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Binary operation.

A binary operation on a set S is a rule for combining pairs a, b of S
to get another element of S (i.e., S is closed under the operation
which means if a, b ∈ S then a ∗ b ∈ S.), i.e., it defines a map

f : S ∗ S → S,

where ∗ is binary operation.
Here, we shall use the symbol a ∗ b to denote f (a, b).
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Example.

Let S be a set of integers. The operations f : S ∗ S → S defined by
f (a, b) = a ∗ b, where a ∗ b = a + b − ab, is a binary operation in S.
Note : In this example if we take S to be the set of only positive
integres then ∗ operation does not define a binary operation because
composition of two positive integers a, b which is a ∗ b, can be
negative.

Associativity: A binary operation ∗ in S is said to be associative, if
a ∗ (b ∗ c) = (a ∗ b) ∗ c, for any a, b and c in S.
Commutativity: A binary operation ∗ in S is said to be commutative, if
a ∗ b = b ∗ a, for any a ∈ S and b ∈ S.

Dr. Anuj Jakhar Modern Algebra 2022 3 / 80



Example.
In the above example, we can check that the operation ∗ is associative and
commutative.

Checking of commutativity of the ∗ operation :
a ∗ b = a + b − ab
b ∗ a = b + a − ba which can be rewrite as a + b − ab.
Thus, we can see that, a ∗ b = b ∗ a.
Checking of Associativity :
(a ∗ b) ∗ c = (a + b − ab) ∗ c = a + b − ab + c − (a + b − ab)c =
a + b + c − ab − ac − bc + (ab)c
a ∗ (b ∗ c) = a ∗ (b + c − bc) = a + b + c − bc − a(b + c − bc) =
a + b + c − bc − ab − ac + a(bc).
Thus, we can have, (a ∗ b) ∗ c = a ∗ (b ∗ c).
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Identity and Inverse

Identity: Let S be a set with binary operation ∗. An element e ∈ S is
called, a neutral element or identity element, if a ∗ e = a = e ∗ a, for
each a ∈ S.
Inverse: Let S be a set with binary operation ∗ and unit element e.
An element a ∈ S is said to have an inverse with respect to ∗ if there
exists another element a′ ∈ S such that a ∗ a′ = e = a′ ∗ a.

Example. Let S be the set of integers with addition binary operation.
Then, for finding identity and inverses, we proceed by definition :

for identity : let e be the identity element, then by definition :
a ∗ e = a + e = a = e + a = e ∗ a, which implies e = 0.
for inverse : let a′ be the inverse, then by definition :
a ∗ a′ = a + a′ = 0 (identity) = a′ + a = a′ ∗ a.
Thus we have, a′ = −a.
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Definition. A non-empty set G with a binary operation ‘∗’ is said to be a
group1 with respect to ‘∗’ if the following three conditions are satisfied for
all a, b, c belonging to G :
(i) a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity),
(ii) there exists an element e ∈ G , such that a ∗ e = a = e ∗ a (existence

of identity),
(iii) for every a ∈ G , there exists an element a′ ∈ G such that

a ∗ a′ = e = a′ ∗ a (existence of inverse).
Further G is called commutative/abelian2 if a ∗ b = b ∗ a for all a, b ∈ G .

1The abstract form of the definition of a group, which we use today, was built up
slowly over the course of 19th century, with suggested definitions by Cayley, Kronecker,
Weber, Burnside, and Pierpont. The axioms of associativity, identity element and
inverse were first stated in their present form by Pierpont.

2The term abelian is derived from the name of Norwegian Mathematician Niels
Henrik Abel (1802-1829) who showed the importance of such groups in the theory of
equations.
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Examples

Groups Binary Operation
(Z,+),(Q,+),(R,+),(C,+) Addition

(R-{0},·),(C-{0},·) Multiplication
Dn(Dihedral group of 2n elements) Composition

Sn(Permutation Group of n elements) Composition
An(Alternating group of n elements) Composition

Cn,Zn Multipli., Addition
(Cyclic group of order n, integers modulo n ) respectively
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Order, Generator

Order of a group: Number of elements in group G is called the order
of the group. We use |G | for the order of group.

Order of an element of a group: Let a ∈ G . Then order of a will be
m if m is the least positive integer greater than one such that am =
e, where e is identity element (Here am means m times binary
operation of element a with itself).
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Subgroup.

Definition. A subgroup of a group G is a group H in G , with the same
binary operation. In other words following holds,
(I) Closure : if a, b ∈ H, then ab ∈ H.

(II) Identity : e ∈ H.
(III) Inverse : if a ∈ H, then a−1 ∈ H.

{e}(identity group) and G(itself) are the trivial subgroups of G .
Other subgroups (nontrivial subgroups) are the proper subgroups of
G .
Example. All subgroups of the additive group of integers Z are in the
form
aZ = {an|n ∈ Z} for some integer a.
A non-empty subset H of a group G is a subgroup iff whenever
a ∈ H, b ∈ H, the product ab−1 ∈ H.
If H and K are subgroups of G , then H ∩ K is also a subgroup of G .
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Intersection of finite number of subgroups of G is a subgroup of G .

Let H be a finite subset of a group G such that ab ∈ H, whenever
a ∈ H, b ∈ H. Then H is a subgroup of G .
For any group G , the set H = {x | x ∈ G , xa = ax , for each a ∈ G},
is a subgroup of G .
The center Z (G) = {x | xa = ax for each a ∈ G} is a subgroup of G .
Let a be a fixed element of G . Then, N(a) = {x | xa = ax}, is called
the centraliser of a.
For any subset A ⊂ G , N(A) = {x |xA = Ax}, is called the normaliser
of A.
Check that N(A) is a subgroup of G .
Note that whenever A is singleton set {a}, then N(A) is same as
centraliser of a.
If H and K are two subgroups of G , then their product HK will be
subgroup of G if and only if HK = KH.
Let H and K be finite subgroups of G such that HK is also a
subgroup. Then

|HK | = |H||K |
|H ∩ K | .
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Dihedral group of order 2n.
Let Dn denotes n-polygon which has n sides of same length.
If r denotes rotation by 2π/n degree, hence we have, rn = 1
(identity).
f denotes flipping about the x - axis, hence f 2 = 1 (identity).
Then group Dn has 2n elements and the elemnets of Dn are :

Dn = {1, r , r2, · · · , rn−1, f , rf , r2f , · · · , rn−1f }.

Here, observe that fr = rn−1f , f 2 = 1 = rn.
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Generator of a group:

An element b is called a generator of a group if
all the elements of groups can be written as powers of b (Here bn

means n times binary operation of element b with itself)

or

In a group of order n, an element b is called generator of G if n is the
least positive integer greater than 1 such that bn = e (identity
element).

Dr. Anuj Jakhar Modern Algebra 2022 12 / 80



Generator of a group: An element b is called a generator of a group if
all the elements of groups can be written as powers of b (Here bn

means n times binary operation of element b with itself)

or

In a group of order n, an element b is called generator of G if n is the
least positive integer greater than 1 such that bn = e (identity
element).

Dr. Anuj Jakhar Modern Algebra 2022 12 / 80



Generator of a group: An element b is called a generator of a group if
all the elements of groups can be written as powers of b (Here bn

means n times binary operation of element b with itself)

or

In a group of order n, an element b is called generator of G if n is the
least positive integer greater than 1 such that bn = e (identity
element).

Dr. Anuj Jakhar Modern Algebra 2022 12 / 80



Cyclic group of order n.

A group Cn is called a cyclic group of order n if it has at least one
generator (it can have more than one).

Examples.
The group Z of integers is cyclic. 1 and −1 are generators of Z.
The group G = {1,−1, ι,−ι} is cyclic with ι and −ι as generators.
The trivial group G = {e} is cyclic with generator e.
Group Zn of residue classes modulo n is cyclic with generator.

Lemma. Any subgroup of an infinite cyclic group is also an infinite cyclic
group.

Corollary. An infinte cyclic group has infinitely many subgroups each of
which is an infinite cyclic group.
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Lemma. Every cyclic group is abelian but converse is not true.

Couterexample for the converse part. Klein 4 group (V4).

Lemma. Any infinte cyclic group has exactly two generators.

Number of generators in a cyclic group of order n. In a cyclic group of
order n, the number of generators are φ(n) (Euler phi function).

