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1
Series of Numbers

1.1 Preliminaries
We use the following notation:

∅ = the empty set.
N = {1, 2, 3, . . .}, the set of natural numbers.
Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the set of integers.
Q =

{𝑝
𝑞

: 𝑝 ∈ Z, 𝑞 ∈ N
}
, the set of rational numbers.

R = the set of real numbers.
R+ = the set of all positive real numbers.

As we know, N ⊊ Z ⊊ Q ⊊ R. The numbers in R \ Q is the set of irrational
numbers. Examples are

√
2, 3.10110111011110 · · · etc.

Along with the usual laws of +, ·, <, R satisfies the completeness property:

Every nonempty subset of R having an upper bound has a least upper
bound (lub) in R.

Explanation: Let 𝐴 be a nonempty subset of R. A real number 𝑢 is called an upper
bound of 𝐴 if each element of 𝐴 is less than or equal to 𝑢. An upper bound ℓ of 𝐴 is
called a least upper bound if all upper bounds of 𝐴 are greater than or equal to ℓ .

Notice that Q does not satisfy the completeness property. For example, the
nonempty set 𝐴 = {𝑥 ∈ Q : 𝑥2 < 2} has an upper bound, say, 2. But its least upper
bound is

√
2, which is not in Q.

Similar to lub, we have the notion of glb, the greatest lower bound of a subset of
R. Let 𝐴 be a nonempty subset of R. A real number 𝑣 is called a lower bound of 𝐴
if each element of 𝐴 is greater than or equal to 𝑣 . A lower bound 𝑚 of 𝐴 is called
a greatest lower bound if all lower bounds of 𝐴 are less than or equal to 𝑚. The
completeness property of R implies that

Every nonempty subset of R having a lower bound has a greatest lower
bound (glb) in R.

1
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The lub acts as a maximum of a nonempty set and the glb acts as a minimum of
the set. In fact, when the lub(𝐴) ∈ 𝐴, this lub is defined as the maximum of 𝐴
and is denoted as max(𝐴). Similarly, if the glb(𝐴) ∈ 𝐴, this glb is defined as the
minimum of 𝐴 and is denoted by min(𝐴).

A consequence of the completeness property of R is the Archimedean property:

If 𝑎 > 0 and 𝑏 > 0, then there exists an 𝑛 ∈ N such that 𝑛𝑎 ≥ 𝑏.

From the Archimedean property, it follows that corresponding to each real number
𝑥 , there exists a unique integer 𝑛 such that 𝑛 ≤ 𝑥 < 𝑛 + 1. This integer 𝑛 is called
the integral part of 𝑥 , and is denoted by [𝑥]. That is,

[𝑥] = the largest integer less than or equal to 𝑥 .

Using the Archimedean property it can be proved that both Q and R \ Q are dense
in R. That is, if 𝑥 < 𝑦 are real numbers then there exist a rational number 𝑎 and an
irrational number 𝑏 such that 𝑥 < 𝑎 < 𝑦 and 𝑥 < 𝑏 < 𝑦.

We may not explicitly use these properties of R but some theorems, whose proofs
we will omit, can be proved using these properties. These properties allow R to be
visualized as a number line:

Let 𝑎, 𝑏 ∈ R, 𝑎 < 𝑏.

[𝑎, 𝑏] = {𝑥 ∈ R : 𝑎 ≤ 𝑥 ≤ 𝑏}, the closed interval [𝑎, 𝑏] .
(𝑎, 𝑏] = {𝑥 ∈ R : 𝑎 < 𝑥 ≤ 𝑏}, the semi-open interval (𝑎, 𝑏] .
[𝑎, 𝑏) = {𝑥 ∈ R : 𝑎 ≤ 𝑥 < 𝑏}, the semi-open interval [𝑎, 𝑏).
(𝑎, 𝑏) = {𝑥 ∈ R : 𝑎 < 𝑥 < 𝑏}, the open interval (𝑎, 𝑏).
(−∞, 𝑏] = {𝑥 ∈ R : 𝑥 ≤ 𝑏}, the closed infinite interval (−∞, 𝑏] .
(−∞, 𝑏) = {𝑥 ∈ R : 𝑥 < 𝑏}, the open infinite interval (−∞, 𝑏).
[𝑎,∞) = {𝑥 ∈ R : 𝑥 ≥ 𝑎}, the closed infinite interval [𝑎,∞) .
(𝑎,∞) = {𝑥 ∈ R : 𝑥 ≤ 𝑏}, the open infinite interval (𝑎,∞) .
(−∞,∞) = R, both open and closed infinite interval.

We also write R+ for (0,∞) and R− for (−∞, 0). These are, respectively, the set
of all positive real numbers, and the set of all negative real numbers.

A neighborhood of a point 𝑐 is an open interval (𝑐 − 𝛿, 𝑐 + 𝛿) for some 𝛿 > 0.
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The absolute value of 𝑥 ∈ R is defined as |𝑥 | =
{
𝑥 if 𝑥 ≥ 0
−𝑥 if 𝑥 < 0.

Thus |𝑥 | =
√
𝑥2. And | − 𝑎 | = 𝑎 for 𝑎 ≥ 0. If 𝑥,𝑦 ∈ R, then |𝑥 − 𝑦 | is the distance

between real numbers 𝑥 and 𝑦. Moreover,

| −𝑥 | = |𝑥 |, |𝑥𝑦 | = |𝑥 | |𝑦 |,
���𝑥
𝑦

��� = |𝑥 ||𝑦 | if 𝑦 ≠ 0, |𝑥 +𝑦 | ≤ |𝑥 | + |𝑦 |, | |𝑥 | − |𝑦 | | ≤ |𝑥 −𝑦 |.

Let 𝑥 ∈ R and let 𝑎 > 0. Then the following are true:

1. |𝑥 | = 𝑎 iff 𝑥 = ±𝑎.
2. |𝑥 | < 𝑎 iff −𝑎 < 𝑥 < 𝑎 iff 𝑥 ∈ (−𝑎, 𝑎).
3. |𝑥 | ≤ 𝑎 iff −𝑎 ≤ 𝑥 ≤ 𝑎 iff 𝑥 ∈ [−𝑎, 𝑎] .
4. |𝑥 | > 𝑎 iff −𝑎 < 𝑥 or 𝑥 > 𝑎 iff 𝑥 ∈ (−∞,−𝑎) ∪ (𝑎,∞) iff 𝑥 ∈ R \ [−𝑎, 𝑎] .
5. |𝑥 | ≥ 𝑎 iff −𝑎 ≤ 𝑥 or 𝑥 ≥ 𝑎 iff 𝑥 ∈ (−∞,−𝑎] ∪ [𝑎,∞) iff 𝑥 ∈ R \ (−𝑎, 𝑎).

Therefore, for 𝑎 ∈ R, 𝛿 > 0,

|𝑥 − 𝑎 | < 𝛿 iff 𝑎 − 𝛿 < 𝑥 < 𝑎 + 𝛿 iff 𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿) .

The following statement is useful in proving equality using an inequality:

Let 𝑎, 𝑏 ∈ R. If for each 𝜖 > 0, |𝑎 − 𝑏 | < 𝜖, then 𝑎 = 𝑏.

1.2 Sequences
The infinite sum 100 + 10 + 1 + 1/10 + 1/100 + · · · is equal to the decimal number
111.111 · · · , whereas the infinite sum 1 + 2 + 3 + 4 + · · · is not a number. For the
first sum, we rather take the partial sums

100, 100 + 10, 100 + 10 + 1, 100 + 10 + 1 + 1/10, . . .

which are numbers and ask whether the sequence of these numbers approximates
certain real number? We may ask a similar question about the second sum.

As another example, consider approximating
√

2 by the usual division procedure.
We get the sequence

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, . . .

Does it approximate
√

2 ?
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In general, we define a sequence, specifically, a sequence of real numbers as a
function 𝑓 : N→ R. The values of the function are 𝑓 (1), 𝑓 (2), 𝑓 (3), . . . These are
called the terms of the sequence. The 𝑛th term of the sequence is 𝑓 (𝑛). Writing
𝑓 (𝑛) as 𝑥𝑛, we write the sequence in many ways such as

(𝑥𝑛), (𝑥𝑛)∞𝑛=1, {𝑥𝑛}∞𝑛=1, {𝑥𝑛}, or as (𝑥1, 𝑥2, 𝑥3, . . .)

showing explicitly its terms. For example, 𝑥𝑛 = 𝑛 defines the sequence

𝑓 : N→ R with 𝑓 (𝑛) = 𝑛,

that is, the sequence is (1, 2, 3, 4, . . .), the sequence of natural numbers. Informally,
we say “the sequence 𝑥𝑛 = 𝑛.”

The sequence 𝑥𝑛 = 1/𝑛 is the sequence (1, 1
2 ,

1
3 ,

1
4 , . . .); formally, (1/𝑛) .

The sequence 𝑥𝑛 = 1/𝑛2 is the sequence (1/𝑛2), also (1, 1
4 ,

1
9 ,

1
16 , . . .).

The constant sequence (𝑐) for a given real number 𝑐 is the constant function
𝑓 : N→ R, where 𝑓 (𝑛) = 𝑐 for each 𝑛 ∈ N. It is (𝑐, 𝑐, 𝑐, . . .).

A sequence is an infinite list of real numbers; it is ordered like natural numbers,
and unlike a set of numbers where there is no order.

There are sequences which approximate a real number and there are sequences
which do not approximate any real number. For example, (1/𝑛) approximates
the real number 0, whereas (𝑛) approximates no real number. Also the sequence
(1,−1, 1,−1, 1,−1, . . .), which may be written as

(
(−1)𝑛−1), approximates no real

number. We would say that the sequence (1/𝑛) converges to 0 and the other two
sequences diverge. The sequence (𝑛) diverges to ∞ and the sequence

(
(−1)𝑛−1)

diverges.
Look at the sequence (1/𝑛) closely. We feel that eventually, it will approximate

0. It means that whatever tolerance I fix, there is a term in the sequence after which
every term of the sequence away from 0 is within that tolerance. What does it mean?

