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1

Series of Numbers

1.1 Preliminaries
We use the following notation:

@ = the empty set.

N ={1,2,3,...}, the set of natural numbers.
Z=A{...,-2,-1,0,1,2,...}, the set of integers.

Q= {§ pEZ q€ N}, the set of rational numbers.
R = the set of real numbers.

R, = the set of all positive real numbers.

As we know, N ¢ Z ¢ Q ¢ R. The numbers in R \ Q is the set of irrational
numbers. Examples are \/5 3.10110111011110- - - etc.
Along with the usual laws of +, -, <, R satisfies the completeness property:

Every nonempty subset of R having an upper bound has a least upper
bound (lub) in R.

Explanation: Let A be a nonempty subset of R. A real number u is called an upper
bound of A if each element of A is less than or equal to u. An upper bound ¢ of A is
called a least upper bound if all upper bounds of A are greater than or equal to ¢.

Notice that Q does not satisfy the completeness property. For example, the
nonempty set A = {x € Q : x> < 2} has an upper bound, say, 2. But its least upper
bound is \/5 which is not in Q.

Similar to lub, we have the notion of glb, the greatest lower bound of a subset of
R. Let A be a nonempty subset of R. A real number v is called a lower bound of A
if each element of A is greater than or equal to v. A lower bound m of A is called
a greatest lower bound if all lower bounds of A are less than or equal to m. The
completeness property of R implies that

Every nonempty subset of R having a lower bound has a greatest lower
bound (glb) in R.
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The lub acts as a maximum of a nonempty set and the glb acts as a minimum of
the set. In fact, when the lub(A) € A, this lub is defined as the maximum of A
and is denoted as max(A). Similarly, if the glb(A) € A, this glb is defined as the
minimum of A and is denoted by min(A).

A consequence of the completeness property of R is the Archimedean property:

If a > 0 and b > O, then there exists an n € N such that na > b.

From the Archimedean property, it follows that corresponding to each real number
x, there exists a unique integer n such that n < x < n+ 1. This integer n is called
the integral part of x, and is denoted by [x]. That is,

[x] = the largest integer less than or equal to x.

Using the Archimedean property it can be proved that both Q and R \ Q are dense
in R. That is, if x < y are real numbers then there exist a rational number a and an
irrational number b such thatx <a <yandx < b <y.

We may not explicitly use these properties of R but some theorems, whose proofs
we will omit, can be proved using these properties. These properties allow R to be
visualized as a number line:

el ol

ESN L)

Leta,beR, a<b.

[a,b] = {x € R:a < x < b}, the closed interval [a, b].
(a,b] = {x € R: a < x < b}, the semi-open interval (a, b].
[a,b) = {x € R: a < x < b}, the semi-open interval [a, b).
(a,b) = {x € R: a < x < b}, the open interval (a, b).
(—o0,b] = {x € R : x < b}, the closed infinite interval (—oo, b].
(—o0,b) = {x € R : x < b}, the open infinite interval (—oo, b).
[a,0) = {x € R: x > a}, the closed infinite interval [a, co).
(a,00) = {x € R : x < b}, the open infinite interval (a, ).
(—o0, 00) = R, both open and closed infinite interval.
We also write R, for (0, 0) and R_ for (—o0,0). These are, respectively, the set

of all positive real numbers, and the set of all negative real numbers.
A neighborhood of a point ¢ is an open interval (¢ — , ¢ + ) for some § > 0.



Series of Numbers 3

. x ifx>0
The absolute value of x € R is defined as |x| =
-x ifx <O.

Thus |x| = Vx2. And | —al =afora > 0.If x,y € R, then |x — y| is the distance
between real numbers x and y. Moreover,

x| x| .
=l = bl byl = Pl [ = ity 0, syl < el +lyl, =yl < b=yl

Let x € R and let a > 0. Then the following are true:

1. |x| = aiff x = +a.

2. |x| <aiff—a<x <aiff x € (—a,a).

3. |x| <aiff —a<x < aiff x € [-a,a].

4. |x| >aiff —a<xorx > aiff x € (—c0,—a) U (a,0) iff x € R\ [—a,a].
5. x| >aiff —a<xorx > aiff x € (—c0,—a] U [a, ) iff x € R\ (—a,aq).

Therefore, fora € R, § > 0,
|lx—a| <diffa-5<x<a+diffx € (a—b,a+9).

The following statement is useful in proving equality using an inequality:

Leta,b € R. If foreache > 0, |a—b| < €, thena =b.

1.2 Sequences

The infinite sum 100+ 10+ 1+ 1/10+ 1/100 + - - - is equal to the decimal number
111.111 .- -, whereas the infinite sum 1 +2 + 3 +4 + - - - is not a number. For the
first sum, we rather take the partial sums

100, 100+ 10, 100+ 10+ 1, 100+ 10+ 1 +1/10, ...

which are numbers and ask whether the sequence of these numbers approximates
certain real number? We may ask a similar question about the second sum.

As another example, consider approximating V2 by the usual division procedure.
We get the sequence

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, ...

Does it approximate V2 ?
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In general, we define a sequence, specifically, a sequence of real numbers as a
function f : N — R. The values of the function are f(1), f(2), f(3), ... These are
called the terms of the sequence. The nth term of the sequence is f(n). Writing
f(n) as x,, we write the sequence in many ways such as

(), (Xn)2ys {xn}ooys {xn), oras (xp,x2,x3,...)
showing explicitly its terms. For example, x, = n defines the sequence
f N — Rwith f(n) =n,

that is, the sequence is (1,2, 3,4,...), the sequence of natural numbers. Informally,
we say “the sequence x, = n.”

The sequence x, = 1/n is the sequence (1, % % zlv ...); formally, (1/n).

The sequence x, = 1/n? is the sequence (1/n?), also (1, }P é, %, S

The constant sequence (c¢) for a given real number ¢ is the constant function
f :N — R, where f(n) =cforeachn e N. Itis (c,c,c,...).

A sequence is an infinite list of real numbers; it is ordered like natural numbers,
and unlike a set of numbers where there is no order.

There are sequences which approximate a real number and there are sequences
which do not approximate any real number. For example, (1/n) approximates
the real number 0, whereas (n) approximates no real number. Also the sequence
(1,-1,1,-1,1,-1,...), which may be written as ((—1)”_1), approximates no real
number. We would say that the sequence (1/n) converges to 0 and the other two
sequences diverge. The sequence (n) diverges to co and the sequence ((—1)""!)
diverges.

Look at the sequence (1/n) closely. We feel that eventually, it will approximate
0. It means that whatever tolerance I fix, there is a term in the sequence after which
every term of the sequence away from 0 is within that tolerance. What does it mean?

Suppose I am satisfied with an approximation to O within the tolerance 5. Then,
I see that the terms of the sequence, starting with 1 and then 1/2,1/3,..., all of
them are within 5 units away from 0. In fact, [1/n — 0| < 5 for all n. Now, you
see, bigger the tolerance, it is easier to fix a tail of the sequence satisfying the
tolerance condition. Suppose I fix my tolerance as 1/5. Then I see that the sixth
term onwards, all the terms of the sequence are within 1/5 units away from 0. That
is, [1/n = 0| < 1/5 for all n > 6. If I fix my tolerance as 107!, then we see that
[1/n—0] <1071 forall n > 10'0 + 1.

This leads to the formal definition of convergence of a sequence.

Let (x,) be a sequence. Let a € R. We say that (x,) converges to a iff for each
€ > 0, there exists an m € N such that for all natural numbers n > m, |x, — a| < €.
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(1.1) Example

Show that the sequence (1/n) converges to 0.
Let € > 0. Take m = [1/€], the natural number such that m < 1/e < m+ 1. Then
1/(m+1) < €. Moreover, if n > m, then 1/n < 1/(m+ 1) < €. That is, for any

given € > 0, there exists an m, (we have defined it here) such that for every n > m,
we see that |1/n — 0| < e. Therefore, (1/n) converges to 0. 0

Notice that in (1.1), we could have resorted to the Archimedean property directly
and chosen any natural number m > 1/e.

Now that (1/n) converges to 0, the sequence whose first 1000 terms are like (n)
and 1001st term onward, it is like (1/n) also converges to 0. Because, for any given
€ > 0, we choose our m as [1/e] +1000. That is, convergence behavior of a sequence
does not change if first finite number of terms are changed.

For a constant sequence x, = c, suppose € > 0 is given. We see that for each n € N,
|x, — ¢| = 0 < e. Therefore, the constant sequence (c) converges to c.

Sometimes, it is easier to use the condition |x, —a| < e€asa—€ < x, < a+e.

A sequence thus converges to a iff each neighborhood of a contains a tail of the
sequence.

We say that a sequence (x,) converges iff it converges to some a. Thus to say that
(x,) diverges means that the sequence does not converge to any real number what
SO ever.

(1.2) Example

Show that the sequence {(—1)"} diverges.
It means that whatever real number r we choose, it is not a limit of the sequence
-1,1,-1,1,-1,.... To see this, we consider three cases:

Case I: r = 1. Let € = 1/2. If the sequence converges to 1, then we have an m € N
such that both (m + 1)st term and (m + 2)nd term are no more than 1/2 away from
1. Now, one of m + 1 and m + 2 is odd; write this odd number as k. In that case,
x; = —1. Then it follows that |x; — 1| = | — 1 — 1| < 1/2, a contradiction.

Case 2: r = —1. Similar to Case 1. Consider an even number greater than m.

Case3: r# 1, r# —1.Lete = %min{lr — 1|, |r + 1|}. That is, to whichever point
1 or —1 the real number r is closer, take e as half of that distance. Then neither
|r — 1| < enor |[r — (—1)| < e. That is, no term of the sequence is within a distance
e from r. So, the sequence does not converge to r. 0

As you see, proving that a sequence does not converge is comparatively difficult.
To show that a sequence converges the definition demands that we first guess what
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could be its limit; then the definition helps in verifying that our guess is correct or
not. Also, notice that when x,, converges to a, the m in the definition may depend
on the given €. Thus {x,} does not converge means that corresponding to any real
number a we get an € > 0 such that there are infinitely many terms of the sequence
away from a by at least ¢, that is, |x, — a| > € for infinitely many n’s.

There can be non-convergence in a way unlike the sequence {(—1)"}. The terms
of the sequence may grow indefinitely taking positive values or may diminish
indefinitely taking negative values. In the first case, whatever natural number you
choose, there are infinitely many terms of the sequence which are bigger than the
chosen natural number. We say, it surpasses each natural number and in the second
case, it remains smaller than each negative integer. These correspond to the two
special cases of divergence.

Let (x,) be a sequence. We say that (x,) diverges to oo iff for every r > 0, there
exists an m € N such that for all natural numbers n > m, x, > r.

We call an open interval (r, o0) a neighborhood of co. A sequence thus diverges to
oo implies the following:

1. Each neighborhood of co contains a tail of the sequence.

2. Every tail of the sequence contains arbitrarily large positive numbers.

We say that (x,) diverges to —oo iff for every r > 0, there exists an m € N such that
for all natural numbers n > m, x, < —r.

Calling an open interval (—oo,s) a neighborhood of —co, we see that a sequence
diverges to —oo implies the following:
1. Each neighborhood of —co contains a tail of the sequence.

2. Every tail of the sequence contains arbitrarily small negative numbers.

We use a unified notation for convergence to a real number and divergence to +co.
Let (x,) be a sequence. When x, converges to a real number r, we say that the
limit of (x,) is r; and when x,, diverges to +co, we say that the limit of (x,) is +oo.
For £ € R U {—00, 00}, we write the phrase “the limit of x, is £” in any one of the
following manner:

Iimx,=¢ Ilmx,=¢ x,—>fasn— oo, x,—{.

(1.3) Example
Show that (a) lim v/n = oco; (b) limlog(1/n) = —oo.

(a) Let r > 0. Choose an m > r>. Let n > m. Then vn > vm > r. Therefore,
lim v/n = oo.
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(b) Let r > 0. Choose a natural number m > e". Letn > m. Then1/n < 1/m < e™".
Since log x is an increasing function, we have log(1/n) < loge™ = —r. Therefore,
log(1/n) — —c0. 0

Using the definitions of limit of a sequence many useful results can be shown. In
addition, using the completeness property of R some more results about sequences
can be proved.

1.3 Results on Sequences

It is of fundamental importance that if you obtain the limit of a sequence by some
method, then by following another method, you would not get a different limit.

(1.4) Theorem

Limit of a sequence is unique.

Proof. Let (x,) be a sequence. Suppose that limx, = ¢ and also that limx,, = s.
We consider the following exhaustive cases.

Case I: t € R and s € R. On the contrary, suppose that s # £; that is, |s — £| > 0.
Choose € = |s — £|/2. We have natural numbers k and m such that for every n > k
and n > m,

|x, — €] <e and |x,—s|<e.

Fix one such n, say M > max{k, m}. Both the above inequalities hold for n = M.
Then

s—¢€l=|s—xpm+xp—C <|xpy—s|+|xm—€] <2e=|s—¢.
So, |s — | < |s — £|, a contradiction.

Case 2: ¢ € R and s = 0. Since the sequence converges to £, for € = 1, there exists a
natural number k such that for every n > k, we have |x, —£| < 1. Since the sequence
diverges to oo, we have m € N such that for every n > m, x, > £ + 1. Now, fix an
M > max{k, m}. Then both of the above hold for this n = M. So, x); < £+ 1 and
xp > £+ 1. This is a contradiction.

Case 3: £ € R and s = —oo. It is similar to Case 2.

Case 4: £ = oo, s = —oco. Again choose an M so that x,, is both greater than 1 and
also less than —1 leading to a contradiction. 1
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Sometimes it is helpful in determining whether a sequence converges, even if we
are not able to find its limit. Essentially, there are two results which help us to do
this. In stating these results, the following terminology will be used.

We say that a sequence (x,) is bounded iff there exists a positive real number k
such that for each n € N, |x,| < k; that is, when the whole sequence is contained in
an interval of finite length.

We also say that (x,) is bounded below iff there exists an m € R such that x, > m
for each n; and the sequence (x,) is called bounded above iff there exists an M € R
such that each x, < M for each n.

Clearly, a sequence is bounded iff it is both bounded below and bounded above.

The sequence ((—1)"/n) is bounded and it converges to 0.

Divergent sequences can be bounded or unbounded. For example, ((—1)") is a
bounded sequence whereas (n) and (—n) are unbounded sequences. The sequence
((=1)") diverges, but it neither diverges to co nor to —co. The sequence (n) diverges
to co; the sequence (—n) diverges to —co.

The sequence ((—1)"logn) is unbounded; it diverges; but it neither diverges to
00 NOr to —oo.

A sequence (x,) is called increasing iff x, < x,; for each n. Similarly, (x,) is

called decreasing iff x,, > x,,; for each n. A sequence which is either increasing or
decreasing is called a monotonic sequence.

A sequence (x,) is called a Cauchy sequence iff for each € > 0, there exists
an M € N such that for all natural numbers n and m with n > m > M, we have
|x, — xm| < €. It follows that for all n > m, if lim |x, — x,,| — 0 as m — oo, then
(x,) is a Cauchy sequence.

Let (x,) be a sequence. Let k; < k» < k3 < --- be an increasing sequence
of indices. The sequence (xi,) for n = 1,2,3,..., is called a subsequence of the
sequence (x;).

For example, (1,4,9, 16, ...) is a subsequence of the sequence 1,2,3,4,....

Including the two criteria for convergence of a sequence, one by Cauchy and the

other by Weirstrass, we mention some other important results.

(1.5) Theorem
(1) Each convergent sequence is bounded.
(2) Algebra of Limits: Suppose lim x, = a and lim y, = b. Then the following
are true:
(a) Sum: lim (x, +y,) =a+b.
(b) Difference: lim (x, —y,) = a — b.
(c) Constant Multiple: lim (¢x,) = ca for any real number c.
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(d) Product: lim (x, y,) = ab.
(e) Division: lim (x,/y,) = a/b, provided no y, is 0 and b # 0.
(f) Domination: If for eachn € N, x, < yy,, then a < b.

(3) Sandwich Theorem: Let (x,), (yn) and (z,) be sequences. Suppose there
exists m € N such that for all n > m, we have x, < y, < z,. If x, = £ and
zy — ¢, theny, — {.

(4) Weirstrass Criterion: A bounded monotonic sequence converges. Specifically,

(a) an increasing sequence which is bounded above converges to its lub;

(b) a decreasing sequence which is bounded below converges to its glb.
(5) Cauchy Criterion: A sequence (x,) converges iff it is a Cauchy sequence.

(6) Limits of functions to Limits of sequences: Let m € N. Let f(x) be a function
whose domain includes [m, o). Let (x,) be a sequence such that x, = f(n)
foralln > m.If lim f(x) = ¢, then lim x, = ¢.

X—00 n—oo

(7) Limits of sequences to Limits of functions: Leta < c¢ < b. Let f : D — R be
a function where D contains (a,c)U (¢, b). Let £ € R. Then lim f(x) = £ iff for
each non-constant sequence (x,) converging to c, the seq;e_l;cce of functional
values (f(xn)) converges to t.

(8) Subsequence Criterion: Let (x,) be a sequence.

(@) If x, — ¢, then every subsequence of (x,) converges to {.
b) If x2p — € and xpp41 — ¢, then x, — £.
(¢) If (xp) is bounded, then it has a convergent subsequence.

(9) Continuity: Let f(x) be a continuous real valued function whose domain
contains each term of a convergent sequence x, and also its limit. Then

Jim £Gn) = f{ fim )

For sequences (x,) and (y,), we write their sum as (x,+y,) and product as (x,y,).
Sum of two divergent sequences may converge; similarly, product of two divergent
sequences may converge. For example, (1,0,1,0,1,...) and (0, 1,0, 1,0,...) are
divergent but their sum (1,1, 1,1,...) is convergent and their product (0,0,0,...)
is convergent. Also, ((—1)") diverges but ((—1)"(-1)") converges; whereas (n)
diverges, (1/n*) converges and their product (1/n) converges.

The condition limy, # 0 is important in the division rule. The sequences (1/n)
and (1/ n2) are convergent but their product (1/n)/(1/n?) = n does not converge to
lim(1/n)/lim(1/n?), which is an indeterminate.

When we say that co + co = oo, what we mean is if (x,) and (y,) are any sequences
such that limx, = oo and limy, = oo, then lim(x, + y,) = co. Similarly, other
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equalities concerning these two special symbols +co can be shown. We note them
down here:

Let r > 0 be any real number. As usual, addition and multiplication are commuta-
tive, and

oo++r:00+0:00+00:00, —OO+}":—OO+O:—OO,
r-oo=(-r)-(—00) = —=— =00-00=(—00) - (—00) = o0,
-r
00 00
F(me0) = () 0= 2= ¥ m oo (mo0) = 0
—-r r

The indeterminate forms are:

00 —00, 0-(x0), —.

+00

The reason for these expressions to be indeterminate follows the same principle.
For example, co — oo is interpreted as if (x,) diverges to co and (y,) diverges to
—oo, then (x, + y,) may diverge to oo, or to —co, or converge to any real number,
or neither. I leave it to you for supplying appropriate examples for each of these
scenario. Similarly, other forms above are indeterminate.

One consequence of the constant multiple rule is that every nonzero multiple of
a divergent sequence diverges. For if x, diverges and ¢ # 0 but cx, converges, then
xn = (1/¢)cx, would converge!

The domination result implies that if a sequence has only positive terms, its limit
cannot be negative. Notice that if all but an initial finite number of terms of a
sequence are positive, then also its limit cannot be negative. Similarly, the limit of
a sequence of negative terms (leaving some first finite number of terms) cannot be
positive. Moreover, the domination statement includes the case of divergence to co.
Specifically, if x, — oo and for each n, x, < y,, then y, — co.

For an application of the Sandwich theorem, consider a sequence (x;).

If |x,| — O, then x,, — 0. Reason: —|x,| < x, < |x,| and Sandwitch theorem.

Also, if x, — 0, then |x,| — 0. Reason: | |xcn| — 0| < |x, -0

That is, (x,) converges to O iff (|x,|) converges to 0.

In general, if (x,) converges to ¢, then (|x,|) converges to |£|. It follows from the
inequality

| |xn] = €] < |on — £].
However, even if (|x,|) converges, (x,) may not converge. For instance, take

xp = (=™

Remark 1.6 The Weirstrass criterion can be proved as follows using the com-
pleteness principle of real numbers. For (1.5-4a), let (x,) be an increasing sequence
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which is bounded above. Then the set of terms of the sequence has an lub, say,
s. That is, for each n € N, x, < s, and for each € > O there is a term of the
sequence, say, xi such that s — e < x; < s. Since (x;) is an increasing sequence,
S—€ < X < Xpp1 < Xpgp < -+ < 5. So, the tail xg, Xgi1, Xk42, - . - 1S contained in

(s — €,s + €). Therefore, (x,) converges to s.

(1.7) Example

52 4+2n+7 5+2+L 5
1) lim 2Ty w2 5
L R T ST

the operation of division in the limit is applicable since the limit of the
denominator is nonzero.

- 1
(2) Since — < cosn < —, Sandwich theorem implies that cosn
n

n n

1 1
3) Asn<Vn2+1+n 0<Vn?l+l-n= —— < —.
Vr2+1+n 1

By Sandwich theorem, lim Vn?2+1—-n=0.

n—oo

(4) Let p > 0. Show that lim (1/n”) = 0.

— 0.

Let € > 0. Using Archimedean Property, take m € N so that (1/€)!/? < m.
Now, 1/e < mP;so0 1/mP <e. If n > m,then — < — < e.
nf  mP
(5) Let x > 0. Show that lim(x!/") = 1.

The function f(¢) = x' is continuous at each t € [0, o).
So, lim(x!'/7) = xlim/m) = 50 = 1.

(6) Show that if |x| < 1, then lim x" = 0.
1
Write |x| = Tor for some r > (. By the Binomial theorem,
r

(1+r)">14nr > nr.

So, .
O<|x|"=+r)"< —.
nr
By Sandwich theorem, lim |x|* = 0. Now, —|x|" < x" < |x|". Again, by
Sandwich theorem, lim x" = 0.
(7) Show that lim(n'/") = 1.

Let x, = n'/" — 1. We see that x,, > 0. Using Binomial theorem for n > 2,

-1
xn+1:n1/":n:(xn+l)”21+nxn+%x,21.
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Hence

V2
\/n—l'

Apply Sandwich theorem to conclude that lim x,, = 0.

zn(”T_l)x,%:Oans

(1.8) Example

Letx, =1+ % + % + - % for n € N. Does the sequence (x,) converge?

SR DS S IO I
Xon =X = 1 2 m=m "ty

Hence, as n — oo, |x3, — x,,| does not converge to 0. That is, (x,) is not a Cauchy
sequence; so it does not converge. 0

(1.9) Example
Define a sequence (x,) by x; = 1, x = 2, and x4 = (xg41 + xx)/2 for k > 1. Does
the sequence converge?

Xn+2 = Xn+1 = (Xn — Xn+1)/2. Thus,

1 1 1
|xn+2_xn+1| zilxn+1 — Xn :"':§|x2_x1| :ﬁ-
If n > m, then
1 1
0 < |xp = xXm| < |xp = Xt |+ + [Xma1 — x| < ot es T a

I 1-=(1/2)" " 1 1 1
1-ar

Toml T [—1/2  oml 12 om2
As m — oo, by Sandwich theorem, lim |x, — x,,| = 0. Therefore, (x,) is a Cauchy
sequence; so it converges.

Aliter: (xpy,) is a decreasing sequence bounded below by 1. So, it converges to some
real number a.

(x2n—1) 1s an increasing sequence bounded above by 2. So, it converges to some
real number b.

Since 2xom+1 = X2m—1 + X2, for each m, taking the limit, we have 2b = b + a. That
is, a = b. Therefore, the sequence converges. N

(1.10) Example

1

Let (x,) be the sequence given by x| = 2 and x| = % + — for k > 1. Does (x;)
Xk

converge?
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Notice that it is a sequence of positive terms. If (x,) converges to ¢, then taking
o . . e 1 .
the limit on both the sides of the recursive formula, we find that ¢ = 3 + 7 Itimplies

that 2¢% = £2+2. That s, £ = +12. We see that x1 > 0 and then the recursive formula
says that each term is positive. So, a possible limit for (x,) is £ = V2. Moreover,
first few terms say that the sequence may be a decreasing sequence. Thus, if at all a
limit exists, it must be the greatest lower bound of the sequence. We guess that each
term of the sequence is at least V2 and the sequence is a monotonically decreasing
sequence. We must prove both.

(a) Observe that x; =2 > V2. Forn > 1,

| ) )

Xn+l = %+— > \/zlfx,?;—2\/§xn+2 > Olf(xn—\/z)2 >0,
Xn

which is always true, Therefore, x, > V2 for each n.

(b) Now, for the decreasing nature of the sequence,

1 11
Xpsl < Xp if 24— < xp if — < — if 2 < %2 if x> V2,
2 Xn Xn Xn

which we already proved in (a).
Hence (x,) is monotonically decreasing and bonded below by V2. Therefore, it
converges. Moreover, as our earlier calculation shows, lim x, = V2. 0

(1.11) Example

1\n
Show that the sequence (t,) with ¢, = (1 + —) converges.
n
Using the Binomial theorem, we obtain
nin-1) 1 1

1\n
tn:(1+n) :l+n~— T E+"'+E

et o)) -5

<1+1+l(1— T ) ( nil)(l_Z;;)
1
(n+1)'( n+1 ) ( n+1)
:1+(”+1)'n11+(n+21!)(n)'(n+11)2+m+(n+1w

1 n+l
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Thus, (t,) is an increasing sequence. Next, since k! > 257!, we have 1/k! < 1/2k1
for k € N. Using this, we obtain

(% (R e I BT

1 1 1 1 1 1
§1+1+2_!+§+m+ﬁS1+1+§+?+W+F<1+2:3'

Since t, is an increasing sequence having an upper bound, it converges. 0

Since ((1+1/n)") is a convergent sequence, its limit is a real number. We denote
the limit of this sequence as e. Since each term of the sequence lies between 2 and
3, we conclude that 2 < e < 3.

1.4 Series

A series is an infinite sum of numbers. As it is, two numbers can be added; so by
induction, a finite of them can also be added. For an infinite sum to be meaningful,
we look at the sequence of partial sums. Let (x,) be a sequence. The series
X1 +x2+ -+ +x, +--- is meaningful when another sequence, namely,

n
X1, X1 +Xx2, X1 +XxX2+Xx3, ..., Zxk,
k=1

is convergent. The infinite sum itself is denoted by >, x, and also by 3’ x.

We say that the series ), x, is convergent iff the sequence (s,) is convergent, where
the nth partial sum s, is given by s, = >.7_| xx.

Thus we may define convergence of a series as follows:

We say that the series }; x, converges to ¢ € R iff for each € > 0, there exists an
m € N such that for each natural number n > m, | 37 _, xx — €| < €. In this case, we
also say that the series sums to ¢, and write }’ x, = £.

Further, we say that a series converges iff it converges to some ¢ € R.

A series is said to be divergent iff it is not convergent.

Similar to convergence, if the sequence of partial sums (s,) diverges to +oco, we
say that the series ) x, diverges to +co.

That is, the series ) x,, diverges to oo iff for each r > 0, there exists m € N such
that for each natural number n > m, >';_, xx > r. We write it as 3’ x, = oo, and say
that the series sums to co.
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Similarly, the series )’ x, diverges to —oo iff for each r > 0, there exists m € N
such that for each natural number n > m, >y, xx < —r. We then write }’ x, = —oo,
and say that the series sums to —co.

Notice that ‘converges to a real number’ and ‘diverges to +co’ both are written the
same way. There can be series which diverge but neither to co nor to —co. Further,
if a series sums to ¢, then it cannot sum to s where s # ¢, due to the uniqueness of
limit of a sequence.

The series -1 -2-3—-4—-...—n— ... diverges to —co.

The series 1 —1+1—1+--- diverges. It neither diverges to co nor to —co. Because,
the sequence of partial sums here is 1,0,1,0,1,0,1,....

The series Z > converges to 1. Because, if (s,) is the sequence of partial sums,

n=1

then

n
IR R N V) L
Sn—Z?—E'I_—l/Z—I—ﬁﬂlasn—)OO.

A general scenario is discussed in the next example.

(1.12) Example

Let a # 0 and let r € R. Consider the geometric series
(o]
Zar"‘l —a+ar+ar*+ar +---
n=1

The nth partial sum of the geometric series is

1 a(l-=r"
sp=a+ar+ar’+ar’ +---ar" 12%.
—-r

(a) If [r] < 1, then r* — 0. The geometric series converges to lim s, = 1

n— 00 —-r

Therefore, Z ar” Zar = — for |r| < 1.
(b) If r = =1 or |r| > 1, then r" diverges; so the geometric series Y, ar"~! diverges.
And, for r = 1, the geometric series 1 + 1 + - - - diverges. N

(1.13) Example
The series 1 + % + % + % + - -+ diverges to co. To see this, Write s, = Zzzl %, the
partial sum of the series up to n terms. Then, use (1.8).

For another solution, let r be any positive real number. Choose a natural number
m > 2r and take n = 2™. Then
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—n1>1+1+1+ + !
nE LT 273 om 1
k=1
2m—1
11y (1 1 1 1 1
:1+(—+—)+(—+—+—+—)+ + —)
273) 7T \475767 7 2%
fe=2m-1
2m—1
11y (1 1 1 1 1
b3
ERVIRY R R k;_12’”
_1+1+1+ +1_1+m—1>1+2r—1_2r+1>
-T2 2 - 2 2 ~ 2 ~©

That is, corresponding to any r > 0 there exists n € N so thats, > r. (n = 2™,
where m > 2r is a natural number.) Therefore, the series diverges to co. This is
called the harmonic series. 0

(1.14) Example

1
Does the series Z e D)
n(n
1

1 1
Since ———— = —— —— weh
mce k(k,‘+ 1) 2 e+ 1 WweE nhave

converge?

an 1 :nl_anl_i_nl_n_lL_l:l_l.
k:lk(k+1) k:lk k:1k+1 k:2k k:1k+1 n+1 n+1
Since 1/(n+ 1) — 0, the series converges to 1. Thus i ! = 0
e n(n+1)
(1.15) Example
The sum of the convergent series Z s o can be computed as follows:
n=1
- S 41 4/6 4 1
L 2 626__1—1/2 1—/1/6:1_525' .

The following result sometimes helps in ascertaining that a given series diverges.

(1.16) Theorem

If a series ), a, converges, then the sequence (ay) converges to 0.

Proof. Let s, denote the partial sum ZZ=1 ai. Then a, = s, — s,_1. If the series
converges, say, to ¢, then lims, = £ = lims,_;. It follows that lim a, = 0.
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It says that if lim a, does not exist, or if lim a,, exists but is not equal to 0, then the
series )’ a, diverges. ]

(1.17) Example

- — - 1
(1) The series 2 3nZ I diverges because nh_)rgj el = -3 # 0.
(2) The series ), (—1)" diverges because lim(—1)" does not exist. 0

Notice what (1.16) does not say. The harmonic series diverges even though
lim1 = 0.
n

(1.18) Theorem

If both the series ) a, and ), b, converge, then the series ), (a, + by), >.(a, — by)
and )’ ka, converge; where k is any real number.

If >, a, converges and ), b, diverges, then ) ,(a, + b,) and }(a, — by,) diverge.
Further, if ) a, diverges and k # 0, then ) ka, diverges.

Proofs of the statements in (1.18) follow from (1.5-2).

Notice that sum of two divergent series can converge. For example, both }'(1/n)
and };(—1/n) diverge but their sum ), 0 converges.

Since deleting a finite number of terms of a sequence does not alter its convergence,
omitting a finite number of terms or adding a finite number of terms to a convergent
(divergent) series implies the convergence (divergence) of the new series. Of course,
the sum of the convergent series will be affected. For example,

However,

This is called re-indexing the series. As long as we preserve the order of the terms
of the series, we can re-index without affecting its convergence and sum.
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1.5 Improper Integrals

In the definite integral Lf f(x)dx we required that both a, b are finite and also the
range of f(x) is a subset of some finite interval. However, there are functions which
violate one or both of these requirements, and yet, the area under the curves and
above the x-axis remain bounded.

Such integrals are called Improper Integrals. Suppose f(x) is continuous on
[0, 00). It makes sense to write

(o] b
L f(x)dx = bh_)rrc}o L f(x)dx

provided that the limit exists. In such a case, we say that the improper integral
Jo f(x)dx converges and its value is given by the limit. We say that the improper
integral diverges iff it is not convergent. Obviously, we are interested in computing
the value of an improper integral, in which case, the integral is required to converge.

Integrals of the type fab f(x) dx can become improper when f(x) is not continuous
at a point in the interval [a, b]. Here are the possible types of improper integrals.

00 b
1. If f(x) is continuous on [a, o), then J f(x)dx = blim I f(x)dx.

b b
2. If f(x) is continuous on (—oo, b], then J f(x)dx = lim J f(x)dx.

3. If f(x) is continuous on (—oo, o), then

b f(x)dx = J;C f(x) dx+Joof(x) dx, for any ¢ € R.