Euler phi(φ) function. If n = pr1
1 pr2

2 pr3
3 · · · p

rk
k , where p1, p2, p3, · · · , pk are

the prime factors of n. Then :

φ(n) = n(1− 1
p1

)(1− 1
p2

) · · · (1− 1
pk

).

Lemma. Let G be a finite cyclic group of order n. Then G has a unique
cyclic subgroup of order d for every divisor d of n.
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Permutation.

Definition.
A permutation on a set X is a bijective map from a set to itself.
A permutation π can be written as a composition of cycles, a cycle
written as (a1a2 · · · ak) : π(a1) = a2, π(a2) = a3, · · · , π(ak−1) = ak ,
π(ak) = a1.

Permutation Group.
Let we have n different numbers.
Then all the possible permutations and combinations of these n
numbers are possible n!.
If we say every such permutation and combination one element then
these n! elements makes a group under composition, where
composition means that if we operate one element to another then it
permute it and we get other element from n! elements.
We denote this group by Sn or Pn which order is n!.
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Supose we have two elements (2 5 3 7)∗(6 3 1 9) = (7 2 5 3 1 9 6).

We process from last element. In above example we started from last
element (6 3 1 9) from number 6. π(6) = 3, now we see in left
element (2 5 3 7) that π(3) = 7. So, first number of new element is 7.
Now we see again from (6 3 1 9) that π(7) = 7 (Since 7 is not
written, means (7 7), 7 is permuting with itself) and then we see in
left element (2 5 3 7) that π(7) = 2.
So the next number after 7 is 2.
After continuing this process we get (7 2 5 3 1 9).

1. (a1 · · · ak) called a cycle, where a1,· · · ,ak are natural numbers or
every element of permutation group is called a cycle.

2. m ∈ N is called the order of a cycle (a1a2 · · · ak), if (a1a2 · · · ak)m = 1.
3. Cycle (a1a2 · · · ak) can be rewritten as (a1a2)(a1a3) · · · (a1ak),

product of two number cycles.
4. We break an element of prmutation group according to (3) and after

that if number of cycles are even then element is called even cycle
otherwise odd cycle.

5. Identity element 1 is always even cycle.
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Alternating group.

From the group Sn, if we remove all the odd cycles, then the set of all
even cycles made a group, which is called Alternating group An,
which has order n!

2 .

An is always subgroup of Sn.

Example.
If n = 3, then S3 = {1, (12), (13), (23), (123), (132)}, has six (3!)
elements.
Here, elements (1 2), (2 3), (13) have order 2 and (1 2 3), (1 3 2)
have order 3. (1 2 3) and (1 3 2) are the inverses of each other. (1
2),(1 3) and (2 3) are the inverses of itself.
A3 = {1, (123), (132)}, has three (3!

2 ) elements, is a subgroup of S3.
Check that A3 is abelian group but S3 is not, because A3 has prime
order. Hence, A3 is cyclic. In S3, we can check that (1 2)(1 2 3) =
(3 2) and (1 2 3)(1 2) = (3 1), which do not commute.

Dr. Anuj Jakhar Modern Algebra 2022 18 / 80



Alternating group.

From the group Sn, if we remove all the odd cycles, then the set of all
even cycles made a group, which is called Alternating group An,
which has order n!

2 .
An is always subgroup of Sn.

Example.
If n = 3, then S3 = {1, (12), (13), (23), (123), (132)}, has six (3!)
elements.

Here, elements (1 2), (2 3), (13) have order 2 and (1 2 3), (1 3 2)
have order 3. (1 2 3) and (1 3 2) are the inverses of each other. (1
2),(1 3) and (2 3) are the inverses of itself.
A3 = {1, (123), (132)}, has three (3!

2 ) elements, is a subgroup of S3.
Check that A3 is abelian group but S3 is not, because A3 has prime
order. Hence, A3 is cyclic. In S3, we can check that (1 2)(1 2 3) =
(3 2) and (1 2 3)(1 2) = (3 1), which do not commute.

Dr. Anuj Jakhar Modern Algebra 2022 18 / 80



Alternating group.

From the group Sn, if we remove all the odd cycles, then the set of all
even cycles made a group, which is called Alternating group An,
which has order n!

2 .
An is always subgroup of Sn.

Example.
If n = 3, then S3 = {1, (12), (13), (23), (123), (132)}, has six (3!)
elements.
Here, elements (1 2), (2 3), (13) have order 2 and (1 2 3), (1 3 2)
have order 3. (1 2 3) and (1 3 2) are the inverses of each other. (1
2),(1 3) and (2 3) are the inverses of itself.

A3 = {1, (123), (132)}, has three (3!
2 ) elements, is a subgroup of S3.

Check that A3 is abelian group but S3 is not, because A3 has prime
order. Hence, A3 is cyclic. In S3, we can check that (1 2)(1 2 3) =
(3 2) and (1 2 3)(1 2) = (3 1), which do not commute.

Dr. Anuj Jakhar Modern Algebra 2022 18 / 80



Alternating group.

From the group Sn, if we remove all the odd cycles, then the set of all
even cycles made a group, which is called Alternating group An,
which has order n!

2 .
An is always subgroup of Sn.

Example.
If n = 3, then S3 = {1, (12), (13), (23), (123), (132)}, has six (3!)
elements.
Here, elements (1 2), (2 3), (13) have order 2 and (1 2 3), (1 3 2)
have order 3. (1 2 3) and (1 3 2) are the inverses of each other. (1
2),(1 3) and (2 3) are the inverses of itself.
A3 = {1, (123), (132)}, has three (3!

2 ) elements, is a subgroup of S3.

Check that A3 is abelian group but S3 is not, because A3 has prime
order. Hence, A3 is cyclic. In S3, we can check that (1 2)(1 2 3) =
(3 2) and (1 2 3)(1 2) = (3 1), which do not commute.

Dr. Anuj Jakhar Modern Algebra 2022 18 / 80



Alternating group.

From the group Sn, if we remove all the odd cycles, then the set of all
even cycles made a group, which is called Alternating group An,
which has order n!

2 .
An is always subgroup of Sn.

Example.
If n = 3, then S3 = {1, (12), (13), (23), (123), (132)}, has six (3!)
elements.
Here, elements (1 2), (2 3), (13) have order 2 and (1 2 3), (1 3 2)
have order 3. (1 2 3) and (1 3 2) are the inverses of each other. (1
2),(1 3) and (2 3) are the inverses of itself.
A3 = {1, (123), (132)}, has three (3!

2 ) elements, is a subgroup of S3.
Check that A3 is abelian group but S3 is not, because A3 has prime
order. Hence, A3 is cyclic. In S3, we can check that (1 2)(1 2 3) =
(3 2) and (1 2 3)(1 2) = (3 1), which do not commute.

Dr. Anuj Jakhar Modern Algebra 2022 18 / 80



Cosets

Let G be a group and H be a subgroup of G . For any a ∈ G , the set Ha is
called a right coset of H in G . Similarly aH is called a left coset of H in G .

Lemma. Let G be a group and H be a subgroup of G . Then G is the
union of all left cosets of H in G and any two distinct left cosets of H in G
are disjoint.

Lemma. Any two left cosets of H in G have the same (finite or infinte)
number of elements.
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Lagrange’s theorem
Let G be a finite group and H be a subgroup of G . Then the order of the
subgroup divides the order of the group.

Converse is false (A4 does not
have subgroup of order 6).

Corollary. The number of distinct left cosets of H in G is equal to |G |/|H|.

Definition. Let G be a group and H be a subgroup of G . Then the
number (finite or infinte) of distinct left cosets of H in G are called the
index of H in G , denoted by [G : H].

Lemma. Let G be a group, H be subgroup of G . Then the number of left
cosets of H in G is the same as number of right cosets of H in G .

Corollary. Let G be a finite group of order n, and a ∈ G . Then |a| divides
|G |, and in particular an = e.

Corollary. Every group of prime order is cyclic.
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Normal Subgroup.
Definition. A subgroup H of G is called normal subgroup if for all a ∈ H
and g ∈ G , gag−1 ∈ H.

Lemma. A subgroup H of G is called normal subgroup iff g · H = H · g
for all g ∈ G .

Note. If g ∈ H, then g · H = H = H · g , by the definition of subgroup.