Suppose I am satisfied with an approximation to 0 within the tolerance 5. Then,
I see that the terms of the sequence, starting with 1 and then 1/2, 1/3, . . . , all of
them are within 5 units away from 0. In fact, |1/𝑛 − 0| < 5 for all 𝑛. Now, you
see, bigger the tolerance, it is easier to fix a tail of the sequence satisfying the
tolerance condition. Suppose I fix my tolerance as 1/5. Then I see that the sixth
term onwards, all the terms of the sequence are within 1/5 units away from 0. That
is, |1/𝑛 − 0| < 1/5 for all 𝑛 ≥ 6. If I fix my tolerance as 10−10, then we see that
|1/𝑛 − 0| < 10−10 for all 𝑛 ≥ 1010 + 1.

This leads to the formal definition of convergence of a sequence.
Let (𝑥𝑛) be a sequence. Let 𝑎 ∈ R. We say that (𝑥𝑛) converges to 𝑎 iff for each

𝜖 > 0, there exists an𝑚 ∈ N such that for all natural numbers 𝑛 > 𝑚, |𝑥𝑛 − 𝑎 | < 𝜖.
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(1.1) Example
Show that the sequence (1/𝑛) converges to 0.

Let 𝜖 > 0. Take𝑚 = [1/𝜖], the natural number such that𝑚 ≤ 1/𝜖 < 𝑚 + 1. Then
1/(𝑚 + 1) < 𝜖. Moreover, if 𝑛 > 𝑚, then 1/𝑛 ≤ 1/(𝑚 + 1) < 𝜖. That is, for any
given 𝜖 > 0, there exists an 𝑚, (we have defined it here) such that for every 𝑛 > 𝑚,

we see that |1/𝑛 − 0| < 𝜖. Therefore, (1/𝑛) converges to 0.

Notice that in (1.1), we could have resorted to the Archimedean property directly
and chosen any natural number𝑚 > 1/𝜖.

Now that (1/𝑛) converges to 0, the sequence whose first 1000 terms are like (𝑛)
and 1001st term onward, it is like (1/𝑛) also converges to 0. Because, for any given
𝜖 > 0, we choose our𝑚 as [1/𝜖] +1000. That is, convergence behavior of a sequence
does not change if first finite number of terms are changed.

For a constant sequence 𝑥𝑛 = 𝑐, suppose 𝜖 > 0 is given. We see that for each 𝑛 ∈ N,
|𝑥𝑛 − 𝑐 | = 0 < 𝜖. Therefore, the constant sequence (𝑐) converges to 𝑐.

Sometimes, it is easier to use the condition |𝑥𝑛 − 𝑎 | < 𝜖 as 𝑎 − 𝜖 < 𝑥𝑛 < 𝑎 + 𝜖.
A sequence thus converges to 𝑎 iff each neighborhood of 𝑎 contains a tail of the

sequence.
We say that a sequence (𝑥𝑛) converges iff it converges to some 𝑎. Thus to say that
(𝑥𝑛) diverges means that the sequence does not converge to any real number what
so ever.

(1.2) Example
Show that the sequence {(−1)𝑛} diverges.
It means that whatever real number 𝑟 we choose, it is not a limit of the sequence
−1, 1,−1, 1,−1, . . . . To see this, we consider three cases:

Case 1: 𝑟 = 1. Let 𝜖 = 1/2. If the sequence converges to 1, then we have an𝑚 ∈ N
such that both (𝑚 + 1)st term and (𝑚 + 2)nd term are no more than 1/2 away from
1. Now, one of 𝑚 + 1 and 𝑚 + 2 is odd; write this odd number as 𝑘. In that case,
𝑥𝑘 = −1. Then it follows that |𝑥𝑘 − 1| = | − 1 − 1| < 1/2, a contradiction.
Case 2: 𝑟 = −1. Similar to Case 1. Consider an even number greater than𝑚.

Case 3: 𝑟 ≠ 1, 𝑟 ≠ −1. Let 𝜖 = 1
2 min{|𝑟 − 1|, |𝑟 + 1|}. That is, to whichever point

1 or −1 the real number 𝑟 is closer, take 𝜖 as half of that distance. Then neither
|𝑟 − 1| < 𝜖 nor |𝑟 − (−1) | < 𝜖. That is, no term of the sequence is within a distance
𝜖 from 𝑟 . So, the sequence does not converge to 𝑟 .

As you see, proving that a sequence does not converge is comparatively difficult.
To show that a sequence converges the definition demands that we first guess what
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could be its limit; then the definition helps in verifying that our guess is correct or
not. Also, notice that when 𝑥𝑛 converges to 𝑎, the 𝑚 in the definition may depend
on the given 𝜖. Thus {𝑥𝑛} does not converge means that corresponding to any real
number 𝑎 we get an 𝜖 > 0 such that there are infinitely many terms of the sequence
away from 𝑎 by at least 𝜖, that is, |𝑥𝑛 − 𝑎 | ≥ 𝜖 for infinitely many 𝑛’s.
There can be non-convergence in a way unlike the sequence {(−1)𝑛}. The terms
of the sequence may grow indefinitely taking positive values or may diminish
indefinitely taking negative values. In the first case, whatever natural number you
choose, there are infinitely many terms of the sequence which are bigger than the
chosen natural number. We say, it surpasses each natural number and in the second
case, it remains smaller than each negative integer. These correspond to the two
special cases of divergence.
Let (𝑥𝑛) be a sequence. We say that (𝑥𝑛) diverges to ∞ iff for every 𝑟 > 0, there
exists an𝑚 ∈ N such that for all natural numbers 𝑛 > 𝑚, 𝑥𝑛 > 𝑟 .

We call an open interval (𝑟,∞) a neighborhood of ∞. A sequence thus diverges to
∞ implies the following:

1. Each neighborhood of∞ contains a tail of the sequence.
2. Every tail of the sequence contains arbitrarily large positive numbers.

We say that (𝑥𝑛) diverges to −∞ iff for every 𝑟 > 0, there exists an𝑚 ∈ N such that
for all natural numbers 𝑛 > 𝑚, 𝑥𝑛 < −𝑟 .
Calling an open interval (−∞, 𝑠) a neighborhood of −∞, we see that a sequence
diverges to −∞ implies the following:

1. Each neighborhood of −∞ contains a tail of the sequence.
2. Every tail of the sequence contains arbitrarily small negative numbers.

We use a unified notation for convergence to a real number and divergence to ±∞.
Let (𝑥𝑛) be a sequence. When 𝑥𝑛 converges to a real number 𝑟 , we say that the
limit of (𝑥𝑛) is 𝑟 ; and when 𝑥𝑛 diverges to ±∞, we say that the limit of (𝑥𝑛) is ±∞.
For ℓ ∈ R ∪ {−∞,∞}, we write the phrase “the limit of 𝑥𝑛 is ℓ” in any one of the
following manner:

lim
𝑛→∞

𝑥𝑛 = ℓ, lim 𝑥𝑛 = ℓ, 𝑥𝑛 → ℓ as 𝑛 →∞, 𝑥𝑛 → ℓ .

(1.3) Example
Show that (a) lim

√
𝑛 = ∞; (b) lim log(1/𝑛) = −∞.

(a) Let 𝑟 > 0. Choose an 𝑚 > 𝑟2. Let 𝑛 > 𝑚. Then
√
𝑛 >

√
𝑚 > 𝑟 . Therefore,

lim
√
𝑛 = ∞.
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(b) Let 𝑟 > 0. Choose a natural number𝑚 > 𝑒𝑟 . Let 𝑛 > 𝑚. Then 1/𝑛 < 1/𝑚 < 𝑒−𝑟 .

Since log𝑥 is an increasing function, we have log(1/𝑛) < log 𝑒−𝑟 = −𝑟 . Therefore,
log(1/𝑛) → −∞.

Using the definitions of limit of a sequence many useful results can be shown. In
addition, using the completeness property of R some more results about sequences
can be proved.

1.3 Results on Sequences
It is of fundamental importance that if you obtain the limit of a sequence by some
method, then by following another method, you would not get a different limit.

(1.4) Theorem
Limit of a sequence is unique.

Proof. Let (𝑥𝑛) be a sequence. Suppose that lim𝑥𝑛 = ℓ and also that lim𝑥𝑛 = 𝑠.
We consider the following exhaustive cases.

Case 1: ℓ ∈ R and 𝑠 ∈ R. On the contrary, suppose that 𝑠 ≠ ℓ; that is, |𝑠 − ℓ | > 0.
Choose 𝜖 = |𝑠 − ℓ |/2. We have natural numbers 𝑘 and 𝑚 such that for every 𝑛 ≥ 𝑘

and 𝑛 ≥ 𝑚,

|𝑥𝑛 − ℓ | < 𝜖 and |𝑥𝑛 − 𝑠 | < 𝜖.

Fix one such 𝑛, say 𝑀 > max{𝑘,𝑚}. Both the above inequalities hold for 𝑛 = 𝑀.

Then

|𝑠 − ℓ | = |𝑠 − 𝑥𝑀 + 𝑥𝑀 − ℓ | ≤ |𝑥𝑀 − 𝑠 | + |𝑥𝑀 − ℓ | < 2𝜖 = |𝑠 − ℓ |.

So, |𝑠 − ℓ | < |𝑠 − ℓ |, a contradiction.

Case 2: ℓ ∈ R and 𝑠 = ∞. Since the sequence converges to ℓ , for 𝜖 = 1, there exists a
natural number 𝑘 such that for every 𝑛 ≥ 𝑘, we have |𝑥𝑛 − ℓ | < 1. Since the sequence
diverges to ∞, we have 𝑚 ∈ N such that for every 𝑛 > 𝑚, 𝑥𝑛 > ℓ + 1. Now, fix an
𝑀 > max{𝑘,𝑚}. Then both of the above hold for this 𝑛 = 𝑀. So, 𝑥𝑀 < ℓ + 1 and
𝑥𝑀 > ℓ + 1. This is a contradiction.
Case 3: ℓ ∈ R and 𝑠 = −∞. It is similar to Case 2.
Case 4: ℓ = ∞, 𝑠 = −∞. Again choose an 𝑀 so that 𝑥𝑀 is both greater than 1 and
also less than −1 leading to a contradiction.
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Sometimes it is helpful in determining whether a sequence converges, even if we
are not able to find its limit. Essentially, there are two results which help us to do
this. In stating these results, the following terminology will be used.