4. If f(x) is continuous on (a, b] and discontinuous at x = g, then
rb rb
f(x)dx = lim f(x)dx.
Ja t—a+ t
5. If f(x) is continuous on [a, b) and discontinuous at x = b, then
rb rt
f(x)dx = lim | f(x)dx.
Ja t—b-Jg
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6. If f(x) is continuous on [a,c) U (c, b] and discontinuous at x = c, then

Lb f(x)dx = J: f(x)dx+ Lb f(x)dx.

In each case, if the limit of the concerned integral is finite, then we say that the
improper integral (on the left) converges, else, the improper integral diverges; the
finite value as obtained from the limit is the value of the improper integral. A
convergent improper integral converges to its value. Two important sub-cases of
divergent improper integrals are when the limit of the concerned integral is oo or
—oo. In these cases, we say that the improper integral diverges to co or to —co as is
the case.

(1.19) Example

Is the area under the curve y = (log x)/x? for x > 1 finite?

(o)

o 0
The question is whether J iz dx converges?
1 X

Let b > 1. Integrating by parts,
b b b
1 1 1/-1 logh 1
i;fdx:[mgx(__)] N PR L et
1 X x/ |y 1 X\ x b b

b
) log x ) logh 1
fim [ 5= i |50 |1

oo

Therefore, the improper integral J dx converges to 1. That is, the required

2
1 X
area is finite and it is equal to 1. 0

(1.20) Example

[ee]
Is J dx convergent?
oo 1+ x2

b

1

J dx =tan”'b —tan"! a.
a 1+x2

So,

0 0

1 1 T T
dx = lim dx = lim (—tan™! :—(——):—.
Jm1+x2 o), e ™ L, (~tan " a) 2

© ] b . ™
J dx = lim dx = lim (tan™" b) = —.
o 1+ x2 b—oo Jo 1+ x2 b—oo 2

Therefore,
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| | |
dx = dx + dx
—eo 1 +x2 —eo 1 +x2 o l+x2

is convergent and its value is /2 + /2 = 7. 0

(1.21) Example
3

Consider evaluating I T Overlooking the point x = 1, where the integrand is

0 X-
not defined, we may compute

3
d 3

J al :loglx—ll] =log2 —log1 =log?2.
0 x—1 0

However, it is an improper integral and its value, if exists, must be computed as
follows:

= lim + lim .
o x—1 bs1-Jg x—1 a>1+), x—1

J3 dx by 3 dx

The integral converges provided both the limits are finite. However,
b

li =1 log|b—1]| -1 —1|) = lim log(1 —b) = —c0.
Jim [ 557 = i (gt~ 11-og1 =10 =l o1 =) ==
3
Therefore, I does not converge. 0
0 X—
(1.22) Example
3
d
Evaluatej —x.
0 (x—1)23

The integrand is not defined at x = 1. We consider it as an improper integral.

JS dx I Jb dx T J3 dx
——= = l1m S EE——— 1m —_—.
0 (x - 1)2/3 b—1-Jo (x - 1)2/3 a—1+ ), (x - 1)2/3

b
lim | — = = lim 3 —11/3‘ = lim (3(b=1)" =3(=1)'3) = 3.
il o (x—1)23 o (x—1) o bi{?_(( ) (-1)'"7)

3
. dx T 1/3
lim J;l m = lim 3()('—1)

a—1+ a—1+

3
= lim (33-1'"-3(a-1'?) =3(2)"*,
a a—1+

3
dx _ 1/3
Hence Jo m_3(1+2 ). 0

In the above example, had we not noticed that the integrand has discontinuity in
the interior, we would have ended up at a wrong computation such as

3 dx | 3
_ax B Zarl/3 _ _y1/3
L i = 3= ) =31 - )
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even though the answer happens to be correct here.

(1.23) Example

[o¢]
. . x .
For what values of p € R, the improper integral J > converges? What is its
1 X

value, when it converges?

Case 1: p=1.
b b
d d
& —leogb—loglzlogb.
1 xPJpox
Since blim log b = oo, the improper integral diverges to co.
Case 2: p < 1.
b —p+1
d_x: —x Pt b: 1 (b1 — 1),
1 xt —p+1lt 1-p
Since blim b!P = oo, the improper integral diverges to co.
Case 3: p > 1.
b
d 1 1 1
L A
1 xP 1 -p 1 —-p br-1
: : 1
Since lim —— = 0, we have
b—oo bp_l
“dx . (tdx . 1 (1 1
— = lim —:hm—(——l):—,
1 X booo )y X b l—p pr-1 p—1
. : ®dx .
Hence, the improper integral —, converges to P for p > 1 and diverges to
X -
oo forp < 1. 0

(1.24) Example

1
d
For what values of p € R, the improper integral J —; converges?
0 X

Notice that for p < 0, the integral is not an improper integral, and its value is
1/(1 — p). We consider the rest of the cases as follows.

Case I: p = 1.

1 1
d d
&~ lim X~ lim [log1 —loga] = co.
0 xP a—0+J, X a—0+

Therefore, the improper integral diverges to co.
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Case2: 0 <p < 1.

U dx . U dx o 1-—gql? 1
— = lim — = lim = .
0 xP a—0+J, xP a—0+ 1 -p 1 - p

Therefore, the improper integral converges to 1/(1 — p).

Case 3: p > 1.
Udx . 1—al? i 1 1
— = lim = lim —(——1)200-
o XP as0+ 1-p a—0+ p — 1 ap~1
Hence the improper integral diverges to oco.
1 1
d 1 d
Therefore, @ for p < 1; and J ad diverges to oo for p > 1. 0
o xF 1-p o xP

1.6 Convergence Tests for Improper Integrals

Sometimes it is helpful to be sure that an improper integral converges, even if we
are unable to evaluate it.

(1.25) Theorem (Comparison Test)
Let f (x) and g(x) be continuous functions on [a, o). Suppose that 0 < f(x) < g(x)
forall x > a.

) If f:o g(x) dx converges, then f:o f(x)dx converges.

2) If f:o f(x)dx diverges to oo, then f:o g(x) dx diverges to co.

Proof. Since 0 < f(x) < g(x) for all x > a,

b b
‘[ f(x)dx < ‘[ g(x)dx.
b b
As blim g(x)dx = ¢ for some ¢ € R, blim f(x)dx exists and the limit is less
than or eqaual to £. This proves (1). Proof of (2) is similar to that of (1). |

We also use a similar result stated below, without proof.

(1.26) Theorem (Limit Comparison Test)
f(x)

Let f(x) and g(x) be continuous functions on [a, o). If lim (—) =L # 0, then
X—00 X

faoo f(x)dx and f:o g(x)dx either both converge, or both diverge.
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In (1.25) we talk about non-negative functions. The reason is the following result,
which we will not prove:

(1.27) Theorem

Let f(x) be a continuous function on [a,b), for b € R or b = co. If the improper in-
tegral Ij |f (x)| dx converges, then the improper integral Lf f(x) dx also converges.

(1.28) Example

oo .+ 2
sin” x
(D J dx converges because
1

%)
sin® x < dx
0< < — forall x> 1, and J — converges.
x2 x2 | x2
© dx ) .
) diverges to co because (Recall: lim logx = 00.)
2 Vx2-1 Xm0
1 1 © dx
> — forall x > 2, and J — diverges to co.
Vx2 -1 X 2 X
© dx
3 converges or diverges?
® | T g g
. . 11 L x - .
Since lim |—— / — | = lim =1, the limit comparison test says
x—oo | 1+ x2/1 x2| x>0 ] +x2
that the given improper integral and x_;c both converge or diverge together.

The latter converges, so does the former. However, they may converge to
different values.

© dx A
= lim[tan"'b—tan™' 1] =5 - = = .
L 1.2 mltan an ]l =2-971
© dx -1 -1
e lim=—-—]=1
L X2 bLI?o( b 1)
S 1010d
(4) Does the improper integral J " X converge?
1 e
1010 1 1010 x
im [ = tim —— =10,
x—o0 eX + 1/ eX  x—oo X+ 1

Also, e > 2 implies that forall x > 1, e* > x2.S0,e7* < x72.

) < dx © dx
Since — converges, — also converges.
1 x2 . er

By limit comparison test, the given improper integral converges.
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I
(1.29) Example
Show that f g dx converges for all p > 0.
1 X
For p > 1 and x > 1, ‘smx . Since J i converges, j )%‘dx
xP 1 xP 1 xP
converges. By (1.27), J —dx converges.

ForO0 <p <1, use 1ntegrat10n by parts:

dx.

b sinx cosb cosl b cos x
dx + +
1 xP bp 17

= xp+1

Taking the limit as b — oo, we see that the first term goes to 0; the second term is
already a real number, the third term, an improper integral converges as in the case
for p > 1 above.

Therefore, the given improper integral converges. 0

(1.30) Example

o0+

Show that ‘[ # dx converges for 0 < p < 1.
0 X

. . . . . sinx .
For p = 1, the integral J —— dx is not an improper integral. Since —— with
x x

its value at 0 as 1 is continuous on [0, 1], this integral exists.

1
sin 1 x
ForO < p <land 0 < x < 1, since —— < — and J — converges due to
xP xP o xP

(1.24), the improper integral J g dx converges.
0 X

Next, the improper integral J Snx dx converges due to (1.29).

Hence f % dx = J sinx dx + J sinx dx converges. 0
X

(1.31) Example

o

Show that I'(x) = J e~'+*~! dt converges for each x > 0.
0

Fix x > 0. Since lim et
t—o0
t > ty. That is,

**+1 =, there exists fp > 1 such that 0 < e !+**! < 1 for

2

O<e 'l <2 for t>t.
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Since floo t=2 dt is convergent, f:)o t=2 dt is also convergent. By the comparison test,

J ¢!+~ dt is convergent.
to

. t . . . .
The integral JIO e~'t*~1 dt exists and is not an improper integral.

. . . 1
Next, we consider the improper integral Io e 't 1 dt. Let0 <a< 1.
Fora <t < 1,wehave 0 < e t*1 < *1 So,

1 1 X
J e_ttx_ldt<J tx_ldtzl ¢ <l.

a x X

Taking the limit as a — 0+, we see that
1
[ e 1V dt is convergent,
0

and its value is less than or equal to 1/x. Therefore,

o 1 to 00
J e il dr = J e 1 dt +J et dt +J et dt
0

0 1 to

and the integral is convergent. 0

The function T'(x) is called the gamma function; it is defined on (0, ). For
x > 0, using integration by parts, we have

T(x+1) = J Fe~t dt = [tx(—e_t)]o - J XtV (=et) dt = xT'(x).
0 0
It thus follows that I'(n + 1) = n! for any non-negative integer n. We take 0! = 1.

(1.32) Example

2
Test the convergence of J e ! dt.

—00

t

1
. 42 . . _42 .
Since e™" is continuous on [—1, 1], J e U dt exists.
-1

(o)

2 . — .
Fort > 1, we have t < t%. S0, 0 < e™" < e, Since f e~ dt is convergent, by
1

(o)

) 2.
Comparison test, J e~ dt is convergent.
1

-1 1 a
) > 2 L
Now,f e Vdt = J e d(-t) = J e~ " dt. Taking limit as a — oo, we see that
—-a a 1
2 . . ®
J e~ dt is convergent and its value is equal to J e U dt.
—00 1
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o0

.. . 2
Combining the three integrals above, we conclude that J e”!" dt converges. []

—00

The Gamma function takes other forms by substitution of the variable of integra-
tion. Substituting ¢ by rt we have

I'(x) = rxj e Mdt forO<r, 0<x.
0

Substituting ¢ by %, we have

I'(x) = ZJ e 2 gt for 0 < x.
0

(1.33) Example
Show that F(%) = /7.

2
F(%) = ZJ et dt.
0
To evaluate this integral, consider the double integral of e™"~Y" over two circular
sectors D and D», and the square S as indicated below.

e (RO}  (R/Z.0)

Since the integrand is positive, we have ﬂDl < ”s < HDz .
Now, evaluate these integrals by converting them to iterated integrals as follows:

R 72 R R RV2 , 72
J e_rrdrf d9<J e ™ dxj e Y dy<J e_rrdrj do
0 0 0 0 0 0
R 2
Ty _ R —x? oy _ 2R
4(1 e )<(Le dx) <4(1 e ")

Take the limit as R — oo to obtain



Series of Numbers 27

From this, the result follows. N

(1.34) Example
1

Prove: B(x,y) = J #*1(1 = 1)y dt converges for x > 0,y > 0.
0
We write the integral as a sum of two integrals:

1

1/2
B(x,y) = J 11 =)y dt +J 11 =)yl de
0 1/2

Setting u = 1 — t, the second integral looks like

1 1/2
J 11 - )vdt :J W1 —u)*dt
12 0

Therefore, it is enough to show that the first integral converges. Notice that here,
0<t<1/2.

Case I: x > 1.

For0 <t <1/2,1—-t > 0. So, for all y > 0, the function (1 — t)y~! is well defined,
continuous, and bounded on (0, 1/2]. So is the function *~!. Therefore, the integral

1/2
J *~1(1 — t)¥~! dt exists and is not an improper integral.
0

Case2: 0 <x < 1.

Here, the function +*~! is well defined and continuous on (0, 1/2]. By (1.24), the
integral Jl/z t*~1dt converges. Notice that (1 —#)¥~! < 1fory—1 > 0, and
(1 -yt Os (1/2)¥! for y — 1 < 0. So, there exists a constant ¢ depending on the

given value of y such that t*~1(1 —)¥~! < ¢! for 0 < ¢t < 1/2. We thus see that

12
J (1 —t)¥"1dt converges. 0
0

The function B(x,y) for x > 0, y > 0 is called the beta function.
By setting t as 1 — ¢, we see that B(x, y) = B(y, x).

By substituting ¢ with sin” ¢, the Beta function can be written as
/2
B(x,y) = 2J (sint)® (cos )1 dt, forx >0, y>0.
0
Changing the variable ¢ to ¢/(1 + t), the Beta function can be written as

(S8} tx+l
B(x,y) = ——dt fi 0, 0.
(x,y) L T+ orx >0, y>
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Again, using multiple integrals it can be shown that

_T()I'(y)

Blxy) = I'(x+y)

forx >0, y > 0.

1.7 Tests of Convergence for Series

Recall that a function f(x) is called a decreasing function iff f(s) > f(¢) for any
s < t in the domain of f(x).

We connect the convergence of improper integrals to the convergence of series as

follows.

(1.35) Theorem (Integral Test)

Let )’ a, be a series of positive terms. Let f : [1,00) — R be a continuous, positive
and decreasing function such that a, = f (n) for each n € N.

() If Loo f(t)dt is convergent, then ), a, is convergent.

Q) If Loo f(t)dt diverges to oo, then 3, a, diverges to co.

Proof.  Since f(t) is positive and decreasing, in any closed interval [k, k + 1]
for k € N, the maximum value of f(¢) is f(k) and the minimum value of f(¢) is
f(k +1). Thus, the integrals and the partial sums have the following relation:

¥ ¥

v = fix)
a)
iy

a,

0 1 no o+ 1 0 1 2 3 n—1n

-3
o
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Lnﬂ f(t)dt = lef(t) dt + Lsf(t) dit et L"” £ty dt

2 3 n+l
SL f(l)dt+J2 f(2)dt+---+L f(n)dt
=f()+f2)+---f(n)
n2 3 n
=f(1)+ f(2)dt+f f(3)dt+--~+J f(n)dt
J1 2 n—1

n2 3 n
<f()+ f(t)dt+J f(t)dt+-~~+J f(n)dt
J1 2 n—1

- s+ | fyar

As f(1) = ay,..., f(n) = a,, we obtain

n+1 n
J f(t)dtSa1+a2+~--+anSa1+J f(t)dt.
1 1

n
If J f(t)dt is finite, then the right hand inequality shows that the sequence of
1

partial sums a; + - - - + a, of the series ) a, is an increasing sequence having an
upper bound. Hence, this sequence converges; that is, the series ), a, is convergent.

If J f(t) dt = oo, then the left hand inequality similarly shows that }’ a, diverges
1

to oo. |

We remark that in the above theorem, the hypothesis that f(x) is positive is taken
for convenience. Even if f(x) is not positive, under the rest of the hypotheses the
same conclusion can be obtained. The reason is, f(x) is continuous and decreasing
implies that if it is not positive throughout its domain [1, c0), then either it is
negative on [1, o) or there exists a € [1,c0) such that f(x) is positive on [1, a)
and negative on (a, ). Correspondingly, the sequence (f(n)) will have a tail
consisting of negative terms. Then convergence of the improper integral will imply
the convergence of the series. The second conclusion will be reformulated as “if
the improper integral diverges to +oo, then the series will diverge to +o0”.

Notice that when the series converges, the value of the integral can be different
from the sum of the series. Moreover, Integral test assumes implicitly that (a,) is a
decreasing sequence. Further, the integral test is also applicable when the interval
of integration is [m, co) instead of [1, c0).
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(1.36) Example
Show that Z — converges for p > 1 and diverges for p < 1.

For p = 1 the series is the harmonic series; and it diverges. Suppose p # 1.
Consider the function f(t) = 1/t? from [1, c0) to R. This is a continuous, positive
and decreasing function.

® q —p+l p 1 1 L ifp>1
J _dt = lim _ lim( 1—1): T NP
| P b—oo —p+ 111 1 —p booo \bP~ o ifp < 1.

Then the Integral test proves the statement. 0

Note that for p > 1, the sum of the series Y, n? need not be equal to 1/(p — 1).

(1.37) Example

= n+7
Does the series converge?
; n(n+3)Vn+5
n+7 1
Leta, = and b, = ——. Then
n(n+3)Vn+5 n3/2
an Vn(n+7)

—:——)18_57’1—)00,

bn  (n+3)Vn+5

Since ) — 3 /2 is convergent, Limit comparison test says that the given series is
n

convergent. 0

(1.38) Example

(o)

1
Show that the series Z
n

———— converges for @ > 1 and diverges to co for o < 1.
— n(logn)®

The function f(x) = is continuous, positive, and decreasing on [2, o).

1
x(log x)«

0 1 1
J SLEN J Lar
> x(logx)* log2 £*

As in (1.36), we conclude that the series converges for & > 1 and diverges to oo for
a<l1. 0

1
x(log x)®
By the integral test, it converges when J dx converges. Evaluating the

2

integral, we have

There are various ways to determine whether a series converges or not; occasion-
ally, some information on its sum is also obtained.
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(1.39) Theorem (Comparison Test)
Let )’ a, and ), b, be series of non-negative terms. Suppose there exists k > 0 such
that 0 < a, < kb, for each n > m for some m € N.

(1) If > b, converges, then ), a, converges.

(2) If X ay diverges to oo, then ) b, diverges to .

Proof. (1) Consider all partial sums of the series having more than m terms. We
see that

n
a1+---+am+am+1+---+anSa1+-"+am+k Z bj~
j=m+1

n

Since 2 b, converges, so does 3.\, |

sequence; so it converges.

bj. And then }] a, is an increasing bounded

(2) If 3] by, is convergent, then by (a), Y, a, would become convergent! |

Caution: The comparison test holds for series of non-negative terms.

(1.40) Theorem (Ratio Comparison Test)

Let ), a, and ), b, be series of non-negative terms. Suppose there exists m € N such
An+1 < bns1

that for each n > m, a,, > 0, b, > 0, and S
an n

(1) If > b, converges, then ), a, converges.
(2) If X ay diverges to oo, then ) b, diverges to .

Proof. Forn > m,

an dp-1 Am+2 a < bn bn—l bm+2 a _ Am+1 b
mil < mi] = ——
bn—l bn—2 bm+1 bm+1

a, = n-

an-1 An-2 Am+1

By (1.39), if ) b, converges, then }; a, converges. This proves (1). And, (2) follows
from (1) by contradiction. |

(1.41) Theorem (Limit Comparison Test)

Let )’ a, and ), by, be series of non-negative terms. Suppose there exists m € N such
that for each n > m, a, > 0, b, > 0, and lim 2 — k.

n—eo p,

(1) If k > 0 then ) b, and ), a, converge or diverge to oo, together.
(2) If k=0 and ) b, converges, then ), a, converges.
(3) If k = o0 and ) b, diverges to oo then ), a, diverges to co.
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Proof. (1) Let € = k/2 > 0. The limit condition implies that there exists M € N

such that " 3k
§<Z—:<7 foreachn > M > m.

By the Comparison test, the conclusion is obtained.

(2) Let € = 1. The limit condition implies that there exists M € N such that

—l<%<l foreachn > M > m.
n

Using the right hand inequality and the Comparison test we conclude that conver-
gence of )’ b, implies the convergence of )’ a,.

(3) If k = o0, lim(by,/a,) = 0. Use (2). |
(1.42) Example

o 1 1+nl
Do the series (a) Z o (b) Z nosh converge?

n3/2 1 +n?

1 1
(a) Take a, = _03g n and b, = —. Then
n3/2

n5/4
an logn log x ) 1/x B 3
nh—>n(}o b_ nh—>oo nl/4 xl—>c>o x1/4 - xl—>n;>lo (]/4)x—3/4 B xl—>nolo m =0.
Since )’ b, converges, by the Limit comparison test, )’ a, converges.
l+nl 1
(b) Take a, = n—o;gn and b, = —. Then
+n n
2
lim % = Jim 2ETlogn _
n—oo bn n—oo 1+ n2
As ) b, diverges to co, by the Limit comparison test, }; a, diverges to co. 0

(1.43) Theorem (D’ Alembert Ratio Test)

. .. . An+1
Let )’ ay, be a series of positive terms. Suppose lim
n—oo  dy

={.

(1) If £ < 1, then }; a, converges.

(2) If £ > 1 ort = oo, then ), ay, diverges to .

(3) If ¢ =1, then no conclusion is obtained.
Proof. (1) Given that lim(a,41/a,) = £ < 1. Choose § such that £ < § < 1. There
exists m € N such that for each n > m, a,41/a, < §. Then

an an Q4p-1 Am+2 _
L. < & m+1.

Am+1 ap-1 an-2 Am+1
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Thus, a, < 8" ™ 'a,,.;. Consequently,
Uil + Amaz + -+ < ame1 (1 + 8+ 82 +--- 57,
Since § < 1, this approaches a limit as n — oo. Therefore, the series
am+1 tami2 + - ap+ -+

converges. In that case, the series Y, a, = (aj + -+ am) + Amy1 + a2 + - -
converges.

(2) Given that lim(ap+/a,) = € > 1. There exists m € N such that for each n > m,
an+1 > ap. Then

Amil + a2 + -+ ap > Ay (n —m).

Since a1 > 0, this approaches co as n — oo. Therefore, the series
m+l T ami2 +---ap+ -

diverges to co. In that case, the series ), a, = (aj + -+ am) + Amy] + A2 + -+ -
diverges to co. The other case of £ = co is similar.

(3) The series };(1/n) diverges to co. Here, lim(a,+1/a,) = lim(n/(n+ 1)) = 1.
But the series Y (1/n?) is convergent although lim(ay+1/a,) = 1. |

(1.44) Example

[e¢]
) n!
Does the series Z — converge?
n

n=1

Write a,, = n!/(n"). Then

1
— —<lasn— oo.

any1 _ (n+1)In" _( n )"
e

a, (n+Dminl \n+l

By D’ Alembert’s ratio test, the series converges.
Then it follows that the sequence (n!/n") converges to 0. 0

(1.45) Example
By Ratio test, it follows that the series

is convergent. In fact, this series converges to e. To see this, consider

1 1 I\n
sp=14+14+=4+-+—, tn:(1+—).
2! n! n
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By the Binomial theorem,

=t (1= ) e (=) (1= 3) (1222 <
2! n n! n n n

Thus taking limit as n — oo, we have

e= lim t, < lim s,.

n—00 n—oo

Also, for n > m, where m is any fixed natural number,

th1+1+%(1—%)4...._,_%[(1_%)(1_%).._(1_m;1)]

Taking limit as n — oo we have

e= lim t, > sp,.

n—oo

Since m is arbitrary, taking the limit as m — oo, we have

e > lim s,

m-—0o0
. w1
Therefore, lim s,, = e. That is, Z — =e. N
m—o0 =0 n!
(1.46) Example
Does th i i n(n!)Z ?
O€S ne series converge !
21" (2n)! 8
4 (n!)? a1 A" ((n+ D2 2n)! 2(n+1)
CHan = "oy e nave T - Q2+ 1) 42 2n+1

) e ) ) a )
Since its limit is equal to 1, the Ratio test fails. However, AL 1. Since a; = 2, we

an
see that each a, > 2. That is, the sequence (a,) does not converge to 0. Therefore,
the series diverges. Since it is a series of positive terms, it diverges to co. 0

(1.47) Theorem (Cauchy Root Test)
Let Y, a, be a series of positive terms. Suppose lim (a,)'/" = ¢.
n—oo
(1) If t < 1, then }; a, converges.
(2) If £ > 1o0rt = oo, then ), a, diverges to .

(3) If £ =1, then no conclusion is obtained.
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Proof. (1) Suppose £ < 1.Choose d such that £ < § < 1. Due to the limit condition,
there exists an m € N such that for each n > m, (a,)'/" < 8. That is, a, < 8". Since
0 <6 <1, 8" converges. By Comparison test, ) a, converges.

(2) Given that £ > 1 or £ = oo, we see that (a,,)'/" > 1 for infinitely many values of
n. That is, the sequence (an) does not converge to 0. Therefore, )’ a, is divergent.
It diverges to oo since it is a series of positive terms.

(3) Once again, for both the series Y.(1/n) and Y.(1/n?), we see that (a,)'/" has the
limit 1. But one is divergent, the other is convergent. 1

.. e . @ .
Remark 1.48 In fact, for a sequence (a,) of positive terms if lim 1 exists,

n—o q,

1/n

then lim (a,) /" exists and the two limits are equal.
n—o0

an+l

To see this, suppose lim = ¢. Let € > 0. Then we have an m € N such that for

n—oo an
an+l

alln >m f—e<

< ¢ + €. Use the right side inequality first. For all such n,

an
ap, < (£ +¢)" ™a,,. Then
(an)'" < (+e)((e+ 6)_mam)1/n — f+easn — oo,

Therefore, lim(a,)!/" < ¢ + € for every € > 0. That is, lim(a,)'/" < ¢.
Similarly, the left side inequality gives lim(a,)'/" > ¢.

Notice that this gives an alternative proof of (1.47).

(1.49) Example
Does the series i 20D — 9y l + l + i + - -+ converge?
o 4 2 16 '

Let a, = 20-D"=" Then

Anil {1/8 if n even

an 2 if n odd.

Clearly, its limit does not exist. But

21/n=1" jf n even
(an)l/n =
2-1/n=1"if n odd

This has limit 1/2 < 1. Therefore, by Cauchy root test, the series converges. 0
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1.8 Alternating series

If the terms of a series have alternating signs, then the earlier tests are not applicable.
For example, the methods discussed so far fail on deciding whether the series
>.(—=1)"/n converges or not.

(1.50) Theorem (Leibniz Alternating Series Test)

Let (a,) be a sequence of positive terms decreasing to 0; that is, for each n,

o0
a, > aps1 > 0, and nh—>nolo a, = 0. Then the series Z(—l)"”an converges, and its
n=1

sum lies between a; — a> and a;.

Proof. The partial sum upto 2n terms is
son = (a1—az)+(az—ag)+ - -+(azn-1—azn) = a1—[(a2—a3)+ - -+(a2n-2—a2n-1)+azn|.

It is a sum of n positive terms bounded above by a; and below by a; — a>. Hence
son converges to some s with a; —ay < s < ay.

The partial sum upto 2n + 1 terms iS sp,41 = S2n + done1- It converges to s as
lim a3,+1 = 0. Hence the series converges to some s with a; —ay < s < ay. |

The bounds for s can be sharpened by taking sy, < s < s3,—1 forn > 1.

Leibniz test now implies that the series 1 — % + % - % + % +- - is convergent to some

s with 1/2 < s < 1. By taking more terms, we can have different bounds such as

7 1 1 10
=—=<s<l—-—-+-=—

1—=—+ <
12 2 3 12

N =
W =
B

In contrast, the harmonic series 1 + % + % + % + % + - - - diverges to co.

We say that the series ), a, is absolutely convergent iff the series ) |a,| is
convergent.

An alternating series ), a, is said to be conditionally convergent iff it is conver-
gent but it is not absolutely convergent.

Thus for a series of non-negative terms, convergence and absolute convergence
coincide. As we just saw, an alternating series may be convergent but not absolutely
convergent.

1,1 _1.,1

The series 1 — 5 + 3 — 7 + 35 + - is a conditionally convergent series. It shows

that the converse of the following theorem is not true.
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(1.51) Theorem

An absolutely convergent series is convergent.

Proof. Let ) a, be an absolutely convergent series. Then } |a,| is convergent.
Let € > 0. By Cauchy criterion, there exists an ng € N such that for all n > m > n,

we have
lam| + |ams1| + - - + |an] < €.
Now,
|am + ame1 + -+ + an| < |am| + |amet| + -+ |aq| <e.
Again, by Cauchy criterion, the series ) a, is convergent. 1

An absolutely convergent series can be rearranged in any way we like, but the
sum remains the same. Whereas a rearrangement of the terms of a conditionally
convergent series may lead to divergence or convergence to any other number. In
fact, a conditionally convergent series can always be rearranged in a way so that the
rearranged series converges to any desired number; we will not prove this fact.

(1.52) Example

Do the series () Z(—l)"”ln (b) Z

n=1
(a) 2.(2)7" converges. Therefore, the glven series converges absolutely; hence it

converges.

cosn

converge?

cosn 1 L . .
(b) ‘ ‘ < — and >(n~?) converges. By comparision test, the given series
converges absolutely; and hence it converges. 0

(1.53) Example

) ) -1 n+1
Discuss the convergence of the series Z %.
n=1 n
For p > 1, the series ), n™? converges. Therefore, the given series converges

absolutely for p > 1.
For 0 < p < 1, by Leibniz test, the series converges. But Y, n™? does not converge.

Therefore, the given series converges conditionally for 0 < p < 1.
(= 1)

For p <0, lim ~—— ¢ 0. Therefore, the given series diverges in this case. 0
(1.54) Example
Does th ) 1 1 1 1 0
ri ————+= .-+ converge’
oes the series 2 16 5 25 49 converge
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Here, the series has been made up from the terms 1/n? by taking first one term,
next two negative terms of squares of next even numbers, then three positive terms
which are squares of next three odd numbers, and so on. This is a rearrangement of

the series
1 1 1 1 1

-t gpte gt

which is absolutely convergent (since Y(1/n%) is convergent). Therefore, the
given series is convergent and its sum is the same as that of the alternating se-

ries Y (=)™ (1/n?). 0

1.9 Exercises for Chapter 1
1. Show the following:

I
(a) lim —2 =0, ®) lim 7" =1.  (c) lim x" =0 for |x| < 1.
n—oo n n—oo n—oo
p n n
@ lim = =0forx>1. (e lim = =0 () lim (1+f) = o
n—oo xN n—oo n! n—oo n

2. Prove the following:

(a) It is not possible that a series converges to a real number ¢ and also
diverges to —oo.
(b) Itis not possible that a series diverges to co and also to —oo.

3. Prove the following:

(a) If both the series )’ a, and )’ b, converge, then the series ), (a, + by),
>.(an — by) and )’ ka, converge; where k is any real number.

(b) If } a, converges and )’ b, diverges to +oo, then ) (a, + b,) diverges to
+0o, and ) (a, — b,) diverges to Foo.

(c) If 3 a, diverges to +oo, and k > 0, then ) ka, diverges to +oo.

(d) If )} a, diverges to +oo, and k < 0, then }; ka, diverges to Foo.

4. Give examples for the following:
(a) X a, and ), b, both diverge, but > (a, + b,) converges to a nonzero
number.
(b) > a,and ) b, both diverge, and Y (a, + b,) diverges to co.
(¢) X a, and ) b, both diverge, and }\(a, + b,) diverges to —co.
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5.

10.

11.

12.

13.

14.

15.
16.

17.

. Test for convergence the series % + (%)2 + (_)3 +o

. Is the integral J

Show that the sequence 1, 1.1, 1.1011, 1.10110111, 1.1011011101111...
converges.

. Determine whether the following series converge:

Wit OYE OR i

Ans (a) converges (b) dlverges (c) diverges to 00,
3

)" +
7 2n+1

Ans: converges.

5 dx convergent?  Ans: Yes.
—oo 1 +x

. Is the area under the curve y = (Inx)/x? for | < x < oo finite?  Ans: Yes.
3
dx
Evaluate  (a) ; m (b) J -1

Ans: (a) 3(1 +2'/3) (b) does not converge.

Show that [ g dx converges for all p > 0.
1 X

Show that I g dx converges for0 < p < 1.
0 X

o0

Show that the series Z
n

converges for & > 1 and diverges to oo for

— n(Inn)®
a <l
4n 12
Does the series Z (2n))' converge?  Ans: diverges to co.
1 1 1 1
Does the series | = — — — + —+ — + — — - - - converge? Ans: Yes.

4 16 9 25 49
Let (a,) be a sequence of positive terms. Show that if -

then )., a, converges.

n=1 1+ converges,

Let (a,) be a sequence of positive decreasing terms. Show that if 37> a,
converges, then the sequence (na,) converges to 0.
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Series Representation of Functions

2.1 Power Series

A power series apparently is a generalization of a polynomial. A polynomial in x
looks like
p(x) =ap+ax+ x>+ +apxt

A power series is an infinite sum of the same form. The question is though a
polynomial defines a function for x € R, when does a power series define a function?
That is, for what values of x, a power series sums to a number?