Example.
A3 is normal subgroup of S3.
Here H = A3.
By above note, we see that 1·A3 = (1 2 3)·A3 = (132) · A3 = H.
Now if g = (12), then (12) · H = (12) · {1, (123), (132)} =
{(12), (32), (31)} = {1, (123), (132)} · (12) = H · (12).
Similarly, we can check for other elements. We get that A3 is normal
in S3.
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Normal Subgroup.

Every subgroup of an abelian group is normal subgroup.

Center of a group G is a normal subgroup of G .

Lemma. If H is a subgroup of index 2 in G , then H is normal in G .

Corollary. An is a normal subgroup of Sn and Cn is normal subgroup of Dn.

Simple Group. G is called a simple group if its only normal subgroups are
G and {e}.

Example. A cyclic group of prime order is a simple group.
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Quotient Groups

Definition. Let H be a normal subgroup of G . Then the set of left (right)
cosets of H in G forms a group for the operation (aH) ∗ (bH) = abH.
We denote it by G/H and we say it the quotient group of G by H.

Examples.
G = Z and H = nZ. Then the quotient group G/H is the group Z of
residue classes of modulo n.
If G = S3, H = A3, then G/H = {H, (12)H}, which is a cyclic group
of order 2.

G/Z Theorem. Let G be a group and let Z (G) be the center of G . If
G/Z (G) is cyclic, then G is abelian.
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Homomorphism.

A homomorphism from a group G (with binary operation ∗) to a group G ′
(having binary operation ∗′) is a function f such that for all a, b ∈ G ,

f : G → G ′

f (a ∗ b) = f (a) ∗′ f (b).

Example. Let G = Z and G ′ = {1,−1} the multiplicative group. The
mapping θ : G → G ′ defined by θ(n) = 1 if n is even and θ(n) = −1 if n is
odd is a group homomorphism, as θ(m + n) = θ(m)θ(n) for all m, n ∈ Z.

Let f : G → G ′ be a homomorphism of G onto G ′. If G is abelian, then G ′
is abelian.
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Kernel of f . The kernal of f is the set of elements in G which goes to the
identity of G ′ under the map f .

Ker(f ) = {a ∈ G | f(a) = eG ′ , where eG ′ is the identity of G’}

Image of f . The image of f is the subset of G ′ :

Im(f ) = {x ∈ G’ | x = f(a), for some a in G.}

Remark 1. Let f : G → G ′ be a homomorphism. Then
1. |G | = |Ker(f )| · |Im(f )|.
2. Ker(f ) is always a normal subgroup of G .
3. Im(f ) is always a subgroup of G ′.
4. f (e) = e′, where e and e′ are the identity elements of G and G ′

respectively.
5. If a ∈ G , then f (a−1) = (f (a))−1, |f (a)| divides |a|.
6. f is one-one mapping iff Ker(f ) = {e}.
7. If G is cyclic, then G ′ will be cyclic.
8. If H and K are two normal subgroups of G , then their product HK

will be always normal subgroup.
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Remark 2. Let f : G → G ′ be a homomorphism and H be a subgroup of
G . Then
1. If H is cyclic, then f (H) is cyclic.

2. If H is abelian, then f (H) is abelian.
3. If H is normal in G , then f (H) is normal in f (G).

Exercise. Find all homomorphisms from C12 to C30.

Isomorphism. Let G and G ′ be two groups. G is said to be isomporphic to
G ′ if the homomorphism between G and G ′ is also one-one and onto
(bijective).

Theorem (First isomorphism theorem). Let f : G → G ′ be a surjective
homomorphism with kernel K , Then

G
K
∼= G ′.
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Example. U(10) ∼= U(5) but U(10) 6∼= U(12).

Lemma. Any infinite cyclic group is isomorphic to Z, and any finite cyclic
group of order n is isomorphic to Zn.

Corollary. 1. Any two cyclic groups of the same order are isomorphic.
2. For each prime p, there exists only one group (up to isomorphism) of
order p, namely, the cyclic group of order p.

Theorem (Cayley’s theorem). Every group is isomorphic to a group of
permutations.

Automorphism. An isomorphism of G onto itself is called an
automorphism of G .

Lemma. 1. If G be infinte cycic group, then G has just one non-trivial
automorphism.
2. If G is finite cyclic group, then G has φ(n) (Euler function)
automorphisms.
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Conjugate Classes.

Definition. Let G be a group, a ∈ G and b ∈ G . Then b is said to be
conjugate to a, if b = xax−1 for some x ∈ G .

Lemma. Let G be a group, and ∼ the relation in G given by b ∼ a if and
only if b is conjugate to a. Then ∼ is an equivalence relation in G .[Hint:
Reflexive, Symmetry and transitive.]

Definition. The equivalence classes under the relation b ∼ a iff b = xax−1

for some x ∈ G , are called conjugate classes.

Notation. We denote C(a) = {g · a · g−1|for all g ∈ G}, the conjugate
class containing a.

Lemma. Let G be a group. Then any two distinct conjugate classes have
no common in common and G is the union (disjoint) of all its conjugate
classes.
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Lemma. Let G be a group and a ∈ G . Then C(a) = {a} iff a ∈ Z (G).

Lemma. Let G be a group and a ∈ G . Then the number (finite or infinite)
of elements in the conjugate class C(a) is equal to the index of the
normaliser N(a) of a in G .

Class equation. Let G be a finite group. Then
|G | =

∑
x∈G
| conjugacy class of x | = |Z (G)|+

∑
|G:N(a)|>1

|G : N(a)|,

where the summation runs over the set of representatives of distinct
nontrivial conjugate classes.

Corollary. Any group of order pn, with p prime number, has nontrivial
center.

Corollary. Every group of order p2, with p prime, is abelian.

Theorem (Cauchy). If |G | = n and p|n, with p prime, then G has an
element of order p. (Exercise !)
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Group action.
A group action of G on a set S is a map G × S → S such that :
[1.] eG · s = s for all s ∈ S, where eG is the identity element of G .
[2.] (g · h) · s = g · (h · s) for all g , h ∈ G , s ∈ S.
S is called a G - set.

Example. Take S = G and define map g · h = ghg−1. Then this map is a
group action of G on G .

Orbit of a group. The orbit of s ∈ S is defined to be the set of elements
in S that s can be sent to by elements in G:

Os = {s ′|s ′ = g · s for some g ∈ G}

Stabilizer of group. The stabilizer of is the subgroup of elements of G
that leave s fixed:

SG(s) = {g ∈ G |g · s = s}

Remark. |G | = |SG(s)| · |Os| for s ∈ S, and G be group.
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[2.] (g · h) · s = g · (h · s) for all g , h ∈ G , s ∈ S.
S is called a G - set.

Example. Take S = G and define map g · h = ghg−1. Then this map is a
group action of G on G .

Orbit of a group. The orbit of s ∈ S is defined to be the set of elements
in S that s can be sent to by elements in G:

Os = {s ′|s ′ = g · s for some g ∈ G}
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Direct Products

Definition. Let G be a group, H and K normal subroups of G such that G
= HK and H ∩K = {e}. Then G is called the direct product of H and K .

Examples.
1. Let G be a cyclic group of order 6 generated by a. Let H = {e, a, a2}

and K = {e, a3} be subgroups of order 3 and 2 respectively. Clearly,
G = HK , H ∩ K = {e} and H and K are normal in G . Hence, G =
H × K .

2. Let G = {e, a, b, c} be Klein 4 group. Let H = {e, a} and K =
{e, b}. Then G = HK , H ∩ K = {e} and H and K are normal in G .
Hence, G = H × K . Thus G is a direct product of two cyclic groups,
each of order 2.
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Sylow Theorems.

First Theorem. Let G be a finite group with |G | = pr ·m and p - m; where
p is a prime number. Then G has a subgroup of order pr . This subgroup
is called Sylow p-subgroup of order pr .

Second Theorem. Let G be a finite group with |G | = pr ·m and p - m;
where p is a prime number. Then all Sylow p-subgroups are conjugate to
each other.

Third Theorem. Let G be a finite group with |G | = pr ·m and p - m;
where p is a prime number. Let np denote the number of Sylow
p-subgroups of G . Then :
(1) np divides |G |.
(2) np = 1 + k · p for k ∈ N ∪ {0}.

Corollary of Second Theorem. A Sylow p-subgroup is normal subgroup of
G if and only if it is unique.
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Proof of Sylow’s First Theorem

The proof is by induction on n. The theorem is clearly true for n = 2.

