has a unique solution, say y ∈ Fn×1.

Write the identity Ay = b in the form:

y1




a11

...
an1



+ · · ·+ yj




a1j
...

anj



+ · · ·+ yn




a1n

...
ann



 =




b1
...

bn



 .

This gives

y1




a11

...
an1



+ · · ·+




(yja1j − b1)

...
(yjanj − bn)



+ · · ·+ yn




a1n

· · ·
ann



 = 0.

In this sum, the jth vector is a linear combination of other vectors,
where −yjs are the coefficients.



Proof of (8) Cont.

Therefore,


a11 · · · (yja1j − b1) · · · a1n
...

an1 · · · (yjanj − bn) · · · ann


= 0.

From Property (6) of the determinant, it follows that

yj



a11 · · · a1j · · · a1n
...

an1 · · · anj · · · ann


−



a11 · · · b1 · · · a1n
...

an1 · · · bn · · · ann


= 0.

Therefore, yj = det(Aj(b) )/det(A). ✷



A fixed line

Let A =


0 1
1 0


.

Here, A : R2×1 → R2×1.
It transforms straight lines to straight lines or points.

Get me a straight line which is transformed to itself by A.

A


x
y


=


0 1
1 0

 
x
y


=


y
x


.

Thus, the line {(x, x) : x ∈ R} never moves.

Also the line {(x,−x) : x ∈ R}. does not move.

Observe:

A


x
x


= 1


x
x


and A


x

−x


= (−1)


x

−x


.



Eigenvalues & Eigenvectors

Let A ∈ Cn×n. A scalar λ ∈ C is called an eigenvalue of A iff there
exists a non-zero vector v ∈ Cn×1 such that Av = λv.

Such a vector v is called an eigenvector of A for (or, associated with,
or, corresponding to) the eigenvalue λ.

Example 1: Let A =




1 1 1
0 1 1
0 0 1



 .

It has an eigenvector (1, 0, 0)T associated with the eigenvalue 1.

Is (2, 0, 0)T an eigenvector associated with the same eigenvalue 1?

Corresponding to an eigenvalue, there are infinitely many
eigenvectors.



Characteristic Polynomial

Theorem: Let A ∈ Cn×n. A complex number λ is an eigenvalue of A
iff det(A − λI) = 0.

Proof: Let v ∈ Cn×1, v ∕= 0. Then,
v is an eigenvector of A for the eigenvalue λ ∈ C
iff v is a nontrivial solution of the homogeneous system (A−λI)x = 0
iff rank(A − λI) < n iff det(A − λI) = 0. □
The polynomial det(A − tI) is called the characteristic polynomial
of the matrix A.

Fundamental Theorem of Algebra says that each polynomial of
degree n with complex coefficients has exactly n complex zeros.

The zeros of the characteristic polynomial are the eigenvalues of A.

Note: If α+ iβ is an eigenvalue of a matrix with real entries, where
β ∕= 0, then α− iβ is also an eigenvalue of this matrix.



Example 2

Let A =




1 0 0
1 1 0
1 1 1



 .

The characteristic polynomial of A is

det(A − tI) =
1 − t 0 0

1 1 − t 0
1 1 1 − t

= (1 − t)3.

The zeros are 1, 1, 1. These are the eigenvalues of A.

To get an eigenvector, we solve A(a, b, c)T = 1 (a, b, c)T or that

a = a, a + b = b, a + b + c = c.

It gives a = b = 0 and c ∈ F can be arbitrary.
All eigenvectors are given by (0, 0, c)T , for c ∕= 0.



Example 3

Let A =


0 1

−1 0


. Its characteristic polynomial is t2 + 1 = 0.

Then i and −i are its eigenvalues.

The corresponding eigenvectors are obtained by solving

A(a, b)T = i(a, b)T and A(a, b) = −i(a, b)T .

For λ = i, we have b = ia,−a = ib. Thus, (a, ia)T is an eigenvector
for a ∕= 0.

For the eigenvalue −i, the eigenvectors are (a,−ia) for a ∕= 0.

The maximum k such that (t − λ)k divides the characteristic
polynomial is called the algebraic multiplicity of the eigenvalue λ.

In Example 2, the algebraic multiplicity of the eigenvalue 1 is 3.