Let c € R. A power series about x = c is a series of the form

(o)

Zan(x—c)” =ap+ai(x—c)+a(x—c)>+---
n=0
The point c is called the center of the power series and the real numbers ag, ay, - - - , an, - - -

are its coefficients.

When x = ¢ and n = 0, we agree to read the term ag(x — ¢)° as ag. This will save
space in writing a power series.

For example, the geometric series

l+x+x>+- - +x"+--

is a power series about x = 0 with each coefficient as 1. We know that its sum is

for -1 < x < 1. And we know that for |x| > 1, the geometric series does
-x
not converge. That is, the series defines a function from (-1, 1) to R and it is not

meaningful for other values of x.

(2.1) Example

Show that the following power series converges for 0 < x < 4.

(-D"
271

l—%(x—2)+%(x—2)2+---+ (x=2)"+---

40
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It is a geometric series with the ratio as r = (—1/2)(x — 2). Thus it converges for
|[(=1/2)(x —2)| < 1. Simplifying we get the constraint as 0 < x < 4.

Notice that the power series sums to

1 1

n =
l-r 1-3%

=21

Thus, the power series gives a series expansion of the function % for0 < x < 4.
Truncating the series to n terms give us polynomial approximations of % 0

v

0 1 2 3

A fundamental result for the power series is the following, which we state and prove
for power series about the point 0. Results on power series about any point ¢ can
be obtained from this particular case in a similar manner or with the substitution
y=x-—c.

(2.2) Theorem (Convergence Theorem for Power Series)

Suppose the power series 3", anx" is convergent for x = a and divergent for x = f3
for some a > 0, p > 0. Then the power series converges absolutely for all x with
|x| < a; and it diverges for all x with |x| > .

Proof. The power series converges for x = & means that ’ a,a" converges. Thus
lim a,a" = 0. Then we have an M € N such that for all n > M, |a,a"| < 1.

n—oo

Let x € R be such that |x| < a. Write ¢t = |2|. We have

foreachn > M, |a,x"| = |apa”| [Z]" < t".

(o)

As 0 < t < 1, the geometric series ), ° .
Yimems1 lanx"| converges. Adding to it some finite terms, it follows that 37 |a,x"|

| t" converges. By comparison test,

converges. That is, the power series converges absolutely for all x with |x| < a.

For the divergence part of the theorem, suppose, on the contrary that the power
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series converges for some ¢ > f. By the convergence part, the series must converge
for x = B, a contradiction. |

Notice that if the power series is about a point x = ¢, then we take y = x — ¢ and
apply (2.2). Also, for x = 0, the power series }, a,x" always converges.

In view of (2.2), we introduce some terminology.

Consider the power series 3., an(x — ¢)". The real number

R =Tlub{a > 0 : the power series converges for all x with |x — ¢| < a}

is called the radius of convergence of the power series.

That is, R is such a non-negative number that the power series converges for all
x with |x — ¢| < R and it diverges for all x with |x — ¢| > R. Further, R = oo iff the
power series converges for all x € R.

If the radius of convergence of the power series Y, a,(x —c)" is R, then the interval
of convergence of the power series is

[c — R, c+R] iffit converges at both x =c—Rand x =c+R.
(c —R,c+R) iffitdiverges atbothx =c—Rand x =c+R.
[c — R, ¢+ R) iff it converges at x = ¢ — R and diverges at x = ¢ + R.

(c — R, c+R] iff it diverges at x = ¢ — R and converges at x = ¢ + R.

That is, the interval of convergence of the power series is the open interval
(¢—R, c+R) along with the point(s) ¢ — R and/or ¢+ R, wherever it is convergent. Due
to (2.2) the power series converges everywhere inside the interval of convergence, it
converges absolutely inside the open interval (c—R, c+R), and it diverges everywhere
beyond the interval of convergence.

Also, see that when R = oo, the power series converges for all x € R, and when
R = 0, the power series converges only at the point x = ¢, whence its sum is ay.

To determine the interval of convergence, you must find the radius of convergence
R, and then test for its convergence separately for the end-points x = ¢ — R and
x=c+R.

The radius of convergence can be found out by ratio test and/or root test, or any
other test.

(2.3) Theorem

o0
The radius of convergence of the power series Z an(x = ¢)"is lim |a,|"'/" provided
n—oo

n=0
this limit is either a real number or co.



Series Representation of Functions 43
(o)
. n : 1/n _
Proof. For the power series an(x —¢)", suppose lim |a,| /" =r € RU {co}.
n—oo

n=0
We need to show the following:

(1) If r € R and r > 0, then the radius of convergence of the power series is 1/r.
(2) If r = 0, then the power series converges for all x € R.

(3) If r = oo, then the power series converges only for x = 0.
(1) Suppose lim |a,|'/" = r > 0. Now,

1/n

1 ) .
|x—C| < - = |x—C| lim |an| < 1= lim |an(x_c)n|1/n < 1.
r n—oo n—oco

By the root test, it follows that the series is convergent when |x — ¢| < % Next,

1/n 1/n

1 ) .
lx—c| > - =|x—c| lim |a,|"'" > 1= lim |a,(x —¢)"|'/" > 1.
r n—oo n—oo

Again, the root test implies that the series is divergent when |x — c| > %

(2) If r = 0, then for any x € R, lim |a,(x — ¢)"|'/" = |x — ¢|lim |a,|'/" = 0. By the
root test, the series converges for each x € R.

(3) If r = oo, then for any x # ¢, lim|a,(x — ¢)"| = lim |x — c||a,|'/" = co. By the

root test, Y a,(x — ¢)" diverges for each x # c. |

Instead of the Root test, if we apply the Ratio test, then we obtain the following
theorem.

(2.4) Theorem

[e9)

B

The radius of convergence of the power series Z a,(x —c)" is given by lim

n—oo
n=0

provided that this limit is either a real number or equal to co.

An+1

Also, we sometimes need to use the method of substitution. In this connection,
the following result is useful.

(2.5) Theorem

Let R > 0 and let f : (—R,R) — R be a continuous function. If ), a,x" converges
n=0

absolutely for |x| < R, then ), a,(f(x))" converges absolutely for |f(x)| < R.
n=0

(2.6) Example

For what values of x, do the following power series converge?

2n+1 xn+1

[oe) . [oe) xn’ [oe) nx [oe) .
(a) ;n!x (b) 20; ©) ;(—1) o @ ;(—1) —
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(a) a, = n!. Thus lim |a,/a,+1| =lim1/(n+ 1) = 0. Hence R = 0. That is, the series
is only convergent for x = 0.

(b) a, = 1/n!. Thus lim|a,/an+1| = lim(n + 1) = co. Hence R = oo. That is, the
series is convergent for all x € R.

c¢) Here, the power series in not in the form )’ b,x™. The series can be thought of as
P g

2

(1—%+—+ )—xZ( 1)”

n

n

for t = x2.

Now, for the power series Z(—l)” [ an = (-D)"/(2n+1).
%Zﬁ =1. Hence R = 1. That is, for |t| = x> < 1, the series

converges and for |t| = x> > 1, the series diverges.

Thus lim |a, /an.1| = lim

Alternatively, you can use the geometric series. That is, for any x € R, consider the

series
2 4

x(l—%+%+---).

Write b, for the nth coefficient of the power series. By the ratio test, the series

converges if
. 2n+3
= lim Ix?| = x? < 1.
n—oo 2n + 1

lim

n—oo

bn+l
That is, the power series converges for —1 < x < 1. Also, by the ratio test, the series
diverges for |x| > 1.

What happens for |x| = 1?

For x = —1, the original power series is an alternating series; it converges due to
Liebniz. Similarly, for x = 1, the alternating series also converges.

Hence the interval of convergence for the original power series (in x) is [—1, 1].

n
(d) Consider the series in the form x Z( | g — al
oy n+1
n _1 n+1 + 2
For the series Z( | [ — al n= L.Thus lim @l _ im ~ =
n+1’ n+l1 n—oo |ane1|  nocon+ 1

n=0
Hence R = 1. That is, the series is convergent for all x € (-1, 1).

Here again, you can use directly the ratio test on the series for any fixed x as in (c).

.. 1 1 ) . ..
For x = —1, the series is —1 — 3737 Since the harmonic series is divergent,
the power series at x = —1 is divergent.
.. 1 1 ) ) . ..
For x = 1, the series is 1 — = + = — — + - - - Since the alternating harmonic series is

2 3 4
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convergent, the power series at x = 1 is convergent.
Therefore, the interval of convergence of the original power series is (—1, 1]. 0

If R is the radius of convergence of a power series ), a,(x — a)", then the series
defines a function f(x) from the open interval (a — R, a + R) to R by

o0

f(x)=ap+a(x—a)+ar(x—a)?+--- = Zan(x—a)” forx € (a—R,a+R).
n=0

This function can be differentiated and integrated term-by-term and it so happens

that the new series obtained by such term-by-term differentiation or integration has

the same radius of convergence and they define the derivative and the integral of

f(x). We state it without proof.

(2.7) Theorem

Let the power series 3" an(x — ¢)" have radius of convergence R > 0. Then the
power series defines a function f : (c —R,c+R) — R. Further, f'(x) and f f(x)dx
exist as functions from (¢ — R, ¢ + R) to R and these are given by

N - _ M+l
n=0 =1 oy

where all the three power series converge for all x € (c — R,c + R).

Caution: Term by term differentiation may not work for series, which are not power

(o] .
) sin(n!x)
series. For example, Z _—

n=1

>— 1s convergent for all x. Differentiaing term by
n

o n!cos(n!x)

term, we obtain the series Z 3 , which diverges for all x.

n
n=1

Further, power series about the same point can be multiplied by using a gener-

alization of multiplication of polynomials. We write the multiplication of power

series about x = 0 for simplicity.

(2.8) Theorem

Let the power series ), a,(x—c)" and ), b, (x—c)" have the same radii of convergence
R > 0. Then their product ), d,(x —¢)" has the same radius of convergence R, where

n

dn= ) axby i = Qoby +arby 1 + -+ + an1by + anbo.
k=0
Moreover, the functions they define satisfy the following forc — R < x < c+R:

If f(x) = Z an(x —¢)", g(x) = Z bn(x — )", then f(x)g(x) = Z dn(x— o).
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(2.9) Example

Determine power series expansions of the following functions:

@ g(x) = e+

2
Go1p (b) g(x) =tan"'x (c) log(1+x) (d) -

(a)For—1 <x < 1, 2453

=l4+x+x"+x +---

-x
Differentiating term by term, we have

W:1+2x+3x2+4x3+---
— X

Differentiating once more, we get

[o0)

:2+6x+12x2+-~-:Zn(n—l)x”_z for —1 < x < 1.

— x)3
(1 x) n=2
(b) =1-x24+x*=x+x8—-.. for|x?| < L
1+ x2
Integrating term by term we have
3 5 7
tan_1x+C:x—x—+x——x—+--~ for -1 <x< 1.
35 7
Evaluating at x = 0, we see that C = 0. Hence the power series for tan™! x.
1
(c)For-1<x<1, — = l-x+x2—x+x"—--.
I+x
Integrating term by term and evaluating at x = 0, we obtain
2 3 4
log(1+x):x—%+%—%+--- for -1 <x<1.
(d) Using the results in (c) and the geometric series for 1/(1 — x), we have
log(1+x) (- 1)" x" &
[ Z Zox for -1 <x<1. 0
n=

For obtaining the product of the two power series, we need to write the first in the
form )] a,x". (Notice that for the second series, each b,, = 1.) Here, the first series
is -

log(1+x) = Z a,x", where ap =0anda, =
n=0

-1 n—1
( forn > 1.

n

log(1 + -
Thus the product above is Lx) = Z cnx", where
1-x —

11 -t
cn:aobn+a1bn_1+---+anb0:a0+a1+---an:l—§+§—---+( ) .

n
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The following theorem due to Abel shows that continuity is somehow inbuilt in
a power series. It helps in evaluating a series at the endpoints of the interval of
convergence.

(2.10) Theorem (Abel)

Let R be the radius of convergence of the power series 3., anx" whose sum is f(x)
for |x| < R.

(1) If the power series converges at x = —R, then ..’ a,(=R)" = lin}z f(x).
X—>—K+

(2) If the power series converges at x = R, then ., a,R" = lim f(x).
n=0 R
x—R—

(2.11) Example

We know thatlog(1+x) = 37, (- Dl % The radius of convergence of this power
series is 1. By Abel’s theorem,

. R 1" o0 (_1)n+1
lim log(1 - —Hm— = log 2.
Jim log(1 +x) ;( = > " og 0

n=1

Observe what Abel’s theorem does not say. In general, if a function has a power
series representation in the interval |x| < R and the function has a limit as x — R—,
then the series need not converge at x = R. See the following example.

(2.12) Example

Consider the function f(x) = —;. It has the power series representation Y%, (—1)"x>"
1+x n=0

for |x| < 1. Asx — 1—, the function f(x) has the limit 1/2. However, at x = 1, the

power series Z;‘;O(—l)”(l)zn =1-141-1+1--- does not converge. 0

2.2 Taylor’s formulas

For an elegant power series representation of smooth functions we require Taylor’s
formulas. It has two forms: differential form and integral form. The differential
form is a generalization of the Mean Value Theorem for differentiable functions.
However, we will first prove the integral form, and then deduce the differential form.
In what follows, if f : [a,b] — R, then its derivative at x = a is taken as the right
hand derivative, and at x = b, the derivative is taken as the left hand derivative of

f(x).
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(2.13) Theorem (Taylor’s Formula in Integral Form)

Let f(x) be an (n + 1)-times continuously differentiable function on [a,b]. Let
€ [a,b]. Then

1, e L@
n!

f(x)=f(a)+ f'(a)(x —a) + —— x—a)" + Ry(x),

where R,(x) = J (x f("”)(t) dt. An estimate for R,(x) is given by

m (x _ a)n+l Rn(x) B M (x _ a)””

n+1)! =T e D)
where m < f"1(x) < M for x € [a,b].

Proof. We prove it by induction on n. For n = 0, we should show that

F(x) = f(a) + Ro(x) = f(a) + j P dr.

But this follows from the Fundamental theorem of calculus. Now, suppose that
Taylor’s formula holds for n = k. That is, we have

f”( ) f(")( )

fx) =f@)+f'(a)(x—a)+ (x—a)*+-- (x = a)* + Re(x),

where Ri(x) = J (x = f (*k+1) (1) dt. We evaluate R (x) using integration by

parts with the first functlon as f*+D(r) and the second function as (x — t)¥/k!.
Remember that the variable of integration is ¢ and x is a fixed number. Then

Rl = | - 0 S ff<’<+2><t>(x"")k” d

(k+1)‘ (k+1)!
RN Gk A TN el A
AT J SO ¢
f(k”)(a)

T 9 R ().

This completes the proof of Taylor’s formula. For the estimate of R,(x), Observe
that

Jx (x_ t)n i — _(x _ t)n+1 x _ (x _ a)n+1
o (n+ D! e (n+ D

Since m < f™1(x) < M, the estimate for R, (x) follows. |

To derive the differential form of Taylor’s formula, we use the following result.
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(2.14) Theorem (Weighted Mean Value Theorem)

Let f(t) and g(t) be continuous real valued functions on [a, b], where g(t) does not
change sign in [a, b]. Then there exists ¢ € [a, b] such that

b b
["rgwae=s [ gwar

Proof.  Without loss of generality assume that g(t) > 0. Since f(t) is continuous,
let @ = min f(¢) and f = max f(t) in [a, b]. Then

b b b
aJ g(t)dt SJ f(t)g(t)dt < /SJ g(t) dt.

1f [* g(t) dt = 0, then [ £(£)g(t) dt = 0. Inthis case, [* f(£)g(t) dt = f(c) [ g(t) dt.
So, suppose that fj g(t)dt # 0. Then f: g(t) dt > 0. Consequently,

J fhg)dt

[0 gt dt
By the intermediate value theorem, there exists ¢ € [a, b] such that
b
I f)g(r) at
e = f(0). '
[)g(t)ydt

(2.15) Theorem (Taylor’s Formula in Differential Form)

Let n € N. Suppose that f (x) is continuously differentiable on [a, b]. Then there
exists ¢ € |a, b] such that

)
(n+1)!

17 (n)
f ( ) f ( )( _ )n (x_a)n+l‘

(x—a)®+- -+

) = fla+f (@) (x—a)+——

Proof. Letx € (a,b). The function ¢g(t) = (x — t)" does not change sign in [a, x].
By the weighted mean value theorem, there exists ¢ € [a, x] such that

(x _ )n+1

a

J(x ) f(nﬂ)(t)dt‘f("“)(c)j (x— B dt = —fre) (o XD
_ e (g G ="

n+1

Using the Taylor’s formula in integral form, we have



50 MA1102 Classnotes

(x_a)n+1 B f(n+1)(c)
n+l  (n+1)!

(X _ a)n+1.
1

Ra() = [ =00 ) dt = 0

Remark 2.16 Taylor’s formula in differential form can be proved directly by
repeated use of the Mean value theorem, or Rolle’s theorem. It is as follows.
For x = a, the formula holds. So, let x € (a,b]. For any t € [a, x], let

f”( )

—a)’+-- -+

p(t) = f(a) + f(a)(t —a) + ——
Here, we treat x as a certain point, not a variable; and ¢ as a variable. Write

f(x) - p(x)

(x ~ a)n+1 (t _ a)n+1.

We see that g(a) =0, ¢’(a) =0, ¢”(a) =0, ...,¢g"™(a) =0, and g(x) =

g9(t) = f(t) = p(t) -

By Rolle’s theorem, there exists ¢; € (a,x) such that g’(c;) = 0. Since g(a) = 0,
apply Rolle’s theorem once more to get a ¢, € (a,cy) such that g”(cp) =

Continuing this way, we get a cp41 € (4, ¢,) such that g™+ (c,.1) = 0

Since p(t) is a polynomial of degree at most n, p(™*!)(t) = 0. Then

00 = 100 - LB
X —a)

Evaluating at t = ¢, we have f(”+1)(cn+1) - % (n+1)! =0. That is,
x—a)"
f@) =px) _ fD ()
(x — a)"t! (n+1)!
f(n+1)(cn+l) .
1 = - - (t—a)™.
Consequently, g(t) = f(t) — p(¢) )] (t—a)
Evaluating it at t = x and using the fact that g(x) = 0, we get
_ f(n+1)(cn+1) n+l
£) = pl) + o (- @)™

Since x is an arbitrary point in (a, b], this completes the proof.

The polynomial
f ”( )

(n
(x a)2+~~-+f )‘(a)
n

p(x) = f(a) + f'(a)(x —a) + (x —a)"
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in Taylor’s formula is called as Taylor’s polynomial of order n. Notice that the
degree of the Taylor’s polynomial may be less than or equal to n. The expression
given for f(x) there is called Taylor’s formula for f(x). Taylor’s polynomial is an
approximation to f(x) with the error

_ f(n+l) (cn+t1)

(n+1)! (x =)™,

Rn(x)
How good f(x) is approximated by p(x) depends on the smallness of the error
R, (x). For example, if we use p(x) of order 5 for approximating sin x at x = 0, then

we get
3 5

) 2 x
sinx = x — o + 3 + Rs(x), where Rg(x) = ol

Here, 6 lies between 0 and x. The absolute error is bounded above by |x|°/6!.
However, if we take the Taylor’s polynomial of order 6, then p(x) is the same as in
the above, but the absolute error is now |x|”/7!. If x is near 0, this is smaller than
the earlier bound.

Notice that if f(x) is a polynomial of degree n, then Taylor’s polynomial of order
n is equal to the original polynomial.

sin 0
x5,

As (2.6) shows, by clever manipulation of known series and functions, we may
be able to have a series representation of some of them.

In general, we ask: Which functions can have a power series representation, and
how to obtain a power series from such a given function?

2.3 Taylor series

Taylor’s formulas (2.15 and 2.13) say that under suitable hypotheses a function can
be written as

" (n)
0= f@+ f @G-+ e+ LD gy ry o),
where
f(n+1)(c) n+ x (X - t)n n+
Ru(x) = m(x —a)™ OR R,(x)= J Tf( D(t)dt.

If R,(x) converges to O for all x in an interval around the point x = a, then the
ensuing series on the right hand side would converge and then the function can be
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written in the form of a series. That is, under the conditions that f(x) has derivatives
of all order, and R,(x) — O for all x in an interval around x = a, the function f(x)
has a power series representation

f”( )

fE=f@+f(@(x-a)+——(x-a)’+- + (x—-a)"+

[ (a)
n!
Such a series is called the Taylor series expansion of the function f(x). When

a = 0, the Taylor series is called the Maclaurin series.
Conversely, if a function f(x) has a power series expansion about x = a, then by

repeated differentiation and evaluation at x = a shows that the coefficients of the
M (q

power series are precisely of the form as in the Taylor series.

n:

(2.17) Example

Find the Taylor series expansion of the function f(x) = 1/x at x = 2. In which
interval around x = 2, the series converges?

We see that f(x) = %, f(2) = %; S fM(x) =

Hence the Taylor series for f(x) = 1/x is

CIE fe =0T

I x-2 (x—2)2

27 T2 T B D

(x=2)"
2n+1

We now require the remainder term in the Taylor expansion. The absolute value
of the remainder term in the differential form is (for any c, x in an interval around
x=2)

f(n+1) ( C) -
(n+1)! e ¥

Here, c lies between x and 2. Clearly, if x is near 2, |R,| — 0. Hence the Taylor

(x 2)n+l
|Rn| = ‘

Cn+2

series represents the function near x = 2.

However, a direct calculation can be done looking at the Taylor series so obtained.
Here, the series is a geometric series with ratio r = —(x — 2) /2. Hence it converges
absolutely whenever

Irl <1, ie., |x-2|<2 ie, 0<x<4

Thus the series represents the function f(x) = 1/x for 0 < x < 4. 0

(2.18) Example

Consider the function f(x) = e*. For its Maclaurin series, we find that

fO)=1, f(0)=1,---,f™©0) = 1,---
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Hence
X x? x"
e =l+x+—+--+—=+--
2! n!
Using the integral form of the remainder,

|Rn (x)] =

x —Hn x —Hn
J uf(nﬂ)(t) dt‘ = ” Qet dt| - 0asn — oo.
a n: 0 n!

Hence, e* has the above power series expansion for each x € R.
Directly, by the ratio test, this power series has the radius of convergence

+1)!
R= lim - = g PO

n—oo d,.1 n—oo n!
Therefore, for every x € R the above series converges. 0
(2.19) Example

e (_l)ann ) ‘ .
You can show that cosx = Z W The Taylor polynomials approximating

n)!
n=0

i -1 k,2k
cos x are Pp,(x) = ; %
mials approximate cosx for 0 < x < 9.

¥

. The following picture shows how these polyno-

In the above Maclaurin series expansion of cos x, we have the absolute value of the
remainder in the differential form as

|x|2n+1
Royp(x)| = ————= —0asn— o
Ron (0] = 5
for any x € R. Hence the series represents cos x for each x € R. O

(2.20) Example
Let m € R. Show that, for -1 < x < 1,

(1+x)m:1+i(’:)x”, where (m) _ m(m — 1)---(m—n+1)‘
n=1

n n!
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To see this, find the derivatives of the given function:
f)=(1+x)"  fOx)=mm-1)---(m-n+1)xm",

Then the Maclaurin series for f(x) is the given series. For this series, we see that

. m(m=1)---(m=-n+1) (n+1)! . |n+1
= lim = lim
n—oco n! m(m-1)---(m—-n)l n-oclm—n

an

lim

n—o00

=1
An+1
Alternatively, you can show that the remainder term in the Maclaurin series expan-
sion goesto O asn — oo for -1 < x < 1.

The series so obtained is called a binomial series expansion of (1 + x)™. Substi-
tuting values of m, we get series for different functions. Notice that when m € N,
the binomial series terminates to give a polynomial and it represents (1 + x)™ for
each x € R. 0

(2.21) Example

Consider the function f(x) = V1 + x. With m = 1/2, the binomial series expansion
gives

= —1)™1(2n)! x x2 X3
Vitx= ( "=1l+-—-—+——--- for -1 <x<1.
x ;22”(n!)2(2n—1)x 2738 16 of *

Using the estimate (We have not derived it.)
4n (Zn) 4n
- < L
Vr(n+1/3) n Vr(n+1/4)

it follows that at x = 1, the power series converges absolutely. Thus, By Abel’s
theorem, we obtain

o (=)™ (2n)!
2

2n(m)2(2n—1) Am f(x) = V2.

n=0

Similarly, the power series is absolutely convergent at x = —1. Therefore,

o (=D™1(2n)!
Z 220 (n)2(2n —1)

(-D* = lirn1 f(x)=0.
n=0 oo

(o)

It implies that Z

n=1

(2n)! B
2n(n)2(2n—1)

Remark 2.22 There exist functions which are n times differentiable for each
n € N but they are not represented by their Taylor series in any interval. For
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example, consider the following function:

e ifx £0

f(x):{o if x = 0,

For each n € N, f("(0) = 0; so, the Taylor series of f(x) is the power series of
which each coefficient is 0. Except at the point x = 0, the Taylor series does not

-1/%* does not

match with the function. Here, notice that R,(x), which is equal to e
converge to 0 as n — oo. Thus, in order that a function is represented by its Taylor
series in an interval, it is essential that the remainder term R, (x) must converge to

0 for all x in that interval as n — oo.

2.4 Fourier series

In the power series for sinx = x —x>/3!+- - -, the periodicity of sin x is not obvious.
Recall that f(x) is called 2¢-periodic for £ > O iff f(x+2¢) = f(x) forall x € R. For
the time being, we restrict to 2z-periodic functions. We will see that a 2z-periodic
function can be expanded in a series involving sines and cosines instead of powers
of x.

. . L 1 S .
A trigonometric series is of the form 50 + Z(an cos nx + b, sin nx).
n=1
Since both cosine and sine functions are 27-periodic, if the trigonometric series

converges to a function f(x), then necessarily f(x) is also 2z-periodic. Thus,

F(0) = f(2r) = f(dx) = f(6m) =--- and f(-m) = f(n), etc.

Moreover, if f(x) = %ao + 277 (an cos nx + by sin nx), say, for all x € [, 7], then
the coefficients can be determined from f(x). Towards this, multiply f(t) by cos mt
and integrate to obtain:

T (o)

T
cosmt dt + Z anJ cos nt cos mt dt
Y n=1 /A

‘[;f(t) cosmtdt = %ao‘[

o
+ Z b, J sin nt cos mt dt.
n=1

T
/4
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Formn=0,1,273,...,

0 ifn#m
T T
J cosntcosmtdt =<7 ifn=m>0 and J sinnt cos mt dt = 0.

-7 -

27 ifn=m=0

Thus, we obtain
/4
J f(t)cosmtdt = na,,, forallm=0,1,2,3,---

Similarly, by multiplying f(¢) by sin mt and integrating, and using the fact that

. 0 ifn+m
J sinntsinmtdt =37 ifn=m>0
7 0 ifn=m=0

we obtain .

f(t)sinmtdt = nby, forallm=1,2,3,---

-

Let f : R — R be a 2z-periodic function integrable on [—, 7r]. Write

1 T
an:—‘[ f(t)cosntdt, for n=0,1,2,3,...;
T =TT

1 /
bn:—J f(t)sinntdt for n=1,2,3,....
T J-r
Then the trigonometric series

1 (o]
79 + Z(an cos nx + by, sin nx)

n=1

is called the Fourier series of f(x).
To state and understand a relevant result about when the Fourier series of a function
f(x) converges at a point, we require the following notation and terminology.

Let f : R — R be a function. Let ¢ € R. Write
f(e+) = lim f(c+h), f(c—) = lim f(c—h).
h—0+ h—0+

We use the following terminology:

f(x) has a finite jump at x = c iff f(c+) exists, f(c—) exists, and f(c+) #
fle-).
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f(x) is piecewise continuous iff on any finite interval f(x) is continuous
except for at most a finite number of finite jumps.
fle+h) = flet)

; .
fle+h) = f(e-)

- .
f(x) is piecewise smooth iff f(x) is piecewise continuous and f(x) has both
left hand slope and right hand slope at every point.

the right hand slope of f(x) is equal to hlirg
—0+

the left hand slope of f(x) is equal to hlirg

(2.23) Theorem (Convergence of Fourier Series)

Let f : R — R be a 2rn-periodic piecewise smooth function. Then the Fourier
series of f(x) converges at each x € R. Further, at any point ¢ € R, the following
statements hold:

(1) If f(x) is continuous at c, then the Fourier series sums to f(c).

(2) If f (x) is not continuous at c, then the Fourier series sums to % [f(cH)+f(c)].

We observe that a 2z-periodic function f : R — R, which is bounded and
piecewise monotonic on [—r, 7| is piecewise smooth. Similarly, a 2z-periodic
function f : R — R, which has left and right derivatives at each point and is
piecewise continuous on [—s, ], is also piecewise smooth. Thus, the Fourier
series for these types of functions converge.

Fourier series can represent functions which cannot be represented by a Taylor
series, or a conventional power series; for example, a step function.

(2.24) Example

Find the Fourier series of the function f(x) given by the following which is extended
to R with periodicity 27:

I if0<x<unx
f(x):{

2 ifrn<x<2n

| | T
0 T im

Due to periodic extension, we can rewrite the function f(x) on [—7, ) as

2 if —71<x<0
f(X)={

1 if0<x<n
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Then the coefficients of the Fourier series are computed as follows:
1 (° 1 ("
ap = —J f(t)dt+—J f(t)dt =3.
VN T Jo

1 (° 1 ("
a, = — 2cosntdt+ — cosntdt = 0.

T )y T Jo
I 1 (" ~Hr -1
bn:—f 25inntdt+—f sinntdt:L.
T, T Jo nmr
Notice that by = —%, b, =0, by = 2 by =0,.... Therefore,

-5

3 2 in 3 in5
Flx) =2 ——(sinx+ sin3x _sin Sx +)

2 5
Here, the last expression for f(x) holds for all x € R, where ever f(x) is continuous;
in particular, for x € [—, ) except at x = 0. Notice that x = 0 is a point of
discontinuity of f(x). By the convergence theorem, the Fourier series at x = 0 sums
o F00)+F(0-)
? 2

Once we have a series representation of a function, we should see how the partial

, which is equal to 5 0

sums of the series approximate the function. In the above example, let us write
1 m
fm(x) = 540 + Z(an cos nx + b, sin nx).
n=1

The approximations f(x), f3(x), fs(x), fo(x) and fi5(x) to f(x) are shown in the
figure below.
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Remark 2.25 1In the above example, we found that
3 2/ . sin3x  sinSx
=—— —|sinx+ + + e
fx) =3 n(lx 3 5 )
In particular, at x = 7, the function f(x) is not differentiable. However, each term
on the right hand side is differentiable at x = . It means that each term of a Fourier
series can be differentiable at a point, but the sum of the series is not differentiable

at that point. Indeed, if we differentiate each term of the series and sum the terms
after evaluation at r, we get the divergent series —( I-1-1---+).

(2.26) Example
Show that the Fourier series for f(x) = x? defined on [0, 27) is given by

42 a4 4
%+Z (ﬁcosnx— %sinnx).

Extend f(x) to R by periodicity 2zz. We thus have f(2x) = f(0) = 0. Then

f=7) = f(=m427) = f(x) = 2%, f(~7/2) = f(~n/2+27) = f(37/2) = (37/2)".
Thus the function f(x) on [—, ) is defined by

(x+21)* if —m1<x<0
fx) = .
x2 if0<x<o.

Notice that f(x) is neither odd nor even. The coefficients of the Fourier series for

f(x) are
1 /4 1 2 2
:_J ﬂﬂm:—J 2dr = 5T
Ty T Jo 3

n2

1 (% 4
an:—J t2 cosntdt = forn=1,2,3,...
0 n

1 [ 4
bn:—f tzsinntdt:——7r forn=1,2,3,...
T Jo n

Hence the Fourier series for f(x) is as claimed.

As per the extension of f(x) to R, we see that in the interval (2kz, 2(k + 1)), the
function is defined by f(x) = (x — 2kx)?. Thus it has discontinuities at the points
x =0, £27, +4x, ... At such a point x = 2k, the series converges to the average
value of the left and right side limits, i.e., the series when evaluated at 2k yields
the value
% lim f(x)+ lim jxx)]—-%[ lim (x=2km)+ lim (x=2(k+1)m)?| =27,

x—2km—
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2.5 0Odd and even functions

If f(x) is an odd function, that is, if f(—x) = —f(x), then the Fourier coefficients
for f(x) are

1 4
an:—J f(t)cosntdt =0 forn=0,1,2,....
4 —IT

1 (" 2 ("
b":_J f(t)sinntdt:—J f(t)sinntdt forn=1,23,....
T J_g T Jo

In this case, the Fourier series for f(x) is given by
[0 2 T
an sinnx, b, = —J f(t)sinntdt forn=1,23,....
T Jo
n=1

Similarly, if f(x) is an even function, that is, f(—x) = f(x), then its Fourier series
is given by

(&) 2 T
%+Za”’ an:;L f(t)cosntdt forn=0,1,2,....

n=1
(2.27) Example
2 (o)
, , COS nx
Show that x* = = +4Z(—1) —— forallx € [~7,7].

n=1

Let f(x) be the periodic extension of the function x > x?

on [, ) to R. Since
7* = (—=m)?, such an extension with period 27 exists, and it is continuous. The
extension of f(x) = x? to R is not the function x*. For instance, in the interval
[, 37], its extension looks like f(x) = (x — 2)%. With this understanding, we go
for the Fourier series expansion of f(x) = x? in the interval [—7, 7]. We also see
that f(x) is an even function. Its Fourier series is a cosine series. The coefficients

2 (" 2
aO:—J tzdtzgﬂz.