We say that a sequence (𝑥𝑛) is bounded iff there exists a positive real number 𝑘
such that for each 𝑛 ∈ N, |𝑥𝑛 | ≤ 𝑘; that is, when the whole sequence is contained in
an interval of finite length.

We also say that (𝑥𝑛) is bounded below iff there exists an𝑚 ∈ R such that 𝑥𝑛 ≥ 𝑚
for each 𝑛; and the sequence (𝑥𝑛) is called bounded above iff there exists an 𝑀 ∈ R
such that each 𝑥𝑛 ≤ 𝑀 for each 𝑛.

Clearly, a sequence is bounded iff it is both bounded below and bounded above.
The sequence

(
(−1)𝑛/𝑛

)
is bounded and it converges to 0.

Divergent sequences can be bounded or unbounded. For example,
(
(−1)𝑛

)
is a

bounded sequence whereas (𝑛) and (−𝑛) are unbounded sequences. The sequence(
(−1)𝑛

)
diverges, but it neither diverges to∞ nor to −∞. The sequence (𝑛) diverges

to∞; the sequence (−𝑛) diverges to −∞.
The sequence

(
(−1)𝑛 log𝑛

)
is unbounded; it diverges; but it neither diverges to

∞ nor to −∞.
A sequence (𝑥𝑛) is called increasing iff 𝑥𝑛 ≤ 𝑥𝑛+1 for each 𝑛. Similarly, (𝑥𝑛) is

called decreasing iff 𝑥𝑛 ≥ 𝑥𝑛+1 for each 𝑛. A sequence which is either increasing or
decreasing is called a monotonic sequence.

A sequence (𝑥𝑛) is called a Cauchy sequence iff for each 𝜖 > 0, there exists
an 𝑀 ∈ N such that for all natural numbers 𝑛 and 𝑚 with 𝑛 > 𝑚 > 𝑀 , we have
|𝑥𝑛 − 𝑥𝑚 | < 𝜖. It follows that for all 𝑛 > 𝑚, if lim |𝑥𝑛 − 𝑥𝑚 | → 0 as 𝑚 → ∞, then
(𝑥𝑛) is a Cauchy sequence.

Let (𝑥𝑛) be a sequence. Let 𝑘1 < 𝑘2 < 𝑘3 < · · · be an increasing sequence
of indices. The sequence

(
𝑥𝑘𝑛

)
for 𝑛 = 1, 2, 3, . . . , is called a subsequence of the

sequence (𝑥𝑛).
For example, (1, 4, 9, 16, . . .) is a subsequence of the sequence 1, 2, 3, 4, . . . .
Including the two criteria for convergence of a sequence, one by Cauchy and the

other by Weirstrass, we mention some other important results.

(1.5) Theorem
(1) Each convergent sequence is bounded.
(2) Algebra of Limits: Suppose lim 𝑥𝑛 = 𝑎 and lim 𝑦𝑛 = 𝑏. Then the following

are true:

(a) Sum: lim (𝑥𝑛 + 𝑦𝑛) = 𝑎 + 𝑏.
(b) Difference: lim (𝑥𝑛 − 𝑦𝑛) = 𝑎 − 𝑏.
(c) Constant Multiple: lim (𝑐𝑥𝑛) = 𝑐𝑎 for any real number 𝑐.
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(d) Product: lim (𝑥𝑛 𝑦𝑛) = 𝑎𝑏.

(e) Division: lim (𝑥𝑛/𝑦𝑛) = 𝑎/𝑏, provided no 𝑦𝑛 is 0 and 𝑏 ≠ 0.
(f) Domination: If for each 𝑛 ∈ N, 𝑥𝑛 ≤ 𝑦𝑛, then 𝑎 ≤ 𝑏.

(3) Sandwich Theorem: Let (𝑥𝑛), (𝑦𝑛) and (𝑧𝑛) be sequences. Suppose there
exists 𝑚 ∈ N such that for all 𝑛 > 𝑚, we have 𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑧𝑛. If 𝑥𝑛 → ℓ and
𝑧𝑛 → ℓ , then 𝑦𝑛 → ℓ .

(4) Weirstrass Criterion: A bounded monotonic sequence converges. Specifically,
(a) an increasing sequence which is bounded above converges to its lub;
(b) a decreasing sequence which is bounded below converges to its glb.

(5) Cauchy Criterion: A sequence (𝑥𝑛) converges iff it is a Cauchy sequence.
(6) Limits of functions to Limits of sequences: Let𝑚 ∈ N. Let 𝑓 (𝑥) be a function

whose domain includes [𝑚,∞) . Let (𝑥𝑛) be a sequence such that 𝑥𝑛 = 𝑓 (𝑛)
for all 𝑛 ≥ 𝑚. If lim

𝑥→∞
𝑓 (𝑥) = ℓ, then lim

𝑛→∞
𝑥𝑛 = ℓ .

(7) Limits of sequences to Limits of functions: Let 𝑎 < 𝑐 < 𝑏. Let 𝑓 : 𝐷 → R be
a function where𝐷 contains (𝑎, 𝑐) ∪ (𝑐, 𝑏) . Let ℓ ∈ R. Then lim

𝑥→𝑐
𝑓 (𝑥) = ℓ iff for

each non-constant sequence (𝑥𝑛) converging to 𝑐, the sequence of functional
values

(
𝑓 (𝑥𝑛)

)
converges to ℓ .

(8) Subsequence Criterion: Let (𝑥𝑛) be a sequence.

(a) If 𝑥𝑛 → ℓ, then every subsequence of (𝑥𝑛) converges to ℓ .

(b) If 𝑥2𝑛 → ℓ and 𝑥2𝑛+1 → ℓ, then 𝑥𝑛 → ℓ .

(c) If (𝑥𝑛) is bounded, then it has a convergent subsequence.

(9) Continuity: Let 𝑓 (𝑥) be a continuous real valued function whose domain
contains each term of a convergent sequence 𝑥𝑛 and also its limit. Then
lim
𝑛→∞

𝑓 (𝑥𝑛) = 𝑓

(
lim
𝑛→∞

𝑥𝑛

)
.

For sequences (𝑥𝑛) and (𝑦𝑛), we write their sum as (𝑥𝑛+𝑦𝑛) and product as (𝑥𝑛𝑦𝑛).
Sum of two divergent sequences may converge; similarly, product of two divergent
sequences may converge. For example, (1, 0, 1, 0, 1, . . .) and (0, 1, 0, 1, 0, . . .) are
divergent but their sum (1, 1, 1, 1, . . .) is convergent and their product (0, 0, 0, . . .)
is convergent. Also,

(
(−1)𝑛

)
diverges but

(
(−1)𝑛 (−1)𝑛

)
converges; whereas (𝑛)

diverges,
(
1/𝑛2) converges and their product (1/𝑛) converges.

The condition lim𝑦𝑛 ≠ 0 is important in the division rule. The sequences (1/𝑛)
and

(
1/𝑛2) are convergent but their product (1/𝑛)/(1/𝑛2) = 𝑛 does not converge to

lim(1/𝑛)/lim(1/𝑛2), which is an indeterminate.
When we say that∞+∞ = ∞, what we mean is if (𝑥𝑛) and (𝑦𝑛) are any sequences

such that lim𝑥𝑛 = ∞ and lim𝑦𝑛 = ∞, then lim(𝑥𝑛 + 𝑦𝑛) = ∞. Similarly, other
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equalities concerning these two special symbols ±∞ can be shown. We note them
down here:
Let 𝑟 > 0 be any real number. As usual, addition and multiplication are commuta-
tive, and

∞ + ±𝑟 = ∞± 0 = ∞ +∞ = ∞, −∞ ± 𝑟 = −∞ ± 0 = −∞,

𝑟 · ∞ = (−𝑟 ) · (−∞) = ∞
𝑟

=
−∞
−𝑟 = ∞ · ∞ = (−∞) · (−∞) = ∞,

𝑟 · (−∞) = (−𝑟 ) · ∞ =
∞
−𝑟 =

−∞
𝑟

= ∞ · (−∞) = −∞.

The indeterminate forms are:

∞−∞, 0 · (±∞), ±∞
±∞ .

The reason for these expressions to be indeterminate follows the same principle.
For example, ∞ − ∞ is interpreted as if (𝑥𝑛) diverges to ∞ and (𝑦𝑛) diverges to
−∞, then (𝑥𝑛 + 𝑦𝑛) may diverge to ∞, or to −∞, or converge to any real number,
or neither. I leave it to you for supplying appropriate examples for each of these
scenario. Similarly, other forms above are indeterminate.

One consequence of the constant multiple rule is that every nonzero multiple of
a divergent sequence diverges. For if 𝑥𝑛 diverges and 𝑐 ≠ 0 but 𝑐𝑥𝑛 converges, then
𝑥𝑛 = (1/𝑐)𝑐𝑥𝑛 would converge!

The domination result implies that if a sequence has only positive terms, its limit
cannot be negative. Notice that if all but an initial finite number of terms of a
sequence are positive, then also its limit cannot be negative. Similarly, the limit of
a sequence of negative terms (leaving some first finite number of terms) cannot be
positive. Moreover, the domination statement includes the case of divergence to∞.
Specifically, if 𝑥𝑛 →∞ and for each 𝑛, 𝑥𝑛 ≤ 𝑦𝑛, then 𝑦𝑛 →∞.