Assume the theorem is true for all subgroups of order < n.
If G has a proper subgroup H with pk divides |H|, then by induction
H will have a subgroup of order pk which is also a subgroup of G .
Now assume that pk - |H| for all proper subgroups H of G .
Consider the class equation |G | = |Z (G)|+

∑
|G:N(a)|>1

|G : N(a)| where

N(a) 6= G .
Since pk does not divide |N(a)|, for each term in the summation we
have p divides |G : N(a)|.
Hence p divides |Z (G)|. So by Cauchy theorem, Z (G) has an element
a of order p.
By induction, the quotient group G/〈a〉 has a subgroup K/〈a〉 of
order pk−1.
Then K is the required subgroup of G of order pk .
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Example.
Let |G | = 147 = 72·3.

By first Sylow theorem, G has subgroup of order 49 and 3.
Now we will see that subgroup of order 49 is normal in G by Sylow
third theorem.
The Sylow 7-subgroup are 1 + 7 · k which divides 3.
So, possible value of k is only 0.
Hence the Sylow 7-subgroup is only one. Hence, Sylow 7-subgroup of
order 49 is normal.

Lemma. Let G be a group of order pq, where p and q are primes, p < q.
Then following hold.

G has a unique Sylow q-subgroup.
If p - (q − 1), then G has a unique Sylow p-subgroup, and G is cyclic
of order pq.
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Proof of the Lemma.

Let Q be a Sylow q-subgroup of G . The umber of Sylow q-subgroups
is equal to 1 + tq (t ≥ 0) and this must divide the index p of Q in G .
Since q > p, t = 0, i.e., Q is unique.

Let P be a Sylow p-subgroup. The number of Sylow p-subgroups is
equal to 1 + sp (s ≥ 0) and this must divide the index q of P in G . If
s > 0, the fact that 1 + sp divides q implies that p divides q − 1.
Hence s = 0 and P is unique.
Choose a unique p-Sylow subgroup P and a unique q-Sylow subgroup
Q. Then G = PQ and G is a direct product of cyclic subgroups P
and Q of relatively prime orders. Hence G is cyclic.

Corollary. An abelian group is simple if and only if its order is prime.
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Ring.

Definition. A set R with two binary operations denoted by ‘+’ and ‘·’ is
said to be a ring if
(i) (R,+) is a commutative group,

(ii) Multiplication is associative, i.e., a · (b · c) = (a · b) · c for every
a, b, c ∈ R,

(iii) Distributive laws hold: a · (b + c) = a · b + a · c and
(b + c) · a = b · a + c · a for every a, b, c ∈ R.

Definition. R is called a ring with unit element if there exists an element
e ∈ R such that ae = a = ea for all a ∈ R.

Definition. R is said to be a commutative ring if ab = ba for all a ∈ R
and b ∈ R.
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Examples.

(i) R = Z, the ring of integers, is a ring for the usual addition and
multiplication. It has 1 as unit element, and is commutative.

(ii) R = 2Z, the ring of even integers, is a ring for the usual addition and
multiplication. It has no unit element, but is commutative.

(iii) Consider R = Zn, the additive abelian group of residue classes
modulo n. It is a commutative ring with 1̄ as unit element.

(iv) Let R be the set of all 2× 2 matrices with real entries. Then under
usual addition and multiplication of matrices, R is a ring with identity
element as identity matrix. It is non-commutative.

(v) R = {a +
√
−5 | a, b ∈ Z} is a ring for the usual addition and

multiplication of complex numbers. It is a commutative ring with unit
element 1 = 1 + 0

√
5.

Dr. Anuj Jakhar Modern Algebra 2022 37 / 80



Examples.

(i) R = Z, the ring of integers, is a ring for the usual addition and
multiplication. It has 1 as unit element, and is commutative.

(ii) R = 2Z, the ring of even integers, is a ring for the usual addition and
multiplication. It has no unit element, but is commutative.

(iii) Consider R = Zn, the additive abelian group of residue classes
modulo n. It is a commutative ring with 1̄ as unit element.

(iv) Let R be the set of all 2× 2 matrices with real entries. Then under
usual addition and multiplication of matrices, R is a ring with identity
element as identity matrix. It is non-commutative.

(v) R = {a +
√
−5 | a, b ∈ Z} is a ring for the usual addition and

multiplication of complex numbers. It is a commutative ring with unit
element 1 = 1 + 0

√
5.

Dr. Anuj Jakhar Modern Algebra 2022 37 / 80



Examples.

(i) R = Z, the ring of integers, is a ring for the usual addition and
multiplication. It has 1 as unit element, and is commutative.

(ii) R = 2Z, the ring of even integers, is a ring for the usual addition and
multiplication. It has no unit element, but is commutative.

(iii) Consider R = Zn, the additive abelian group of residue classes
modulo n. It is a commutative ring with 1̄ as unit element.

(iv) Let R be the set of all 2× 2 matrices with real entries. Then under
usual addition and multiplication of matrices, R is a ring with identity
element as identity matrix. It is non-commutative.

(v) R = {a +
√
−5 | a, b ∈ Z} is a ring for the usual addition and

multiplication of complex numbers. It is a commutative ring with unit
element 1 = 1 + 0

√
5.

Dr. Anuj Jakhar Modern Algebra 2022 37 / 80



Examples.

(i) R = Z, the ring of integers, is a ring for the usual addition and
multiplication. It has 1 as unit element, and is commutative.

(ii) R = 2Z, the ring of even integers, is a ring for the usual addition and
multiplication. It has no unit element, but is commutative.

(iii) Consider R = Zn, the additive abelian group of residue classes
modulo n. It is a commutative ring with 1̄ as unit element.

(iv) Let R be the set of all 2× 2 matrices with real entries. Then under
usual addition and multiplication of matrices, R is a ring with identity
element as identity matrix. It is non-commutative.

(v) R = {a +
√
−5 | a, b ∈ Z} is a ring for the usual addition and

multiplication of complex numbers. It is a commutative ring with unit
element 1 = 1 + 0

√
5.

Dr. Anuj Jakhar Modern Algebra 2022 37 / 80



Examples.

(i) R = Z, the ring of integers, is a ring for the usual addition and
multiplication. It has 1 as unit element, and is commutative.

(ii) R = 2Z, the ring of even integers, is a ring for the usual addition and
multiplication. It has no unit element, but is commutative.

(iii) Consider R = Zn, the additive abelian group of residue classes
modulo n. It is a commutative ring with 1̄ as unit element.

(iv) Let R be the set of all 2× 2 matrices with real entries. Then under
usual addition and multiplication of matrices, R is a ring with identity
element as identity matrix. It is non-commutative.

(v) R = {a +
√
−5 | a, b ∈ Z} is a ring for the usual addition and

multiplication of complex numbers. It is a commutative ring with unit
element 1 = 1 + 0

√
5.

Dr. Anuj Jakhar Modern Algebra 2022 37 / 80



Integral domain.

Definition. Let R be a ring and a ∈ R, b ∈ R, both being non-zero. Then
a is called a (left) zero divisor if ab = 0. We also say that b is a (right)
zero divisor.

Note. A zero divisor is a non-zero element (by definition).

Definition. A commutative ring which has no zero divisors is called an
integral domain.

Examples.
The rings Z,Q,R,C are all integral domains.
Z5, the ring of residue classes modulo 5, is an integral domain.
R = {a + b

√
−5 | a, b ∈ Z} is an integral domain.

Z4 is not an integral domain, as 2̄ · 2̄ = 0̄ in Z4.
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Field.
Definition. A commutative ring R with unit element 1 6= 0 in which every
non-zero element has an inverse with respect to multiplication is called a
field.

Examples.
The rings Q,R,C are all fields.
R = Zp is a field.
Zn is not a field if n is not prime.

Definition. Let R be a ring. The characteristic of R is the smallest positive
integer n, if it exists, such that na = 0 for all a ∈ R. If no such integer
exists, then the characteristic of R is said to be zero.

Examples.
The rings Q,R,C have characteristic zero.
R = Zp has characteristic p.
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Homomorphism.

Definition. Let R and R ′ be two rings. A mapping f : R → R ′ is a
homomorphism if it satisfies (i) f (a + b) = f (a) + f (b), a, b ∈ R (ii)
f (ab) = f (a)f (b), a, b ∈ R.