T Jo

of the series are as follows:

2 (™ 4

anz—J tzcosntdt:—(—l)” forn=1,2,3,...

2
T Jo n

Therefore,

2 (o]
f) =5t =T wd Yy (1) O forall x € [-, 7.
n=1

n2
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In particular, by taking x = 0 and x = &, we have

i (_1)n+l ~ 7[2 i 1 ~ 71.2
n2 12 n2 6

n=1 n=1

Due to the periodic extension of f(x) to R, we see that

2 o0
(x —27)% = % +43 (=" 22 forall x € [x,3x].
n

n=1

It also follows that the same sum (of the series) is equal to (x —4)* for x € [37,57],
etc. 0

(2.28) Example

(o)

1 .
Show that for 0 < x < 2, 5(” Cx) = Z sin nx

n
Let f(x) = x for 0 < x < 2x. Extend j;l (_;) to R by taking the periodicity as 2.
As in (2.27), f(x) is not an odd function. For instance, f(-7/2) = f(37/2) =
3n/2 # f(n/2) = x/2.
The coefficients of the Fourier series for f(x) are as follows:

1 T 1 21
ap = — f(t)dt:—J tdt =2,
T Jr T Jo
1 T 1 2
an = — f(t)cosntdt:—J tcosntdt =0.
T Jr T Jo
1 T 1 2
b, =— f(t)sinntdt:—J t sinnt dt
T J-rn T Jo
1 [—ncosnt 27 2 2
:—[—] + — cosntdt = ——.
T n 0 nx)y T
o sin
By the convergence theorem, x = 7 — 2 Z T for 0 < x < 2m, which yields
n
n=1
the required result. 0

2.6 Half range Fourier series

Suppose a piecewise smooth function f : (0, 7) — R is given. To find its Fourier
series, we need to extend it to R so that the extended function is 27-periodic. Such
an extension can be done in at least two ways.
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1. Even Extension:

First, extend f(x) to (-, ) by requiring that f(x) is an even function. This
requirement forces f(—x) = f(x) for each x € (—x, 7). Next, we extend this f(x)
which has now been defined on (-, 7) to R with periodicity 2;z. Notice that since
f(0), f(-m) and f(rr) are not given, we may have to define them. The only
constraint is that f(x) is required to be even; so we must take f () = f(—x). If we
define these values in such a way that the extended function is continuous at these
points, then the Fourier series will converge to these values at these points. Since
the extended function is even and of period 27, its Fourier series is a cosine series
given by

ap - 2 ("

> + a, Cosnx, a,= - L f(t)cosntdt, n=0,1,2,3,..., xeR.

n=1
In this case, we say that the Fourier series is a half-range cosine series for f(x).

In case, domain of f is [0, ), (0, 7] or [0, x], the values f(0) and/or f () may
be already available, and we do not need to define those.

2. Odd Extension:

First, extend f(x) from (0, 7) to (-, ) by requiring that f(x) is an odd function.
This requirement forces f(—x) = —f(x) for each x € (-, 7). In particular, the
extended function f(x) will satisfy f(0) = f(-0) = —f(0) leading to f(0) = 0.
Next, we extend this f(x) which has now been defined on (-, 7) to R with
periodicity 2sr. This will force f(—x) = (). Again, the requirement that f(x) is
odd implies that f(—x) = —f() = f(xr) leading to f(—x) = f(xr) = 0. Thus, the
odd extension of f(x) with periodicity 27 will satisfy f(kx) = O for all integers k.
By the convergence theorem, the Fourier series of the extended odd function f(x)
will be equal to f(x) at each x # k.

In addition, if f is already defined on [0, ] with f(0) = f () = 0, then the Fourier
series of the odd extension of f(x) with period 2 will represent the function f(x)
at all points x € R.

The Fourier series expansion of this extended f(x) is a sine series given by
[Se] 2 T
f(x) = ansinnx, b, = —J f(t)sinntdt, n=1,23,..., xeR.
n=1 T Jo

In this case, we say that the Fourier series is a half-range sine series for f(x).
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(2.29) Example
. ) . . x if0<x<m/2
Find half-range cosine and sine series for f(x) =
m—-x ifrn/2<x<m.

1. With an even extension, the Fourier coefficients are given by ap = x/2 and for
n=123,...,

2 (7 2 /2 2 (7
a,=— | f(t)cosntdt=— tcosntdt + — (7t —t) cosnt dt
T Jo T Jo T Jrn/2

2
= E(Zcos% -1 —cosmr).

Notice that a, = 0 when n is odd, and a, = 0 when n = 4k for any integer k. Thus

-3

cos2x cosbx cos10x
2 e s

+ ) for x € [0, x].

2. With an odd extension, the Fourier coefficients are given by a, = 0 and for
n=123,..,

2 (T 2 /2 2 ("
bn:—J f(t)sinntdt:—J tsinnt dt + — (7 —t)sinnt dt
T Jo T Jo T Jr)2
2 t 1 . T2 2rt—-om 1 . 7
:—[——Cosnt+—smnt] +—[ cosnt——smnt]
7l n n2? 0 7l n n? 7/2
2( T n7r+1 . nﬂ)+2(n' 27T+1 . mr)
=—| - —cosS— + —sin — —|=—cos— + —sin —
7\ 2n 2 n? 2 7\2n n  n? 2

= —sin— =

n? 2

4 nr #(—1)(”‘1)/2 for n odd
0 for n even.

sinx sin3x sinS5x
2z 2 s
Justify why do we write the equalities f(x) = -- - in both the cases. 0

Here, £(0) = f(x) = 0. Thus f(x) = %( . ) for x € [0, 7].

(2.30) Example

Find the sine series expansion of cos x in [0, z].
We work with the odd extension of cos x with period 2 to R. Observe that the
odd extension f(x) of cos x has the following values in [—7, 7]:

—cosx if —m<x<0
f(x)=qcosx if0<x<nx

0 ifx=-m0,rm.
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The Fourier coefficients are given by a, = 0 and

2 (" i 0 for n odd
b, = —J costsinntdt =

T 4n
0 —(nz ) for n even.

n sin(2nx)
4n? -1
At x = 0 and x = x, the Fourier series sums to 0 = f (0) f (), but different from

cos 0 and cos . At other points, the series represents cos x. That is,

Therefore, the Fourier sine expansion of cos x is — Z in [0, z].

2
CoS X = —Z n sm( nx) for x € (0, 7).

2 2
Similarly, you can verify that sinx = — — — Z %nxl) for x € (0, 7). 0
T

There is another approach to construct a Fourier series for a function with domain
as (0, ), which we discuss in the last section.

2.7 Functions defined on (—¢, ¢)

Suppose f : (—£,£) — Ris given. We first extend f(x) to a 2¢-periodic function on
R. While constructing such an extension, we may have to define f(—¢). Especially,
we take f(—¢) = xl_i)r_n{)+ f(x) so that the extended function is continuous at x = —¢.
Of course, if originally f is a function given on [—¢, £), then this definition of f(—?)
is not necessary. Next, we change the independent variable by taking x = fy/r,
equivalently, y = zx/¢. That is, we define the function h(y) = f(£y/x). Since f(x)
is a 2¢-periodic function, h(y) is a 2z-periodic function. Then, we construct the
Fourier series for h(y) and in this Fourier series substitute y = zx/¢ for obtaining
the Fourier series for f(x). Now, the Fourier series for h(y) is given by

% + Z (a,, cos ny + b, sin ny),

n=1

where the Fourier coefficients are (Ina,, n =0,1,2,3,..;andinb,,n=1,2,3,...)
.

an = %J‘” f(gs) cosnsds, b, = %J_”f(gs) cosnsds.

-7
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Substituting t = %s, ds = %dt, we have

a, = % J_if(t) cos (nT]ft) dt, b, = % J_if(t) sin (nijt) dt.

Substituting y = 7x /¢ in the above Fourier series, we obtain the Fourier series for

f(x), which is
[o¢]
aop nmx . (n7x
—+Z apcos| — | +b,sin[—||.
2 £ t
n=1
In general, such a Fourier series need neither be a sine series nor a cosine series.
Sometimes, this series is called a full range Fourier series.

(2.31) Example
Construct the Fourier series for f(x) = |x| for x € [—¢, ¢) for a given ¢ > 0.

We extend the given function to f : R — R with period 2¢. It is shown in the
following figure:

Notice that the function f : R — Ris not |x|; itis |x| on [—¢, £). Due to its period as
2¢, it is |x — 2¢| on [£, 3¢) etc. However, it is an even function; so its Fourier series
is a cosine function.

The Fourier coefficients are

2 (¢ 2 (¢
b, =0, aO:—J |t|dt=—J tdt = ¢,
t Jo t Jo

2 J ¢ nit 0 for n even
a,=—| tcos (—) dt =
t Jo t —n% for n odd

Therefore the (full range) Fourier series for f(x) shows that in [—¢, £],

x| = [ [cos(nx/{’) N cos(3rx/t) ey cos((2n+ 1)zmx/¢) .

2z 12 32 (2n+1)?2

Notice that the Fourier series represents the function at the end-points x = —¢ and
x = ¢ also since the function is continuous at these points. 0
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2.8 Functions defined on (0, ¢)

Suppose that f : (0,£) — R is given for which we require a Fourier series. As in
the case of functions defined on (0, 7), we have essentially two approaches to the
problem. One, by an even extension, and the other, by an odd extension.

1. Even extension: In this approach, we extend f(x) to (—¢, £) so that the extended
function is an even function. Then, we find its Fourier series following the idea
of the last section. That is, we first impose f(—x) = f(x) for x € (0,¢) and
define f(0) (anyway we like) so that f on (—¢,¢) is an even function. Of course,
if f:[0,¢) — R, then we do not have to define f(0). Next, we extend this f(x)
to R by making it periodic with period 2¢. Then, we find the Fourier series for
the function h(y) = f(fy/r), and then substitute y = 7x/¢ in this Fourier series to
obtain the Fourier series for f(x). Since f(x) has been first extended to an even
function of period 2¢, the function h(y) is even and it has period 2 so that the final
Fourier series is a cosine series. In this case, the Fourier series for h(y) is

a = 2
D4 (arcosny). a=2 |

n=1 0

T

t
f(—s) cosnsds, n=0,1,2,3,....
T
Substituting ¢ = ﬁs, ds = %dt, and y = x/{ in the above Fourier series, we obtain
the Fourier series for f(x). Itis

(o] 2 { t
%+ (anCOS?), an:?‘[o f(t)COS(%)dt, n:O’1s2:3""‘

n=
The Fourier series sums to the function f : R — R, where f(x) is an even function
of period 2¢ and it agrees with the given function f(x) on (0, ¢). In particular, if
f(x) is piecewise continuous on (0, ¢), then at x = 0, the Fourier series sums to

lim f(x) and at x = ¢, the Fourier series sums to lim f(x).
x—0+ x—{—

The Fourier series so obtained is called the half-range cosine series as earlier.

(2.32) Example

Find the half-range cosine series for f(x) = 2x — 1 for 0 < x < 1 and show that

L S o
1232 52 -8

Here, the half-range cosine series is

a nmx
? + Z a, cos (T),

n=1
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where ag = % fol (2x = 1)dx =0 and

2 (! 4 0 for n even
an = _J (2X - 1) COS (@)dx = ﬁ[(—l)n - 1] =
1 Jo 1 n°r S5 for n odd.

n2r

Notice that f(x) is continuous on 0 < x < 1. Hence,

] = _%{cosnx N cos 3x N cos Srx N ] for0 < x < 1.
T 12 32 52
At x = 0, the Fourier series sums to lir(r)l (2x — 1) = —1. Hence,
x—U+
L S n? .
1232 52 -8

2. Odd extension: In this approach, we extend f(x) to (—¢, £) so that the extended
function is an odd function. Then, we find its Fourier series following the idea of
the last section. That is, we first impose f(—x) = —f(x) for x € (0, ¢) so that f on
(—¢,¢) is an odd function. Notice that it also requires setting f(0) = f(—¢) = 0.
Next, we extend this f(x) to R by making it periodic with period 2¢. Then, we find
the Fourier series for the function h(y) = f(fy/x), and then substitute y = 7x/¢ in
this Fourier series to obtain the Fourier series for f(x). Since f(x) has been first
extended to an odd function of period 2¢, the function hA(y) is odd and it has period
27 so that its Fourier series is a sine series. In this case, the Fourier series for h(y)

i (bnsinny), by = zJﬂf(fs) sinnsds, n=123,....

T Jo T

1S

n=1
Substituting ¢ = %s, ds = ’—{fdt, and y = 7x/¢ in the Fourier series, we obtain the
Fourier series for f(x). Itis

i b, sin (?) b, = %J:f(t) sin (”T’ft) dt, n=1,23. ...
n=1

The Fourier series sums to the function f : R — R, where f(x) is an odd function
of period 2¢ and it agrees with the given function f(x) on (0, ¢). In particular, at
x = 0 and at x = ¢, the Fourier series sums to 0.

The series so obtained is called a half-range sine series.

(2.33) Example
1 if0<x<1

Find the half-range sine series for f(x) =
0 ifl<x<?2.
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nIx
Here, ¢ = 2. Thus, the Fourier sine series is Zb s1n( > ) where

n=1

J f(x) sm t)dt—flsin (%m)dt:%[l—cos (’%ﬂ)] 0
0

2.9 Functions defined on (g, b)

We now consider determining Fourier series for functions f : (a,b) — R. In
applications, we do not usually encounter such a case. We go ahead for theoretical
interest. Since we know how to construct Fourier series for a function with domain
as (0, ) or as (-, ), we have the following three approaches to the problem.

1. In the first approach, we define the continuous bijection g : (0, ) — (a, b) given
by

b—-a
g(y):a+7y for y € (0, 7).

Now, the composition f o g is a function from (0, 7) to R. Next, we take an even
extension of f o g with periodicity 2s; and call this extended function as h. We then
construct the Fourier series for A(y) = f(g(y)). Finally, we substitute

y=g"'(x) = —”;x__a“) for x € (a,b)

in the Fourier series for h(y). This gives the half-range cosine series for f(x) on
(a,b).

2. In the second approach, we use the same continuous bijection g : (0, 7) — (a, b)
given by

b—a
g(y):a+7y for y € (0, 7).

The composition map f o g is a function from (0, 7) to R. Next, we take an odd
extension of f o g with periodicity 2s; and call this extended function as h. We then
construct the Fourier series for h(y). Finally, we substitute

m(x — a)

_ for x € (a,b)

y=g'(x)=

in the Fourier series for h(y). This gives the half-range sine series for f(x) on
(a,b).
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3. In the third approach, we define the continuous bijection g : (—x,7) — (a,b)

given by
a+b b-a
9(y) = +——y forye (- ).
2 2

The composition f o g is a function from (-, ) to R. Next, we extend f o g with

periodicity 2s; and call this extended function as h. We then construct the Fourier
series for h(y). Finally, in the Fourier series for h(y), we substitute

T

y=g"'(x) = 7 (2x—a-b)

to obtain the Fourier series for f(x) on (a, b).

In general, such a Fourier series need neither be a sine series nor a cosine series.
Sometimes, this series is called a full range Fourier series.

Observe that if a function f has domain (0, i), then we can scale it to length 27
by using the third approach. That is, we take the function g : (-, r) — (0, 7) as

T+
g9(y) = Ty for y € (0, 7).

Then, we find the Fourier series for h(y) = f(g(y)). Finally, in the Fourier series
for h(y), we substitute y = g~ (x) = 2x — 7 to obtain the Fourier series for f(x). In
general, such a Fourier series may involve both sine and cosine terms.

(2.34) Example

We consider Example 2.29 once again to illustrate the third approach when the
function is initially defined on [0, 7]. There, we had

x if0 <x<x/2
f(X)={

r—x ifn/2<x <.

Here, f(x) is also given at the end-points. We use the same formula for g(x) at the
end-points also. That is, we define g : [—x, 7] — [0, ] by

x=g) =22 hy)=f

T+y\ (r+y)/2 if —x<y<0
2 (—)‘

2 (r-y)/2 if0<y<m.

Notice that the function h(y) happens to be an even function with h(—x) = h(rx) = 0.
Then the Fourier coeflicients are given by b, = 0 and

1 (0 7+t 1 ("n—t T
S AL P R P
“0 nL, 2 nL 2 2
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1 (0 7+t 1 ("m—t 2. forn odd
an=—J ﬂz cosntdt+—f ﬂz cosntdt:{’"’2

T J-n T Jo 0 for n even.

The Fourier series for h(y) is given by

T 2
Z+Z mcosny

n odd

Using y = g~'(x) = 2x — 7, we have the Fourier series for f(x). Also f(x) is
continuous at x = 0 and x = ;. Therefore,

fx) = % %i cos((2n+1)(2x 7)) forx e [0,7].

Notice that it is the same series we obtained earlier in Example 2.29(1) by even
extension. This is so because h(y) happens to be an even function. 0

A Fun Problem: Show that the nth partial sum of the Fourier series for f(x) can
be written as the following integral:

sm(2n +1)t/2
ff( “sniz dt

sn(x) =

We know that s,(x) = % + Z(ak cos kx + by sin kx), where
k=1

1 (" 1 ("
ai = —I f(t)cosktdt, b= —J f(t)sinktdt.
TJ_r TJ_r

Substituting these values in the expression for s,(x), we have

() = J f(@) d” = J f(t) cos kx cosktdt+[ f(¢t) sinkx sinkt dt
T J [f(t) Z{f(t) cos kx coskt + f(t) sinkx smkt}]

J f(t) cos k(t—x) dt J f(t)on(t —x) dt.
The expression o,(z) for z = t — x can be re-written as follows:

1
on(z) = = +cosz+cos2z+---+cosnz.
2
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Thus

20,(z) cosz

=C0SZ+2C082C0SZ+2C0szC08S2Z+ -+ 2C0SzCOSnz

=cosz+ [l +cos2z] + [cosz+cos3z] +---+[cos(n—1)z+cos(n+ 1)z]
=1+4+2cosz+2cos2z+---+2cos(n—1)z+2cosnz+2cos(n+ 1)z
=20,(z) —cosnz+cos(n+1)z.

This gives
cosnz—cos(n+1)z sin(2n+1)z/2

on(2) = 2(1 = cos 2) - 2sinz/2

Substituting o,,(z) with z = t — x, we have

sin(2n+1)(t —x)/2

2sin(t —x)/2 dt.

1 /4
=2 [ ro
T J-n
Since the integrand is 2z-periodic, the value of the integral remains same on any

interval of length 2. Thus

sin(2n+1)(t —x)/2
2sin(t —x)/2

=] d.

Introduce a new variable y = t — x, i.e., t = x + y. And then write the integral in
terms of ¢ instead of y to obtain

(" sm(2n + 1)y/2 sm(2n +1)t/2
sn(x) = j_,,f(x+ 251ny/2 J fle+ 2 sin t/2

This integral is called the Dirichlet Integral. In particular, taking f(x) = 1, we see
that ap = 2, ar = 0 and by = 0 for k € N; and then we get the identity

t=1 foreachn e N.

1 (7 sin((2n+1)t/2)
;J_,, 2sin (¢/2)

2.10 Exercises for Chapter 2

1. Determine the interval of convergence for each of the following power series:

(a)i%n (b)z (c)Z( 1)”

Anss (@) [=1.1) () [=1.1] © (=L 1]
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10.

11.

12.

13.

. Determine the interval of convergence of the series T~

. The function

. Find the sum of the alternating harmonic series Z
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(2x)° N (2x)°
2 3

Ans: (-1/2,1/2].
Determine power series expansion of the following functions:
In(1 + x)

(@) In(1 +x) (b) ——

has the power series representation > x" with interval

of convergence ( 1 1). Prove that the function has power series representation
around any ¢ # 1.
[ee] (_ n

Ans: In2.

n+
n=0

. o sin x
. Give an approximation scheme for ‘[ ——dx where a > 0.

Ans: a+ Z;‘;l(—a)z"“/[(Zn + 1)2(2;)1)!].

11 1-3 1 1-3-5 1
Showthatsin_lx:x+§ §x3+ﬁ-§5 m §x7+---f0r—1<
x <1

11 1-3 1 1 3-5 1 /s
Th hat 1 + = = Feee=—,
en, deduce that +23 43 2 16 7 >

. Find the Fourier series of f(x) given by: f(x) = 0 for -7 < x < 0; and

f(x) =1for 0 < x < x. Say also how the Fourier series represents f(x).
Hence give a series expansion of /4.
Ans: 1/2+ (2/m) ¥ ,(2n+ 1) sin[(2n + 1)x].
e 1
+1)2
o (=1D)"
oy 2n+ 1

. Considering the fourier series for |x|, deduce that — = _—
ing u |x| u 3 Z n

L . ) T
Considering the fourier series for x, deduce that — =

Considering the fourier series for f(x) given by: f(x) = —1,for—-7 < x <0
o (=1)”

= 2n+ 1

and f(x) = 1 for 0 < x < 7 deduce that % =
Considering f(x) = x?, show that for each x € [0, ],

Z( 1)"Cosnx_i (- 1)"+1+2( H" -

Sll’l nx.

Represent the function f(x) = 1 — |x| for =1 < x < 1 as a cosine series.
Ans: 1/2+ (4/7%) X2, (2n+ 1) "2 cos[(2n + 1) 7x].
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Basic Matrix Operations

3.1 Addition and multiplication

A matrix is a rectangular array of symbols. For us these symbols are real numbers
or, in general, complex numbers. The individual numbers in the array are called
the entries of the matrix. The number of rows and the number of columns in any
matrix are necessarily positive integers. A matrix with m rows and n columns is
called an m X n matrix and it may be written as

ary -+ ain
A= : s
aml " Amn
or as A = [a;;] for short with a;; € Ffori=1,...,mand j = 1,...,n. The number

a;; which occurs at the entry in ith row and jth column is referred to as the (i, j)-th
entry of the matrix [a;;].

As usual, R denotes the set of all real numbers and C denotes the set of all complex
numbers. We will write FF for either R or C. The numbers in F will also be referred
to as scalars. Thus each entry of a matrix is a scalar.

The set of all m X n matrices with entries from FF will be denoted by F™*".

A row vector of size n is a matrix in F'*". A typical row vector is written as
[a --- a,]. Similarly, a column vector of size n is a matrix in F™¥!. A typical
column vector is written as

a)

for saving space. We will write both F'*" and F"™*! as F". The elements of F", called

vectors will be written as (ay,.. ., ay,).
So, (ay,...,ay) is either the row vector [al an] or the column vector
T
(a1 - a]”.

73
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Any matrix in F™" is said to have its size as m X n. If m = n, the rectangular
array becomes a square array with n rows and n columns; and the matrix is called a
square matrix of order n.

Two matrices of the same size are considered equal when their corresponding
entries are equal, i.e., if A = [a;;] € F™" and B = [b;;] € F™", then

A=B iff aij:b,'j
foreachi € {1,...,m} and for each j € {1, ..., n}. Thus matrices of different sizes
are unequal.

Sum of two matrices of the same size is a matrix whose entries are obtained by

adding the corresponding entries in the given two matrices. That is, if A = [a;;] €
F™" and B = [b;;] € F™", then

A+B= [a,-j +bij] € ™",

123]_'_ [312] 3 [435]

231 213 444

The + here is called addition as usual. We informally say that matrices are added
entry-wise. Matrices of different sizes can never be added. It follows that

For example,

A+B=B+A

whenever + is defined. Similarly, matrices can be multiplied by a scalar entry-wise.
If « € Fand A = [a;;] € F™", then

a A= [aa;] € "
We write the zero matrix in F™*", all entries of which are 0, as 0. Thus,
A+0=0+A=A

for all matrices A € F™" with an implicit understanding that 0 € F™". For
A = [a;], the matrix —A € F™" is taken as one whose (ij)th entry is —a;;. Thus

-A=(-1)A and A+ (-A)=-A+A=0.
We also abbreviate A + (—B) to A — B, as usual.
For example,
3 123] |312]_1057
231] [213] [480]

The addition and scalar multiplication as defined above satisfy the following prop-

erties:
Let A,B,C € F™" Leta, p € F.
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A+B=B+A.
(A+B)+C=A+(B+0).
A+0=0+A=A.
A+(-A)=(-A)+A=0.
a(BA) = (ap)A.

a(A+B) = aA + aB.

(a+ P)A = aA + PA.
1A=A.

S A

Notice that whatever we discuss here for matrices apply to row vectors and column
vectors, in particular. But remember that a row vector cannot be added to a column
vector unless both are of size 1 x 1.

Another operation that we have on matrices is multiplication of matrices, which
is a bit involved. Let A = [a;] € F™" and B = [by;] € F™". Then their product
AB is a matrix [c;;] € F™, where the entries are given by

n

¢ij = aitbij+ -+ + ainbnj = Z Qikby;.
k=1

Notice that the matrix product AB is defined only when the number of columns in A
is equal to the number of rows in B.

A particular case might be helpful. Suppose A is a row vector in F'*" and B is a
column vector in ™!, Then their product AB € F'!; it is a matrix of size 1 x 1.
Often we will identify such matrices with numbers. The product now looks like:

by
[a1 an] = [a1b1+---+anbn]
bn

This is helpful in visualizing the general case, which looks like

i 1 [b1n b1 b1 T ]
ap ark ain 1“1 Yir c11 C1j Cir
ail - @ik o0 Qin | |ber bep ber| = Cin cijcir

| Am1 Amk Amn| b, bnj b,, |Cml Cmj Cmr|

The ith row of A multiplied with the jth column of B gives the (ij)th entry in AB.
Thus to get AB, you have to multiply all m rows of A with all r columns of B.
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(3.1) Example

In the following, call the first matrix as A and the second as B. The equality shows
how the right hand side AB is computed.

3 5-1(12-231 22 =2 43 42
4 0 2|15 078|=| 26-16 14 6
-6-3 2|1 (9-411 -9 4 -37-28

Further, look at the kth column of AB, the columns of A and the entries in the kth
column of B. We have

22 [ 3] 5 -1

260= 2| 4|/+5] 0[+9 ] 2

-9 -6 -3 2

-2 [ 3] 5 -1

-16(=-2| 4[+0| 0| -4 | 2

4 -6 -3 2

43 [ 3] 5 -1

141= 3| 4|+7 ] O]|+1 | 2

-37 -6 -3 2

42 [ 3] 5 -1

6|= 1| 4/+8]| 0|+1] 2

—-28 -6 -3 2
In general, suppose that the columns of A are Cy,...,C, and that the kth column
of B has entries by, ..., by, in that order; then, the kth column of AB is given by
blkCI +-- 4+ bnkCn. M

If u e F*" and v € F™¥!, then uo € F'X!, which we identify with a scalar; but
vu € F™n,

1 1 361
[361] [2|=[19]. |2|[361]=]6 122].
4 4 1224 4

It shows clearly that matrix multiplication is not commutative. Commutativity can
break down due to various reasons. First of all when AB is defined, BA may not be
defined. Second, even when both AB and BA are defined, they may not be of the
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same size; and third, even when they are of the same size, they need not be equal.

For example,
L2101 (47 but 0O1)112] (23
23]123] |611 23] 23] |813]
It does not mean that AB is never equal to BA. There can be some particular
matrices A and B both in F™*" such that AB = BA. An extreme case is AT = T A,

where I is the identity matrix defined by I = [§;;], where Kronecker’s delta is
defined as follows:

1 ifi=j o
51']': . for 1, ] €N,
0 ifi#j
In fact, I serves as the identity of multiplication. I looks like

[10---00] I

01---00 1

00---10 1

00---01f | 1]

We often do not write the zero entries for better visibility of some pattern.
Unlike numbers, product of two nonzero matrices can be a zero matrix. For

o9 )

It is easy to verify the following properties of matrix multiplication:

example,

1. If A e F™" B e F" and C € F™*P, then (AB)C = A(BC).
2. If A,B € F™" and C € F™, then (A + B)C = AB + AC.
3. If A e F™" and B,C € F™, then A(B+ C) = AB + AC.
4. If ¢ € F, A € F™" and B € F™", then a(AB) = (¢A)B = A(aB).
You can see matrix multiplication in a block form. Suppose for two matrices A

and B, their product is well defined. By looking at smaller matrices in A and in B,
we can write their product as follows:

A= Al Ay _ By By — AB = A1B; +AyBs A1By + AxBy
B A3 Ay ’ B B3 By B A3B] +A4B3 A3Bz + A4By

provided that the blocks A; and B; are such that all the products involved in the
above are well-defined.
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Powers of square matrices can be defined inductively by taking
A°=1 and A"=AA""'forneN.

A square matrix A of order m is called invertible iff there exists a matrix B of order
m such that

AB =1 = BA.

Such a matrix B is called an inverse of A. If C is another inverse of A, then
C=CI=C(AB) =(CA)B=1IB =B.

Therefore, an inverse of a matrix is unique and is denoted by A~'. We talk of
invertibility of square matrices only; and all square matrices are not invertible. For
example, I is invertible but O is not. If AB = 0 for nonzero square matrices A and B,
then neither A nor B is invertible. (Show it.) Invertible matrices play a crucial role
in solving linear systems uniquely. We will come back to the issue later.

It is easy to verify that if A,B € F™" are invertible matrices, then (AB)_1 =
BlA™l

Remark 3.2 If A and B are square matrices of the same order, then AB = |
implies that BA = I. This fact will be proved later. It means that a square matrix A
of order n is invertible iff there exists a square matrix B of order n such that AB = I
iff there exists a square matrix C of order n such that CA = 1.

3.2 Transpose and adjoint
We consider another operation on matrices. Given a matrix A € F™", its transpose
is a matrix in F™™, which is denoted by AT and is defined by

the (i, j)th entry of AT = the (j, i)th entry ofA.

That is, the ith column of AT is the column vector [ail e a,-n] T. The rows of A are
the columns of AT and the columns of A are the rows of A”. For example,

12

A:Biﬂ:uﬂ: 23].
31
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In particular, if u = [a1 e am] is a row vector, then its transpose is
ai
ul = ,
am

which is a column vector. Similarly, the transpose of a column vector is a row
vector. Notice that the transpose notation goes well with our style of writing a
column vector as the transpose of a row vector. If you write A as a row of column
vectors, then you can express AT as a column of row vectors, as in the following:

cT R
A=[C1~~Cn]:>AT: S, A= :"AT:[RlT"‘RrTn]'
CT R

—_

The following are some of the properties of this operation of transpose.
1. (ADT = A.

2. (A+B)T = AT + BT.

3. (aA)T = aAT.

4. (AB)T = BTAT.

5. If A is invertible, then AT is invertible, and (AT)~! = (A~1)T.

In the above properties, we assume that the operations are allowed, that is, in (2),
A and B must be of the same size. Similarly, in (4), the number of columns in A
must be equal to the number of rows in B; and in (5), A must be a square matrix.

It is easy to see all the above properties, except perhaps the fourth one. For this,
let A € F™" and B € F™". Now, the (j,i)th entry in (AB)7 is the (i, j)th entry in
AB; and it is given by

ailbﬂ +---+ ambjn.

On the other side, the (j,i)th entry in BT AT is obtained by multiplying the jth row
of BT with the ith column of A”. This is same as multiplying the entries in the jth
column of B with the corresponding entries in the ith row of A, and then taking the
sum. Thus itis

bjlail +---+ bjnain.

This is the same as computed earlier.
We write a for the complex conjugate of a scalar «. That is, b + ic = b — ic for
b,c € R. Thus, if aj; € R, then a,‘j = ajj.
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Close to the operations of transpose of a matrix is the adjoint. Let A = [a;;] €
™", The adjoint of A is denoted as A*, and is defined by

the (i, j)th entry of A* = the complex conjugate of (j, i)th entry ofA.

The adjoint of A is also called the conjugate transpose of A.
When A has only real entries, A* = AT. The ith column of A* is the column vector
[Eil, cee Ein] T. For example,

12 , 1—i 2
A:Biﬂ:A*: 23|, B= 1;’§13,]:>B*: 23
31 ! 3 1+

Similar to the transpose, the adjoint satisfies the following properties:

1. (A")* =A.
2. (A+B)"=A"+B".
3. (A)* =aA".

4. (AB)* = B*A*.
5. If A is invertible, then A* is invertible, and (A*)~! = (A~1)*.

Here also, in (2), the matrices A and B must be of the same size, and in (4), the
number of columns in A must be equal to the number of rows in B.

3.3 Special types of matrices

Recall that the zero matrix is a matrix each entry of which is 0. We write 0 for all
zero matrices of all sizes. The size is to be understood from the context.