For an application of the Sandwich theorem, consider a sequence (𝑥𝑛).
If |𝑥𝑛 | → 0, then 𝑥𝑛 → 0. Reason: −|𝑥𝑛 | ≤ 𝑥𝑛 ≤ |𝑥𝑛 | and Sandwitch theorem.
Also, if 𝑥𝑛 → 0, then |𝑥𝑛 | → 0. Reason:

�� |𝑥𝑛 | − 0
�� ≤ |𝑥𝑛 − 0|.

That is, (𝑥𝑛) converges to 0 iff ( |𝑥𝑛 |) converges to 0.
In general, if (𝑥𝑛) converges to ℓ, then ( |𝑥𝑛 |) converges to |ℓ |. It follows from the

inequality
| |𝑥𝑛 | − |ℓ | | ≤ |𝑥𝑛 − ℓ |.

However, even if ( |𝑥𝑛 |) converges, (𝑥𝑛) may not converge. For instance, take
𝑥𝑛 = (−1)𝑛 .

Remark 1.6 The Weirstrass criterion can be proved as follows using the com-
pleteness principle of real numbers. For (1.5-4a), let (𝑥𝑛) be an increasing sequence
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which is bounded above. Then the set of terms of the sequence has an lub, say,
𝑠 . That is, for each 𝑛 ∈ N, 𝑥𝑛 ≤ 𝑠, and for each 𝜖 > 0 there is a term of the
sequence, say, 𝑥𝑘 such that 𝑠 − 𝜖 < 𝑥𝑘 ≤ 𝑠 . Since (𝑥𝑛) is an increasing sequence,
𝑠 − 𝜖 < 𝑥𝑘 ≤ 𝑥𝑘+1 ≤ 𝑥𝑘+2 ≤ · · · ≤ 𝑠 . So, the tail 𝑥𝑘 , 𝑥𝑘+1, 𝑥𝑘+2, . . . is contained in
(𝑠 − 𝜖, 𝑠 + 𝜖) . Therefore, (𝑥𝑛) converges to 𝑠 .

(1.7) Example

(1) lim
𝑛→∞

5𝑛2 + 2𝑛 + 7
𝑛2 − 11𝑛 + 5

= lim
𝑛→∞

5 + 2
𝑛
+ 7

𝑛2

1 − 11
𝑛
+ 5

𝑛2

=
5
1
= 5.

the operation of division in the limit is applicable since the limit of the
denominator is nonzero.

(2) Since
−1
𝑛
≤ cos𝑛

𝑛
≤ 1

𝑛
, Sandwich theorem implies that

cos𝑛
𝑛
→ 0.

(3) As 𝑛 <
√︁
𝑛2 + 1 + 𝑛, 0 <

√︁
𝑛2 + 1 − 𝑛 =

1
√
𝑛2 + 1 + 𝑛

<
1
𝑛
.

By Sandwich theorem, lim
𝑛→∞

√︁
𝑛2 + 1 − 𝑛 = 0.

(4) Let 𝑝 > 0. Show that lim (1/𝑛𝑝) = 0.

Let 𝜖 > 0. Using Archimedean Property, take 𝑚 ∈ N so that (1/𝜖)1/𝑝 < 𝑚.

Now, 1/𝜖 < 𝑚𝑝 ; so 1/𝑚𝑝 < 𝜖. If 𝑛 > 𝑚, then
1
𝑛𝑝

<
1
𝑚𝑝

< 𝜖.

(5) Let 𝑥 > 0. Show that lim(𝑥1/𝑛) = 1.

The function 𝑓 (𝑡) = 𝑥𝑡 is continuous at each 𝑡 ∈ [0,∞).
So, lim(𝑥1/𝑛) = 𝑥 lim(1/𝑛) = 𝑥0 = 1.

(6) Show that if |𝑥 | < 1, then lim𝑥𝑛 = 0.

Write |𝑥 | = 1
1 + 𝑟 for some 𝑟 > 0. By the Binomial theorem,

(1 + 𝑟 )𝑛 ≥ 1 + 𝑛𝑟 > 𝑛𝑟 .

So,
0 < |𝑥 |𝑛 = (1 + 𝑟 )−𝑛 <

1
𝑛𝑟

.

By Sandwich theorem, lim |𝑥 |𝑛 = 0. Now, −|𝑥 |𝑛 ≤ 𝑥𝑛 ≤ |𝑥 |𝑛 . Again, by
Sandwich theorem, lim𝑥𝑛 = 0.

(7) Show that lim(𝑛1/𝑛) = 1.

Let 𝑥𝑛 = 𝑛1/𝑛 − 1. We see that 𝑥𝑛 ≥ 0. Using Binomial theorem for 𝑛 ≥ 2,

𝑥𝑛 + 1 = 𝑛1/𝑛 ⇒ 𝑛 = (𝑥𝑛 + 1)𝑛 ≥ 1 + 𝑛𝑥𝑛 +
𝑛(𝑛 − 1)

2
𝑥2
𝑛 .
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Hence

𝑛 ≥ 𝑛(𝑛 − 1)
2

𝑥2
𝑛 ⇒ 0 ≤ 𝑥𝑛 ≤

√
2

√
𝑛 − 1

.

Apply Sandwich theorem to conclude that lim𝑥𝑛 = 0.

(1.8) Example
Let 𝑥𝑛 = 1 + 1

2 +
1
3 + · · ·

1
𝑛

for 𝑛 ∈ N. Does the sequence (𝑥𝑛) converge?

𝑥2𝑛 − 𝑥𝑛 =
1

𝑛 + 1
+ 1
𝑛 + 2

+ · · · + 1
2𝑛
≥ 1

2𝑛
· 𝑛 =

1
2
.

Hence, as 𝑛 → ∞, |𝑥2𝑛 − 𝑥𝑛 | does not converge to 0. That is, (𝑥𝑛) is not a Cauchy
sequence; so it does not converge.

(1.9) Example
Define a sequence (𝑥𝑛) by 𝑥1 = 1, 𝑥2 = 2, and 𝑥𝑘+2 = (𝑥𝑘+1 + 𝑥𝑘)/2 for 𝑘 ≥ 1. Does
the sequence converge?
𝑥𝑛+2 − 𝑥𝑛+1 = (𝑥𝑛 − 𝑥𝑛+1)/2. Thus,

|𝑥𝑛+2 − 𝑥𝑛+1 | =
1
2
|𝑥𝑛+1 − 𝑥𝑛 | = · · · =

1
2𝑛
|𝑥2 − 𝑥1 | =

1
2𝑛

.

If 𝑛 > 𝑚, then

0 ≤ |𝑥𝑛 − 𝑥𝑚 | ≤ |𝑥𝑛 − 𝑥𝑛−1 | + · · · + |𝑥𝑚+1 − 𝑥𝑚 | ≤
1

2𝑛−2 +
1

2𝑛−3 + · · · +
1

2𝑚−1

=
1

2𝑚−1 ·
1 − (1/2)𝑛−𝑚

1 − 1/2 <
1

2𝑚−1 ·
1

1/2 =
1

2𝑚−2 .

As 𝑚 → ∞, by Sandwich theorem, lim |𝑥𝑛 − 𝑥𝑚 | = 0. Therefore, (𝑥𝑛) is a Cauchy
sequence; so it converges.

Aliter: (𝑥2𝑛) is a decreasing sequence bounded below by 1. So, it converges to some
real number 𝑎.
(𝑥2𝑛−1) is an increasing sequence bounded above by 2. So, it converges to some

real number 𝑏.
Since 2𝑥2𝑚+1 = 𝑥2𝑚−1 + 𝑥2𝑚 for each𝑚, taking the limit, we have 2𝑏 = 𝑏 + 𝑎. That

is, 𝑎 = 𝑏. Therefore, the sequence converges.

(1.10) Example
Let (𝑥𝑛) be the sequence given by 𝑥1 = 2 and 𝑥𝑘+1 =

𝑥𝑘

2
+ 1
𝑥𝑘

for 𝑘 ≥ 1. Does (𝑥𝑛)
converge?
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Notice that it is a sequence of positive terms. If (𝑥𝑛) converges to ℓ, then taking
the limit on both the sides of the recursive formula, we find that ℓ =

ℓ

2
+ 1
ℓ
. It implies

that 2ℓ2 = ℓ2+2. That is, ℓ = ±
√

2. We see that 𝑥1 > 0 and then the recursive formula
says that each term is positive. So, a possible limit for (𝑥𝑛) is ℓ =

√
2. Moreover,

first few terms say that the sequence may be a decreasing sequence. Thus, if at all a
limit exists, it must be the greatest lower bound of the sequence. We guess that each
term of the sequence is at least

√
2 and the sequence is a monotonically decreasing

sequence. We must prove both.

(a) Observe that 𝑥1 = 2 ≥
√

2. For 𝑛 ≥ 1,

𝑥𝑛+1 =
𝑥𝑛

2
+ 1
𝑥𝑛
≥
√

2 if 𝑥2
𝑛 − 2

√
2𝑥𝑛 + 2 ≥ 0 if (𝑥𝑛 −

√
2)2 ≥ 0,

which is always true, Therefore, 𝑥𝑛 ≥
√

2 for each 𝑛.

(b) Now, for the decreasing nature of the sequence,

𝑥𝑛+1 ≤ 𝑥𝑛 if
𝑥𝑛

2
+ 1
𝑥𝑛
≤ 𝑥𝑛 if

1
𝑥𝑛
≤ 1

𝑥𝑛
if 2 ≤ 𝑥2

𝑛 if 𝑥𝑛 ≥
√

2,

which we already proved in (a).
Hence (𝑥𝑛) is monotonically decreasing and bonded below by

√
2. Therefore, it

converges. Moreover, as our earlier calculation shows, lim 𝑥𝑛 =
√

2.

(1.11) Example

Show that the sequence (𝑡𝑛) with 𝑡𝑛 =

(
1 + 1

𝑛

)𝑛
converges.

Using the Binomial theorem, we obtain

𝑡𝑛 =

(
1 + 1

𝑛

)𝑛
= 1 + 𝑛 · 1

𝑛
+ 𝑛(𝑛 − 1)

2!
· 1
𝑛2 + · · · +

1
𝑛𝑛

= 1 + 1 + 1
2!