Note. If R and R ′ have unit elements e and e′ respectively, we stipulate
further that f (e) = e′.

Examples.
Let R = Z and R ′ = Zn. The mapping f : R → R ′ given by f (i) = ī ,
is a ring homomorphism, because f (i + j) = ¯i + j = ī + j̄ = f (i) + f (j)
and f (ij) = īj = ī j̄ = f (i)f (j).. Moreover f (1) = 1̄.
If R = {a + b

√
−5 | a, b ∈ Z} and f : R → R ′ is defined by

f (a + b
√
−5) = a − b

√
−5, then f is a ring homomorphism.
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Kernel of f . Let f : R → R ′ be a homomorphism of rings. Then the kernel
of f = {a ∈ R | f (a) = 0}.

Lemma. Let f : R → R ′ be a homomorphism of rings. Then f is one-one
mapping iff Ker(f ) = 0.

Definition. Let R be a ring and S ⊂ R. S be called a subring of R if (i) S
is a subgroup of the abelian group R, i.e., a − b ∈ S whenever a ∈ S and
b ∈ S, (ii) S is closed for multiplication, i.e., ab ∈ S whenever a ∈ S and
b ∈ S.

Example. Z is a subring of Q.

Lemma. Let f : R → R ′ be a homomorphism of rings. Then Ker(f ) is a
subring of R and f (R) = {f (a) | a ∈ R} is a subring of R ′.
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Isomorphism

Definition. Let R and R ′ be rings. A mapping f : R → R ′ is called an
isomorphism if (i) f is a homomorphism, (ii) f is one-one and onto.

Examples.
Let f : C→ C be a map given by f (z) = z̄ , where z̄ is the complex
conjugate of z . Then f is ring isomorphism.
The only isomorphism of Q onto Q is the identity mapping IQ. [Hint:
Prove f (n) = n for all n ∈ Z and then show that bf (a/b) = a.]
Rings Z and 2Z are not isomorphic.
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Ideals.

Definition. Let R be a ring and I ⊂ R. Then I is called an ideal if

I is an additive subgroup of R, i.e., a − b ∈ I whenever a ∈ I and
b ∈ I.
For any a ∈ I, x ∈ R we have both xa ∈ I and ax ∈ I.

Note. It is clear by definition that every ideal is a subring but a subring
may not be ideal. For example, Z is a subring of Q but not an ideal.

Definition. For any ring, {0} and R are ideals in R. These are called
improper ideals and any other ideal is called a proper ideal.

Examples.
I = mZ, m ≥ 0, is an ideal of Z.
I = {0̄, 3̄} is an ideal of Z6.
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Lemma. Let f : R → R ′ be a homomorphism of R in R ′. Then K =
Ker(f ) is an ideal in R.

Definition. A ring R with nontrivial multiplication is called a simple ring if
it has no proper ideals.

Lemma. Any field is a simple ring. Conversely, let R be a commutative
ring with identity which is a simple ring, then R is a field.

Definitions. Let R be a ring and I ⊂ R. I is called a left (right) ideal of R
if (i) I is an abelian subgroup of R, i.e., a − b ∈ I whenever a, b ∈ I, (ii)
For each a ∈ I and x ∈ R, xa ∈ I (respectively ax ∈ I).

Note. Any ideal (two-sided) is both left and right ideal, and in a
commutative ring any left (right) ideal is an ideal.
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Definition. Let I and J be ideals in R. We define the sum and product as

I + J = {a + b | a ∈ I, b ∈ I}; IJ = {
m∑

i=1
aibi | ai ∈ I, bi ∈ J ,m arbitrary}.

Lemma. For any ideals I and J , the sum I + J and the product IJ are
ideals in R.

Quotient ring. Let R be a ring and I be an ideal in R. The ring R/I with
addition and multiplication defined as
(a + I) + (b + I) = (a + b) + I, (a + I)(b + I) = ab + I
is called the quotient ring of R by the ideal I.

Examples.
Let R = Z, I = nZ, n > 0, then the quotient ring R/I is the ring Zn
of residue classes modulo n.
Let R = Z6 and I = {0̄, 2̄, 4̄}. Then R/I is a ring with two elements
0̄ + I and 1̄ + I.
For any ring R, R/I = R when I = 0. Similarly R/R is the zero ring.
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First Isomorphism Theorem. Let f : R → R ′ be a homomorphism of R
onto R ′ and I =Ker(f ). Then I is an ideal in R, and R/I ∼= R ′.

Prime ideal. An ideal P in a ring R is said to be a prime ideal if whenever
ab ∈ P, then either a ∈ P or b ∈ P, P 6= R.

Examples.
Let R = Z, I = pZ with p prime, then I is a prime ideal because if
ab ∈ I, then ab = pk for some k ∈ Z, i.e., p divides ab. Since p is
prime, we have p divides a or p divides b, i.e., a ∈ pZ or b ∈ Z.
If R is an integral domain, P = {0} is a prime ideal in R for if
ab ∈ P = {0}, then ab = 0. This implies that a = 0 or b = 0, i.e.,
a ∈ P or b ∈ P.

Lemma. P is a prime ideal of Z if and only if either P = 0 or P = pZ for
some prime p.
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Lemma. An ideal P in R is a prime ideal if and only if R/P is an integral
domain.

Proof.
Suppose P is a prime ideal, and let āb̄ = 0̄ in R/P, i.e.,
(a + P)(b + P) = P. Then ab + P = P, i.e., ab ∈ P. Since P is a
prime ideal, a ∈ P or b ∈ P, i.e., ā = 0̄ or b̄ = 0̄. Hence R/P is an
integral domain.
Conversely, let R/P be an integral domain and let ab ∈ P. Then

ab + P = P, i.e., (a + P)(b + P) = P, i.e., āb̄ = 0̄.

Since R/P is an integral domain, we have ā = 0̄ or b̄ = 0̄, i.e., a ∈ P
or b ∈ P, showing that P is a prime ideal.
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Maximal ideal. An ideal M in a ring R is said to be a maximal ideal if
M 6= R, and if for any ideal I of R such that M ⊂ I ⊂ R, we have I = M
or I = R.

Examples.
Let R = Z, M = pZ with p prime, then M is a maximal ideal of R.
Let I be any ideal containing M. Then I = mZ and since M ⊂ I,
p ∈ I, i.e., p = mk for some k. This implies that m divides p, and
since p is prime m = 1 or m = p, i.e., I = R or I = M. Thus M is
maximal.
If R is a field, then M = {0} is a maximal ideal in R because the only
ideals in R are {0} and R. Hence no ideal of R except R properly
contains {0}.

Exercise. M is maximal ideal of Z if and only if M = pZ for some prime p.
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Lemma. Let R be a commutative ring with identity. An ideal M is a
maximal ideal if and only if R/M is a field.

Proof.
R/M is a commutative ring with 1. We know that R/M is field iff it
has no proper ideals. Assume that R/M is field and let M ⊂ J be any
ideal. Then J/M is an ideal of R/M. Since R/M is field, we have
J/M = R/M or {0̄}, i.e., J = R or J = J = M. Hence M is a
maximal ideal of R.
Conversely, let M is maximal ideal and J̄be any ideal of R/M. Then
J̄ = J/M where J is an ideal containing M. Since M is maximal, we
have J = M or J = R. Hence R/M is a field.

Corollary. Let R be a commutative ring with 1. Then every maximal idea
in R is prime ideal. Converse is not true.

Proof. M is maximal, then R/M is field and hence an integral domain. So
M is prime ideal. Converse example: R = Z, I = 0.
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Chinese Remainder Theorem.

Theorem. Let I1, . . . , Im be ideals of a commutative ring R with identity
such that Ii + Ij = R for i 6= j , 1 ≤ i , j ≤ m. Then given x1, . . . , xm in R,
there exists x ∈ R such that x ≡ xj (mod Ij) for 1 ≤ j ≤ m.

Proof.
Observe that given two ideals A and B of R with A + B = R, there
exists y belonging to R such that y ≡ 1 (mod A) and
y ≡ 0 (mod B), because on writing 1 as a + b with a ∈ A and b ∈ B,
it is clear that y = b works.
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Proof Contd..

Fix any j , 1 ≤ j ≤ m and set I∗j =
m∏

i=1,i 6=j
Ii .