Let A = [a;;] € F™" be a square matrix of order n. The entries a;; are called as the
diagonal entries of A. The first diagonal entry is a1, and the last diagonal entry is
ann- The entries of A, which are not the diagonal entries, are called as off-diagonal
entries of A; they are a;; for i # j. In the following matrix, the diagonal entries are

shown in red:
123

234|.
340

Here, 1 is the first diagonal entry, 3 is the second diagonal entry and O is the third
and the last diagonal entry.
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If all off-diagonal entries of A are O, then A is said to be a diagonal matrix. Only
a square matrix can be a diagonal matrix. There is a way to generalize this notion to
any matrix, but we do not require it. Notice that the diagonal entries in a diagonal
matrix need not all be nonzero. For example, the zero matrix of order n is also a
diagonal matrix. The following is a diagonal matrix. We follow the convention of
not showing the off-diagonal entries in a diagonal matrix.

1 100
3 [=1030].
0 000

We also write a diagonal matrix with diagonal entries dy, ..., d, as diag(dy, ..., d,).
Thus the above diagonal matrix is also written as

diag(1,3,0).

Recall that the identity matrix is a square matrix of which each diagonal entry is
1 and each off-diagonal entry is 0. Obviously,

If=r =1 =diag(l,...,1) = 1I.

When identity matrices of different orders are used in a context, we will use the
notation I, for the identity matrix of order m. If A € F™", then Al, = A and
I,A=A.

We write e; for a column vector whose ith component is 1 and all other components
0. That is, the jth component of e; is &;;. In F™! there are then n distinct column
vectors

€1,...,6n.

The e;s are referred to as the standard basis vectors. These are the columns of
the identity matrix of order n, in that order; that is, e; is the ith column of I. The
transposes of these e;s are the rows of I. That is, the ith row of I is el.T. Thus

A scalar matrix is a square matrix having all diagonal entries equal, and all
off-diagonal entries as 0. That is, a scalar matrix is of the form «l, for some scalar
a. The following is a scalar matrix:

3
3
3
3

diag(3,3,3,3) =
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If A, B € F™™ and A is a scalar matrix, then AB = BA. Conversely, if A € F™™
is such that AB = BA for all B € F™™, then A must be a scalar matrix. This fact is
not obvious, and you should try to prove it.

A matrix A € F™" is said to be upper triangular iff all entries below the
diagonal are zero. That is, A = [a;;] is upper triangular when a;; = 0 for i > j.
Similarly, a matrix is called lower triangular iff all its entries above the diagonal
are zero. Both upper triangular and lower triangular matrices are referred to as
triangular matrices. In the following, L is a lower triangular matrix, and U is an
upper triangular matrix, both of order 3.

1 123
L=123 |, U=| 34|.
345 5

A diagonal matrix is both upper triangular and lower triangular. Transpose of a
lower triangular matrix is an upper triangular matrix and vice versa.

A square matrix A is called hermitian iff A* = A. And A is called skew hermitian
iff A* = —A. A hermitian matrix with real entries satisfies AT = A; and accordingly,
such a matrix is called a real symmetric matrix. In general, A is called a symmetric
matrix iff AT = A. We also say that A is skew symmetric iff AT = —A. In the
following, B is symmetric, C is skew-symmetric, D is hermitian, and E is skew-
hermitian. B is also hermitian and C is also skew-hermitian.

123 0 2-3 1 -2i3 0 2+i3
B=(234), C=|(-2 0 4|, D=|2i 3 4|, E=|(-2+i i 4if.
345 3-4 0 345 -3 4 0

Notice that a skew-symmetric matrix must have a zero diagonal, and the diagonal
entries of a skew-hermitian matrix must be O or purely imaginary. Reason:

a; = —aj; = 2Re(a,~i) =0.

Let A be a square matrix. Since A+ AT is symmetric and A — AT is skew symmetric,
every square matrix can be written as a sum of a symmetric matrix and a skew
symmetric matrix:

1 1
A==-(A+AD) +=(A-AD).
2( + )+2( )

Similar rewriting is possible with hermitian and skew hermitian matrices:

1 1
A==(A+A")+=(A-A").
S(A+A) + (A=A
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A square matrix A is called unitary iff A*A = = AA*. In addition, if A is real,
then it is called an orthogonal matrix. That is, an orthogonal matrix is a matrix
with real entries satisfying ATA = I = AAT. Notice that a square matrix is unitary
iff it is invertible and its inverse is equal to its adjoint. Similarly, a real matrix is
orthogonal iff it is invertible and its inverse is its transpose. In the following, B is a
unitary matrix of order 2, and C is an orthogonal matrix (also unitary) of order 3:

o 21 2
B:%i“&:, c:%-zz 1.
PhTe 12-2

The following are examples of orthogonal 2 X 2 matrices, for any fixed 0 € F:

_ [cos@ —sinf . [cos@ sin 9]

sin 0 cos 0 sin@ —cos6@

O is said to be a rotation by an angle 0 and O, is called a reflection by an angle
0/2 along the x-axis. Can you say why are they so called?

A square matrix A is called normal iff A*A = AA*. All hermitian matrices and
all real symmetric matrices are normal matrices. For example,

1+il+1i
—1—-il+i

is a normal matrix; verify this. Also see that this matrix is neither hermitian nor
skew-hermitian. In fact, a matrix is normal iff it is in the form B + iC, where B, C
are hermitian and BC = CB. Can you prove this fact?

3.4 Linear independence

We look at row and column vectors and study some of their properties.
Ifo=[a - an]T e F™!, then we can express v in terms of the standard basis
vectors e, ...,e, asv = aje; + - - - + ape,. We now generalize the notions involved.
Let vy,...,0m,0 € F*. We say that v is a linear combination of the vectors
v1,..., 0y if there exist scalars «ay, ..., a, € F such that

=101+ Ap0Op,.

For example, in F2*! one linear combination of v; = [1 I]T and vy = [1 - 1]T is

as follows:
1 1 3
2 1 = )
N M
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T .. . .
Is [4 2] a linear combination of v; and v,? Yes, since

=)=

In fact, every vector in F2*1 {5 a linear combination of v; and v,. Reason:
al a+b|l N a—-b| 1
b 2 |1 2 |-1]°

. . . L T T
However, every vector in F?*! is not a linear combination of [1 1]" and [2 2].

Reason? Any linear combination of these two vectors is a multiple of [1 1] " Then

T. . .
[1 O] is not a linear combination of these two vectors.

Remark 3.3 As we have seenin (3.1), the columns of AB are linear combinations
of columns of A. The scalars in these linear combinations are the entries of
corresponding columns of B.

The vectors vy, ..., v, in F" are called linearly dependent iff at least one of them
is a linear combination of others. The vectors are called linearly independent iff
none of them is a linear combination of others.

For example, (1,1), (1,-1), (4, 1) are linearly dependent vectors whereas (1, 1),
(1,—1) are linearly independent vectors.

Linear independence of a list of vectors can be characterized the following way:

(3.4) Theorem

The vectors vy, . . .,vy, € F" are linearly independent iff for a1, ..., an, € F,
if qpor+-- vy =0 then ay =--- =0, =0.
Notice that if oy = - - - = a, = 0, then obviously, ajo; + - - - + oo, = 0. But the

above characterization demands its converse. It says that if you start with a linear
combination and equate it to 0, then you must be able to derive that each coefficient
in that linear combination is 0. That is, the only way the O vector can be written as a
linear combination of the list of vectors vy, ..., vy, is the trivial linear combination,
where each coefficient is 0. The condition given in the theorem is false when we
have scalars not all zero such that the linear combination becomes 0. In fact, we
prove this statement:

v1,...,0y, are linearly dependent
iff aqjo1+---+a,v, =0 forscalars «y,...,a, notall zero.
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Proof. 1f the vectors vy, . .., 0, are linearly dependent then one of them is a linear
combination of others. That is, we have an i € {1, ..., m} such that

i =001+ F A0 F A1 V41 + 0 OO

Then
ao) + -+ ai—10i-1 + (=1)v; + @i 10541 + - - - + Aoy = 0.

Here, we see that a linear combination becomes zero, where at least one of the
coeflicients, that is, the ith one is nonzero.
Conversely, suppose we have scalars «1, . . ., a,, not all zero such that

a101+---+amvm:O.

Suppose «; # 0. Then

al aj-1 Ajy1 Om
0]___01_...__UJ_1_ 0]+]_...__0m
aj aj aj aj
That is, vy, . . ., v, are linearly dependent. |

(3.5) Example
Are the vectors (1,1, 1), (2,1,1), (3, 1,0) linearly independent?

We start with an arbitrary linear combination and equate it to the zero vector.
Solve the resulting linear equations to determine whether all the coeflicients are
necessarily O or not. So, let

a(1, ,1) +b(2,1,1) +¢(3,1,0) = (0,0,0).
Comparing the components, we have
a+2b+3c=0,a+b+c=0, a+b=0.

The last two equations imply that ¢ = 0. Substituting in the first, we see that
a+ 2b = 0. This and the equation a + b = 0 give b = 0. Then it follows that a = 0.
We conclude that the given vectors are linearly independent. 0
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Caution: Be careful with the direction of implication here. Your work-out must be
in the form

m
Zaivi:O:---: eacha,-:O.
i=1

To see how linear independence is helpful, consider the following system of linear
equations:
x1 +2x) —3x3 =2
2x1 —xp +2x3 =3
dx1 +3xy —4x3 =17
Here, we find that the third equation is redundant, since 2 times the first plus the
second gives the third. That is, the third one linearly depends on the first two. (You
can of course choose any other equation here as linearly depending on other two,
but that is not important.) Now, take the row vectors of coefficients of the unknowns
and the right hand side, as in the following:

01 = (1’ 2’ _3’ 2)’ 02 = (25 _1’ 23 3)) 03 = (45 39 _45 7)'

We see that v3 = 2v; + vy, as it should be. Here, the list of vectors vy, v2, v3 1S
linearly dependent. But the list v1,v; is linearly independent. Thus, solving the
given system of linear equations is the same thing as solving the system with only
first two equations. For solving linear systems, it is of primary importance to find
out which equations linearly depend on others. Once determined, such equations
can be thrown away, and the rest can be solved.

A question: can you find four linearly independent vectors in R1*3?

3.5 Determinant

There are two important quantities associated with a square matrix. One is the trace
and the other is the determinant.

The sum of all diagonal entries of a square matrix is called the trace of the matrix.
That is, if A = [a;;] € F™™, then

m

tr(A) =ay+---+amm = Zakk.
k=1

In addition to tr(I,,) = m, tr(0) = 0, the trace satisfies the following properties:

Let A,Be F™™ Letf € F.
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1. tr(BA) = ftr(A).

2. tr(AT) = tr(A) and tr(A*) = tr(A).

3. tr(A+ B) =tr(A) + tr(B) and tr(AB) = tr(BA).
4. tr(A*A) = 0iff tr(AA*) = 0iff A= 0.

The last one follows from the observation that tr(A*A) = »\77, Z;”zl |la;;|> = tr(AA*).
The second quantity, called the determinant of a square matrix A = [a;;] € F™",
written as det(A), is defined inductively as follows:
If n = 1, then det(A) = ay;.
If n > 1, then det(A) = 37_, (=1)"*/ ay; det(Ay;)

where the matrix A;; € F(=Dx(n=1) j5 obtained from A by deleting the first row and
the jth column of A.

When A = [a;;] is written showing all its entries, we also write det(A) by replacing
the two big closing brackets [ and | by two vertical bars | and |. For a 2 X 2 matrix,
its determinant is seen as follows:

ap az
det [ ] =
az| ax

al a2
a1 az?

= (=1)"aj det[axn]+(~=1)"*?aj det[az] = aj1axn—anas;.

Similarly, for a 3 X 3 matrix, we need to compute three 2 X 2 determinants. For
example,

1 23 1 23
det|2 3 1|=2 3 1
312 312
31 21 23
—_ (_1\1+1 _1)\1+2 _1)1+43
=(-1) ><1><12+(1) ><2><32+(1) ><3><31‘
31 21 23
_1x12‘—2x‘32'+3x31‘

=(3%x2-1%x1)-2x(2%x2-1%x3)+3x(2x1-3x%3)
=5-2x1+3x(-7)=-18.

To see the determinant geometrically, consider a 2 X 2 matrix A = [a;;] with real
entries. Let u be the vector with initial point at (0,0) and end-point at (a;, aj2).
Similarly, let v be the vector starting from the origin and ending at the point
(az1,a22). Their sum u + v is the vector whose initial point is the origin and end-
point is (a; + a1, a1 + ax). Denote by A, the area of the parallelogram with one
vertex at the origin, and other vertices at the end-points of vectors u,v and u + v.
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Writing the acute angle between the vectors u and v as 6, we have

L2
A2 = JuPlol sin? 6 = [ul2ol2(1 = cos? 8) = [uf2[of? (1 — -2
|u|?|o]?

= ulo|* - (u-0)* = (a7, + a1,) (a3, + @3,) — (ar1a21 + ajpan)’

= (a11a2 — ajpax)* = (det(A))*.

That is, the absolute value of det(A) is the area of the parallelogram whose sides
are represented by the row vectors of A. In RIX3, similarly, you can show that
the absolute value of det(A) is the volume of the parallelepiped whose sides are
represented by the row vectors of A.

For a lower triangular matrix, its determinant is the product of its diagonal entries.

al a

22
aip a2 a a

23 433
ajs a3 ass

=dar =+ =4a11a22 " Aann-
anl Tt Qpn

anl v Ann

The determinant of any triangular matrix (upper or lower), is the product of its
diagonal entries. In particular, the determinant of a diagonal matrix is also the
product of its diagonal entries. Thus, if I is the identity matrix of order n, then
det(I) = 1 and det(-I) = (=1)".

Our definition of determinant expands the determinant in the first row. In fact,
the same result may be obtained by expanding it in any other row, or even any other
column. Along with this, some more properties of the determinant is listed in the
following theorem. We introduce some terminology to state the theorem.

Let A € F™",

Write the sub-matrix obtained from A by deleting the ith row and the jth column
as A;j. The (i, j)th co-factor of A is (—1)"*/det(A;;); it is denoted by C;;(A).
Sometimes, when the matrix A is fixed in a context, we write C;;(A) as Cj;.

The adjugate of A is the n X n matrix obtained by taking transpose of the matrix
whose (i, j)th entry is C;;(A); it is denoted by adj(A). That is, adj(A) € F™" is the
matrix whose (i, j)th entry is the (j, i)th co-factor C;;(A).

Denote by A;(x) the matrix obtained from A by replacing the jth column of A by
the (new) column vector x € F™¥!.

Some important facts about the determinant are listed below without proof.

(3.6) Theorem
Let A € F™", Let i, j k € {1,...,n}. Then the following statements are true.
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(1) det(A) = 3, a;Cij(A) = X, aij(=1)"7 det(Ay;) for any fixed j.

(2) Forany j€{l,...,n}, det(Aj(x+y)) =det(A;(x))+det(A;(y)).

(3) Forany a € F, det(Aj(ax)) = adet(A;(x)).

(4) For A € F™", let B € F™" be the matrix obtained from A by interchanging
the jth and the kth columns, where j # k. Then det(B) = —det(A).

(5) If a column of A is replaced by that column plus a scalar multiple of another
column, then determinant does not change.

(6) Columns of A are linearly dependent iff det(A) = 0.
(7) det(A) = X aij(=1)"*/A;; for any fixed i.
(8) All of (2)-(6) are true for rows instead of columns.
(9) If Ais a triangular matrix, then det(A) is equal to the product of the diagonal
entries of A.
(10) det(AB) = det(A) det(B) for any matrix B € F™™",
(11) If A is invertible, then det(A) # 0 and det(A™") = (det(A))~!.
(12) If B = P~ AP for some invertible matrix P, then det(A) = det(B).
(13) A is invertible iff columns of A are linearly independent iff rows of A are
linearly independent iff det(A) # 0.
(14) det(AT) = det(A).
(15) Aadj(A) = adj(A)A =det(A) I.

Proof. (1) Construct a matrix C € F*DX+1) by taking its first row and first
column as e; € F"*DX1 and filling up the rest with the entries of A. In block form,

it looks like:

1
C= .
A

Omitted entries are all 0. Then det(C) = det(A). Now, exchange the first row and
the (i + 1)th rows in C. Call the matrix so obtained as D. Then

det(C) = —det(D) = - > a;j(=1)""*det(Dy),

1

where D;; € F™" are the minors in D. The ith row of D;; is e; € FI>n To compute
det(D;;), exchange the first and the ith rows in D;;. Then det(D;;) = —det(A;;),
where A;; are the minors in A. Therefore,

det(A) = det(C) = — Z a;;(=1)**det(D;j) = Z a;;(—1)™det(Ay)).

1 1
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(2)-(4) These properties can be seen by direct calculations.
(5)-(7) These properties follow from (2)-(4).

(8) Similar to the proofs of (2)-(6).

(9)-(10) Use induction on the order of the matrix.

(11) Let A be invertible. Now, 1 = det(I) = det(AA™!) = det(A)det(A™!) shows
that det(A) # 0 and det(A™") = (det(A))~!.

(12) It follows from (10)-(11).

(13) If the columns of A are linearly independent, then A is invertible. By (11),
det(A) # 0. So, suppose the columns of A are linearly dependent. Say, the kth
column of A is a linear combination of the columns 1 through k — 1. Let B be the
matrix identical to A except at the kth column; the kth column of B is the kth column
of A minus that linear combination of the columns 1 through k — 1 of A. Due to (5),
det(A) = det(B) = 0, as the kth column of B has all entries 0.

(14) Consider the case j = 1. This property asserts that a determinant can be
expanded in its first column. For n = 1,2 it is easy to verify that expansion of
a determinant can be made in the first column. Suppose that determinants of all
matrices of order less than or equal to m — 1 can be expanded in their first columns.
Let A € F™™ Now, expanding in the first row,

det(A) = Z a1;(=1) " det(A).

1

The minors det(A;;) can be expanded in their first column. That is,
m .
det(Arj) = D (=1)""*ay By,
i=2

where B;; denotes the determinant of the (n — 2) X (n — 2) matrix obtained from
A by deleting the first and the ith rows, and deleting the first and the jth columns.
Thus the only term in det(A) involving aj;ail is (—1)™/*a;a; Bij.

By the inductive assumption, det(A;;) = 2?22(—1)i+j+1a 1;Bij. Therefore, the only
term in det(A) = ¥; a1;(—1)*/det(Ay;) involving ay;a; is (—1)™**'a;;a;1 Bij.
For j # 1, a proof similar to the proof of (1) above can be constructed.

(15) Consider A adj(A). Due to (1), the jth diagonal entry in this product is

n

Z aijCl-j(A) = det(A)

i=1
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For the non-diagonal entries, let i # j. Construct a matrix B which is identical to A
except at the jth row. The jth row of B is the same as the ith row of A. Now, look at
the co-factors Cy;(B). Such a co-factor is obtained by deleting the kth row and the
jth column of B and then taking the determinant of the resulting (n — 1) X (n — 1)
matrix. This is same as Cy;(A). Hence, the (i, k)th entry in A adj(A) is

n n

Z aixCix(A) = Z aixCix(B) = det(B) =0,

k:] k:1

since the ith and the kth rows are equal in B. Therefore, A adj(A) = det(A) I.
The product formula adj(A)A = det(A) I is proved similarly. |

From (6) it follows that if some column of A is the zero vector, then det(A) = 0.
Also, if some column of A is a scalar multiple of another column, then det(A) = 0.
Similar conditions on rows (instead of columns) imply that det(A) = 0.

Using the above properties, the computational complexity for evaluating a deter-
minant can be reduced drastically. The trick is to bring a matrix to a triangular form
using the row operations mentioned in (3.6-3,4,5). Next, compute the product of
the diagonal entries in the upper triangular form to get the determinant.

3.7) Example

toot1 Jtoot1 oot Jtoo1
~1 10 mf0 10201 02x(0 102
~1-1 1 1) fo-1 12 o014 o014
~1-1-1 1| fo-1-12 |0 0-1 4 |0 0 0 8

Here, R1 replaces the second row with second plus the first row, then replaces the
third row with the third plus the first row, and the fourth row with the fourth plus the
first row. R2 replaces the third and the fourth rows with the third plus the second,
and the fourth plus the second, respectively. Finally, R3 replaces the fourth row
with the fourth plus the third row.

Finally, the upper triangular matrix has the required determinant. 0

(3.8) Theorem

Let A € C™",
(1) If A is hermitian, then det(A) € R.
(2) If A is unitary, then |det(A)| = 1.
(3) If Ais orthogonal, then det(A) = +1.
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Proof. (1) Let A be hermitian. Then A = A*. It implies
det(A) = det(A*) = det(A) = det(A).
Hence, det(A) € R.
(2) Let A be unitary. Then A*A = AA* = 1. Now,
1 = det(I) = det(A*A) = det(A)det(A) = det(A)det(A) = |det(A)|>.

Hence |det(A)| = 1.

(3) Let A be an orthogonal matrix. That is, A € R™" and A is unitary. Then
det(A) € R and by (2), |[det(A)| = 1. That is, det(A) = +1. |

3.6 Exercises for Chapter 3
1. Show that givenany n € N there exist matrices A, B € R™" such that AB # BA.

110 In+ln(n+1)
2. LetA=|0 1 2|.Compute A*. Ans: |0 1 2(n+1)].
001 0 0 1

3. Let A € F™"; B € F™k; A,,..., A, be the rows of A; By, ..., B be the
columns of B. Show that
(a) A1B,...,A,B are the rows of AB.
(b) ABjy, ..., ABy are the columns of AB.
4. Let A € F™"; [ be the identity matrix of order n. Find the inverse of the
I-A
0 1)

5. If A is a hermitian (symmetric) invertible matrix, then show that A7l s

2n X 2n matrix [I A] . Ans: [
01r

hermitian (symmetric).

6. If A is a lower (upper) triangular invertible matrix, then A~ is lower (upper)
triangular.

7. Show that each orthogonal 2 X 2 matrix is either a reflection or a rotation.

8. Let u,0,w € F™! Show that {u + 09,0+ w,w+u} is linearly independent iff
{u, v, w} is linearly independent.

9. Find linearly independent vectors from U = {(a, b,c) : 2a + 3b — 4c = 0} so
that the set of all linear combinations of which is exactly U.
Ans: (2,0,1), (0,4,3).
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10. Determine linearly independent vectors so that the set of linear combinations
of whichis U = {(a,b,c,d,e) e R’ :a=c=¢e,b+d=0}.
Ans: (1,0,1,0,1), (0,1,0,-1,0).

11. Calculate the determinants of the following matrices:

1-1 2-2 23 1 2
234
2-2 1-1 02 1 3
@ gé? O\, 121 2] ©f g2 1|
1 2.2 1 21-1 1

Ans: (a) 6 (b) 0 (c) 40.

12. Let ay,...,a, € R. Let A € R™" have the (i, j)th entry as aj._l. Show that
det(A) =1II;<j(a; — a;j). [Ais called a Vandermonde’s matrix.]



4
Row Reduced Echelon Form

4.1 Elementary row operations

While solving a system of linear equations, we add and subtract equations, multiply
an equation with a nonzero constant, and exchange two equations. These heuristics
give rise to the row operations on a matrix.

There are three kinds of Elementary Row Operations for a matrix A € F™":

Exchange of two rows.

Multiplication of a row by a nonzero constant.

Adding to a row a nonzero multiple of another row.

(4.1) Example

See the following computation on the first matrix. We get the second matrix from
the first by adding to the third row (—3) times the first row. In symbols, we write
this operation as Rz «<— R3 — 3R;. Similarly, the third matrix is obtained from the
second by adding to the second row (—2) the first row. We write this operation as
R2 — R2 - 2R1.

111 111 111

R3«<—R3-3R; Ry—Rr—2R;
222 — 222 — 000]{. 0
333 000 000

We will write A R B to mean that the matrix B is obtained from A by using the
row operation O. Specifically, we will use the following notation for the elementary
row operations (We assume that « is a nonzero scalar.):

R; < R; : The ith row and the jth row are exchanged.
R; < aR; : The ith row is multiplied by a scalar «.

R; < R; + aR; : To the ith row & times the jth row is added.

94
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The elementary row operations can be captured by matrix multiplication. For
this purpose, we define the three types of elementary matrices E[i, j|, E,[i] and
E,[i, j] as in the following:

E[i, j] is obtained from I by exchanging the ith and jth rows.
E,[i] is obtained from I by multiplying « to the ith row.
E,[i, j] is obtained from I by adding to its ith row « times the jth row.

The context will specify the order of these elementary matrices.
The following are some elementary matrices of order 3:

010 1 00 100
E[1,2] =({100|, E3[2]=]0-30|, E[3,1]=| 010].
001 0 01 -301
111
To use these elementary matrices, consider a 3 X 3 matrix, say, A= |22 2 |. Now,
333
010][111 222 ROR 222
E[1,2]A= [too0||222]=|111|, A% |111
001]([333 333 333
1 00][111 1 1 1 1 1
R2<——3R2
E3[2]A=(0-30](222]= 6 -6-6|,A — |-6-6-6].
0 01](333 33 333
100][111 111 e B3R 111
E_3[3,1]A = 010|(222 2221, A" 222].
-301[]333 000 000
We find that the way E[1,2], E ] and E_3[3, 1] have been obtained from I, in

the same way E[1,2]A, E_3 [Z]A and E_3[3, 1]A have been obtained from A. This
is true in general.

Let A € F™", Consider E[i, j|, Eq[i], Ex[i, j] € F™™ for a # 0. The following
may be verified:

RioR;
1. A — E[i, jlA.

That is, E[i, j]A is the matrix obtained from A by exchanging the ith and the

jth rows.

2. AN B [i]A

That is, E,[i] A is the matrix obtained from A by multiplying « to the ith row.
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R;—R;+aR;

3. A — " Eili,jlA
That is, E,[i, j]A is the matrix obtained from A by adding to the ith & times

the jth row.
111 R B3R, 111 P 111
For example, the computation (222| ~ — 222 — 000
333 000 000
111 111 111 111
shows that | 222 | =E_3[3,1] (222, and [000| =E_»[2,1]|222].
000 333 000 000

Often we will apply elementary operations in a sequence. In this way, the above
operations could be shown as

111 111
222 %5 1000|, where O=Rs « R; — 3R, R, « R, — 2R,.
333 1000
1117 111
Inthiscase, [000| =E_»[2,1]E_3[3,1] |222].
000 333

Notice that the elementary matrices are multiplied in the reverse order corre-
sponding to the elementary row operations.

4.2 Row reduced echelon form

Elementary row operations can be used to convert a matrix to a nice form, which
we discuss next.

The first nonzero entry (from left) in a nonzero row of a matrix is called a pivot.
We denote a pivot in a row by putting a box around it. A column where a pivot
occurs is called a pivotal column.

A matrix A € F™" is said to be in row reduced echelon form (RREF) iff the
following conditions are satisfied:

1. Each pivot is equal to 1.

2. The column index of the pivot in any nonzero row R is smaller than the column
index of the pivot in any row below R.

3. In a pivotal column, all entries other than the pivot, are zero.
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4. All zero rows are at the bottom.

4.2) Example

[1]2 0 0]

The matrix | 0 O 0 | is in row reduced echelon form whereas the matrices

000 /[1]

0[1]3 0] [o[1]3 1 01[1]3 0 0[1] 0 0
00 0/[2] 00 0f1] 0 0 0[1] 0 0 [1]o
0000 oo 00| |00 0[] (00 00
00 00 0 0 00 00 00 00 0f[1]
are not in row reduced echelon form. O

Any matrix can be brought to a row reduced echelon form by using elementary
row operations. We give an algorithm to achieve this.

Reduction to RREF

1.
2.

Set the work region R as the whole matrix A.

If all entries in R are 0, then stop.

. If there are nonzero entries in R, then find the leftmost nonzero column. Mark

it as the pivotal column.

. Find the topmost nonzero entry in the pivotal column. Suppose it is @. Box

it; it is a pivot.

. If the pivot is not on the top row of R, then exchange the row of A which

contains the top row of R with the row where the pivot is.

. If @ # 1, then replace the top row of R in A by 1/« times that row.

. Make all entries, except the pivot, in the pivotal column as zero by replacing

each row above and below the top row of R using elementary row operations
in A with that row and the top row of R.

. Find the sub-matrix to the right and below the pivot. If no such sub-matrix

exists, then stop. Else, reset the work region R to this sub-matrix, and go to
Step 2.

We will refer to the output of the above reduction algorithm as the row reduced
echelon form or, the RREF of a given matrix.
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(4.3) Example

[1]120 [1]120 [1j120
A= 35371 o [0 211 Rk O [1] 5 5
1545 0425 0425
12879 0639 0639
[0 3-} Mo3-3] [ioio
P R S K A N C e
000 3 000 [1] 0 00[1]
000 6 000 6 0000

Here, O1 =Ry, «— Ry — 3Ry, R3 « R3 — R, R4 «— R4 — 2Ry;
O2=R, «— R)y— Ry, R3 < Ry — 4Ry, R4 «— R4 — 6Ry; and
O3 =R; <« Ry +1/2R3, Ry «— Ry — /2R3, Ry < R4 — OR;.
Notice that
B=E_¢[4,3] E_1/2(2,3] E12[1, 3] E1/3[3] E—6[4.2] E_4[3, 2] E_1[2, 1]E; 2[2]
E >[4, 1] E_1[3,1] E_3[2, 1] A.

The products are in reverse order. 0

(4.4) Example

100 100
Consider A=1010|, B=1|000|. Then
000 001
100|100 100 100
RREF(A)RREF(B) =|010f [001|=]001| # RREF(AB) =AB=[000].
000f 000 000 000
Thus, RREF of a product need not be equal to the product of RREFs. 0

Observe that if a square matrix A is invertible, then AA~! = I implies that A does
not have a zero row.

(4.5) Theorem

A square matrix is invertible iff it is a product of elementary matrices.

Proof. El[i, j] is its own inverse, Ej/,[i] is the inverse of E,[i], and E_,[i, j] is the
inverse of E,[i, j]. So, product of elementary matrices is invertible.
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Conversely, suppose that A is invertible. Let EA~! be the RREF of A~ If EA™!
has a zero row, then EA~!A also has a zero row. That is, E has a zero row, which is
impossible since E is invertible. So, EA~! does not have a zero row. Then each row
in the square matrix EA~! has a pivot. But the only square matrix in RREF having
a pivot at each row is the identity matrix. Therefore, EA™' =1 Thatis, A=E, a
product of elementary matrices. 1

Using the above theorem, we can show that the row reduced form of a matrix does
not depend on the algorithm we use.

(4.6) Theorem

Let A € F™" There exists a unique matrix in ™" in row reduced echelon form
obtained from A by elementary row operations.

Proof.  Suppose B,C € F™" are matrices in RREF such that each has been
obtained from A by elementary row operations. Recall that elementary matrices
are invertible and their inverses are also elementary matrices. Then B = EjA and
C = E»A for some invertible matrices E;, E, € F™™. Now, B = E;A = E{(E»)”!C.
Write E = E;(E»)~! to have B = EC, where E is invertible.

We consider a particular case first, when n = 1. Here, B and C are column vectors
in RREF. Thus, they can be zero vectors or e;. Since B = EC, where E is invertible,
it cannot happen that one is the zero vector and the other is e;. Thus, either both are
zero vectors or both are e;. In either case, B = C.

For n > 1, assume, on the contrary, that B # C. Then there exists a column index,
say k > 1, such that the first k — 1 columns of B coincide with the first k — 1 columns
of C, respectively; and the kth column of B is not equal to the kth column of C. Let
u be the kth column of B, and let v be the kth column of C. We have u = Ev and
u #o.

Suppose the pivotal columns that appear within the first k — 1 columns in C are
e, ..., ej. Theney, ..., e; are also the pivotal columns in B that appear within the
first k — 1 columns. Since B = EC, we have C = E~' B; and consequently,

e1 = Eeq :E_lel, ..., ej = Ee;j =E_]ej.

The column vector u may be a pivotal column in B or a non-pivotal column in B.
Similarly, v may be pivotal or non-pivotal in C. If both u and v are pivotal columns,
then both are equal to ej;1. This contradicts u # v. So, assume that u is non-pivotal
in B or v is non-pivotal in C.
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If u is non-pivotal in B, then u = aje; + - - - + aje; for some scalars a1, ..., ;.
(See it.) Then

v=E'u=aE e, +--- +0(J-E_1ej =ajel +- - +ajej = u.

This contradicts u # v.
If v is a non-pivotal column in C, then v = fie; + --- + fje; for some scalars

B, ..., Bj. Then
u=EFEv=pf1Eei+---+pjEe; = fre; +---+ fjej =v.

Here also, u = v, which is a contradiction.
Therefore, B = C. |

The number of pivots in the RREF of a matrix A is called the rank of A, and it is
denoted by rank(A). Since RREF of a matrix is unique, rank is well-defined.

For instance, in (4.3), rank(A) = rank(B) = 3.

Suppose B is a matrix in RREF. If B is invertible, then its RREF does not have
a zero row. So, the RREF is equal to I. But B is already in RREF. So, B = I.
Conversely, if B = I, then it is in invertible, and also it is in RREF. Therefore, a
matrix in RREF is invertible iff it is equal to I.

(4.7) Theorem

A square matrix is invertible iff its rank is equal to its order.