(
1 − 1

𝑛

)
+ 1

3!

(
1 − 1

𝑛

) (
1 − 2

𝑛

)
+ · · · + 1

𝑛!

(
1 − 1

𝑛

)
· · ·

(
1 − 𝑛 − 1

𝑛

)
< 1 + 1 + 1

2!

(
1 − 1

𝑛 + 1

)
+ · · · + 1

𝑛!

(
1 − 1

𝑛 + 1

)
· · ·

(
1 − 𝑛 − 1

𝑛 + 1

)
+ 1
(𝑛 + 1)!

(
1 − 1

𝑛 + 1

)
· · ·

(
1 − 𝑛

𝑛 + 1

)
= 1 + (𝑛 + 1) · 1

𝑛 + 1
+ (𝑛 + 1) (𝑛)

2!
· 1
(𝑛 + 1)2

+ · · · + 1
(𝑛 + 1)𝑛+1

=

(
1 + 1

𝑛 + 1

)𝑛+1
= 𝑡𝑛+1.
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Thus, (𝑡𝑛) is an increasing sequence. Next, since 𝑘! ≥ 2𝑘−1, we have 1/𝑘! ≤ 1/2𝑘−1

for 𝑘 ∈ N. Using this, we obtain

𝑡𝑛 = 1 + 1 + 1
2!

(
1 − 1

𝑛

)
+ 1

3!

(
1 − 1

𝑛

) (
1 − 2

𝑛

)
+ · · · + 1

𝑛!

(
1 − 1

𝑛

)
· · ·

(
1 − 𝑛 − 1

𝑛

)
≤ 1 + 1 + 1

2!
+ 1

3!
+ · · · + 1

𝑛!
≤ 1 + 1 + 1

2
+ 1

22 + · · · +
1

2𝑛−1 < 1 + 2 = 3.

Since 𝑡𝑛 is an increasing sequence having an upper bound, it converges.

Since
(
(1+ 1/𝑛)𝑛

)
is a convergent sequence, its limit is a real number. We denote

the limit of this sequence as 𝑒. Since each term of the sequence lies between 2 and
3, we conclude that 2 ≤ 𝑒 ≤ 3.

1.4 Series
A series is an infinite sum of numbers. As it is, two numbers can be added; so by
induction, a finite of them can also be added. For an infinite sum to be meaningful,
we look at the sequence of partial sums. Let (𝑥𝑛) be a sequence. The series
𝑥1 + 𝑥2 + · · · + 𝑥𝑛 + · · · is meaningful when another sequence, namely,

𝑥1, 𝑥1 + 𝑥2, 𝑥1 + 𝑥2 + 𝑥3, . . . ,

𝑛∑︁
𝑘=1

𝑥𝑘 , . . .

is convergent. The infinite sum itself is denoted by
∑∞

𝑛=1 𝑥𝑛 and also by
∑
𝑥𝑛 .

We say that the series
∑
𝑥𝑛 is convergent iff the sequence (𝑠𝑛) is convergent, where

the 𝑛th partial sum 𝑠𝑛 is given by 𝑠𝑛 =
∑𝑛

𝑘=1 𝑥𝑘 .

Thus we may define convergence of a series as follows:
We say that the series

∑
𝑥𝑛 converges to ℓ ∈ R iff for each 𝜖 > 0, there exists an

𝑚 ∈ N such that for each natural number 𝑛 > 𝑚, |∑𝑛
𝑘=1 𝑥𝑘 − ℓ | < 𝜖. In this case, we

also say that the series sums to ℓ, and write
∑
𝑥𝑛 = ℓ .

Further, we say that a series converges iff it converges to some ℓ ∈ R.
A series is said to be divergent iff it is not convergent.
Similar to convergence, if the sequence of partial sums (𝑠𝑛) diverges to ±∞, we

say that the series
∑
𝑥𝑛 diverges to ±∞.

That is, the series
∑
𝑥𝑛 diverges to ∞ iff for each 𝑟 > 0, there exists 𝑚 ∈ N such

that for each natural number 𝑛 > 𝑚,
∑𝑛

𝑘=1 𝑥𝑘 > 𝑟 . We write it as
∑
𝑥𝑛 = ∞, and say

that the series sums to∞.
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Similarly, the series
∑
𝑥𝑛 diverges to −∞ iff for each 𝑟 > 0, there exists 𝑚 ∈ N

such that for each natural number 𝑛 > 𝑚,
∑𝑛

𝑘=1 𝑥𝑘 < −𝑟 . We then write
∑
𝑥𝑛 = −∞,

and say that the series sums to −∞.
Notice that ‘converges to a real number’ and ‘diverges to ±∞’ both are written the

same way. There can be series which diverge but neither to ∞ nor to −∞. Further,
if a series sums to ℓ, then it cannot sum to 𝑠 where 𝑠 ≠ ℓ , due to the uniqueness of
limit of a sequence.

The series −1 − 2 − 3 − 4 − · · · − 𝑛 − · · · diverges to −∞.
The series 1−1+1−1+· · · diverges. It neither diverges to∞ nor to −∞. Because,

the sequence of partial sums here is 1, 0, 1, 0, 1, 0, 1, . . . .

The series
∞∑︁
𝑛=1

1
2𝑛

converges to 1. Because, if (𝑠𝑛) is the sequence of partial sums,

then

𝑠𝑛 =

𝑛∑︁
𝑘=1

1
2𝑘

=
1
2
· 1 − (1/2)

𝑛

1 − 1/2 = 1 − 1
2𝑛
→ 1 as 𝑛 →∞.

A general scenario is discussed in the next example.

(1.12) Example
Let 𝑎 ≠ 0 and let 𝑟 ∈ R. Consider the geometric series

∞∑︁
𝑛=1

𝑎𝑟𝑛−1 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + · · · .

The 𝑛th partial sum of the geometric series is

𝑠𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + · · ·𝑎𝑟𝑛−1 =
𝑎(1 − 𝑟𝑛)

1 − 𝑟 .

(a) If |𝑟 | < 1, then 𝑟𝑛 → 0. The geometric series converges to lim
𝑛→∞

𝑠𝑛 =
𝑎

1 − 𝑟 .

Therefore,
∞∑︁
𝑛=0

𝑎𝑟𝑛 =

∞∑︁
𝑛=1

𝑎𝑟𝑛−1 =
𝑎

1 − 𝑟 for |𝑟 | < 1.

(b) If 𝑟 = −1 or |𝑟 | > 1, then 𝑟𝑛 diverges; so the geometric series
∑
𝑎𝑟𝑛−1 diverges.

And, for 𝑟 = 1, the geometric series 1 + 1 + · · · diverges.

(1.13) Example
The series 1 + 1

2 +
1
3 +

1
4 + · · · diverges to ∞. To see this, Write 𝑠𝑛 =

∑𝑛
𝑘=1

1
𝑘
, the

partial sum of the series up to 𝑛 terms. Then, use (1.8).
For another solution, let 𝑟 be any positive real number. Choose a natural number

𝑚 > 2𝑟 and take 𝑛 = 2𝑚. Then
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𝑠𝑛 =

𝑛∑︁
𝑘=1

1
𝑘
≥ 1 + 1

2
+ 1

3
+ · · · + 1

2𝑚 − 1

= 1 +
(1
2
+ 1

3

)
+
(1
4
+ 1

5
+ 1

6
+ 1

7

)
+ · · · +

( 2𝑚−1∑︁
𝑘=2𝑚−1

1
𝑘

)
≥ 1 +

(1
4
+ 1

4

)
+
(1
8
+ 1

8
+ 1

8
+ 1

8

)
+ · · · +

( 2𝑚−1∑︁
𝑘=2𝑚−1

1
2𝑚

)
= 1 + 1

2
+ 1

2
+ · · · + 1

2
= 1 + 𝑚 − 1

2
> 1 + 2𝑟 − 1

2
=

2𝑟 + 1
2

> 𝑟 .

That is, corresponding to any 𝑟 > 0 there exists 𝑛 ∈ N so that 𝑠𝑛 > 𝑟 . (𝑛 = 2𝑚,
where 𝑚 > 2𝑟 is a natural number.) Therefore, the series diverges to ∞. This is
called the harmonic series.

(1.14) Example
Does the series

∑︁ 1
𝑛(𝑛 + 1) converge?

Since
1

𝑘 (𝑘 + 1) =
1
𝑘
− 1
𝑘 + 1

, we have

𝑛∑︁
𝑘=1

1
𝑘 (𝑘 + 1) =

𝑛∑︁
𝑘=1

1
𝑘
−

𝑛∑︁
𝑘=1

1
𝑘 + 1

= 1 +
𝑛∑︁

𝑘=2

1
𝑘
−

𝑛−1∑︁
𝑘=1

1
𝑘 + 1

− 1
𝑛 + 1

= 1 − 1
𝑛 + 1

.

Since 1/(𝑛 + 1) → 0, the series converges to 1. Thus
∞∑︁
𝑛=1

1
𝑛(𝑛 + 1) = 1.

(1.15) Example

The sum of the convergent series
∞∑︁
𝑛=1

3𝑛 − 4
6𝑛

can be computed as follows:

∞∑︁
𝑛=1

3𝑛 − 4
6𝑛

=

∞∑︁
𝑛=0

1/2
2𝑛
− 4

6

∞∑︁
𝑛=0

1
6𝑛

=
1/2

1 − 1/2 −
4/6

1 − 1/6 = 1 − 4
5
=

1
5
.

The following result sometimes helps in ascertaining that a given series diverges.

(1.16) Theorem
If a series

∑
𝑎𝑛 converges, then the sequence (𝑎𝑛) converges to 0.