By hypothesis, Ii + Ij = R if i 6= j . This shows that
m∏

i=1,i 6=j
(Ii + Ij) = R.

So the ideal I∗j + Ij which contains
m∏

i=1,i 6=j
(Ii + Ij) equals R.

In view of what has been said in the above paragraph, there exists
yj ∈ R such that yj ≡ 1 (mod Ij), yj ≡ 0 (mod I∗j ), 1 ≤ j ≤ m.
Take x = x1y1 + . . .+ xmym. Then x ≡ xj (mod Ij) for 1 ≤ j ≤ m.

Corollary. Given distinct prime p1, p2, · · · , pk and integers a1, a2, · · · , ak ,
there exists an integer a such that a ≡ ai (mod pi), 1 ≤ i ≤ k.

Dr. Anuj Jakhar Modern Algebra 2022 51 / 80



Factorisation.
Definition. Let a ∈ R and b ∈ R, a 6= 0. a is said to divide b if there exists
c ∈ R such that b = ac.
We use notation a|b to indicate that a divides b.

Example.
In R = Z, 3 divides 15.
In R = Z + ιZ = {a + ιb | a, b ∈ Z}, (1 + 3ι) divides 10 as
10 = (1 + 3ι)(1− 3ι).

Lemma. Let a, b be non-zero elements of R. If a|b and b|a, then b = au
for some unit u in R, and conversely.

Definition. Two non-zero elements a and b are said to be associates of
each other if a|b and b|a.

Note: In view of above lemma, two elements are said to be associates iff
they differ by a unit, i.e., b = au, for some unit u in R.
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Example.
In R = Z, 5 and −5 are associates as −5 = (−1) · 5.
In R = Z + ιZ = {a + ιb | a, b ∈ Z}, 1 +

√
2ι and

√
2− ι are

associates as
√
2− ι = (−ι)(1 +

√
2ι) and −ι is a unit in R.

Definition. a ∈ R is called an irreducible element if
(i) a is not a unit,
(ii) the only divisors of a are units and associates of a.

Example.
In R = Z, n ∈ Z, n > 1. Then n is irreducible iff the only divisors of n
are ±1 (units) and ±n (associates of n). Thus n is a prime integer.
In R = {a +

√
−5b | a, b ∈ Z}. Then 1 + 2

√
−5 is an irreducible

element of R. Check that only units of R are ±1.
Suppose now that 1 + 2

√
−5 = αβ, α, β ∈ R. Then

N(1 + 2
√
−5) = N(α)N(β), i.e., N(α)N(β) = 21. Hence

N(α) = 1, 3, 7 or 21. If α = a +
√
−5b, then N(α) = a2 +5b2. Hence

N(α) = 3 or 7 is impossible. Hence either N(α) = 1 or N(β) = 1.
So, either α or β is unit, showing that 1 + 2

√
−5 is irreducible.
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Definition. Let p ∈ R which is not a unit, p is called a prime element if it
has the property that whenever p|ab, we have that p|a or p|b.

Lemma. Every prime element is irreducible.

Proof (Sketch). Suppose p is prime, and let a be any divisor of p so that
p = ab. Now p|p(= ab). Since p is prime, p|a or p|b. Let (wlog) that
p|a. Since a|p, we have a is an associate pf p and b is unit.

Example. Let R = {a +
√
−5b | a, b ∈ Z}. Then 1 + 2

√
−5 is an

irreducible element of R but it is not a prime element, because
(1 + 2

√
−5)(1− 2

√
−5) = 21, 1 + 2

√
−5 divides 21 = 3 · 7, but it does

not divide either 3 or 7 as N(1 + 2
√
−5) = 21 whereas N(3) = 9 and

N(7) = 49, and 21 does not divide 9 or 49.

Lemma. An element p ∈ R is prime iff the ideal P = Rp = {xp | x ∈ R} is
a prime ideal.
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Proof. Suppose p is a prime element, and let ab ∈ P. Then ab ∈ P. Then
ab = cp for some c ∈ R, i.e., p|ab. Since P is a prime, p|a or p|b, i.e.,
a ∈ P or b ∈ P. Hence P is a prime ideal.
Conversely, let P be a prime ideal and let p|ab. Then ab = cp ∈ P and
since P is a prime ideal, a ∈ P or b ∈ P, i.e., p|a or p|b. Hence p is a
prime element.

Definition. Let a ∈ R and b ∈ R. An element d ∈ R is called a greatest
common divisor (gcd) of a and b if

d |a and d |b.
whenever d ′|a and d ′|b, then d ′|d .

Example.
In R = Z, if a = 9 and b = −48, then d = 3 is a gcd of a, b.
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Let R = {a +
√
−5b | a, b ∈ Z}. Let α = 1 + 2

√
−5 and β = 3. Any

common divisor of α and β must have a norm which divides
N(α) = 21 and N(β) = 9, i.e., it must have norm 1 or 3. Since no
element can have norm 3, the gcd has the norm 1, i.e., it must be a
unit. Since a unit always divides α and β, the gcd of α and β is a unit.

Definition. If a, b ∈ R, then a and b are said to be relatively prime if there
gcd is a unit.

Dr. Anuj Jakhar Modern Algebra 2022 56 / 80



Euclidean Domain.

Definition. A Euclidean domain is a commutative integral domain R in
which there exists an integer valued function d on the non-zero elements
of R, satisfying the following conditions.
(i) d(a) ≥ 0 for all non-zero a ∈ R.
(ii) d(ab) ≥ d(a), a, b ∈ R.
(iii) For a, b ∈ R, b 6= 0, there exists q′, r ∈ R such that a = bq + r with

r = 0 or d(r) < d(b).

Example.
In R = Z, if d(a) = |a|, then d satisfies all conditions (i), (ii) and
(iii). Conditions (iii) is the usual division algorithm property in Z.
Let R = Z + ιZ = {m + ιn | m, n ∈ Z} be the ring of Gaussian
integers. If a ∈ R, a = m + ιn, define d(a) = |a|2 = m2 + n2. Then
check that R is a Euclidean domain.
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Lemma. Let R be a Euclidean domain. Every ideal I of R is of the form
I = Ra for some a ∈ R.

Proof. If I = 0, then we can take a = 0.
If I 6= 0, then choose a ∈ I, a 6= 0 such that d(a) has a least value.
We shall show that I = Ra.
Clearly since a ∈ I, Ra ⊂ I.
Now if b ∈ I, then by condition (iii) of definition, there exist q, r ∈ R
such that b = aq + r , either r = 0 or d(r) < d(a).
Now r = b − aq ∈ I as a, b ∈ I and I is an ideal.
By the choice of a, d(r) < d(a) is impossible and hence r = 0.
This impies that b = aq ∈ Ra proving that I = Ra.
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Principal ideal domain.

Definition. An ideal I in a commutative ring R is called a principal ideal if
there exists some a ∈ R such that I = Ra.
We use the notation 〈a〉 to denote the ideal Ra.

Definition. An integral domain R is called principal ideal domain if every
ideal in R is a principal ideal.

Remark. Every Euclidean domain is a principal ideal domain (in view of
the last lemma).

Hence, Z or Z + ιZ are examples of principal ideal domains.
However a principal ideal domain need not be a Euclidean domain.
For example: the ring of ll complex numbers of the form
{a + b

2 (1 +
√
−19)}, a, b ∈ Z can be shown to be principal ideal

domain but not a Euclidean domain.
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Lemma. Let R be a principal ideal domain. Then every a ∈ R which is not
a unit can be expressed as a product of irreducible elements.

Proof. If a ∈ R is irreducible, nothing to prove.
Otherwise, a = bc, where b and c are proper divisors of a.
If both b and c are irreducible, then a = bc is the required
decomposition.
Otherwise if b (or c is irreducible,) we have b = ef , where e and f
are proper divisors of b, etc.
If we continue this process, after a finite number of steps, all the
factors will be irreducible for, otherwise, there will be an infinite
sequence of elements,

a0 = a, a1 = b, a2 = e, · · · , an, · · ·
such that each an+1 is a proper divisor of an.
We shal show that it is impossible.
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Suppose such a sequence exists.
Let In = Ran, so that we have an increasing sequence of ideals,
I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In · · · .
Since an+1 is a proper divisor of an, In 6= In+1 for each n.
Let I = ∪∞k=0Ik .
Then I is an ideal in R, because if a, b ∈ I, then a ∈ I, and b ∈ Is ,
where either Ir ⊂ Is or Is ⊂ Ir , so that a − b ∈ Ir ∪ Is ⊂ I, and
xa ∈ Ir ⊂ I for all x ∈ R.
Since R is a principal ideal domain, I = Rd for some d ∈ R.
Now d ∈ Im for some m, so that I = Rd ⊂ Im ⊂ Im+1 ⊂ · · · ⊂ I, i.e.,
Im = Im+1 = Im+2 = · · · = I, which is a contradiction.
This completes the proof.
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Factorization domain.