Proof. Let A be a square matrix of order n. Let B be the RREF of A. Then B = EA,
where E is invertible.
Let A be invertible. Then B is invertible. Since B is in RREF, B = I. So,

rank(A) = n.
Conversely, suppose rank(A) = n. Then B has n number of pivots. Thus B = I. In
that case, A = E-1B = E~!; and A is invertible. |

4.3 Determining rank & linear independence

Let A be an m X n matrix. Recall that rank(A) is the number of pivots in the RREF
of A. If rank(A) = r, then there are r number of linearly independent columns
in A and other columns are linear combinations of these r columns. The linearly
independent columns correspond to the pivotal columns in the RREF of A. Also,
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there exist r number of linearly independent rows of A such that other rows are
linear combinations of these r rows. The linearly independent rows correspond to
the nonzero rows in the RREF of A.

(4.8) Example

11 1 2 1

Consider A = b2 .
35 3 43
-1 0-1-3-1

Here, row(3) = row(1)+2row(2) and row(4) = row(2)—2row(1). And, row(2)
is not a scalar multiple of row(1), that is, row(1), row(2) are linearly independent;
and all other rows are linear combinations of row(1) and row(2).

Also, col(3) = col(5) = col(1), col(4) =3 col(1) —col(2), and col(1), col(2) are
linearly independent.

101 31
010-10
Verify that the RREF of A is given by .
000 00O
000 00
As expected, rank(A) = 2. 0

The connection between linear combinations, linear dependence and linear inde-
pendence of rows and columns of a matrix, and its RREF may be stated as follows.

(4.9) Observation Inthe RREF of A suppose Ry, . . ., R;, are the rows of A which
have become the nonzero rows in the RREF, and other rows have become the zero
rows. Also, suppose Cjy, ..., Cj, for j1 < --- < jr, are the columns of A which have
become the pivotal columns in the RREF, other columns being non-pivotal. Then
the following are true:

1. All rows of A other than R;i, ..., R;, are linear combinations of R;j, ..., R;,.
. The columns Cjy, ..., Cj, have respectively become ey, . .., e, in the RREF.

2
3. Allcolumnsof Aotherthan Cjy, ..., C;, are linear combinations of Cjy, . . ., Cj,.
4

. If er,...,er are all the pivotal columns in the RREF that occur to the
left of a non-pivotal column, then the non-pivotal column is in the form
(ai,...,ax0,...,0)T. Further, if a column C in A has become this non-pivotal
column in the RREF, then C = a|Cj; + - - - + a;Cjy.

5. If A is a square matrix, then A is invertible iff its RREF is I.
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As the above observation shows, elementary operations can be used to determine
linear dependence or independence of a finite set of vectors in F'*". Suppose that
you are given with m number of vectors from F'*", say,

up = (UL, s Uin)s - oo Um = (Umls - - o5 Umn)-

We form the matrix A with rows as uy, ..., u,. We then reduce A to its RREF, say,
B. If there are r number of nonzero rows in B, then the rows corresponding to those
rows in A are linearly independent, and the other rows (which have become the zero
rows in B) are linear combinations of those r rows.

(4.10) Example

From among the vectors (1,2,2,1), (2,1,0,-1), (4,5,4,1), (5,4,2,-1), find lin-
early independent vectors; and point out which are the linear combinations of these
independent ones. 0

We form a matrix with the given vectors as rows and then bring the matrix to its

RREF.
(1]22 1 2 2 1 0-2/3-1
210-1| o1 | 0[=3]-4-3| o2 | O[1] 43 1
454 1 0 —3-4-3 00 00
542-1 0 —6-8-6 00 00

Here, Ol = Rz — Rz - 2R1, R3 — R3 —4R1, R4 — R4 - 5R1 and
O2 =Ry «— —3Ry, Rj « Ry — 2Ry, R3 «— R3+ 3Ry, R4 < R4 + 6R».

No row exchanges have been applied in this reduction, and the nonzero rows are
the first and the second rows. Therefore, the linearly independent vectors are
(1,2,2,1), (0,1,4/3,1); and the third and the fourth are linear combinations of
these.

The same method can be used in F™ !, Just use the transpose of the columns,
form a matrix, and continue with row reductions. Finally, take the transposes of the
nonzero rows in the RREF.

Notice that compared to Gram-Schmidt, reduction to RREF is more efficient way
of extracting a linearly independent set retaining the span.

(4.11) Example
Suppose A and B are n X n matrices satisfying AB = I. Show that both A and B are
invertible, and BA = I.

Let EA be the RREF of A, where E is a suitable product of elementary matrices.
If A is not invertible, then EA has a zero row, so that EAB also has a zero row. Since
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EAB = E does not have a zero row, we conclude that A is invertible. Consequently,
B = A~! is also invertible, and BA = I. 0

However, if A and B are not square matrices, then AB = I need not imply that
BA = I. For instance,

[20—1] (1)1 _[10] (1)1 [20—1]_ fij
Pi-tf oo lol SRR B P

You have seen earlier that there do not exist three linearly independent vectors in
R2. With the help of rank, now we can see why does it happen.

(4.12) Theorem

Let uy, ..., ux, v1,...,0,m € F". Suppose vy, ..., v, € span(uy,...,ux) and m > k.
Then vy, ...,vy, are linearly dependent.

Proof. Consider all vectors as row vectors. Form the matrix A by taking its rows
as uy, ..., U, 01,...,0y in that order. Now, r = rank(A) < k. Similarly, construct
the matrix B by taking its rows as vy, ..., 0y, U1, . . ., Ug, in that order. Now, A and B
have the same RREF since one is obtained from the other by re-ordering the rows.
Therefore, rank(B) = rank(A) = r < k. Since m > k > r, out of vy, ..., v, at most
r vectors can be linearly independent.So, vy, .. ., v, are linearly dependent. 1

The following theorem is a corollary to the above.

(4.13) Theorem

Let vy,...,u, € F™. Then there exists a unique r < n such that some r of these

vectors are linearly independent and other n — r vectors are linear combinations of
these r vectors.

To see further connection between these notions, let uy, ..., u,,u € F™!. Let
ai,...,a, € Fandlet P € F™™ be invertible. We see that

u=ayuy +---+au, iff Pu=aPu +---aPu,.

Taking u = 0, we see that the vectors uy,...,u, are linearly independent iff
Puy, ..., Pu, are linearly independent.

Now, if A € F™"_ then its columns are vectors in F™! The above equation
implies that if there exist r number of columns in A which are linearly independent
and other columns are linear combinations of these r columns, then the same is true
for the matrix PA.
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Similarly, let Q € F™" be invertible. If there exist » number of rows of A which
are linearly independent and other rows are linear combinations of these r rows,
then the same is true for the matrix AQ.

These facts along with the last theorem can be used to prove the following theorem.

(4.14) Theorem
Let A € F™" Then

rank (A) = the maximum number of linearly independent rows in A
= the maximum number of linearly independent columns in A
= rank(A”)
=rank(PAQ) for invertible matrices P € F™™ and Q € F™™",

4.4 Computing inverse of a matrix

Let A € F™" If A is invertible, then using Property (15) of the determinant, its
inverse can be computed. However, computation of determinant is easier when
elementary row operations are used. This suggests that we use elementary row
operations directly for computing the inverse of a given matrix.

Observe that when A is an invertible matrix of order n, its RREF has exactly n
pivots. The entries in each pivotal column above and below the pivot are 0. The
pivots are each equal to 1. Therefore, such a row reduced echelon matrix is nothing
but I, the identity matrix of order n.

Now, look at the sequence of elementary matrices corresponding to the elementary
operations used in this row reduction of A. The product of these elementary matrices
is A~L since this product times A is I, which is the row reduced form of A. Now,
if we use the same elementary operations on I, then the result will be A~'] = A~
Thus we obtain a procedure to compute the inverse of a matrix A provided it is
invertible.

The work will be easier if we write the matrix A and the identity matrix I side by
side and apply the elementary operations on both of them simultaneously. For this
purpose, we introduce the notion of an augmented matrix.

If A € F™" and B € F™ then the matrix [A|B] € F™ (%) obtained from A and
B by writing first all the columns of A and then the columns of B, in that order, is
called an augmented matrix.

The vertical bar shows the separation of columns of A and of B, though, concep-
tually unnecessary.
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For computing the inverse of a matrix, start with the augmented matrix [A|I].
Then we reduce [A|I] to its RREF. If the A-portion in the RREF is I, then the
I-portion in the RREF gives A~!. If the A-portion in the RREF contains a zero
row, then A is not invertible. Notice that if a zero row has appeared during the
RREF conversion, then we need not proceed towards the RREF; the matrix A is not
invertible.

(4.15) Example

For illustration, consider the following square matrices:

1-1 2 0 I1-1 2 0
-1 -

A= 00 2, B= 1 00 2‘
2 1-1-2 2 1-1-2
1-2 4 2 0-2 0 2

We want to find the inverses of the matrices, if at all they are invertible.

Augment A with an identity matrix to get

[1]-1 2 0o]1000

-1 0 0 210100
2 1-1-2{0010]|
1-2 4 2/000 1

Use elementary row operations. Since aj; = 1, we leave row(1) untouched. To
zero-out the other entries in the first column, we use the sequence of elementary
row operations Ry < Ry + Ry, R3 « R3 — 2R, R4 <« R4 — R; to obtain

[1]-1 2 0l 1000
0-1 2 2/1100
0 3-5-2|-2010
0-1 2 2/-1001

The pivot is —1 in (2, 2) position. Use R, « —R, to make the pivot 1.

1-1 2 0/1 000
0[1]-2-2]-1-100
0 3-5-2|-2 010]
0-1 2 2|-1 001
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Use Ry «<— Ry + Ry, R3 <« R3 — 3Ry, R4 < R4 + Ry to zero-out all non-pivot entries
in the pivotal column to 0:

0 0-2/0-100
0[1]-2-2|-1-100
0 0[1] 4/ 1 310/

000 O0-2-101

Since a zero row has appeared in the A portion, A is not invertible. And rank(A) = 3,
which is less than the order of A. The second portion of the augmented matrix has
no meaning now. However, it records the elementary row operations which were
carried out in the reduction process. Verify that this matrix is equal to

Ei[4,2] E3[3,2] E\[1,2] E-([2] E-1[4,1] E2[3, 1] E1[2,1]

and that the first portion is equal to this matrix times A.
For B, we proceed similarly. The augmented matrix [ B|I| with the first pivot looks

like:

[[1]-1 2 0] 100 0]
-1 00 2/0100
2 1-1-2/0010]|
| 02 0 20001

The sequence of elementary row operations Ry <— R, + Rj, R3 < R3 — 2R; yields

[[1]-1 2 0| 100 0]
0-1 221100
0 3-5-2|-2010]
| 0-2 0 2/ 000 1]

Next, the pivot is —1 in (2, 2) position. Use Ry < —R; to get the pivot as 1.

[1]-1 2 0] 1 000
0[1]—2-2(-1-100
0 3-5-2|-2 010]|
0-2 0 2/0 001

And then R; «— Ry + Ry, R3 « R3 — 3R, Ry < R4 + 2R, gives

0 0-2/0-100
0[1]-2-2]-1-100
00 1 41310/

0 0-4-2/-2-201
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Next pivot is 1 in (3, 3) position. Now, Ry «— Ry + 2R3, Ry < R4 + 4Rz produces

(1] 0 0-2/0-100
o[1] 0 6/1 520
0 0[1] 41 310/

0 0 014/2104 1

Next pivot is 14 in (4, 4) position. Use Ry «— 1/4R4 to get the pivot as 1:

0 02l 0-1 0 0
o1l 06 1 5 2 0
0 0f[1] 4 1 3 1 of
0 0 0[1]1/75/72/71/14

Use Ry <« Ry +2R4, Ry < Ry, — 6R4, R3 «— R3 — 4R, to zero-out the entries in the
pivotal column:

0 0 0/2/73/7 4/7 1/7
o[1] 0 o[1/7 5/7 2/7-3/7
00 013/7 1/7-1/7-2/7
0 0 0[1]1/75/7 2/71/14

23 41

15 2-3
Thus B! =1 311 o | Verify that B"'B=BB! =1. 0

1
1521

4.5 Linear equations

We can now use our knowledge about matrices to settle some issues regarding
solvability of linear equations. A system of linear equations, also called a linear
system with m equations in n unknowns looks like:

apxi +apxy+ - appx, = by

a1x1 + axnxy + -+ - apx, = by

Am1X1 + am2X2 + -+ - AmpXp = bm
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Using the abbreviations

X1 bl

=
Il
>
Il
BN
Il
B}
L

Xn b
the system can be written in the compact form:
Ax =b.

Here, A € F™" x € F™! and b € F™*! so that m is the number of equations and n
is the number of unknowns in the system. Notice that for linear systems, we deviate
from our symbolism and write b as a column vector and x; are unknown scalars.
The system Ax = b is solvable, also said to have a solution, iff there exists a vector
u € F™! such that Au = b.

Thus, the system Ax = b is solvable iff b is a linear combination of columns of
A. Also, Ax = b has a unique solution iff b is a linear combination of columns of A
and the columns of A are linearly independent. These issues are better tackled with
the help of the corresponding homogeneous system

Ax =0.

The homogeneous system always has a solution, namely, x = 0. It has infinitely
many solutions iff it has a nonzero solution. For, if u is a solution, so is au for any
scalar «.

To study the non-homogeneous system, we use the augmented matrix [A|b] €
Fm<(+1) which has its first n columns as those of A in the same order, and the
(n + 1)th column is b.

(4.16) Theorem
Let A € F™" and let b € F™ . Then the following statements are true:
(1) If [A"| V'] is obtained from [ A | b] by applying a finite sequence of elementary
row operations, then each solution of Ax = b is a solution of A’x = b’, and
vice versa.

(2) (Consistency) Ax = b has a solution iff rank([A | b]) = rank(A).

(3) If uis a (particular) solution of Ax = b, then each solution of Ax = b is given
by u + y, where y is a solution of the homogeneous system Ax = 0.

(4) If r = rank([A|b]) = rank(A) < n, then there are n — r unknowns which
can take arbitrary values; and other r unknowns can be determined from the
values of these n — r unknowns.
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(5) If m < n, then the homogeneous system has infinitely many solutions.
(6) Ax = b has a unique solution iff rank([A | b]) = rank(A) = n.
(7) If m = n, then Ax = b has a unique solution iff det(A) # 0.

(8) (Cramer’s Rule) If m = n and det(A) # 0, then the solution of Ax = b is
given by
xj=det(A;(b))/det(A) foreach je{l, ..., n}.

Proof. (1) If [A’|b’] has been obtained from [A|b] by a finite sequence of
elementary row operations, then A" = EA and b’ = Eb, where E is the product of
corresponding elementary matrices. The matrix E is invertible. Now, A’x = b iff
EAx = Ebiff Ax =E"'Eb =,

(2) Due to (1), we assume that [A | b] is in RREF. Suppose Ax = b has a solution.
If there is a zero row in A, then the corresponding entry in b is also 0. Therefore,
there is no pivot in b. Hence rank([A | b]) = rank(A).

Conversely, suppose that rank([A | b]) = rank(A) = r. Then there is no pivot in
b. That is, b is a non-pivotal column in [A | b]. Thus, b is a linear combination of
pivotal columns, which are some columns of A. Therefore, Ax = b has a solution.

(3) Let u be a solution of Ax = b. Then Au = b. Now, z is a solution of Ax = b
iff Az =10 iff Az = Au iff A(z —u) = 0 iff z — u is a solution of Ax = 0. That is,
each solution z of Ax = b is expressed in the form z = u + y for a solution y of the
homogeneous system Ax = 0.

(4) Let rank([A | b]) = rank(A) = r < n. By (2), there exists a solution. Due to (3),
we consider solving the corresponding homogeneous system. Due to (1), assume
that A is in RREF. There are r number of pivots in A and m — r number of zero
rows. Omit all the zero rows; it does not affect the solutions. Write the system as
linear equations. Rewrite the equations by keeping the unknowns corresponding to
pivots on the left hand side, and taking every other term to the right hand side. The
unknowns corresponding to pivots are now expressed in terms of the other n — r
unknowns. For obtaining a solution, we may arbitrarily assign any values to these
n —r unknowns, and the unknowns corresponding to the pivots get evaluated by the
equations.

(5) Let m < n. Then r = rank(A) < m < n. Consider the homogeneous system
Ax = 0. By (4), there are n — r > 1 number of unknowns which can take arbitrary
values, and other r unknowns are determined accordingly. Each such assignment
of values to the n — r unknowns gives rise to a distinct solution resulting in infinite
number of solutions of Ax = 0.
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(6) It follows from (3) and (4).

(7) If A € F™" then it is invertible iff rank(A) = n iff det(A) # 0. Then use (6). In
this case, the unique solution is given by x = A~!b.

(8) Recall that A;(b) is the matrix obtained from A by replacing the jth column of
A with the vector b. Since det(A) # 0, by (6), Ax = b has a unique solution, say
y € F™!. Write the identity Ay = b in the form:

ar ai; ain b1
Y| ey | | =
anl Qpj Qnn by
This gives
ai (yjai; — b1) ain
y | |+ +-tyy |- =0.
anl (yjanj - bn) Qnn

In this sum, the jth vector is a linear combination of other vectors, where —y;s are
the coeflicients. Therefore,

ay -+ (yja1j —b1) -+ ain

=0.
ant -+ (Yjanj = bn) - ann
From Property (6) of the determinant, it follows that
ajy - ayj - aw| |aig oo by ang
Yj : - : =0.
Ani =" Gnj " Gpn|  |@n1 v by ann
Therefore, y; = det( A;(b) )/det(A). |

A system of linear equations Ax = b is said to be consistent iff rank([A|b]) =
rank(A). Due to (4.16-1) only consistent systems have solutions. And, (4.16-2)
asserts that all solutions of the non-homogeneous system can be obtained by adding
a particular solution to solutions of the corresponding homogeneous system.

4.6 Gauss-Jordan elimination

To determine whether a system of linear equations is consistent or not, it is enough
to convert the augmented matrix [A|b] to its RREF and then check whether an entry



Row Reduced Echelon Form 111

in the b portion of the augmented matrix has become a pivot or not. In fact, the pivot
check shows that corresponding to the zero rows in the portion of A in the RREF of
[A|b], all the entries in b must be zero. Thus an entry in the b portion has become
a pivot guarantees that the system is inconsistent, else the system is consistent.

(4.17) Example

Is the following system of linear equations consistent?

5x1+2x2—3X3+X4:7
X1 —3x2+2x3—2x4:11

3X1 +8)C2 - 7X3 +SX4 =8

We take the augmented matrix and reduce it to its RREF by elementary row opera-

tions.
5 2-3 1| 7] 1] 25 =35 15| 7/s
(0]
1-3 22011 = | 0175 13/5—11/5| 48/5
3 8-7 5|8 0 34/5-26/5 22/5|—19/5

- 0 =5/17=1/17| 43/17
— 0—13/17 11/17|—48/17

00 0 0

Here, O1 = Ry « 1/5R|, R, « Ry — Ry, R3 « R3 — 3R; and
02 =Ry « —5/17Ry, Ry « Ry — 2/5Ry, R3 «— R3 — 34/5R;.
Since an entry in the b portion has become a pivot, the system is inconsistent. In
fact, you can verify that the third row in A is simply first row minus twice the second
row, whereas the third entry in b is not the first entry minus twice the second entry.
Therefore, the system is inconsistent. O

(4.18) Example
Give conditions under which the system x+y+5z = 3, x+2y+az = 5, x+2y+4z = b
is consistent.

We take the augmented matrix and reduce it to its RREF by elementary row
operations.

115[3 [jr 5 3 (1] 010-4| 1

12a5| — | 01a-5] 2| —| 0[1] a=5] 2
124(b 01 -1|b-3 00 4—ap-5
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We see that rank[A|b] = rank(A) if 4 —a # O orif b — 5 = 0. That is,
if a # 4, the system is consistent; and if b = 5, then also the system is consistent. []

Gauss-Jordan elimination is an application of converting the augmented matrix
to its RREF for solving linear systems.

(4.19) Example

We change the last equation in the previous example to make it consistent. The
system now looks like:

5X1+2X2—3X3+X4=7
X1 —3x +2x3 —2x4 =11

3x1 + SXQ —Tx3 +5)C4 =-15

The reduction to echelon form will change that entry as follows: take the aug-
mented matrix and reduce it to its echelon form by elementary row operations.

5 2-3 1] 7 ol - 2/s =3[s 1/5| /5
1-3 22| 11| — | 0-17/5s 13/5—11/5/ 48/5
3 8-7 5[-15 | 0 34/5 —26/5 22/5/—-96/5

[[1] 0 =517 =1/17] 4317
— 0—13/17 11/17|—48/17
00 0 0 o0

with O; = Ry « 1/5R;, Ry « Ry — R;, R3 « Rz — 3R; and

0y = Ry « =5/17Ry, Ry « E{ —2/5Ry, R3 « R3 — 34/5R,.
This expresses the fact that the third equation is redundant. Now, solving the new
system in RREF is easier. Writing as linear equations, we have

5 1. _ 43

[1]x T TTTMT T
13 11 48

X2 —ﬁX3 +ﬁ)C4 =17

The unknowns corresponding to the pivots are called the basic variables and the
other unknowns are called the free variable. By assigning the free variables to any
arbitrary values, the basic variables can be evaluated. So, we assign a free variable
x; an arbitrary number, say «;, and express the basic variables in terms of the free
variables to get a solution of the equations.

In the above reduced system, the basic variables are x| and x;; and the unknowns
x3, x4 are free variables. We assign x3 to a3 and x4 to a4. The solution is written as
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follows:

4.5 1 =8 13, 1 - —
X1 =17 + 1793 + 7%, X2=—15 + 1793 7%, X3 =03, X4= 4.

Notice that any solution of the system is in the form u + o, where

43 5

W
u= 17 , 0= 17 :

0 as

0 a4

u is a particular solution of the system, and v is a solution of the corresponding
homogeneous system. 0

4.7 Exercises for Chapter 4

1. Convert the following matrices into RREF and determine their ranks.

5 2-3 17 5 2-3 130
(@|1-3 2-211 b)[1-3 2-211
3 8-7 5 8 3 8-7 58

2. Determine linear independence of {(1,2,2,1), (1,3,2,1), (4,1,2,2), (5,2,4,3)}
in C'*4. Ans: Linearly dependent.

3. Compute A~! using RREF and also using determinant, where

4 -7 -5 13 1
A=[-2 4 3]. Ans: |-11 2].
3-5-4 2 1-2

4. Solve the following system by Gauss-Jordan elimination:

X1 +xp +x3 +x4 —3x5 =6
2x1 +3XQ +x3 +4X4 —9X5 =17
X1 +x2 +x3 +2x4 —SX5 =8
2x1 +2x +2x3 +3x4 —8x5 = 14

5. Check if the system is consistent. If so, determine the solution set.

(a) X1 —xp+2x3—=3x4 =7, 4x1+3x3+x4 =9, 2x1 —5X2+X3 =-2,
3x1 —2xp — 2x3 + 10x4 = —12.

(b) X1 —xp+2x3—3x4 =7, 4X1+3X3 +x4 =9 2x1 —5xp +x3 = =2,
3x1 — 2xp — 2x3 + 10x4 = —14.
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6. Using Gauss-Jordan elimination determine the values of k € R so that the
system of linear equations x+y—z=1, 2x+3y+kz =3, x+ky+3z=2
has (a) no solution, (b) infinitely many solutions, (c) exactly one solution.

7. Let A be an n X n matrix with integer entries and det(A?) = 1. Show that all
entries of A~! are also integers.

8. Let A € F™ have columns Ay, ..., A,. Let b € F™. Show the following:

(a) The equation Ax = 0 has a non-zero solution iff Ay, ..., A, are linearly
dependent.

(b) The equation Ax = b has at least one solution iff b € span{Aj,...,A,}.

(c) Let u be a solution of Ax = b. Then, u is the only solution of Ax = b iff
Ay, ..., A, are linearly independent.

(d) The equation Ax = b has a unique solution iff rankA = rank[A|b] =
number of unknowns.

9. Let A € F™" have rank r. Give reasons for the following:

(a) rank(A) < min{m, n}.

(b) If n > m, then there exist x, y € F™! such that x # y and Ax = Ay.

(c) If n < m, then there exists y € F™1 guch that for no x € F™*! Ax = y.
(d) If n = m, then the following statements are equivalent:

i. Au = Avimplies u = v for all u,0 € F™¥!,
ii. Corresponding to each y € F™!, there exists x € F™! such that

y = Ax.
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Matrix Eigenvalue Problem

5.1 [Eigenvalues and eigenvectors

In this chapter, unless otherwise specified, we assume that any matrix is a square
matrix with complex entries.

Let A € C™". A complex number A is called an eigenvalue of A iff there exists a
non-zero vector v € C™! such that Av = Av. Such a vector v is called an eigenvector
of A for (or, associated with, or, corresponding to) the eigenvalue A.

(5.1) Example

111
Consider the matrix A = [0 1 1| . It has an eigenvector [1 0 0] T associated with the
001
eigenvalue 1.
Is [2 0 0] " also an eigenvector associated with the same eigenvalue 1? 0

In fact, corresponding to an eigenvalue, there are infinitely many eigenvectors.

(5.2) Theorem

Let A€ C™" Letv € C™, v # 0. Then, v is an eigenvector of A for the eigenvalue

A € C iff v is a nonzero solution of the homogeneous system (A — Al)x = 0 iff
det(A—AI) = 0.

Proof. The complex number A is an eigenvalue of A iff we have a nonzero vector
v € C™! such that Av = Av iff (A — Al)vo = 0 and v # 0 iff A — AI is not invertible
iff det(A — AI) = 0. |

115



116 MA1102 Classnotes

5.2 Characteristic polynomial

The polynomial det(A —¢t1) is called the characteristic polynomial of the matrix A.
Thus any complex number A that satisfies the characteristic polynomial of a matrix
A, is an eigenvalue of A.

Since the characteristic polynomial of a matrix A of order n is a polynomial of
degree n in t, it has exactly n, not necessarily distinct, complex zeros. And these
are the eigenvalues of A. Notice that, here, we are using the fundamental theorem
of algebra which says that each polynomial of degree n with complex coefficients
can be factored into exactly n linear factors.

(8.3) Example

Find the eigenvalues and corresponding eigenvectors of the matrix

100
A=1110].
111
The characteristic polynomial is
I1-t 0 O
det(A—th)=| 1 1-t 0 |=(1-1)°.
I 1 1-t

Thus, 1 is the only eigenvalue of A.
To get an eigenvector, we solve A [a b c]T =1 [a b c]T or that

a=a,a+b=b, a+b+c=c.

It gives a = b = 0 and ¢ € F can be arbitrary. Since an eigenvector is nonzero, all
the eigenvectors are given by [O 0 c] T, for any c # 0. 0

The eigenvalue A being a zero of the characteristic polynomial has certain mul-
tiplicity. That is, the maximum k such that (t — 1)* divides the characteristic
polynomial is called the algebraic multiplicity of the eigenvalue A.

In (5.3), the algebraic multiplicity of the eigenvalue 1 is 3.

(5.4) Example

For A =

1
0] , the characteristic polynomial is 2 + 1. It has eigenvalues as i and
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—i. The corresponding eigenvectors are obtained by solving
A [a b]T =i [a b]T and A [a b]T =—i [a b]T.

For A = i, we have b = ia, —a = ib. Thus, [a ia]T is an eigenvector for a # 0.
For the eigenvalue —i, the eigenvectors are [a - ia] fora # 0.
Here, algebraic multiplicity of each eigenvalue is 1. 0

If a matrix of order n has only real entries, then its characteristic polynomial has
only real coefficients. Then complex zeros of the characteristic polynomial occur
in conjugate pairs. That is, if & + i is an eigenvalue of a matrix with real entries,
where f # 0, then « — if is also an eigenvalue of this matrix.

We say that A, B € C™" are similar iff there exists an invertible matrix P € C™"
such that B = P~1AP. Some easy consequences of our definition are listed in the
following theorem.

(5.5) Theorem

(1) A matrix and its transpose have the same eigenvalues.
(2) Similar matrices have the same eigenvalues.

(3) The diagonal entries of any triangular matrix are precisely its eigenvalues.
Proof. (1) det(AT —tI) = det((A — tI)T) = det(A — tI).

(2)det(P~'AP—tI) = det(P~' (A—tI)P) = det(P~!)det(A—tI)det(P) = det(A—tI).
(3) If A is triangular, then det(A — tI) = (aj; —t) - - - (apy — £). |

(5.6) Theorem
det(A) equals the product and tr(A) equals the sum of all eigenvalues of A.

Proof. LetAy,..., A, be the eigenvalues of A, not necessarily distinct. Now,
det(A—tl)= (A1 —1t)--- (A, — t).

Putt = 0. It gives det(A) = A; -+ - A,.
Expand det(A — tI) and equate the coefficients of t"~! to get

Coeff of t"~! in det(A — tI) = Coeff of " !in (a;; —t) - A
=...=Coeffof t" Vin (aj; —t) - (ap —t) - (apn — t) = (=1)" tr(A).

But Coeffof t" 'in (A; = t) - (A, — £) is (=1)" 1 - T A;. 1

(5.7) Theorem (Caley-Hamilton)

Any square matrix satisfies its characteristic polynomial.
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Proof. LetA € C™" Letp(t) = co+cit+- - -+cyt" be the characteristic polynomial
of A. We show that p(A) = 0, the zero matrix. (3.6-15) with the matrix A — ¢ I says
that

p(t)I=det(A—tI)I = [adj (A-t])] (A—1t]).

The entries in adj (A — tI) are polynomials in ¢ of degree at most n — 1. Write
adj (A—tI) :=By+tB; +---+t""'B,_|,
where By, . ..,B,-1 € C™" Then
col + it +---+cyIt" = p(t)[ = (Bo+tBy +-- - t" 'B_1) (A -t ).
Comparing the coefficients of X, we obtain
col = BoA, ci1I = B1A—-By,...,cy_1I =B, 1A—B,_5, ¢yl = —B,_1.
Then, substituting these values in p(A), we have

p(A) =col +c1A+ - +c,A" = col + c1IA + - - - + ¢, IA"
= BpA + (BIA_BO)A+ Cee (Bn—lA_Bn_z)An_l _Bn—lAn —0. .

Suppose a matrix A € C"™" has the characteristic polynomial
ag+ait + -+ ap 1 t" L+ (=D
By Cayley-Hamilton theorem, agl + ajA+ - - - + (=1)"A" = 0. Then
A = (—1)”_1(aoI+ alA+---+ an_lA”_l).

Thus, computation of A", A™1 . can be reduced to computing A, A2 ..., AL

A similar approach shows that the inverse of a matrix can be expressed as a
polynomial in the matrix. If A is invertible, then det(A) # 0; so that O is not an
eigenvalue of A. That is, ag # 0. Then

aol + Aarl + -+ ap 1 A" 2 + (=1)"A" ) = 0.

Multiplying A~! and simplifying, we obtain

1
ATl = @l oAt a1 A2+ (= 1)"AT).
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5.3 Inner product and norm of vectors

The inner product of two vectors u = (ay,...,a,) and v = (by,...,b,) in F" is
defined as

(u,0) = a1by + - + anby.
In particular, if F = R, then u,0 € R" and Ei = b; so that
(w,v) = ayby + - - - + apby,.
For instance, if u = (1,2,3) € R? and v = (2, 1,3) € R, then their inner product is
(u,0) =1 x2+2x1+3x3=13.
Ifx=(1+i2-i1) eC?and y=(1-i1+i1)e€ C3, then their inner product is
Gy =0+D)A+)+2-)(1-)+1x1=2-1i.

Notice that the inner product of two vectors in F” is a scalar.

When we consider row or column vectors, their inner product can be given via
matrix multiplication.

Let u,0 € F™". Then (u, v) = uv®.

Reason: Suppose u = [a1 an] and o = [b1 bn], Then
by
uo® = [al an] :a151+...+an5n:<u,v>‘

In particular, if u,o € R™" then (u,v) = uo’.

Similarly, if u,o € F™! then (u,0) = v*u.

a b]
Verification: Suppose u = | : [ando = | : |. Then
an b,
ai
v'u = [51 En] | =biay + -+ bpay = (u,0).
an

In particular, when u,0 € R™!, (u,0) = oTu.
The inner product satisfies the following properties:

For x,y,z € F" and o, § € F,
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(x,x) 2 0.
(x,x) =0iff x = 0.
(x,y) = (y, x).

(x+y,2) =(x,2) + (y, 2).
(z,x +1y) = (z,x) + (z,1).
(ax,y) = alx,y).
(x. By} = Blx.y)-

The inner product gives rise to the length of a vector as in the familiar case of

NSk whD =

R"3. We now call the generalized version of length as the norm. If u € F*, we
define its norm, denoted by ||u|| as the nonnegative square root of (u, u). That is,

llull = v{u u).

Thus, if u = (ay,...,a,) € F", then |ju]] = v]ai|? + - - + |an|2.

In particular, when u = (a, ..., a,) € R", we have |[u|| = a% +--4al.
Using matrix product, we may write the norm as follows:

If u € R™" then ||lu|| = VuuT. Ifu e R™! then ||u|| = Vulu.
If u € C™" then ||lu|| = Vuu*. Ifue C™! then ||u|| = Vu*u.
The norm satisfies the following properties:

Forx,y € F" and @ € F,

1. ||x|]| = 0.

2. ||x|| =0iff x = 0.