Some results

1. A and AT have the same eigenvalues.

Reason: det(AT − tI) = det((A − tI)T) = det(A − tI).

Matrices A,B ∈ Cn×n are called similar iff there exists an invertible
matrix P ∈ Cn×n such that P−1AP = B.

2. Similar matrices have the same eigenvalues.

Reason: det(P−1AP − tI) = det(P−1(A − tI)P)
= det(P−1)det(A − tI)det(P) = det(A − tI).

3. If A is a diagonal or an upper triangular or a lower triangular
matrix, then its diagonal elements are precisely its eigenvalues.

Reason: In all these cases, det(A − tI) = (a11 − t) · · · (ann − t).



Trace & Determinant

4. Let A ∈ Cn×n. Then det(A) equals the product and tr(A) equals the
sum of all eigenvalues of A.

Proof: Let λ1, . . . ,λn be the eigenvalues of A, not necessarily distinct.
Now,

det(A − tI) = (λ1 − t) · · · (λn − t).

Put t = 0. It gives det(A) = λ1 · · ·λn.

Expand det(A − tI) and equate the coefficients of tn−1 to get

Coeff of tn−1 in det(A − tI) = Coeff of tn−1 in (a11 − t) · A11

(Here, A11 is the determinant of the matrix obtained from A − tI
deleting its first row and first column.)

= · · · =

= Coeff of tn−1 in (a11 − t) · (a22 − t) · · · (ann − t) = (−1)n−1tr(A).

But Coeff of tn−1 in det(A − tI) = (−1)n−1 ·


λi. □



Cayley-Hamilton Theorem
Theorem: Any square matrix satisfies its characteristic polynomial.

Proof: Let A ∈ Cn×n. Let p(t) = c0 + c1t + · · ·+ cntn be the
characteristic polynomial of A. We show that p(A) = 0, the zero
matrix. Now, p(t) I = det(A − tI) I =


adj (A − tI)


(A − tI).

The entries in adj (A − tI) are polynomials in t of degree at most
n − 1. Write adj (A − tI) := B0 + tB1 + · · ·+ tn−1Bn−1, where
B0, . . . ,Bn−1 ∈ Cn×n. Then

c0I + c1It + · · ·+ cnItn = p(t)I = (B0 + tB1 + · · · tn−1Bn−1)(A − t I).

Comparing the coefficients of tk, we obtain

c0I = B0A, c1I = B1A−B0, . . . , cn−1I = Bn−1A−Bn−2, cnI = −Bn−1.

Then, substituting these values in p(A), we have

p(A) = c0I + c1A + · · ·+ cnAn = c0I + c1IA + · · ·+ cnIAn

= B0A + (B1A − B0)A + · · ·+ (Bn−1A − Bn−2)An−1 − Bn−1An

= 0. □



Two applications
Suppose that a matrix A ∈ Cn×n has the characteristic polynomial

a0 + a1t + · · ·+ an−1tn−1 + (−1)ntn.

By Cayley-Hamilton theorem, a0I + a1A + · · ·+ (−1)nAn = 0. Then

An = (−1)n−1(a0I + a1A + · · ·+ an−1An−1).

1. So, An,An+1, . . . can be reduced to computing A, A2, . . . , An−1.

2. If A is invertible, then det(A) ∕= 0. So, 0 is not an eigenvalue of A.
So, a0 ∕= 0. Then

a0I + A(a1I + · · ·+ an−1An−2 + (−1)nAn−1) = 0.

Multiplying A−1 and simplifying, we obtain

A−1 = − 1
a0


a1I + a2A + · · ·+ an−1An−2 + (−1)nAn−1.



Hermitian matrices

Let A ∈ Cn×n.

Let λ ∈ C be any eigenvalue of A with an eigenvector v ∈ Cn×1.

Now, Av = λv.

Pre-multiplying with v∗, we have v∗Av = λv∗v ∈ C.

Taking adjoint, v∗A∗v = λv∗v.

1. All eigenvalues of a Hermitian matrix are real.

Reason: If A is Hermitian, then A∗ = A.

So, λv∗v = λv∗v, where v ∕= 0.

Thus λ = λ. That is, λ ∈ R.



Real symmetric

A real symmetric matrix is a hermitian matrix.

So, all its eigenvalues are real.

In addition, we have the following result.