Proof. Let 𝑠𝑛 denote the partial sum
∑𝑛

𝑘=1 𝑎𝑘 . Then 𝑎𝑛 = 𝑠𝑛 − 𝑠𝑛−1. If the series
converges, say, to ℓ, then lim 𝑠𝑛 = ℓ = lim 𝑠𝑛−1. It follows that lim𝑎𝑛 = 0.
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It says that if lim𝑎𝑛 does not exist, or if lim𝑎𝑛 exists but is not equal to 0, then the
series

∑
𝑎𝑛 diverges.

(1.17) Example

(1) The series
∞∑︁
𝑛=1

−𝑛
3𝑛 + 1

diverges because lim
𝑛→∞

−𝑛
3𝑛 + 1

= −1
3
≠ 0.

(2) The series
∑(−1)𝑛 diverges because lim(−1)𝑛 does not exist.

Notice what (1.16) does not say. The harmonic series diverges even though
lim 1

𝑛
= 0.

(1.18) Theorem

If both the series
∑
𝑎𝑛 and

∑
𝑏𝑛 converge, then the series

∑(𝑎𝑛 + 𝑏𝑛), ∑(𝑎𝑛 − 𝑏𝑛)
and

∑
𝑘𝑎𝑛 converge; where 𝑘 is any real number.

If
∑
𝑎𝑛 converges and

∑
𝑏𝑛 diverges, then

∑(𝑎𝑛 + 𝑏𝑛) and
∑(𝑎𝑛 − 𝑏𝑛) diverge.

Further, if
∑
𝑎𝑛 diverges and 𝑘 ≠ 0, then

∑
𝑘𝑎𝑛 diverges.

Proofs of the statements in (1.18) follow from (1.5-2).

Notice that sum of two divergent series can converge. For example, both
∑(1/𝑛)

and
∑(−1/𝑛) diverge but their sum

∑
0 converges.

Since deleting a finite number of terms of a sequence does not alter its convergence,
omitting a finite number of terms or adding a finite number of terms to a convergent
(divergent) series implies the convergence (divergence) of the new series. Of course,
the sum of the convergent series will be affected. For example,

∞∑︁
𝑛=3

( 1
2𝑛

)
=

∞∑︁
𝑛=1

( 1
2𝑛

)
− 1

2
− 1

4
.

However,

∞∑︁
𝑛=3

( 1
2𝑛−2

)
=

∞∑︁
𝑛=1

( 1
2𝑛

)
.

This is called re-indexing the series. As long as we preserve the order of the terms
of the series, we can re-index without affecting its convergence and sum.
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1.5 Improper Integrals
In the definite integral

∫𝑏
𝑎
𝑓 (𝑥)𝑑𝑥 we required that both 𝑎, 𝑏 are finite and also the

range of 𝑓 (𝑥) is a subset of some finite interval. However, there are functions which
violate one or both of these requirements, and yet, the area under the curves and
above the 𝑥-axis remain bounded.

Such integrals are called Improper Integrals. Suppose 𝑓 (𝑥) is continuous on
[0,∞) . It makes sense to write∫ ∞

0
𝑓 (𝑥)𝑑𝑥 = lim

𝑏→∞

∫ 𝑏

0
𝑓 (𝑥)𝑑𝑥

provided that the limit exists. In such a case, we say that the improper integral∫∞
0 𝑓 (𝑥)𝑑𝑥 converges and its value is given by the limit. We say that the improper

integral diverges iff it is not convergent. Obviously, we are interested in computing
the value of an improper integral, in which case, the integral is required to converge.
Integrals of the type

∫𝑏
𝑎
𝑓 (𝑥) 𝑑𝑥 can become improper when 𝑓 (𝑥) is not continuous

at a point in the interval [𝑎, 𝑏] . Here are the possible types of improper integrals.

1. If 𝑓 (𝑥) is continuous on [𝑎,∞), then
∫ ∞
𝑎

𝑓 (𝑥) 𝑑𝑥 = lim
𝑏→∞

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 .

2. If 𝑓 (𝑥) is continuous on (−∞, 𝑏], then
∫ 𝑏

−∞
𝑓 (𝑥) 𝑑𝑥 = lim

𝑎→−∞

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 .

3. If 𝑓 (𝑥) is continuous on (−∞,∞), then∫ ∞
−∞

𝑓 (𝑥) 𝑑𝑥 =

∫ 𝑐

−∞
𝑓 (𝑥) 𝑑𝑥 +

∫ ∞
𝑐

𝑓 (𝑥) 𝑑𝑥, for any 𝑐 ∈ R.

4. If 𝑓 (𝑥) is continuous on (𝑎, 𝑏] and discontinuous at 𝑥 = 𝑎, then∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = lim
𝑡→𝑎+

∫ 𝑏

𝑡

𝑓 (𝑥) 𝑑𝑥.

5. If 𝑓 (𝑥) is continuous on [𝑎, 𝑏) and discontinuous at 𝑥 = 𝑏, then∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = lim
𝑡→𝑏−

∫ 𝑡

𝑎

𝑓 (𝑥) 𝑑𝑥 .
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6. If 𝑓 (𝑥) is continuous on [𝑎, 𝑐) ∪ (𝑐, 𝑏] and discontinuous at 𝑥 = 𝑐, then∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =

∫ 𝑐

𝑎

𝑓 (𝑥) 𝑑𝑥 +
∫ 𝑏

𝑐

𝑓 (𝑥) 𝑑𝑥 .

In each case, if the limit of the concerned integral is finite, then we say that the
improper integral (on the left) converges, else, the improper integral diverges; the
finite value as obtained from the limit is the value of the improper integral. A
convergent improper integral converges to its value. Two important sub-cases of
divergent improper integrals are when the limit of the concerned integral is ∞ or
−∞. In these cases, we say that the improper integral diverges to∞ or to −∞ as is
the case.

(1.19) Example
Is the area under the curve 𝑦 = (log𝑥)/𝑥2 for 𝑥 ≥ 1 finite?

The question is whether
∫ ∞

1

log𝑥
𝑥2 𝑑𝑥 converges?

Let 𝑏 > 1. Integrating by parts,∫ 𝑏

1

log𝑥
𝑥2 𝑑𝑥 =

[
log𝑥

(
− 1
𝑥

)]𝑏
1
−
∫ 𝑏

1

1
𝑥

(−1
𝑥

)
𝑑𝑥 = − log𝑏

𝑏
− 1
𝑏
+ 1.

lim
𝑏→∞

∫ 𝑏

1

log𝑥
𝑥2 𝑑𝑥 = lim

𝑏→∞

[
− log𝑏

𝑏
− 1
𝑏
+ 1

]
= 1.

Therefore, the improper integral
∫ ∞

1

log𝑥
𝑥2 𝑑𝑥 converges to 1. That is, the required

area is finite and it is equal to 1.

(1.20) Example

Is
∫ ∞
−∞

1
1 + 𝑥2 𝑑𝑥 convergent?∫ 𝑏

𝑎

1
1 + 𝑥2 𝑑𝑥 = tan−1 𝑏 − tan−1 𝑎.

So,

∫ 0

−∞

1
1 + 𝑥2 𝑑𝑥 = lim

𝑎→−∞

∫ 0

𝑎

1
1 + 𝑥2 𝑑𝑥 = lim

𝑎→−∞
(− tan−1 𝑎) = −

(
− 𝜋

2

)
=
𝜋

2
.

∫ ∞
0

1
1 + 𝑥2 𝑑𝑥 = lim

𝑏→∞

∫ 𝑏

0

1
1 + 𝑥2 𝑑𝑥 = lim

𝑏→∞
(tan−1 𝑏) = 𝜋

2
.

Therefore,
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∫ ∞
−∞

1
1 + 𝑥2 𝑑𝑥 =

∫ 0

−∞

1
1 + 𝑥2 𝑑𝑥 +

∫ ∞
0

1
1 + 𝑥2 𝑑𝑥

is convergent and its value is 𝜋/2 + 𝜋/2 = 𝜋.

(1.21) Example

Consider evaluating
∫ 3

0

𝑑𝑥

𝑥 − 1
. Overlooking the point 𝑥 = 1, where the integrand is

not defined, we may compute∫ 3

0

𝑑𝑥

𝑥 − 1
= log |𝑥 − 1|

]3

0
= log 2 − log 1 = log 2.

However, it is an improper integral and its value, if exists, must be computed as
follows: ∫ 3

0

𝑑𝑥

𝑥 − 1
= lim

𝑏→1−

∫ 𝑏

0

𝑑𝑥

𝑥 − 1
+ lim

𝑎→1+

∫ 3

𝑎

𝑑𝑥

𝑥 − 1
.

The integral converges provided both the limits are finite. However,

lim
𝑏→1−

∫ 𝑏

0

𝑑𝑥

𝑥 − 1
= lim

𝑏→1−

(
log |𝑏 − 1| − log | − 1|

)
= lim

𝑏→1−
log(1 − 𝑏) = −∞.

Therefore,
∫ 3

0

𝑑𝑥

𝑥 − 1
does not converge.

(1.22) Example

Evaluate
∫ 3

0

𝑑𝑥

(𝑥 − 1)2/3
.

The integrand is not defined at 𝑥 = 1. We consider it as an improper integral.∫ 3

0

𝑑𝑥

(𝑥 − 1)2/3
= lim

𝑏→1−

∫ 𝑏

0

𝑑𝑥

(𝑥 − 1)2/3
+ lim

𝑎→1+

∫ 3

𝑎

𝑑𝑥

(𝑥 − 1)2/3
.

lim
𝑏→1−

∫ 𝑏

0

𝑑𝑥

(𝑥 − 1)2/3
= lim

𝑏→1−
3(𝑥 − 1)1/3

���𝑏
0
= lim

𝑏→1−

(
3(𝑏 − 1)1/3 − 3(−1)1/3

)
= 3.

lim
𝑎→1+

∫ 3

𝑎

𝑑𝑥

(𝑥 − 1)2/3
= lim

𝑎→1+
3(𝑥−1)1/3

���3
𝑎
= lim

𝑎→1+

(
3(3−1)1/3−3(𝑎−1)1/3

)
= 3(2)1/3.