3. x|l = la| llx]|-

4. |(x, )| < |lx|| llyll. (Cauchy-Schwartz inequality)

9

. Nx+yll < x|l + lyll. (Triangle inequality)

A proof of Cauchy-Schwartz inequality goes as follows:

If y = 0, then the inequality clearly holds. Else, (y,y) # 0. Write a = Ex z; Then

o= <y and a(x,y) = |a|?|ly||*>. Then

0 <(x—ay,x—ay) =(x,x) —alx,y) +a(@(y.y) — (y,x))

_ |(x, )l
= |IxI” = @(x,y) = lxll* = el llyll® = [Ix]I* - I3 [

The triangle inequality can be proved using Cauchy-Schwartz, as in the following:

lx+yl1? = (x+y,x+y) = <P+ lyl* + e y) + %) < Nl + llyll® + 2]l 1yl
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Let x,y € F". We say that the vectors x and y are orthogonal, and we write this
as x L y, when (x,y) = 0. That is,

xLy iff (xy)=0.

It follows that if x L y, then ||x||?>+||y||> = ||x+y]|?. This is referred to as Pythagoras
law. The converse of Pythagoras law holds when F = R, but fails in general for
F=C.

Adjoints of matrices behave in a very predictable way with the inner product.

(5.8) Theorem
Let A € ™" x e F™ and let y e F™<1 Then

(Ax,y) = (x,A"y) and (A'y,x) = (y,Ax).

Proof. Recall that in F™*!, (u,v) = v*u. Further, Ax € F™! and A'y e F<l We
are using the same notation for both the inner products in F™! and in F™*!. We then
have

(Ax,y) = y"Ax = (A"y)"x = (x, A™y).
The second equality follows from the first. 1

Often the definition of an adjoint is taken using the identity: (Ax,y) = (x, A*y).
We show that unitary or orthogonal matrices preserve inner product and also the
norm.

(5.9) Theorem

Let A € C™" be a unitary or an orthogonal matrix.

(1) For each pair of vectors x,y, (Ax,Ay) = {(x,y). In particular, ||Ax|| = ||x||
for any x.

(2) The columns of A are orthogonal and each is of norm 1.

(3) The rows of A are orthogonal, and each is of norm 1.

Proof. (1) (Ax, Ay) = (x, A*Ay) = (x,y). Take x = y for the second equality.

(2) Since A*A = I, the ith row of A" multiplied with the jth column of A gives J;;.
However, this product is simply the inner product of the jth column of A with the
ith column of A.

(3) It follows from (2). Also, considering AA* = I, we get this result. |
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5.4 Gram-Schmidt orthogonalization

Linear independence of a finite list of vectors can be determined using the inner
product.

Let v,...,0, € F". We say that these vectors are orthogonal iff (v;,0;) = 0 for
all pairs of indices i, j with i # j.

Orthogonality is stronger than linear independence, as the following theorem
shows.

(5.10) Theorem

Any orthogonal list of nonzero vectors in F" is linearly independent.

Proof. Letuy,...,v, € F" be nonzero vectors. For scalars ay, ..., a,, let
ajoy + -+ +ayo, =0.

Take inner product of both the sides with . Since (v;,v1) = 0 for each i # 1, we
obtain (ajv;,01) = 0. But (vj,01) # 0. Therefore, a; = 0. Similarly, it follows that
each q; = 0. |

It will be convenient to use the following terminology. We denote the set of all
linear combinations of vectors vy, . . ., v, by span(vy, . . ., v,); and read it as the span
of the vectors vy,..., 0.

Our procedure, called Gram-Schmidt orthogonalization, constructs orthogonal
vectors vy, . . ., v from the given vectors uy, .. ., up, so that

span(vy,...,vr) = span(uy,...,uy), k< m.

It is described in (5.11) below. First, let us see how we proceed.

Given two linearly independent vectors ug, up on the plane how do we construct
two orthogonal vectors?

Keep v = u;. Take out the projection of uy on u; to get v2. Now, vy L 0y.

What is the projection of uy on u;?

Its length is (up, u;). Its direction is that of uy, i.e., u; /||uy||-
(up,01)

1.
(v1,01)
We may continue this process of taking out projections in n dimensions.

Thus vy = uy, v2 = up —
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(5.11) Theorem

Let uy,uy, ..., u, € F*. Define
01 = U
(uz,v1)
U =Upy — (4]
(v1,01)
<uma Ul> <um: Um—1>
Im=Un— 01—~ Um-1
(v1,01) (Om=1,Um-1)

In the above process, ifv; = 0, then both u; and v; are ignored for the rest of the steps.

After ignoring such u;s and v;s suppose we obtain the vectors as vjy, . ..,vj,. Then
vj1,...,0jk are orthogonal and span(vj1, .. .,vjx) = span{u, ua, . .., Uy }. Further, if
v; =0 fori > 1, then u; € span{uy,...,u;_1}.

Proof Outline: We verify algebraically our geometric intuition:

(up, v1)
U1 =Uy, 0V=uUp—-—70].
(v1,01)
(up, v1) (up, v1)

Hence (0,01) = (up — (v1,01) =0

(v1,01) ohon) = (o) - (v1,01)

If v, = 0, then uy is a scalar multiple of u;. If v, # 0, then uy, up are linearly
independent.

Similar to our verification of v, L v;, we can prove that v;,; is orthogonal to
v1,...,0; for each i > 1, by using induction.

We need to prove that both the sets spans the same set. Notice that

Ifxy,...,x, € span(yy, ..., ys), thenspan(xy, ..., x,) C span(yy, ..., Ys).

For, if v = a1x1 + - - - + o, %, and x; = a;101 + - - - a;50, then substituting for each x;
in the previous expression and combining terms, we get

S
v = Z(alali + -+ aray)o; € span(vy, ..., v).
i=1
If u; is alinear combination of uy, . .., u;—1, thenspan(uy, . .., u;—1) = span(uy, .. ., u;).
Now observe inductively that vy, ...,v; € span(uy, ..., u;).
From the algorithm, it can also be observed, using induction, that uy,...,u; €

span(vy, . .., 0;).
Therefore, we get span(uy, ..., u;) = span(vy,...,v;) foreach i > 1.
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(5.12) Example
Consider the vectors u; = (1,0,0), up = (1,1,0) and u3 = (1,1,1). Apply Gram-
Schmidt Orthogonalization.

o1 = (1,0,0).
_ <u2,l)1> _ _ (1,1,0)-(1,0,0)

U = Uy — <01’01> 01 = (1, 1,0) (1’0’0) - (1,0’0)(1,0,0)
=(1,1,0) - 1(1,0,0) = (0, 1, 0).
_ (u3, 1) (u3, v2)

03 = U3 — -

o0 | (02,0)
=(1,1,1)-(1,1,1) - (1,0,0)(1,0,0) — (1,1,1) - (0,1,0)(0, 1,0)

=(1,1,1) - (1,0,0) - (0,1,0) = (0,0, 1).

The set {(1,0,0), (0,1,0), (0,0, 1)} is orthogonal; and span of the new vectors is the
same as span of the old ones, which is R. 0

(5.13) Example

The vectors u; = (1,1,0),uo = (0,1,1),u3 = (1,0,1) form a basis for F>. Apply
Gram-Schmidt Orthogonalization.

o1 = (1,1,0).
B (ug,v1) B (0,1,1) - (1, 1,0)
U = Uy — <01,Z)1> 01 = (0, 1, 1) (1’ 1,0) - (1’ 1,0)(1, 1,0)
1 11
= (01,1 = 5(1,1,0) = (—5, 5,1).
(u3, 1) (u3, v2)

03 = Uy — 01 — 0
S e I e

= (1,0,1) = (1,0,1) - (1,1,0)(1,1,0) — (1,0, 1) - (— % %1) (— % %1)
)

1 1 11 22 2
= 1,0,1 - A 1,1,0 _—(——,—,1):(——’—’__
( ) 2( ) A 373
11 22 2y .
The set {(1, 1,0), (— > 51) (— 3 §_§)} is orthogonal. 0

(5.14) Example

Use Gram-Schmidt orthogonalization on the vectors u; = (1,1,0,1),u; = (0, 1,1, -1)
and uz = (1,3,2,-1).
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01 = (1, 1,0, 1)

~ (up,01) {0, L1,-1),(1,1,0,1)) _ ~
vz—uz—@l,m)vl—(O,l,l, 1) (LLOD. (LLOD) (1,1,0,1) = (0,1,1,-1).
R V) 1_<u3,02> ,
T (o 0) (v2,02)
_ L 0,3,2,-1),(1,1,0, 1))
=(1,3.2,-1) ((1,1,0,1),(1,1,0,1)) (1,101)
{(1,3,2,-1),(0,1,1,=1)) ©.11-1)

(0,1,1,-1),(0,1,1,-1))
= (1,3,2,-1) = (1,1,0,1) = 2(0, 1,1,-1) = (0,0,0,0).

Notice that since uj, up are already orthogonal, Gram-Schmidt process returned
vy = up. Next, the process also revealed the fact that u3 = u; + 2us. N

(5.15) Example

Use Gram-Schmidt orthogonalization on the vectors u; = (1,2,2,1), up = (2,1,0,-1),
uz = (4,5,4,1) and us = (5,4,2,-1).

o1 =(1,2,2,1).
Uy = (2, 1,0, —1)

<(231,O:_1)5(1’2’2’1)> 1 1) = 17 2 3 13
Ghanazam 220 = (555 T)
((4,5,4,1),(1,2,2,1))

(1221 (221 b2

((4,54,1),(3,0,-1, 1)) (17 2 3 13
1723 _13)(1z2_3_1B\\105 5 10
<10’5’ 5 10)°\10°5 5° 10>

03 =(4,541) -

) = (0,0,0,0).

So, we ignore v3, uz and note that u3 is a linear combination of u, u;; and hence,
a linear combination of vy, v,. Next, we compute

_Swo) o (wav)

V4 = Uy | p =
(v1,01) (v2,02)

Now, uy4 is a linear combination of u;, up, and thus, it is a linear combination of
vy, 2. In fact, Uz = 2u1 +up and Ug = U1 +2us. So,v; L vy and span(ul, Uy, us, u4) =
span(v1,v3). 0
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5.5 Hermitian and unitary matrices

Recall that a hermitian matrix is one for which the adjoint coincides with itself,
and a unitary matrix is one for which its adjoint coincides with its inverse. Real
hermitian matrices are called real symmetric matrices and real unitary matrices are
called orthogonal matrices. If A is an orthogonal matrix, then each column of it is
orthogonal to any other column. For example, the rotation in the plane given by

cos @ —sin 6
sinf cos0

for any real number 6 is an orthogonal matrix. It can be shown that any orthogonal
2 X2 matrix is a rotation combined with a reflection on a straight line. Similarly, any
orthogonal matrix in the three dimensional euclidean space is a rotation combined
with a reflection on a plane.

(5.16) Theorem
Let A € C™". Let A be any eigenvalue of A.
(1) If A is hermitian or real symmetric, then A € R.
(2) If A is skew-hermitian or skew-symmetric, then A is purely imaginary or zero.

(3) If A is unitary or orthogonal, then |A| = 1.

Proof. Let A € C be an eigenvalue of A with an eigenvector v € C™!. Now,
Av = Av and v # 0. Pre-multiplying with 0¥, we have v*Av = Av*v € C. Taking
adjoint, we obtain: v*A*v = Av*v.

(1) Let A be hermitian, i.e., A* = A. Then Av*v = v*A*0 = v*Av = Av*0.

Since v*v # 0, A = A. That is, A is real.

(2) When A is skew-hermitian, A* = —A. Then Ao*o = 0*A* = —0*Av = —Ao*0.
Since v*v # 0, A = —A. That is, 2Re(A) = 0. So, A is purely imaginary or zero.

(3) Let A be unitary, i.e., A*fA = I. Now, Av = Av. Taking adjoint, we have
0*A* = Jo*. Then v*v = v*Iv = v*A*Av = AMo*v = |A|%0*0. Since v*0 £ 0, [A] = 1. 1

Not only each eigenvalue of a real symmetric matrix is real, but also a corre-
sponding real eigenvector can be chosen. It follows from the general fact that if
a real matrix has a real eigenvalue, then there exists a corresponding real eigen-
vector. To see this, let A € R™" have a real eigenvalue A with corresponding
eigenvector v = x + iy, where x, y € R™!. Comparing the real and imaginary parts
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in A(x +iy) = A(x + iy), we have Ax = Ax and Ay = Ay. Since x + iy # 0, at least
one of x or y is nonzero. Such a nonzero vector is a real eigenvector corresponding
to the eigenvalue A of A.

5.6 Diagonalization

(5.17) Theorem

Eigenvectors corresponding to distinct eigenvalues of a square matrix are linearly
independent.

Proof. LetAy,..., Ay be all the distinct eigenvalues of A € C™". Let vy,...,v, be
corresponding eigenvectors. We use inductionon i € {1,..., m}.

For i =1, since v; # 0, {v;} is linearly independent.

Induction Hypothesis: for i = k suppose {01, ..., v} is linearly independent. We
use the characterization of linear independence as proved in (3.4).

The induction hypothesis implies that if we equate any linear combination of
01,...,0 to 0, then the coeflicients in the linear combination must all be 0. Now,
for i = k + 1, we want to show that vy, ..., v, vg4| are linearly independent. So, we
start equating an arbitrary linear combination of these vectors to 0. Our aim is to
derive that each scalar coefficient in such a linear combination must be 0. Towards
this, assume that

a10] + vy + - - - + AUk + Apy10k41 = 0. (5.6.1)
Then, A(ajo1 + aavs + - - - + 0k + A4 10k+1) = 0. Since Avj = Ajv;, we have
a1 o) + Aoy + - - -+ AUk + A1 Aks10k41 = O. (5.6.2)
Multiply (5.6.1) with A,;. Subtract from (5.6.2) to get:
a1 (A = Agr)or + - - + (A — Agsr) ok = 0.

By the Induction Hypothesis, a;(4; — Ax+1) = O for each j = 1,...,k. Since

Al, ..., Arqq are distinct, we conclude that o) = - - - = a = 0. Then, from (5.6.1), it
follows that ax,j0k:1 = 0. As vg,1 # 0, we have agy = 0. |
Suppose an n X n matrix A has n linearly independent eigenvectors vy, . .., v,. Let

Als ..., Ay be the corresponding eigenvalues. We find that
Av; = Aoy, ..., Ao, = A,0,.
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Construct the matrix P € C™" by taking its columns as the eigenvectors vy, . . ., v,.
That is, let
P = [01 Uyt Upoq U,,].

Also, construct the diagonal matrix D = diag(Ay,...,A,). That is,
A1
D= .
An
Then the above product of A with the v;s can be written as a single equation AP = PD.
Now, rank(P) = n. So, P is an invertible matrix. Then

P'AP =D.

Let A € C™", We call A to be diagonalizable iff there exists an invertible matrix
P such that P~! AP is a diagonal matrix. (That is, A is similar to a diagonal matrix.)
We also say that A is diagonalizable by the matrix P iff P~'AP = D.

(5.18) Theorem

An n X n matrix is diagonalizable iff it has n linearly independent eigenvectors.

Proof. In fact, we have already proved that if an n X n matrix A has n linearly
independent eigenvectors, then A is diagonalizable.

For the converse, suppose that A € C™" is diagonalizable. So, let P = [01, cee vn]
be an invertible matrix and let D = diag(Ay, ..., 4,) be such that P~'AP = D. Then
AP = PD. Then Av; = Ajv; for 1 < i < n. That is, each v; is an eigenvector of A.

Moreover, P is invertible implies that vy, . . ., v, are linearly independent. |
(5.19) Example

11
Consider the matrix [0 1] .

Since it is upper triangular, its eigenvalues are the diagonal entries.
That is, 1 is the only eigenvalue of A with algebraic multiplicity 2. To find the
eigenvectors, we solve

(A=11) [Z]:o.

The equation can be rewritten as a + b = a, b = b. Solving the equations, we have
b = 0 and a arbitrary. There is only one linearly independent eigenvector, namely,
[a O] T for a nonzero scalar a. Therefore, A is not diagonalizable. 0

The following result is now obvious.
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(5.20) Theorem
IfA € C™" has ndistinct eigenvalues Ay, . . ., An, then it is similar to diag(Ay, . . ., A,).

We state, without proof, another sufficient condition for diagonalizability.

(5.21) Theorem (Spectral Theorem)

A square matrix is normal iff it is diagonalized by a unitary matrix.

Each real symmetric matrix is diagonalized by an orthogonal matrix.

Since each hermitian matrix is a normal matrix, it follows that each hermitian
matrix is diagonalizable by a unitary matrix.

To diagonalize a matrix A means that we determine an invertible matrix P and
a diagonal matrix D such that P"'AP = D. Notice that only square matrices can
possibly be diagonalized.

In general, diagonalization starts with determining eigenvalues and corresponding
eigenvectors of A. We then construct the diagonal matrix D by taking the eigenvalues

Als...,Ap of A. Next, we construct P by putting the corresponding eigenvectors
01,...,0, as columns of P in that order. Then P"'!AP = D. This work succeeds
provided that the list of eigenvectors vy, . .., v, in C"™! are linearly independent.

Once we know that a matrix A is diagonalizable, we can give a procedure to
diagonalize it. All we have to do is determine the eigenvalues and corresponding
eigenvectors so that the eigenvectors are linearly independent and their number is
equal to the order of A. Then, put the eigenvectors as columns to construct the
matrix P. Then P~ AP is a diagonal matrix.

(5.22) Example
1-1-1
Consider the matrix A= | -1 1-1].
-1-1 1
It is real symmetric having eigenvalues —1, 2 and 2. To find the associated
eigenvectors, we must solve the linear systems of the form Ax = Ax.

For the eigenvalue —1, the system Ax = —x gives

X1 —X)—X3=—X{, = X1 +X2 —X3=—X2, —X] — X2 +X3 =—X3.
. . . T
It has a solution: x| = x = x3. One eigenvector is [1 1 1] .

For the eigenvalue 2, we have the equations as

X1 — X2 —x3 =2x1, —X]1 +X2 —x3 = 2x2, —X] — X2 + X3 = 2x3.
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It leads to x1 +x2 + x3 = 0. We can have two linearly independent eigenvectors such
as[-110] and [-1 —12]"

The three eigenvectors are orthogonal to each other. To orthonormalize, we divide
each by its norm. We end up at the following orthonormal eigenvectors:

1/V3| [-1/42] [-1/V6
V3|, | 1/V2], [-1/V6].
1/V3 0 2/V6

They are orthogonal vectors in R>!, each of norm 1. Taking

1/V3 -1/v2 -1/+6
P={1/V3 1/V2-1/V6],

1/V3 0 2/V6
-100
we have P71 =PI plaAp=pPTAP=| 020]. 0
002

5.7 Exercises for Chapter 5

1. Find the eigenvalues and the associated eigenvectors for the matrices given

below.
-203
2 -2 -1
wli ] o3 @3] @]2f
005

Ans: (@)A1 =3, 01 =[12]"; A, =-1, v, = [0 1] .

MA=Lo=[1-1"1%=20n=[2-1]".

@M =i 0 =[12+i]"; Lo =—i, vu=[1i-2] .

(d)).] =—2, U] = [SZO]T; ).223, Uy = [OIO]T; A3 =5, U3 = [3 —37]T.
2. Let A be an n X n matrix and « be a scalar such that each row (or each column)

sums to a. Show that « is an eigenvalue of A.

3. Let A € C™" be invertible. Show that A € C is an eigenvalue of A if and only
if 17! is an eigenvalue of A~!.

4. The vectors u; = (1,2,2),uy = (—-1,0,2),uz = (0,0, 1) are linearly indepen-
dent in F3. Apply Gram-Schmidt Orthogonalization.
Ans: vy = uy, 0y = (-4/3,-2/3,4/3), 03 = (2/9,-2/9,1/9).
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5.

10.

Let A € R¥3 have the first two columns as (1/V3,1/v3,1/¥3,)T and
(1/v2,0,-1/V2)T. Determine the third column of A so that A is an or-
thogonal matrix.  Ans: +(1/V6)(1, -2, )T,

Show that eigenvectors corresponding to distinct eigenvalues of a unitary (or
orthogonal) matrix are orthogonal to each other.

. Give an example of an n X n matrix that cannot be diagonalized.

Ans: A = [a;;] € C™" with a1 = 1 and all other entries as 0.

Find the matrix A € R3 that satisfies the given condition. Diagonalize it if
possible.

(@) A(a,b,c)T =(a+b+c,a+b—c,a-b+c) forallab,ccR.
(b) A61 = 0, A62 = e, Ae3 = €.
(c) Ae; = ey, Aey=e3 Ae3=0.
(d) A61 = e3, A62 = e, Ae3 =e€].

Show that the following matrices are diagonalizable.

32-1/2 0 3-1/2-32
(@) |-12 320 ()| 1 32 3/2].
12 -1/2 1 -1 -1/2 5/

Which of the following matrices is/are diagonalizable? If one is diagonaliz-
able, then diagonalize it.

111 111 101 011
@|1-1 1| ®wlot1] @110l @l101].
1 1-1 001 011 110



Solutions to Exercises

Series of Numbers §1.9
1. Show the following:

Inn

(@) im — =0. (b) lim n'/" =1, (¢) lim x" =0 for |x| < 1.
n—oo n n—oo n—oo
P n n
@ lim = =0forx>1. () lim = =0 (f) lim (1+f) .
n—oo xN n—oo n! n—oo n
1 1
(a) Inx is defined on [ 1, 00). Using I Hospital’s rule, lim X fim - = 0.
x—0o0 X Xx—00 X
1 1
Therefore, lim an_ lim ax_ 0.
n—oo n x—o0 X
(®) lim n'/" = Tim x'/* = lim ex ™% = glimee 5 = 0 =

Here, we have used continuity of e*.

1
(¢) Write |x| = T for some r > 0. By the Binomial theorem, (1 +r)" >
r
1+nr>nr.So,0< |x|"=1/(1+r)" < 1/(nr). As |x|* = |x"|, we have
—1/(nr) < x" < 1/(nr). By Sandwich theorem, lim x" = 0.

n?f

P
(d) Let x > 1. We know that tlim == 0 for p € N. Therefore, lim =0.

Ifm<p<m+1foranm e N, then nf < n™*! Use Sandwich theorem to
get the limit. If p < 1, then similarly, use n? < n.

Analogously, show that the limits in (e) and (f) hold.

2. Prove the following:

(a) It is not possible that a series converges to a real number ¢ and also
diverges to —co.
(b) It is not possible that a series diverges to co and also to —co.

(a) Suupose },a; converges to £ and also diverges to —co. Then we have
natural numbers k, m such that for every n > k, £ — 1 < Z;‘zl aj < £+1.

And also for all n > m, Z;’zl aj < £ —2.Choose M = max{k, m}. Then both
inequalities hold for n = M. But this is not possible.

132
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(b) Suppose }; a; diverges to both co and to —co. Then we have natural numbers
k,m such that for each n > k, 3)7_; a; > l and foreachn > m, 3"_, a; < —1.
Choose M = max{k, m}. Then both the inequalities hold for n = M. But this
is impossible.

3. Prove the following:

(a) If both the series }; a, and )’ b, converge, then the series ). (a, + by),
>.(an — by) and ) ka, converge; where k is any real number.

(b) If > a, converges and ) b, diverges to +oo, then }’(a, + b,) diverges to
+oo, and ) (a, — by) diverges to Foo.

(c) If 3 a, diverges to +oo, and k > 0, then ), ka, diverges to +oo.

(d) If )} a, diverges to +oo, and k < 0, then }; ka, diverges to Foo.

(a) Suppose ), a, converges to £ and ), b, converges to s. Let € > 0. Then we
have natural numbers k, m such that for all n > k, | Z;’zl aj—1f| < €/2; and for
alln > m, | Z;’zl bj —s| < €/2. Choose M = max{k, m}. Then for all n > M,
both the inequalities hold. So, we obtain

n n
< ’:E: aj —'f‘*-):E: bj -S
j=1 J=1

Similarly, the other two are proved.

<e/2+€/2=¢€.

’i(aj+bj)—(f+s)
=1

(b) Suppose }’ a, converges to £ and ) b, diverges to co. Let r > 0. Then, we
have natural numbers k, m such that foralln > k, £ -1 < Z;’:l aj < t+1;
and for all n > m, Z;’zl bj > r+¢|+ 1. Choose M = max{k, m}. Then all the
three inequalities hold for n > M. But then for all n > M,

n n
t—-1< :E: aj, r +-|f|'+ 1< :E: bj.
Jj=1 Jj=1

Thatis, foralln > M,r <f—-1+r+|f|+1< Z;.l:l(aj +bj).
Similarly, other cases are proved.

(c) Suppose )’ a, diverges to +oo, and k > 0. Let r € R. We have m € N such
that for all n > m, Z;’:l aj > r/k. Then for all such n, Z;’Zl(kaj) > r.
Similarly other cases are proved.

(d) Suppose . a, diverges to oo, and k < 0. Let r € R. We have m € N such
that for all n > m, 3%_; a; > r/k. Then for all such n, 3\7_; (ka;) < r, since
k <0.

Similarly other cases are proved.
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4. Give examples for the following:

8. Is the integral J

(a) X a, and ), b, both diverge, but ) (a, + b,) converges to a nonzero
number.

(b) X a, and }’ b, both diverge, and ). (a, + b,) diverges to co.

(¢) X anand ) by, both diverge, and }’(a, + b,) diverges to —co.
(@1+1+1+--- diverges; 2+ (—=1) + (1) +--- also diverges.
But (1+2)+(1+(-1))+---=3+0+--- converges to 3.
®1+2+3+4+--- diverges; -1 —1—-1-1—--. also diverges.
And(1-1)+2-1D)+@B-1)+---=0+1+2+3+--- diverges to co.
(c)-1-2-3-4—---diverges; 1 + 1 +1+1+--- also diverges.
And (-1+1D)+(2+1)+(-3+1)+---=0-1-2-3—-.. diverges to —co.
Show that the sequence 1, 1.1, 1.1011, 1.10110111,... converges.
Use either Cauchy sequences or monotonically increasing bounded sequences.

Determine whether the following series converge:

> —n > Inn l+nlnn
b fusalid
(a);3n+1 ();rﬁ/z ()Z 1 +n?

1
It di b li =—=0
(a) iverges 1ecause nl_)ngo I 4i =73 *
nn
(b) Take a, = m and bn = m Then
n .1 ) 1 . 4
hma—— hmﬂ: th: lim — =0.

n—oo b n—oo pl/4  nooo (1/4)n—3/4 n—oco pl/4

Since )’ b, converges, by the Limit comparison test, )’ a, converges.

1+nl 1
(c) Take a, = _rnmn r;n and b, = —. Then
1+n n

n+nflnn

. an
Iim — = lim
n—co b, n—co 1 +n?

As ) b, diverges to oo, by the Limit comparison test, ) a, diverges to co.
2 3

.1 2 3 no\n
. Test for convergence the series 3t (5) + (?) oot (Zn " 1) +

1
= lim ==-<1.
n—eo2n+1 2

1/n

Using Cauchy root test, lim (a,)
n—oo
Therefore, the series converges.

5 dx convergent?
—oo 1 +x

b

1

J 5 dx =tan”' b —tan"! a.
a 1+x
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So,

0 0
1 1
J dx = lim dx = lim (—tan™ a):—(—f):g.

oo 1+ x2 a—-co J, 1+ x2 a——co

1 . b . —1 T
dx = lim dx = lim (tan"" b) = =
o 1+ x2 b—oo Jo 1+ x2 b—oo 2

Therefore,

| | |
I dx:J dx+f dx
oo 1+ x2 oo 1+ x2 o 1+x2

is convergent and its value is 7/2 + 7/2 = 7.

9. Is the area under the curve y = (Inx)/x? for I < x < oo finite?

[e9)

o In x
The question is whether ‘[ —5- dx converges?
1 X

Let b > 1. Integrating by parts,

[ = [ - )]

b
In Inb 1
lim | —dx=1lm |[-—-—-+1|=1.
1 Tdx = li [ 5 b+]

b—oo Jq x2 b—oo

b

—Lb(;)idx——%—%+l.

1

) . “Inx )
Therefore, the improper integral J — dx converges to 1. That is, the
1 X
required area is finite and it is equal to 1.

3
dx
10. Evaluate (a) o m ( )J x—1
(a) The integrand is not defined at x = 1. We consider it as an improper
integral.

‘[3 dx lim Jb dx + lim JS X
— =1 _— i _
0 (k=B T emin o - 2B et ), (- 12

lim [
b—1-Jo (x—l)2/3

b
i _1 1/3‘ — 0 DB _3(—)/3) =
bg{l}(x ) . bgllrl_(3(b )7 =3(-1)"") =3

li _ X 11/3‘ - 1 DY3_3(a—1)1/3) = 3(2)1/3
tim | S = lim 30 = lim (3G-1" 3D =30

’%

- d

Hencej _ 3(1+2'73).
0 (x=1)%3
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Had we not noticed that the integrand has discontinuity in the interior, we
would have ended up at a wrong computation such as

3
dx 3
=3 - D =32 - (-,
| o = 3= )] 3@ - )
even though the answer happens to be correct here. See the next problem.
(b) Overlooking the point x = 1, where the integrand is not defined, we may
compute

3
d 3
J —=Injx—1|] =h2-In1=I2
ox—l 0

However, it is an improper integral and its value, if exists, must be computed

3 dx . b dx . 3 dx
J = lim + lim J

0o x—1 b—>1—0x—1 a—>1+ax—1.

as follows:

The integral converges provided both the limits are finite. However,

bdx

lim

= 1 Inlb—-1|=-1In|-=1|) = lim In(1 - b) = —c0.
pim | = Jim (Infp—1]=In| = 1]) = lim In(1 - b) = —e0

3

Therefore, J does not converge.

0 X~
Show that [ g dx converges for all p > 0.
1 X

sin x . ©dx *sinx
Forp > 1 and x > 1, )—‘ < —. Since J — converges, )—‘dx
xP xP 1 xP |
“ sinx
converges. Therefore, f — dx converges.
1 X

cosb cosl b cosx
+ J—
b 1» | xptl
Taking the limit as b — oo, we see that the first term goes to 0; the second
term is already a real number, the third term, an improper integral converges

. . b sinx
For0 < p < 1, useintegration by parts: — dx = —
1 X

as in the case for p > 1 above. Therefore, the given improper integral also
converges in this case.

%) .

Show that J g dx converges for0 < p < 1.
0 X

sin x

] .
. sin i i ) .
For p = 1, the integral J —— dx is not an improper integral. Since
0 X
with its value at 0 as 1 is continuous on [0, 1], this integral exists.

. 1
. sin x 1 dx
ForO<p<land0O < x <1, since — < — and J — converges due to
xP xP o xP
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13.

14.

15.

. . sin x
last problem; the improper integral J — dx converges.
0 X

: :  si
Next, the improper integral J — dx converges due to last problem.
1 X

| . 00
 sinx sin x sin x
Hence —dx dx + —— dx converges.
o XxP o xP 1oxP

X X X

1
Show that the series
nz:; n(Inn)

oo

converges for & > 1 and diverges to oo for

a < 1.
(a) @ = 0. The series is clearly divergent.

(a) @ > 0. The function f(x) = is continuous, positive, and decreasing

1
x(Inx)*

[S¢]
on [2, ). By the integral test, it converges when I dx converges.
2

x(Inx)“
Evaluating the integral, we have

0 1 Rl |
J dx = J —dt.
» x(Inx)* 2 t*

We conclude that the series converges for ¢ > 1 and diverges to co for o < 1.
(b) @ < 0. Then n(ln e 2 % for n > 3. Comparing with the harmonic series,

it follows that the series is divergent.
n! 2

(2n)!
The tests either glve no information or are difficult to apply. However,
a1 A" ((n+ DN 2n)!  2(n+1) .
a, 2+ 1)! 4r(n)2  2n+1
Since a; = 2, we see that each a, > 2. That is, lim a,, > 2 # 0. Therefore, the

series diverges. Since it is a series of positive terms, it diverges to co.

oo
Does th l————+- — . ?
oes the series 4 16 9 25 49 converge

Here, the series has been made up from the terms 1/n? by taking first one

Does the series Z converge?

term, next two negative terms of squares of next even numbers, then three
positive terms which are squares of next three odd numbers, and so on. This
is a rearrangement of the series

| 1 1 1 1 1

TRt TRt Te’
which is absolutely convergent (since Y (1/n?) is convergent). Therefore, the
given series is convergent and its sum is the same as that of the alternating

series Y. (=1)"1(1/n?).
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o ay

16. Let (ay) be a sequence of positive terms. Show that if }; 7>, 172~ converges,
then > | a, converges.
o0
) a a 1 a
Since Z " converges, —— — 0. Then =1-— 1.
1+a, 1+a, 1+a, 1+a,
n=1
a 1
Now, —— / an = — 1.
1+a, 1+a,
. a .. .
Since Z T +" converges, so does )] a, by limit comparison test.
an

17. Let (an) be a sequence of positive non-increasing terms. Show thatif 3.7 | a,
converges, then the sequence (na,) converges to 0.
For any m € N,

2mayy < 2(ame1+---+am), (Cm+1)armer < 2(ame1+- - +02me1) = A2met -

Since the series )| a, converges, a, converges to 0. Using Cauchy criterion,

as m — oo,
20@me1 + -+ am) =0, 2(ame1 + -+ a2me1) — a2me1 — 0.