2. If A is a real symmetric n × n matrix, then a real vector
corresponding to a (real) eigenvalue can always be chosen.

Reason: Suppose A(x + iy) = λ(x + iy), with λ ∈ R, x, y ∈ Rn×1.

Then Ax = λx and Ay = λy.

Since x + iy ∕= 0, at least one of x, y is nonzero.

If x ∕= 0, then it is an eigenvector for the eigenvalue λ; else, choose y.



Skew-hermitian

3. All eigenvalues of a skew-hermitian or a real skew-symmetric
matrix are zero or purely imaginary.

Reason: When A is skew-hermitian, A∗ = −A.

Earlier we had v∗Av = λv∗v and v∗A∗v = λv∗v.

So, λv∗v = −λv∗v.

Again since v ∕= 0, we have λ = −λ.

That is, 2Re(λ) = 0.



Unitary & Orthogonal

4. Each eigenvalue of a unitary or an orthogonal matrix has absolute
value 1.

Reason: Let A be unitary. That is, A∗A = I = AA∗.

Now, Av = λv, v ∕= 0 implies v∗A∗ = (λv)∗ = λv∗. Then

v∗v = v∗Iv = v∗A∗Av = λλv∗v = |λ|2v∗v.

Since v∗v ∕= 0, |λ| = 1.

The determinant of A is the product of its eigenvalues.

So, the determinant of a unitary matrix has absolute value 1.

Since an orthogonal matrix is a real unitary matrix, its determinant is
a real number, and its absolute value is 1.

Hence, the determinant of an orthogonal matrix is either 1 or −1.



Distinct eigenvalues

Theorem: Eigenvectors associated with distinct eigenvalues of an
n × n matrix are linearly independent.

Proof: Let λ1, . . . ,λm be all the distinct eigenvalues of A ∈ Cn×n. Let
v1, . . . , vm be corresponding eigenvectors. We use induction on
i ∈ {1, . . . ,m}.
For i = 1, since v1 ∕= 0, {v1} is linearly independent,
Induction Hypothesis: for i = k suppose {v1, . . . , vk} is linearly
independent. We want to show that v1, . . . , vk, vk+1 are linearly
independent. Towards this, assume that

α1v1 + α2v2 + · · ·+ αkvk + αk+1vk+1 = 0. (1)



Proof Cont.

Then, A(α1v1 + α2v2 + · · ·+ αkvk + αk+1vk+1) = 0. Since
Avj = λjvj, we have

α1λ1v1 + α2λ2v2 + · · ·+ αkλkvk + αk+1λk+1vk+1 = 0. (2)

Multiply (1) with λk+1. Subtract from (2) to get:

α1(λ1 − λk+1)v1 + · · ·+ αk(λk − λk+1)vk = 0.

By the Induction Hypothesis, αj(λj − λk+1) = 0 for each
j = 1, . . . , k. Since λ1, . . . ,λk+1 are distinct, we conclude that
α1 = · · · = αk = 0. Then, from (1), it follows that αk+1vk+1 = 0. As
vk+1 ∕= 0, we have αk+1 = 0. □



Using linearly independent eigenvectors

Suppose an n × n matrix A has n linearly independent eigenvectors
v1, . . . , vn. Let λ1, . . . ,λn be the corresponding eigenvalues. We find
that

Av1 = λ1v1, . . . ,Avn = λnvn.

Construct the matrix P ∈ Cn×n by taking its columns as the
eigenvectors v1, . . . , vn. That is, let

P =

v1 v2 · · · vn−1 vn


.

Also, construct the diagonal matrix D = diag(λ1, . . . ,λn). That is,

D =




λ1

. . .
λn



 .



Using LI eigenvectors Contd.

With P =

v1 v2 · · · vn−1 vn


and D = diag(λ1, . . . ,λn), we can write

the products Av1 = λ1v1, . . . ,Avn = λnvn as the single equation

AP = PD.

Now, rank(P) = n. So, P is an invertible matrix. Then

P−1AP = D.

Let A ∈ Cn×n. We call A to be diagonalizable iff there exists an
invertible matrix P such that P−1AP is a diagonal matrix.
(That is, A is similar to a diagonal matrix).
We also say that A is diagonalizable by the matrix P iff P−1AP = D.