Hence
∫ 3

0

𝑑𝑥

(𝑥 − 1)2/3
= 3(1 + 21/3) .

In the above example, had we not noticed that the integrand has discontinuity in
the interior, we would have ended up at a wrong computation such as∫ 3

0

𝑑𝑥

(𝑥 − 1)2/3
= 3(𝑥 − 1)1/3

���3
0
= 3(21/3 − (−1)1/3),
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even though the answer happens to be correct here.

(1.23) Example

For what values of 𝑝 ∈ R, the improper integral
∫ ∞

1

𝑑𝑥

𝑥𝑝
converges? What is its

value, when it converges?

Case 1: 𝑝 = 1. ∫ 𝑏

1

𝑑𝑥

𝑥𝑝
=

∫ 𝑏

1

𝑑𝑥

𝑥
= log𝑏 − log 1 = log𝑏.

Since lim
𝑏→∞

log𝑏 = ∞, the improper integral diverges to∞.

Case 2: 𝑝 < 1. ∫ 𝑏

1

𝑑𝑥

𝑥𝑝
=
−𝑥−𝑝+1
−𝑝 + 1

���𝑏
1
=

1
1 − 𝑝 (𝑏

1−𝑝 − 1).

Since lim
𝑏→∞

𝑏1−𝑝 = ∞, the improper integral diverges to∞.

Case 3: 𝑝 > 1. ∫ 𝑏

1

𝑑𝑥

𝑥𝑝
=

1
1 − 𝑝 (𝑏

1−𝑝 − 1) = 1
1 − 𝑝

( 1
𝑏𝑝−1 − 1

)
.

Since lim
𝑏→∞

1
𝑏𝑝−1 = 0, we have∫ ∞

1

𝑑𝑥

𝑥𝑝
= lim

𝑏→∞

∫ 𝑏

1

𝑑𝑥

𝑥𝑝
= lim

𝑏→∞

1
1 − 𝑝

( 1
𝑏𝑝−1 − 1

)
=

1
𝑝 − 1

.

Hence, the improper integral
∫ ∞

1

𝑑𝑥

𝑥𝑝
converges to

1
𝑝 − 1

for 𝑝 > 1 and diverges to

∞ for 𝑝 ≤ 1.

(1.24) Example

For what values of 𝑝 ∈ R, the improper integral
∫ 1

0

𝑑𝑥

𝑥𝑝
converges?

Notice that for 𝑝 ≤ 0, the integral is not an improper integral, and its value is
1/(1 − 𝑝). We consider the rest of the cases as follows.

Case 1: 𝑝 = 1. ∫ 1

0

𝑑𝑥

𝑥𝑝
= lim

𝑎→0+

∫ 1

𝑎

𝑑𝑥

𝑥
= lim

𝑎→0+
[log 1 − log𝑎] = ∞.

Therefore, the improper integral diverges to∞.
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Case 2: 0 < 𝑝 < 1.∫ 1

0

𝑑𝑥

𝑥𝑝
= lim

𝑎→0+

∫ 1

𝑎

𝑑𝑥

𝑥𝑝
= lim

𝑎→0+

1 − 𝑎1−𝑝

1 − 𝑝 =
1

1 − 𝑝 .

Therefore, the improper integral converges to 1/(1 − 𝑝).
Case 3: 𝑝 > 1.∫ 1

0

𝑑𝑥

𝑥𝑝
= lim

𝑎→0+

1 − 𝑎1−𝑝

1 − 𝑝 = lim
𝑎→0+

1
𝑝 − 1

( 1
𝑎𝑝−1 − 1

)
= ∞.

Hence the improper integral diverges to∞.

Therefore,
∫ 1

0

𝑑𝑥

𝑥𝑝
=

1
1 − 𝑝 for 𝑝 < 1; and

∫ 1

0

𝑑𝑥

𝑥𝑝
diverges to∞ for 𝑝 ≥ 1.

1.6 Convergence Tests for Improper Integrals
Sometimes it is helpful to be sure that an improper integral converges, even if we
are unable to evaluate it.

(1.25) Theorem (Comparison Test)
Let 𝑓 (𝑥) and𝑔(𝑥) be continuous functions on [𝑎,∞) . Suppose that 0 ≤ 𝑓 (𝑥) ≤ 𝑔(𝑥)
for all 𝑥 ≥ 𝑎.

(1) If
∫∞
𝑎
𝑔(𝑥) 𝑑𝑥 converges, then

∫∞
𝑎

𝑓 (𝑥) 𝑑𝑥 converges.
(2) If

∫∞
𝑎

𝑓 (𝑥) 𝑑𝑥 diverges to∞, then
∫∞
𝑎
𝑔(𝑥) 𝑑𝑥 diverges to∞.

Proof. Since 0 ≤ 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ≥ 𝑎,∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 ≤
∫ 𝑏

𝑎

𝑔(𝑥)𝑑𝑥.

As lim
𝑏→∞

∫ 𝑏

𝑎

𝑔(𝑥)𝑑𝑥 = ℓ for some ℓ ∈ R, lim
𝑏→∞

∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 exists and the limit is less
than or equal to ℓ . This proves (1). Proof of (2) is similar to that of (1).

We also use a similar result stated below, without proof.

(1.26) Theorem (Limit Comparison Test)

Let 𝑓 (𝑥) and 𝑔(𝑥) be continuous functions on [𝑎,∞) . If lim
𝑥→∞

𝑓 (𝑥)
𝑔(𝑥) = 𝐿 ≠ 0, then∫∞

𝑎
𝑓 (𝑥)𝑑𝑥 and

∫∞
𝑎
𝑔(𝑥)𝑑𝑥 either both converge, or both diverge.
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In (1.25) we talk about non-negative functions. The reason is the following result,
which we will not prove:

(1.27) Theorem
Let 𝑓 (𝑥) be a continuous function on [𝑎, 𝑏), for 𝑏 ∈ R or 𝑏 = ∞. If the improper in-
tegral

∫𝑏
𝑎
|𝑓 (𝑥) | 𝑑𝑥 converges, then the improper integral

∫𝑏
𝑎
𝑓 (𝑥) 𝑑𝑥 also converges.

(1.28) Example

(1)
∫ ∞

1

sin2 𝑥

𝑥2 𝑑𝑥 converges because

0 ≤ sin2 𝑥

𝑥2 ≤ 1
𝑥2 for all 𝑥 ≥ 1, and

∫ ∞
1

𝑑𝑥

𝑥2 converges.

(2)
∫ ∞

2

𝑑𝑥
√
𝑥2 − 1

diverges to∞ because (Recall: lim
𝑥→∞

log𝑥 = ∞.)

1
√
𝑥2 − 1

≥ 1
𝑥

for all 𝑥 ≥ 2, and
∫ ∞

2

𝑑𝑥

𝑥
diverges to∞.

(3)
∫ ∞

1

𝑑𝑥

1 + 𝑥2 converges or diverges?

Since lim
𝑥→∞

[
1

1 + 𝑥2

/ 1
𝑥2

]
= lim

𝑥→∞
𝑥2

1 + 𝑥2 = 1, the limit comparison test says

that the given improper integral and
∫ ∞

1

𝑑𝑥

𝑥2 both converge or diverge together.
The latter converges, so does the former. However, they may converge to
different values.∫ ∞

1

𝑑𝑥

1 + 𝑥2 = lim
𝑏→∞
[tan−1 𝑏 − tan−1 1] = 𝜋

2
− 𝜋

4
=
𝜋

4
.∫ ∞

1

𝑑𝑥

𝑥2 = lim
𝑏→∞

(
−1
𝑏
− −1

1

)
= 1.

(4) Does the improper integral
∫ ∞

1

1010𝑑𝑥

𝑒𝑥 + 1
converge?

lim
𝑥→∞

1010

𝑒𝑥 + 1

/ 1
𝑒𝑥

= lim
𝑥→∞

1010𝑒𝑥

𝑒𝑥 + 1
= 1010.

Also, 𝑒 ≥ 2 implies that for all 𝑥 ≥ 1, 𝑒𝑥 ≥ 𝑥2. So, 𝑒−𝑥 ≤ 𝑥−2.

Since
∫ ∞

1

𝑑𝑥

𝑥2 converges,
∫ ∞

1

𝑑𝑥

𝑒𝑥
also converges.

By limit comparison test, the given improper integral converges.
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(1.29) Example

Show that
∫ ∞

1

sin𝑥
𝑥𝑝

𝑑𝑥 converges for all 𝑝 > 0.

For 𝑝 > 1 and 𝑥 ≥ 1,
���sin𝑥
𝑥𝑝

��� ≤ 1
𝑥𝑝

. Since
∫ ∞

1

𝑑𝑥

𝑥𝑝
converges,

∫ ∞
1

���sin𝑥
𝑥𝑝

���𝑑𝑥
converges. By (1.27),

∫ ∞
1

sin𝑥
𝑥𝑝

𝑑𝑥 converges.

For 0 < 𝑝 ≤ 1, use integration by parts:∫ 𝑏

1

sin𝑥
𝑥𝑝

𝑑𝑥 = −cos𝑏
𝑏𝑝
+ cos 1

1𝑝
+ 𝑝

∫ 𝑏

1

cos𝑥
𝑥𝑝+1

𝑑𝑥 .

Taking the limit as 𝑏 → ∞, we see that the first term goes to 0; the second term is
already a real number, the third term, an improper integral converges as in the case
for 𝑝 > 1 above.

Therefore, the given improper integral converges.

(1.30) Example

Show that
∫ ∞

0

sin𝑥
𝑥𝑝

𝑑𝑥 converges for 0 < 𝑝 ≤ 1.

For 𝑝 = 1, the integral
∫ 1

0

sin𝑥
𝑥

𝑑𝑥 is not an improper integral. Since
sin𝑥
𝑥

with

its value at 0 as 1 is continuous on [0, 1], this integral exists.