Therefore, both 2ma,,, — 0 and (2m + 1)azu+; — 0. That is, na, — O.

Series Representation of Functions §2.10
1. Determine the interval of convergence for each of the following power series:

WYY mYE oY
n=1 n n=1 n2 n=0 n+l1
+1
(a) Its radius of convergence is lim || = lim n =1.

n—oo |an+1 | n—oo n
The power series is around x = 0, i.e., it is in the form }; a,(x — a)", where

a = 0. Thus, the power series converges at every point in the interval (-1, 1).

To check at the end points:

) 1 1
For x = —1, the series —1 + = — = + - - - converges.

For x = 1, the series is 1 + > + 3 + - - - diverges.
Therefore, its interval of convergence is (—1,1) U {-1} = [-1,1).
1 2
(b) Its radius of convergence is lim L =
n—co 1/(n+1)2
At x = +1, the series Y,(1/n?) converges.
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Hence the interval of convergence is [—1, 1].

i n

(c) Here, we consider the series in the form x Z (-n"

n+1

n

T a,=(-D"/(n+1).

Thus lim |a,,/a,,+1| = hm(n +2)/(n+1) = 1. Hence R = 1. That is, the series
is convergent for all x € (-1, 1).
We know that the series converges at x = 1 and diverges at x = —1.

For the series Z( 1)"

Therefore, the interval of convergence of the original power series is (-1, 1].
2x  (2x)?  (2x)°

2. Determine the interval of convergence of the series T~ 3 + 3 XX
Using Ratio test, we see that
(2x)n+1 n
im = = |2x]|.
n—col n+1 (2x)*1 nocoln+
Thus the series converges for |2x| < 1, i.e., for |x| < 1/2.
Also, we find that when x = 1/2, the series converges and when x = —1/2,

the series diverges.
Hence the interval of convergence of the series is (—1/2, 1/2].

3. Determine power series expansion of the functions

In(1

@h(l+x) (b "I+
1 —x

(a)For—-1<x <1, — = l-x+x - +xt -
1+x

Integrating term by term and evaluating at x = 0, we obtain

2 x3 x4

ln(1+x):x—?+?—Z+--- for -1 <x<1.

(b) Using the results in (a) and the geometric series for 1/(1 — x), we have

o0

In(1+x) Z(l)nl Zx for —1<x<1

1_
x n=0

For obtaining the product of the two power series, we need to write the first
in the form )’ a,x". (Notice that for the second series, each b,, = 1.) Here, the
first series is
a (_1 n—1
In(1+x) = Z a,x", where ay=0anda, =
n=0

forn > 1.

n



140

. Find the sum of the alternating harmonic series Z —
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In(1 + -
Thus the product above is u = Z cpx", where
1-—x oy

1
cn:aobn+a1bn_1+---+anb0:a0+a1+---an=1—§+§—---+

has interval of convergence (-1, 1). However, prove that

The function 7

it has power series representation around any ¢ # 1.

1 | )
l—x l1-cl-2x= Z(l—)n(x_c)

T—c

This power series converges for all x with |x —¢| < |1 —¢|, i.e., for x €
(c—=|1=cl,c+]|1 =c]).

is well defined for each x # 1.

We also see that the function
- x

n=0

Consider the power series representation of 7 . Integrating term by term.
x

n+l

1 - = x
— = E -1)"x" = In(1 = E "
1+x n:O( )x n(l+x) nzO( ) n+1

Notice that the interval of convergence of the first power series is (—1,1).
But the interval of convergence of the second power series is (—1, 1]. Thus,
evaluating the second series at x = 1, we have

1 1 1 1

ln2—1—§+§—4—1 3

sin x

. Give an approximation scheme for J ——dx where a > 0.

Using the Maclaurin series for sin x, we have

sin x x2 x4 %0

x T 3tsmTT"

Integrating term by term, we get

—dx=a- + - +--

Jsmx a’ @ a’
3.3 5.5 7.7

Approximations to the integral may be obtained by truncating the series
suitably.
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11 1-3 1 1-3-5 1 T
7. Show that 1 + = = + —— - — R
3Ty 45 246 77 2 RO
Inthebinomialseries(l+x)m:1+mx+m(1n; )x2 m(ml— 2)(’;1_ )x3
for |x| < 1, substitute x = —t% and m = —1/2 to obtain

L oilp L3 135,
iz 2P Taa e

Integrating this power series from O to x for any x € (-1, 1), we have

X = =X — - =X —_— . =X _— =X o o
This series also converges for x = 1. It may be seen as follows:
1-3-5---(2n-1) 1 2n+1 2n+1

Here, leaving the firstterm, u,, = 546 (n) oy Upyl =

It follows that for n > 2, upe1 < 4(nup — (n+ uger).

U on 2 2n+3

m m—1 m—1

Thens,, = Z Uy = Z Upyl < 4( Z(nu,, —(n+ 1)un+1) = 4(u; — muy,) < 4u,.
n=1

n=2 n=1
Hence s, is an increasing sequence of positive terms having an upper bound

as 4uy.

(S}
That is, the series 1 + Z u, converges.
n=1

. . T
Therefore, for x = 1, the series converges to sin 1= 5

8. Find the Fourier series of f(x) given by: f(x) = 0 for -7 < x < 0; and
f(x) =1for 0 < x < x. Say also how the Fourier series represents f(x).
Hence give a series expansion of 7 /4.

1J” {1 forn=0
ap = — cosnx dx =

T Jo 0 forn#0
1 (" 1 [1-cosnm] 1-(-1)" 2 for n odd
b, = — sinnx dx = — = ="t
T Jo T n nr 0 forneven

Hence the Four ies for £(x) i 1+2isin(2n+l)x
ence the Fourier series for f(x)is =+ — ) —————

2 o 2n+1
By the convergence theorem for Fourier series, we know that this Fourier
series converges to f(x) for any x # 0. At x = 0, the Fourier series converges

to 1/2.
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Taking x = /2, we have

1 Zsm(n+l/2)n 1+g°° (=1)"

2 2n+1 2 2n+1°
n=0 n=0
T oo (=D)"
Theref —:E
ere ore,4 il
n=0
2 - 1

. Considering the fourier series for |x|, deduce that — = _—
ing u |x| u 2 Z n

+1)2
Cinsider f(x) = |x| in the interval [—u, x]; extended to R with period 2.
Now, it is an even function. Thus each b, is 0. Next, ag = (2/7) L;[ xdx = .
And forn > 0,

ZJ'” 2 [(—1)"—1]
a, = — xcosnxdx = — —-
T Jo JT n

-4

That iS, aryy = O, An+l = m forn = 1, 2, 3...

By the convergence theorem for Fourier series, we have

4 & cos(2n+ 1
|x|:g—;ZM for x € [-m, ].

2
4 (2n+1)
2 o0
T 1
Takin =0, we have — =
8x Z::; (2n+ 1)
[} —1)"
Considering the fourier series for x, deduce that Z_ ; +)1 .
n
n=0

Consider f(x) = x for x € [, x]. It is an odd function. Hence in its Fourier
series, each a, = 0. Forn > 1,

2 (" 2
b, = —f xsinnxdx = — [—x

T Jo JT

cosnx1t 2 J” COSs nx 2(-1)m!
] dx = .
0 0

n T n n

i -1 n+1
Thus the Fourier series for f(x) = x in [, 7] is 2 Z b))

n=1
( 1)n+1 Conrm o (_1)n
sin — = .
2 oy 2n+1
Considering the fourier series for f (x) given by: f(x) =—-1,for-7 <x <0
o (=D)"
— 2n+1

sin nx.

n

Taking x = /2, we have - = Z

and f(x) = 1 for 0 < x < 7. Deduce that % =
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12.

13.

Here, f(x) is an odd function. Thus in its Fourier series, each a, is 0.
Forn > 1,

2 (" 2 2
bn:—J sinnxdx = — (1 —cosnm) = —(1 - (=1)").
ni ni

T Jo

o sin(2n + 1)x

4
D h h =— i .
ue to the convergence theorem, f(x) — Z il orx # 0
Taking x = /2, we obtain the desired expression for /4.
Considering f(x) = x2, show that for each x € [0, 7],
1 o 2t (=)™ 4 2(-1)"
22( ki COS’”‘_Z”( P22 G

We determine sine and cosine series expansions of f(x) = x? for 0 < x < 7.
The odd and even expansions of f(x) are

—x2 for —r<x<0

foda(x) = 5 Seven(x) = x> for —mr<x <.
x< for 0<x<um,

2 o n
. . . —1)"cos nx
We see that, as earlier, f;,en(x) has the Fourier expansion 3 +4 E %

n=1
for x € [0, x]. Due to the convergence theorem of Fourier series, this series

sums to x2 in [0, ].

n

For the sine series expansion, we determine the Fourier series of fz4(x).
Here, each a, is 0. And forn > 1,

2 (7" -t 4 (=D -1
bn:_J xzsinnxdx:2nL+—[L].
T

T Jo n n3

Due to the convergence theorem of Fourier series, x> = 2y bn sinnx for

€ [0, x].
Equating both the sine and the cosine series for f(x) = x? in [0, 7], we obtain
the required result.

Represent the function f(x) = 1 — |x| for -1 < x < 1 as a cosine series.
. . . . . .. a
It is an even function. Thus its Fourier series is 30 + Z ay, cos nix, where
n=1
1
a0=2jo(1 -x)dx=1.
Forn > 1,
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1 0 for n even

1
ap = (1—|x|)cosn7rxdx:2‘[
J—1 0 4/(n*7*) for n odd.

(1 —x)cosnaxdx = {

cos(2n + 1)zx
) Z fo

Thereofore, 1 — |x| = (2n+ 1)
n

r -1 <x<1.

Basic Matrix Operations §3.6

1. Show that given any n € N there exist matrices A,B € R™" such that

AB # BA.
Let A= lexe eseqs --- e,] and B = [o uu --- u], where ey,...,e, are
standard basis vectors of R™! and u = (1, 1, 1,...,1)T, 0= (0,0,0,...,0)T.
1 10
2. LetA=10 1 2.Compute A".
001
1 nnn-1)
We show that A" = [0 1 2n for n € N by induction.
00 1
The basis case n = 1 is obvious. Suppose A" is as given. Now,

1 1 0]l nnn-1) I n+1 (n+1)n
A™l=aam=10 1 2|{0 1 2n |=[0 1 2(n+D].
00 1/00 1 0 0 1

Notice that taking n = 0 in the matrix A", we see that AV =1

3. Let A € F™"; B e F™k Let Ay, ..., A, be the rows of A and let By, ..., B
be the columns of B. Show that
(a) A1B, ..., AyB are the rows of AB. (b) ABj, ..., AB; are the columns
of AB.
(a) The jth entry in A;B is A; - Bj, which is the (i, j)th entry in AB.
(b) The ith entry in AB; is A; - Bj, which is the (i, j)th entry in AB.

4. Let A € F™"; [ be the identity matrix of order n.
IA
Find the inverse of the 2n X 2n matrix [ 0 I] .
-1

IA I-A
Check by muiltiplying: [O I] = [O I ] .
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5. If A is a hermitian (symmetric) invertible matrix, then show that A7l s
hermitian (symmetric).
A* = A. Then (A™1)* = (A")~! = A7, So, A~! is hermitian.
Similarly, for symmetric take transpose instead of conjugate transpose.

6. If A is a lower (upper) triangular invertible matrix, then A~! is lower (upper)
triangular.
Suppose AU = [u; - -u,]. Then AA™! =T implies Au; = e;. Now, A is
lower triangular with nonzero entries on the diagonal. Writing A = [a;;], and
ur = [y1,...,ya]', we have
aiyr =0, apyy; +axny: =0,.... This givesy; =0, y =0, ...y;—; = 0.
Thus A~! is lower triangular.
Aliter: Suppose A is a lower triangular matrix of order n. Let D be the
diagonal matrix whose diagonal entries are exactly the diagonal entries of A
in the correct order. Since A is invertible, D is also invertible. Then write
A =D(I+ N). Here, N is a lower triangular matrix with all diagonal entries
as 0. Then N" = 0. Verify that A™' = (I - N+ N2 —-- -+ (=) IN*1)D~L,
Also, verify that this is a lower triangular matrix.

7. Show that each orthogonal 2 X 2 matrix is either a reflection or a rotation.
If A = [aj;] is an orthogonal matrix of order 2, then ATA = I implies

2 2 2 2
aj, + a = 1= aij, + ay,, ai1ai2 +ajiax = 0.
Thus, there exist a, § such that
aj] =cosa, ap] =sina, ajy = cos f, ax = sin f and cos(a — f) = 0.
It then follows that A is in one of the following forms:

5

sin@ —cos6@

O cosf —sinf
P lsind  cos6

_ [cos 0  sin 9]

Let (Tb; be the vector in the plane that starts at the origin and ends at the
point (a, b). Writing the point (a, b) as a column vector [a b]T, we see that the
matrix product O [a b]” is the end-point of the vector obtained by rotating
the vector (Tb)) by an angle 6. Similarly, O,[a b]T gives a point obtained by
reflecting (a, b) along a straight line that makes an angle 6/2 with the x-axis.
Thus, O is said to be a rotation by an angle 6 and O, is called a reflection by
an angle 0 /2 along the x-axis.

8. Let u,0,w € F™!. Show that {u + 0,0 + w, w + u} is linearly independent iff
{u,v, w} is linearly independent.
au+Pfo+yw=0= #(u+v)+ﬁ+y7_a(v+w)+#(w+u) =0
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=sa+f-y=0,f+y—-a=0,a+y-f=0=a=F=y=0.

So, {u, v, w} is linearly independent.

Conversely, a(u+v)+b(v+w)+c(w+u) = 0 = (a+c)u+(a+b)v+(b+c)w =0
=>a+c=0,a+b=0,b+c=0=a=0,b=0,c=0.

Hence {u + v,v + w, w + u} is linearly independent.

9. Find linearly independent vectors from U = {(a, b,c) : 2a + 3b — 4c = 0} so
that the set of linear combinations of which is exactly U.
U={(abc):2a+3b—4c=0}={(ab 2t): qbeR}.

The vectors (1,0,1/2) and (0, 1,3/4) are in U.

(a, b, 2“%31’) =a(1,0,1/2) +b(0, 1,3/4). So, these two vectors span U.
_ _ _ () 2a#3b _

Now, a(1,0,1/2) +b(0,1,3/4) = (0,0,0) = a=0,b =0, == = 0.

So, the vectors are linearly independent.

10. Determine linearly independent vectors so that the set of linear combinations
of whichis U = {(a,b,c,d, e) € R :a=c= e,b+d =0}
U={(ab,a,-b,a):abecR}={a(1,0,1,0,1) +b(0,1,0,-1,0) : a,b € R.
Ifa(1,0,1,0,1) + (0,1,0,—1,0) =0, thena = b = 0.

So, the vectors are (1,0,1,0,1) and (0, 1,0, —1,0).

Row Reduced Echelon Form §4.7

1. Convert the following matrices into RREF and determine their ranks.

52317 5 2-3 130
(@|1-3 2-211 b |1-3 2-211
3 8-7 5 8 3 8-7 58

[10 —5/17-1/170

(a) RREF of the matrix is |0 1 —13/17 11/17 0 | . So its ranks is 3.
00 0 01

[10 —5/17 =1/17 112/17

(b) RREF of the matrix is [0 1 —13/17 11/17 —=25/17 | . So its rank is 2.
00 0 O 0

2. Determine linear independence of {(1,2,2,1), (1,3,2,1), (4,1,2,2), (5,2,4,3)}
in CP4,
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1001/3
010 O
00113]"
000 O
Since a zero row has appeared in the RREF, the vectors are linearly depen-
dent. Moreover, there had been no row exchanges in this reduction, and the
fourth vector has been reduced to the zero row. Thus the fourth vector is a
linear combination of the three previous ones.

The RREF of the matrix whose rows are the given vectors is

Alternative: Take the matrix, where the given vectors are taken as column vec-

100 2
. ) 010-1 )
tors. Reduce it to RREF. You obtain: ool 1l Thus the fourth vector is a

000 O
linear combination of the earlier ones, whose coefficients are 2, —1, 1, respec-

tively. You can verify that (5,2,4,3) =2(1,2,2,1)-1(1,3,2,1)+1(4, 1,2,2).
So, the set is linearly dependent.

4-7-5
3. Compute A~ using RREF and also using determinant, where A = | -2 4 3.
3-5-4
13 1
Compute and see that A~ = [-11 2.
2 1-2

4. Solve the following system by Gauss-Jordan elimination:

X1 +x2 +x3 +x4 —3x5 = 6
2x1 +3x> +x3 +4x4 —9x5 =17
X1 +x2 +Xx3 +ZX4 —5X5 =8
2X1 +2)C2 +2X3 +3X4 —8X5 =14

We reduce the augmented matrix to its RREF:

(1j111-3| 6 [1]1 11-3l6
2314917 _ | 01-12-35
1112-5/8 00 01-22
2223 -8|14 00 01-22

(1] 0 2-1 of1 (1] 0 2 0-23
oft]-1 2-3|5| 0[1]-1 0 1)1
00 0 1-22 0 0 o[1]-2]2|
000 1-22 0000 00
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Find out the row operations used in each step. Since no pivot is on the b
portion, the system is consistent. To solve this system, we consider only the
pivot rows, ignoring the bottom zero rows. The basis variables are x1, x7, x4
and the free variables are x3, x5. Write x3 = @ and x5 = 8. Then

x1=3-2a+2B, xx=1l4+a-p x3=a x4=2+2, x5=0Pp.

. Check if the system is consistent. If so, determine the solution set.

(a) X1 —XQ+2X3—3X4 =7, 4X1 +3X3 + X4 =9, 2X1 —5XQ+X3 =-2,
3X1 - 2x2 - ZX3 + IOX4 =-12.

(b) X1 —XQ+2X3—3X4 =7, 4X1 +3X3 + X4 =9, 2x1 —SXQ+X3 =-2,
3X1 - 23(‘2 - ZX3 + lOX4 =-14.

(100 2 0
010 1/3 0
001-7/30
000 0 1
(100 2 -10/9
010 1/3 23/27
001-7/3121/27|
000 0 0

Thus solution is x; = —% +2a, x3 = % +35, X3 = % + %“ X4 = Q.

(a) RREF of [A|b] is . Thus inconsistent.

(b) RREF of [A|b] is

. Using Gauss-Jordan elimination determine the values of k € R so that the

system of linear equations
x+y—z=1 2x4+3y+kz=3, x+ky+3z=2

has (a) no solution, (b) infinitely many solutions, (c) exactly one solution.

0 -k-3 0
Gauss-Jordan elimination on [A|b] yields | O k+2 1

0 0 (k+3)2-k)2-k
(a) The system has no solution when (k +3)(2 — k) =0but2 — k # 0,
that is, when k = -3.
(b) It has infinitely many solutions when (k +3)(2 - k) =0=2 -k,
that is, when k = 2.
(c) It has exactly one solution when (k + 3)(2 — k) # 0,
that is, when k # -3,k # 2.

. Let A be an n X n matrix with integer entries and det(A%) = 1. Show that all

entries of A~! are also integers.
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det(A?) = [det(A)]> = 1 = det(A) = +1. So, A is invertible. Since A has
integer entries, adj(A) has also integer entries. Now, A~! = [det(A)] 'adj(A)
has inteeger entries.

8. Let A € F™" have columns Ay, ..., A,. Let b € F". Show the following:

(a) The equation Ax = 0 has a non-zero solution iff Ay, ..., A, are linearly
dependent.

(b) The equation Ax = b has at least one solution iff b € span{Aj,...,A,}.

(c) Letu be a solution of Ax = b. Then, u is the only solution of Ax = b iff
Ay, ..., A, are linearly independent.

(d) The equation Ax = b has a unique solution iff rankA = rank[A|b] =
number of unknowns.

(a) We have scalars «y, . . ., ap not all O such that )} o;A; = 0. Buteach A; = Ae;.
So, A(D aje;) = 0. Here, take x = > a;e;. See that x # 0.

(b) If b is a linear combination of the columns of A, then that linear combina-
tion provides a solution. Conversely, a solution provides a linear combination
of columns of A which is equal to b.

(c) We have Au = b. Assume that Ay,..., A, are linearly independent. If
Av = b, then A(u—0) =0.Letu—o = (ay,...,a,)". Then A(u—0) = 0 canbe
rewritten as ajA; + - - - a4, A, = 0. Since Ay, ..., A, are linearly independent,
each @; is 0. Thatis, u—ov = 0. Conversely, if Ay, .. ., A, are linearly dependent,
then scalars fy, . .., B, not all zero exist such that f1A; +- - - f,A, = 0. That is,
Av =0 witho = (fy, .. .,ﬂn)T. Then, u and u + v are two solutions of Ax = b.

(d) Let A € F™".

If the system Ax = b has a unique solution, then it is a consistent system and
rank(A) = n.

That is, rank(A) = rank[A|b] and rank(A) = n = number of unknowns.

9. Let A € F™" have rank r. Give reasons for the following:

(a) rank(A) < min{m, n}.
(b) If n > m, then there exist x, y € F™! such that x # y and Ax = Ay.
(c) If n < m, then there exists y € F™! such that for no x € F**!, Ax = y.
(d) If n = m, then the following statements are equivalent:
i. Au= Avimpliesu =v forall u,v € >l
ii. Corresponding to each y € F™!, there exists x € F™! such that
y = Ax.
(a) rank(A) is the number of pivots in the RREF. So, it is less than or equal
to the number of rows, and also less than or equal to the number of columns.
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(b) Suppose n > m. Then the RREF has at most m pivots. And, there are
n —m > 1 number of non-pivotal columns. These non-pivotal columns are

linear combinations of pivotal columns in A. So, there exist scalars a1, . .., ay
not all zero such that «1Cy + - - - «,C,, = 0 where C; is the ith column of A.
Then (aj, ..., a,) is a nonzero solution to Ax = 0. Now, A0 = 0 and Au = 0,
where u = (ay,...,a,) #0.

(c) Suppose n < m. Let EA be the RREF of A. Consider the equation Ax =
E~'e,.1. This has the same solutions as the system EAx = e,,1. But [EA|eps1]
has a pivot in the right most column, which has no solution.

(d) Suppose n = m.

Assume (i). Then Ax = O has a unique solution. Then number of basic
variables is n. So RREF of A is I. That is, A is invertible. Then Ax = y has a
solution for each y, namely, x = Al y. This proves (ii).

Conversely, assume (ii). That is, for each y, Ax = y has a solution. In
particular, Ax = e; has a solution for each i. Thus, A is invertible. Then
Ax = Ay implies x = y.

Matrix Eigenvalue Problem §5.7

1. Find the eigenvalues and the associated eigenvectors for the matrices given

below.
-203
30 32 —2-1
(a) [8_1] (b) [_10] (c>[5 2] @ [-230].
005

(d) Call the matrix A. Its characteristic polynomial is —(2 + ¢)(3 — t)(5 — t).
So, the eigenvalues are A = -2, 3, 5.

For A = =2, A(a,b,¢)T = —2(a,b,c)T = —2a+3c = —2a, —2a +3b =
-2b, 5¢ = —2c.

One of the solutions for (a,b,c)” is (5,2,0)7. It is an eigenvector for A = —2.
For A =3, A(a,b,c)T =3(a,b,c)T = —2a+3c =3a, —2a+3b =3b, 5c = 3c.
One of the solutions for (a, b, c)T is (0, 1,0)7. It is an eigenvector for A = 3.
For A =5,A(a,b,c¢)T =5(a,b,c)T = —2a+3c =5a, —2a+3b =5b, 5¢ = 5c.
One of the solutions for (a, b, c)T is (3,-3,7)7. It is an eigenvector for A = 5.
Similarly, solve others.

2. Let A be an n X n matrix and « be a scalar such that each row (or each column)
sums to «. Show that « is an eigenvalue of A.



Matrix Eigenvalue Problem 151

If each row sums to «, then A(1,1,...,1)T = a(1,1,...,1)T. Thus « is an
eignevlaue with an eigenvector as (1, 1,...,1)T.

If each column sums to «, then each row sums to « in AT. Thus AT has an
eigenvalue as . However, AT and A have the same eigenvalues. Thus « is
also an eigenvalue of A.

3. Let A € C™" be invertible. Show that A € C is an eigenvalue of A if and only
if A1 is an eigenvalue of A~!.

Since A is invertible, its determinant is nonzero. As det(A) is the product of
eigenvalues of A, no eigenvalue of A is 0.
Also, for any nonzero A, Av = Av iff A 1A Ao = 2T A o iff 1o = Ao,
This shows that A is an eigenvalue of A iff A~ is an eigenvlaue of A~

4. The vectors u; = (1,2,2),uy = (-1,0,2),us = (0,0, 1) are linearly indepen-
dent in F>. Apply Gram-Schmidt Orthogonalization.

S, (-1,02) (1,22
] wo) C(-1,02)-(1,2,2 o
V) =uUpy — or.op) v =(-1,0,2) 1.22) (122 (1,2,2) = (—4/3,-2/3,4/3).
_ (u3, 1) (u3, v2)
03 = U3z — 1= 2
<Ul’(v(yo 1) - 82’2023) (0,0, 1) - (=4/3,—2/3,4/3)
SO0 -T2y Y T G (T

= (2/9,=2/9,1/9).
The set {(1, 2,2), (= 4/3,-2/3,4/3), (2/9,=2/o, 1/9)} is orthogonal.

5. LetA € R¥3 have the first two columns as (1/vV3, 1/V3,1/v3)T and (1/V2,0,-1/V2)T.
Determine the third column of A so that A is an orthogonal matrix.
Notice that the first two columns of A have norm 1, and are orthogonal to
each other. You can start with the third as (0,0, 1)T and use Gram-Schmidt
process. And then normalize the third vector.
Aliter: Let the third column be (a, b, c)T. Then the first two are orthogonal to
the third implies a+ b +c =0, a — ¢ = 0. This gives (a,b,¢)’ = (a, —2a,a).
Now, the third column has norm 1 implies that 1 = a® + 4a®> + a> = 64> =
a = £1/V6. Thus the third column of A is +(1/V6,-2/V6, 1/V6)T.

6. Show that eigenvectors corresponding to distinct eigenvalues of a unitary (or
orthogonal) matrix are orthogonal to each other.

Let « and S be distinct eigenvalues of a unitary matrix A with corresponding
eigenvectors x and y. That is, we have: A*A = AA* =1, Ax = ax, Ay = ay,
x#0, y+#0 and a # . We need to show that x L y. Now,

(Ax)*(Ay) = (ax)*(By) = x*A*Ay = @px"y = (@f - 1)x"y = 0.

Since A is unitary, any eigenvalue of A has absolute value 1.
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So, la’=1=aa=1=a=1/a.
Then (af-1)x*'y=0= (f/a—1)x*y=0= (f—a)x*y =0.
Since a # f, we get x*y = 0. Thatis, x L y.

Give an example of an n X n matrix that cannot be diagonalized.

Take A = [a;;] € C™" with a1 = 1 and all other entries as 0. Its eigenvalue
is 0 with algebraic multiplicity as n. If A is diagonalizable, then A is similar
to the zero matrix. But the only matrix similar to the zero matrix is the zero
matrix!

Find the matrix A € R> that satisfies the given condition. Diagonalize it if
possible.

(@) A(a,b,c)l =(a+b+c,a+b—c,a-b+c) forallab,ccR.
(b) Ae; =0, Aey=e;, Aez=en.
(c) Aej = ey, Aey=e3 Ae3=0.
(d) Ae; =e3, Aey =e), Aesz=e.

1 11
(@A=]| 1 1-1].Its characteristic polynomial is —(t + 1)(t — 2)°.
1-1 1

So, eigenvalues are —1 and 2. Solving A(a, b, )l = Ma,b,c) for A = -1,2,
we have
A=-1:a+b+c=-a, a+b—-c=-b,a—-b+c=-c=a=-c,b=c.
Thus a corresponding eigenvector is (=1, 1, 1)7.
A=2:a+b+c=2a, a+b—-c=2b,a—-b+c=2c=>a=b+c.
Thus two linearly independent corresponding eigenvectors are (1,1,0)” and
(1,0, )T,
-111
Take the matrix P = | 1 10| . Then verify that P~'AP = diag(-1,2,2).
101

(b) The eigenvalue 0 has algebraic multiplicity 3. If it is diagonalizable, then it
is similar to 0. But the only matrix similar to 0, is 0. So, A is not diagonalizable.

(c) Similar to (b).
110
(d) Proceed as in (a) to get P = | 0 0 1| and verify P~'AP = diag(-1, 1, 1).
-110

Which of the following matrices is/are diagonalizable? If one is diagonaliz-
able, then diagonalize it.
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I 11 111 101 011
(@|1-1 1 (b)|011 (©|110 @i|101y.
I 1-1 001 011 110

(a) It is a real symmetric matrix; so diagonalizable. Its eigenvalues are
-2,-1,2. Also since the 3 X 3 matrix has three distinct eigenvalues, it is
diagonalizable.

Proceed like 6(a).

(b) 1 is an eigenvalue with algebraic multipliity 3. If it is diagonalizable,
then it is similar to I. But the only matrix similar to I is I. Hence, it is not
diagonalizable.

(c) Its eigenvalues are 2, (1 + V31i)/2. Since three distinct eigenvalues; it is
diagonalizable. Here, P will be a complex matrix. Proceed as in 6(a).

(d) (1,0,-1)T and (1, -1,0)7 are two linearly independent eigenvectors asso-
ciated with the eigenvalue —1.
(1,1, )T is an eigenvector for the eigenvalue 2.
1 11
Hence taking P= | 0 —1 1|, we have P~'AP = diag(-1,-1,2).
-101
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2¢-periodic, 55
max(A), 2
min(A), 2

absolutely convergent, 36
absolute value, 3

addition, 74

adjoint of a matrix, 80
adjugate, 88

algebraic multiplicity, 116
algebra of limits, 8
Archimedean property, 2

basic variables, 112
Beta function, 27
binomial series, 54
bounded above, 8
bounded below, 8
bounded sequence, 8

Cauchy sequence, 8
Cayley-Hamilton, 117
center power series, 40
characteristic polynomial, 116
co-factor, 88

coeflicients power series, 40
column vector, 73
comparison test, 22, 31
completeness property, 1
complex conjugate, 79
conditionally convergent, 36
conjugate transpose, 80
consistency, 108

Consistent system, 110

convergence theorem power series,
41

convergent series, 14

converges improper integral, 19

converges integral, 18

converges sequence, 4, 5

Cramer’s rule, 109

decreasing sequence, 8
dense, 2

Determinant, 87
diagonalizable, 128
diagonalizable by P, 128
diagonal entries, 80
diagonal matrix, 81
Dirichlet integral, 71
divergent series, 14
diverges improper integral, 19
diverges integral, 18
diverges sequence, 5
diverges to —oo, 6, 15
diverges to oo, 6, 14
diverges to +oo, 19

eigenvalue, 115

eigenvector, 115

elementary row operations, 94
equal matrices, 74

error in Taylor’s formula, 51
even extension, 62

finite jump, 56
Fourier series, 56
free variables, 112

Gamma function, 25
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geometric series, 15 normal, 83
glb, 1 order, 74
Gram-Schmidt orthogonalization, orthogonal, 83
122 real symmetric, 82
size, 74

half-range cosine series, 62, 66
half-range Fourier series, 67
half-range sine series, 62

skew hermitian, 82
skew symmetric, 82
sum, 74

symmetric, 82
trace, 86

harmonic series, 16
Homogeneous system, 108

unitary, 83
zero, 74
monotonic sequence, 8

improper integral, 18
increasing sequence, 8
inner product, 119

integral part, 2

integral test, 28

interval of convergence, 42

neighborhood, 2
norm, 120

odd extension, 62
left hand slope, 57

off diagonal entries, 80
Leibniz theorem, 36

orthogonal, 122

limit of a sequence, 6 orthogonal vectors, 121

limit comparison series, 31

limit comparison test, 22 partial sum, 14

linearly dependent, 84 partial sum of Fourier series, 58
linearly independent, 84 piecewise continuous, 57

linear combination, 83 piecewise smooth, 57

Linear system, 107 pivot, 96

lub, 1 pivotal column, 96

powers of matrices, 78
power series, 40
Pythagoras, 121

Maclaurin series, 52
Matrix, 73
augmented, 104

entry, 73 radius of convergence, 42
hermitian, 82 rank, 100

identity, 77 ratio comparison test, 31
inverse, 78 ratio test, 32

invertible, 78 re-indexing series, 17
lower triangular, 82 Reduction to RREF, 97
multiplication, 75 right hand slope, 57

multiplication by scalar, 74 root test, 34
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Row reduced echelon form, 96
row vector, 73

sandwich theorem, 9
scalars, 73

scalar matrix, 81
sequence, 4

Similar matrices, 117
solvable, 108

span, 122

standard basis vectors, 81
subsequence, 8

sum of series, 14

Taylor series, 52

Taylor’s formula, 51

Taylor’s formula differential, 49
Taylor’s formula integral, 48
Taylor’s polynomial, 51

terms of sequence, 4

to diagonalize, 129

transpose of a matrix, 78
triangular matrix, 82
trigonometric series, 55

upper triangular matrix, 82

vectors, 73
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Weighted mean value theorem, 49