Definition. An integral domain R is called a factorization domain if every
domain a ∈ R, which is not a unit can be expressed as a product of
irreducible elements.

Remark. Hence, using last two lemmas, Euclidean domains and principal
ideal domains are factorization domains.

Definition. a ∈ R is said to be expressible uniquely as a product of
irreducible elements if whenever a = p1p2 · · · pm = q1q2 · · · qn, where pi , qj
are irreducible then m = n, and each pi = uiqi where ui is a unit in some
order.
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Remark. If a ∈ R can be expressed as a product of irreducible elements,
the expression need not be unique as the following example shows.

R = {a + b
√
−5 | a, b ∈ Z}. Check that only units in R are ±1, and

that 1 + 2
√
−5 is an irreducible element. Similarly we can show that

3 and 7 are irreducible elements. Then
21 = 3 · 7 = (1 + 2

√
−5)(1− 2

√
−5).

The two factorizations of 21 as a product of irreducible elements, are
distinct as 1± 2

√
−5 are not the associates of 3 and 7.

Definition. An integral domain R is called a unique factorization domain
(ufd) if every a ∈ R which is not a unit can be expressed uniquely as a
product of irreducible elements.
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Lemma. Let R be an integral domain in which:
Every a ∈ R which is a non-unit can be expressed as a product of
irreducible elements.
Every irreducible element is prime.

Then R is unique factorization domain (ufd).

Proof. It is sufficient to show that factorization is unique.
Let a = p1p2 · · · pm = q1q2 · · · qn, pi , qj irreducible, and hence prime.
Since p1|a we have p1|q1q2 · · · qn and hence p1|qj for some j .
Wlog, assume that p1|q1. Since q1 irreducible, and p1 is not a unit,
p1 is an associate of q1, i.e., q1 = u1p1, where u1 is a unit.
Thus p1p2 · · · pm = (u1p1)q2 · · · qn.
Since R is an integral domain we have p2p3 · · · pm = u1q2 · · · qn.
Repeating the same arguments with p2, and continuing the process,
we must have either m = n or a unit will be expressible as a product
of irreducible elements, which is not possible.
Hence m = n, and each pi = uiqi with ui unit.
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Corollary. If R is a Euclidean domain or principal ideal domain, then R is
unique factorization domain.

Proof. It is sufficient to show that every irreducible element is prime.
Let p be an irreducible element and let p|ab.
Consider the gcd(p, a). It is either 1 or p.
If gcd(p, a) = p, then p|a.
If gcd(p, a) = 1, then λp + µa = 1 for some λ, µ ∈ R.
Multiplying both sides by b, we have λpb + µab = b.
Since p|ab, it follows that p divides b. Hence p is a prime.

Remark. A unique factorization domain need not be principal ideal
domain. For example: Every principal ideal domain is a unique
factorization domain (UFD).
The converse does not hold since for any UFD K , the ring K [X ,Y ] of
polynomials in 2 variables is a UFD but is not a PID. (To prove this, look
at the ideal generated by 〈X ,Y 〉 . It is not the whole ring since it contains
no polynomials of degree 0, but it cannot be generated by any one single
element.)
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Polynomial Rings.

Definition. A polynomial in x with coefficients from R is an expression of
the type f (x) = a0 + a1x + · · ·+ anxn, ai ∈ R, n ≥ 0.

Definition. Two polynomials f (x) = a0 + a1x + · · ·+ anxn, and
g(x) = b0 + b1x + · · ·+ bmxm, an, bm 6= 0 will be equal iff m = n and
ai = bi for all i .

Examples.
f (x) = x3 + ιx2 − x + 5 + 7ι is a polynomial with coefficients from
the ring of Gaussian integers.
If R = {a + b

√
−5 | a, b ∈ Z}, then

f (x) = (1 +
√
5)x3 − x2 + (7 + 8

√
−5)x + 9 is a polynomial with

coefficients from R.
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Definition. Let f (x) = a0 + a1x + · · ·+ anxn and
g(x) = b0 + b1x + · · ·+ bmxm be two polynomials over R. Their sum
f + g and their product fg are defined as follows:

(f + g)(x) = (a0 + b0) + (a1 + b1)x + · · ·+

and
(fg)(x) = c0 + c1x + c2x2 + · · ·+ cm+nxm+n,

where ci = a0bi + a1bi−1 + · · ·+ aib1.

Remark. The set R[x ] of all polynomials over R forms a ring for the
operation of + and ·. The zero polynomial is the identity (zero) element.
The ring R[x ] is called the polynomial ring in x over R.
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Lemma. If R is a commutative ring with unit element, so is R[x ].

Proof.
Let f (x) ∈ R[x ] and g(x) ∈ R[x ] where f (x) = a0 + a1x + · · ·+ anxn

and g(x) = b0 + b1x + · · ·+ bmxm.
Then f (x)g(x) = a0b0 + (a0b1 + a1b0)x + · · ·+ anbmxm+n.
Since R is commutative, check that fg = gf .
It shows that R[x ] is commutative.
Let 1 be the unit element of R.
Consider the polynomial 1 = 1 + 0x + 0x2 + · · · .
Then for any f (x) = a0 + a1x + · · ·+ anxn, check that
1f (x) = f (x)1 = f (x).
Thus 1 acts as the unit element of R[x ].
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Lemma. If R is an integral domain, then R[x ] is also an integral domain.

Proof.
Consider f (x) ∈ R[x ] and g(x) ∈ R[x ] both non-zero.
At least one coefficient of f (x) and g(x) is non-zero.
Let an be the highest non-zero coefficient of f (x) and let bm be the
highest non-zero coefficient of g(x).
Then f (x) = a0 + a1x + · · ·+ anxn, an 6= 0,
g(x) = b0 + b1x + · · ·+ bmxm, bm 6= 0.
Now f (x)g(x) = a0b0 + (a0b1 + a1b0)x + · · ·+ anbmxm+n.

Since R is an integral domain, we have anbm 6= 0.
Thus fg 6= 0 showing that R[x ] is an integral domain.

Corollary. If F is a field, F [x ] is an integral domain with unit element.
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Definition. Let f (x) ∈ R[x ], f (x) 6= 0. Then the largest n such that the
coefficient of xn in f (x) is non-zero is called the degree of f (x). We shall
use the notation deg f for the degree of f (x). If deg f = 0, then f is called
constant polynomial.

Lemma. Let R be any commutative ring, f (x), g(x) ∈ R[x ]. Then
deg fg ≤ deg f + deg g and equality holds when R is an integral domain.

Proof. Let f (x) = a0 + a1x + · · ·+ anxn, an 6= 0, so that deg f = n, and
let g(x) = b0 + b1x + · · ·+ bmxm, bm 6= 0 with deg g = m.

Then f (x)g(x) = a0b0 + (a0b1 + a1b0)x + · · ·+ anbmxm+n.
Thus deg fg ≤ m + n = deg f + deg g .
If R is an integral domain, then anbm 6= 0, so that
deg fg = m + n = deg f + deg g .

Corollary. If F is a field, deg fg = deg f + deg g and in particular
deg fg ≥ deg f , as deg g ≥ 0.
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Lemma. If F is a field, then F [x ] is a Euclidean domain.