It follows that if an n × n matrix has n linearly independent
eigenvectors, then it is diagonalizable.



Diagonalizability

We ask whether diagonalizability of an n × n matrix implies that it
has n number of linearly independent eigenvectors.

Let A ∈ Fn×n be diagonalizable.
So, let P =


v1, · · · vn


be an invertible matrix so that

P−1AP = diag(λ1, . . . ,λn).
Then AP = A


v1, · · · vn


=


v1, · · · vn


diag(λ1, . . . ,λn).

Consequently, Av1 = λ1v1, . . . , Avn = λnvn.
That is, v1, . . . , vn are eigenvectors of A.
Moreover, P is invertible implies that v1, . . . , vn are linearly
independent.

We have proved the following result.

Theorem: An n × n matrix is diagonalizable iff it has n linearly
independent eigenvectors.



Diagonalizability

We know that if an n × n matrix has n distinct eigenvalues, then the
corresponding eigenvectors are linearly independent.

Also, if an n × n matrix has n linearly independent eigenvectors, then
it is diagonalizable.

It follows that if an n × n matrix has n distinct eigenvalues, then it is
diagonalizable.

Another sufficient condition for diagonalizability is given by the
following theorem.

Spectral Theorem:

1. A is a normal matrix iff A is diagonalizable by a unitary matrix.

2. If A is real symmetric, then A is diagonalizable by an orthogonal
matrix.



Comments

Recall that A is a normal matrix iff A∗A = AA∗. Thus, hermitian
matrices and real symmetric matrices are normal matrices.

Spectral theorem says that if A is a normal matrix, then there exists a
unitary matrix P such that P−1AP is a diagonalizable matrix.

Since P is unitary, we have P∗ = P−1. Hence, P∗AP is a diagonal
matrix.

In this case, P =

v1 · · · vn], P∗AP = diag(λ1, . . . ,λn), and vi is an

eigenvector associated with the eigenvalue λi of A.

The Spectral theorem says that the vectors vi can be chosen in such a
way that they form an orthonormal set.

Similarly, when A is real-symmetric, these orthonormal vectors can be
chosen to be in Rn×1.



Diagonalization

In each of these cases, our procedure of diagonalization is the same.

We find eigenvalues.

We choose the corresponding linearly independent eigenvectors.

Next, we form the matrix P by taking these eigenvectors as columns.

Then P−1AP is a diagonal matrix with diagonal entries as the
eigenvalues of A.

If A is normal or real-symmetric, then we may orthogonalize the
eigenvectors; and divide each with its norm; and then form P.

Then P∗AP will be the diagonal matrix with the eigenvalues of A on
its diagonal.



Example 4

Let A =




1 −1 −1

−1 1 −1
−1 −1 1



 .

It is real symmetric. It has eigenvalues −1, 2, 2.

We must find out the associated eigenvectors, by solving Ax = λx.

For the eigenvalue −1, the system Ax = −x gives

x1 − x2 − x3 = −x1, −x1 + x2 − x3 = −x2, −x1 − x2 + x3 = −x3.

Then x1 = x2 = x3. One eigenvector is (1, 1, 1)T .

For the eigenvalue 2, we have the equations as

x1 − x2 − x3 = 2x1, −x1 + x2 − x3 = 2x2, −x1 − x2 + x3 = 2x3.

It gives x1 + x2 + x3 = 0.



Example 4 Contd.

Since x1 + x2 + x3 = 0, we can have two linearly independent
eigenvectors such as




−1

1
0



 and




−1
−1

2



 .

Along with the earlier eigenvector

1 1 1]T , we see that the three

eigenvectors are orthogonal; we divide their norms to get the
orthonormal eigenvectors as




1/

√
3

1/
√

3
1/

√
3



 ,




−1/

√
2

1/
√

2
0



 ,




−1/

√
6

−1/
√

6
2/

√
6



 .



Example 4 Contd.

Next, we take

P =




1/

√
3 −1/

√
2 −1/

√
6

1/
√

3 1/
√

2 −1/
√

6
1/

√
3 0 2/

√
6



 .

We see that P−1 = PT , that is, P is an orthogonal matrix. And,

P−1AP = PTAP =




−1 0 0

0 2 0
0 0 2



 ,

the diagonal matrix similar to A.