Sketch of Proof. Note that F [x ] is an integral domain.
For any f (x) ∈ F [x ], f 6= 0, define d(f ) = deg f .
Then d(f ) is a non-negative integer satisfying d(fg) ≥ d(f ) by the
above corollary
Now verify division algorithm.
Let f (x) ∈ F [x ] and g(x) ∈ F [x ], g(x) 6= 0.
If deg f < deg g , then f = 0 · g + f with d(f ) < d(g), i.e., the
division algorithm is true.
So we can assume that deg f ≥ deg g and use induction on deg f = n.
If n = 0, then m = deg g = 0 and we are done. Otherwise let it is
true for all polynomials f , g with deg f < n and deg f ≥ deg g .
Let f (x) = a0 + a1x + · · ·+ anxn, an 6= 0 and
g(x) = b0 + b1x + · · ·+ bmxm, bm 6= 0 with m ≤ n.
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Proof Contd...
Let h(x) = f (x)− anb−1

m xn−mg(x) which has degree n − 1 and apply
induction for h(x), we can write h(x) = q(x)g(x) + r(x) with
r(x) = 0 or d(r) < d(g).
Substituting for h(x), we get f (x) = q1(x)g(x) + r(x), where
q1(x) = anb−1

m xn−m + q(x) and either r = 0 or d(r) < d(g).

Corollary. If F is a field, F [x ] is a PID, UFD.

Corollary. If F is a field, any two f , g ∈ F [x ] have a gcd d(x) which can
be expressed in the form d(x) = λ(x)f (x) + µ(x)g(x), λ(x), µ(x) ∈ F [x ].
Moreover gcd of two elements can be obtained by the division algorithm
process.

Example. Let f (x) = x4 + x3 − 3x2 − x + 2 and
g(x) = x4 + x3 − x2 + x − 2 have gcd x2 + x − 2.
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Definition. Let f (x) = a0 + a1x + · · ·+ anxn ∈ R[x ]. Then α be a root of
f (x) if a0 + a1α + · · ·+ anα

n = 0.

Remark. If R is a field, then R[x ] is UFD. Hence, every f (x) ∈ R[x ] which
is not constant can be expressed uniquely as a product of irreducible
polynomials. This result is true more generally, when R is UFD.

We now provide a famous irreducibility criterion which provides sufficient
conditions for the irreducibility of polynomials with coefficients in a UFD.

Eisenstein’s criterion. Let R be a UFD and
f (x) = a0 + a1x + · · ·+ anxn ∈ R[x ], an 6= 0. Suppose there exists an
irreducible element p ∈ R such that

p|ai for 0 ≤ i ≤ n − 1,
p - an,
p2 - a0,

then f (x) is irreducible in R[x ].
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Proof.
Suppose f (x) is reducible. Then f (x) = g(x)h(x) where deg g < n
and deg h < n.
Let g(x) = b0 + b1x + · · ·+ br x r , br 6= 0, r < n.
Let h(x) = c0 + c1x + · · ·+ csx s , cs 6= 0, s < n.
Since f (x) = g(x)h(x), we have ai = bic0 + bi−1c1 + · · ·+ b0ci .

Since p|a0, we have p|b0 or p|c0 but not both as p2 - a0.
Wlog, let p|b0 and p - c0.
Since p - an, p - bi for some i , 1 ≤ i ≤ r < n.
Choose least i such that p - bi , i.e., p - bi and p|bj for 0 ≤ j ≤ i − 1.
Consider ai = bic0 + bi−1c1 + · · ·+ b1ci−1 + b0ci .

Since i < n, we have p|ai . Also, p|b0, · · · , p|bi−1.

Hence p|bic0, and this is a contradiction because p - bi and p - c0.
Therefore, f (x) is irreducible in R[x ].
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Definition. Let R be a UFD and f (x) = a0 + a1x + · · ·+ anxn ∈ R[x ].
Then the gcd of the coefficients a0, a1, · · · , an is called the content of
f (x). We shall denote it by c(f ).

Definition. Let R be a UFD. Then f (x) is called a primitive polynomial, if
c(f ) = 1.

Lemma. Let R be a UFD. Then the product of two primitive polynomials
over R is also a primitive.
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Gauss Lemma. Let R be a UFD and F the quotient field of R. Let
f (x) ∈ R[x ] be irreducible in R[x ]. Then f (x) is also irreducible in F [x ].

Proof.
Let f (x) = a0 + a1x + · · ·+ ar x r and g(x) = b0 + b1x + · · ·+ bsx s

be primitive polynomials and let
h(x) = f (x)g(x) = c0 + c1x + · · ·+ cr+sx r+s .
Suppose h(x) is not primitive and that the c0, c1, · · · , cr+s have a
common irreducible factor p.
Since f (x) is primitive, p can not divide all the ai ’s.
We choose i such that p - ai but p|ai−1, p|ai−2, · · · , p|a0, 0 ≤ i ≤ r .
Similarly we choose j such that p - bj , but p|bj−1, · · · , p|b0,
0 ≤ j ≤ s.
Now ci+j = aibj +

∑
k+`=i+j,k 6=i ,` 6=j

akb`.

Since p|ci+j and p divides
∑

k+`=i+j,k 6=i ,`6=j
akb`, we have p|aibj .

This is a contradiction as p - ai and p - bj .
This proves that h(x) is primitive.
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Proof.
If possible, let f (x) is reducible in F [x ].
Then f (x) = g(x)h(x) with deg g < deg f and deg h < deg f .
We can write g(x) = (a/b)g1(x) and h(x) = (c/d)h1(x), where
a, b, c, d ∈ R and g1(x), h1(x) ∈ R[x ] both being primitive.
Then f (x) = ac

bd g1(x)h1(x) and g1(x)h1(x) is primitive.
Since f (x) ∈ R[x ] is irreducible, and c(f ) divides f , c(f ) = 1, i.e., f
is primitive.
Now bdf (x) = acg1(x)h1(x), and comparing the contents on both
sides, we have bd = ac.
Hence g1(x)h1(x) where g1(x), h1(x) ∈ R[x ] and
deg g1 = deg g < degf , deg h1 = deg h < deg f .
This contradicts the assumption that f (x) ∈ R[x ] is irreducible.
Hence f (x) is irreducible in F [x ].
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Corollary. If f (x) ∈ Z[x ]. If f (x) is reducible over Z, then it is reducible
over Z.

Remark. f (x) ∈ F [x ] is irreducible iff f (x + a) is irreducible for a ∈ F .
[Hint: If f (x) = g(x)h(x), then f (x + a) = g(x + a)h(x + a). And
f (x + a) = G(x)H(x), then f (x) = G(x − a)H(x − a).]

Mod p irreducibility test. Let p be a prime number and suppose
f (x) ∈ Z[x ] with deg f (x) ≥ 1. Let f̄ (x) be the polynomial in Zp[x ]
obtained from f (x) by reducing all the coefficients of f (x) modulo p. If
f̄ (x) is irreducible over Zp and deg f̄ (x) = deg f (x), then f (x) is
irreducible over Q.
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Proof.
If f (x) is irreducible over Q, then f (x) = g(x)h(x) with
g(x), h(x) ∈ Z[x ], and both g(x) and h(x) have degree less than that
of f (x).
Let f̄ (x), ḡ(x), and h̄(x) be the polynomials obtained from f (x), g(x)
and h(x) by reducing all the coefficients modulo p.
Since deg f (x) = deg f̄ (x), we have deg ḡ(x) ≤ deg g(x) < deg f̄ (x)
and deg h̄(x) ≤ deg h(x) < deg f̄ (x).
But, f̄ (x) = ḡ(x)h̄(x), and this contradicts our assumption that f̄ (x)
is irreducible over Zp.
This completes the proof.
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Examples.

If p is a prime number then f (x) = 1 + x + x2 + · · ·+ xp−1 ∈ Q[x ] is
irreducible.
Hint: Check f (x + 1) = (x+1)p−1

(x+1)−1 = xp−1 +
(p

1
)
xp−2 + · · ·+ p.

This it is irreducible by Eisenstein’s criterion (w.r.t. p) over Z. By
Gauss lemma, it is irreducible in Q[x ]. Hence f (x) is irreducible in
Q[x ].
Let f (x) = 5x7 + 36x3 − 12. Then f (x) is irreducible by Eisenstein
criterion with p = 3.
The polynomial f (x) = x3 + px + p2 with p prime, is irreducible over
Q as it can not have a linear factor. [Hint: If f (x) has a rational root,
then it will be of form r

s with gcd(r , s) = 1. Hence check that r
divides last coefficient and s divides leading coefficent.]
If p 6= 2 a prime number and a, b positive integers, then
f (x) = x3 + pax2 + pb is irreducible over Q, as modulo 2 it reduces
to x3 + x2 + 1, which is irreducible modulo 2. Hence f (x) is
irreducible over Q by Mod test.
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