For 0 < 𝑝 < 1 and 0 < 𝑥 ≤ 1, since
sin𝑥
𝑥𝑝
≤ 1

𝑥𝑝
and

∫ 1

0

𝑑𝑥

𝑥𝑝
converges due to

(1.24), the improper integral
∫ 1

0

sin𝑥
𝑥𝑝

𝑑𝑥 converges.

Next, the improper integral
∫ ∞

1

sin𝑥
𝑥

𝑑𝑥 converges due to (1.29).

Hence
∫ ∞

0

sin𝑥
𝑥𝑝

𝑑𝑥 =

∫ 1

0

sin𝑥
𝑥

𝑑𝑥 +
∫ ∞

1

sin𝑥
𝑥

𝑑𝑥 converges.

(1.31) Example

Show that Γ(𝑥) =
∫ ∞

0
𝑒−𝑡𝑡𝑥−1 𝑑𝑡 converges for each 𝑥 > 0.

Fix 𝑥 > 0. Since lim
𝑡→∞

𝑒−𝑡𝑡𝑥+1 = 0, there exists 𝑡0 ≥ 1 such that 0 < 𝑒−𝑡𝑡𝑥+1 < 1 for
𝑡 > 𝑡0. That is,

0 < 𝑒−𝑡𝑡𝑥−1 < 𝑡−2 for 𝑡 > 𝑡0.
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Since
∫∞

1 𝑡−2 𝑑𝑡 is convergent,
∫∞
𝑡0
𝑡−2 𝑑𝑡 is also convergent. By the comparison test,∫ ∞

𝑡0

𝑒−𝑡𝑡𝑥−1 𝑑𝑡 is convergent.

The integral
∫ 𝑡0

1 𝑒−𝑡𝑡𝑥−1 𝑑𝑡 exists and is not an improper integral.
Next, we consider the improper integral

∫ 1
0 𝑒
−𝑡𝑡𝑥−1 𝑑𝑡 . Let 0 < 𝑎 < 1.

For 𝑎 ≤ 𝑡 ≤ 1, we have 0 < 𝑒−𝑡𝑡𝑥−1 < 𝑡𝑥−1. So,∫ 1

𝑎

𝑒−𝑡𝑡𝑥−1 𝑑𝑡 <

∫ 1

𝑎

𝑡𝑥−1 𝑑𝑡 =
1 − 𝑎𝑥
𝑥

<
1
𝑥
.

Taking the limit as 𝑎 → 0+, we see that∫ 1

0
𝑒−𝑡𝑡𝑥−1 𝑑𝑡 is convergent,

and its value is less than or equal to 1/𝑥 . Therefore,∫ ∞
0

𝑒−𝑡𝑡𝑥−1 𝑑𝑡 =

∫ 1

0
𝑒−𝑡𝑡𝑥−1 𝑑𝑡 +

∫ 𝑡0

1
𝑒−𝑡𝑡𝑥−1 𝑑𝑡 +

∫ ∞
𝑡0

𝑒−𝑡𝑡𝑥−1 𝑑𝑡

and the integral is convergent.

The function Γ(𝑥) is called the gamma function; it is defined on (0,∞) . For
𝑥 > 0, using integration by parts, we have

Γ(𝑥 + 1) =
∫ ∞

0
𝑡𝑥𝑒−𝑡 𝑑𝑡 =

[
𝑡𝑥 (−𝑒−𝑡 )

]∞
0
−
∫ ∞

0
𝑥𝑡𝑥−1(−𝑒−𝑡 ) 𝑑𝑡 = 𝑥Γ(𝑥).

It thus follows that Γ(𝑛 + 1) = 𝑛! for any non-negative integer 𝑛. We take 0! = 1.

(1.32) Example

Test the convergence of
∫ ∞
−∞

𝑒−𝑡
2
𝑑𝑡 .

Since 𝑒−𝑡2 is continuous on [−1, 1],
∫ 1

−1
𝑒−𝑡

2
𝑑𝑡 exists.

For 𝑡 > 1, we have 𝑡 < 𝑡2. So, 0 < 𝑒−𝑡
2
< 𝑒−𝑡 . Since

∫ ∞
1

𝑒−𝑡 𝑑𝑡 is convergent, by

Comparison test,
∫ ∞

1
𝑒−𝑡

2
𝑑𝑡 is convergent.

Now,
∫ −1

−𝑎
𝑒−𝑡

2
𝑑𝑡 =

∫ 1

𝑎

𝑒−𝑡
2
𝑑 (−𝑡) =

∫ 𝑎

1
𝑒−𝑡

2
𝑑𝑡 . Taking limit as 𝑎 →∞, we see that∫ 1

−∞
𝑒−𝑡

2
𝑑𝑡 is convergent and its value is equal to

∫ ∞
1

𝑒−𝑡
2
𝑑𝑡 .
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Combining the three integrals above, we conclude that
∫ ∞
−∞

𝑒−𝑡
2
𝑑𝑡 converges.

The Gamma function takes other forms by substitution of the variable of integra-
tion. Substituting 𝑡 by 𝑟𝑡 we have

Γ(𝑥) = 𝑟𝑥
∫ ∞

0
𝑒−𝑟𝑡𝑡𝑥−1 𝑑𝑡 for 0 < 𝑟, 0 < 𝑥 .

Substituting 𝑡 by 𝑡2, we have

Γ(𝑥) = 2
∫ ∞

0
𝑒−𝑡

2
𝑡2𝑥−1 𝑑𝑡 for 0 < 𝑥 .

(1.33) Example
Show that Γ( 12 ) =

√
𝜋.

Γ
(

1
2

)
= 2

∫ ∞
0

𝑒−𝑡
2
𝑑𝑡 .

To evaluate this integral, consider the double integral of 𝑒−𝑥2−𝑦2 over two circular
sectors 𝐷1 and 𝐷2, and the square 𝑆 as indicated below.

Since the integrand is positive, we have
∬
𝐷1

<
∬
𝑆
<
∬
𝐷2

.

Now, evaluate these integrals by converting them to iterated integrals as follows:∫ 𝑅

0
𝑒−𝑟

2
𝑟 𝑑𝑟

∫ 𝜋/2

0
𝑑𝜃 <

∫ 𝑅

0
𝑒−𝑥

2
𝑑𝑥

∫ 𝑅

0
𝑒−𝑦

2
𝑑𝑦 <

∫ 𝑅
√

2

0
𝑒−𝑟

2
𝑟 𝑑𝑟

∫ 𝜋/2

0
𝑑𝜃

𝜋

4
(1 − 𝑒−𝑅2) <

( ∫ 𝑅

0
𝑒−𝑥

2
𝑑𝑥

)2
<

𝜋

4
(1 − 𝑒−2𝑅2)

Take the limit as 𝑅 →∞ to obtain( ∫ ∞
0

𝑒−𝑥
2
𝑑𝑥

)2
=
𝜋

4
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From this, the result follows.

(1.34) Example

Prove: 𝐵(𝑥,𝑦) =
∫ 1

0
𝑡𝑥−1(1 − 𝑡)𝑦−1 𝑑𝑡 converges for 𝑥 > 0, 𝑦 > 0.

We write the integral as a sum of two integrals:

𝐵(𝑥,𝑦) =
∫ 1/2

0
𝑡𝑥−1(1 − 𝑡)𝑦−1 𝑑𝑡 +

∫ 1

1/2
𝑡𝑥−1(1 − 𝑡)𝑦−1 𝑑𝑡

Setting 𝑢 = 1 − 𝑡, the second integral looks like∫ 1

1/2
𝑡𝑥−1(1 − 𝑡)𝑦−1 𝑑𝑡 =

∫ 1/2

0
𝑢𝑦−1(1 − 𝑢)𝑥−1 𝑑𝑡

Therefore, it is enough to show that the first integral converges. Notice that here,
0 < 𝑡 ≤ 1/2.
Case 1: 𝑥 ≥ 1.

For 0 < 𝑡 < 1/2, 1 − 𝑡 > 0. So, for all 𝑦 > 0, the function (1 − 𝑡)𝑦−1 is well defined,
continuous, and bounded on (0, 1/2] . So is the function 𝑡𝑥−1. Therefore, the integral∫ 1/2

0
𝑡𝑥−1(1 − 𝑡)𝑦−1 𝑑𝑡 exists and is not an improper integral.

Case 2: 0 < 𝑥 < 1.
Here, the function 𝑡𝑥−1 is well defined and continuous on (0, 1/2] . By (1.24), the

integral
∫ 1/2

0
𝑡𝑥−1 𝑑𝑡 converges. Notice that (1 − 𝑡)𝑦−1 ≤ 1 for 𝑦 − 1 ≥ 0, and

(1 − 𝑡)𝑦−1 ≤ (1/2)𝑦−1 for 𝑦 − 1 < 0. So, there exists a constant 𝑐 depending on the
given value of 𝑦 such that 𝑡𝑥−1(1 − 𝑡)𝑦−1 ≤ 𝑐 𝑡𝑥−1 for 0 < 𝑡 ≤ 1/2. We thus see that∫ 1/2

0
𝑡𝑥−1(1 − 𝑡)𝑦−1 𝑑𝑡 converges.

The function 𝐵(𝑥,𝑦) for 𝑥 > 0, 𝑦 > 0 is called the beta function.
By setting 𝑡 as 1 − 𝑡, we see that 𝐵(𝑥,𝑦) = 𝐵(𝑦, 𝑥).
By substituting 𝑡 with sin2 𝑡, the Beta function can be written as

𝐵(𝑥,𝑦) = 2
∫ 𝜋/2

0
(sin 𝑡)2𝑥−1(cos 𝑡)2𝑦−1 𝑑𝑡, for 𝑥 > 0, 𝑦 > 0.

Changing the variable 𝑡 to 𝑡/(1 + 𝑡), the Beta function can be written as

𝐵(𝑥,𝑦) =
∫ ∞

0

𝑡𝑥+1

(1 + 𝑡)𝑥+𝑦 𝑑𝑡 for 𝑥 > 0, 𝑦 > 0.
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Again, using multiple integrals it can be shown that

𝐵(𝑥,𝑦) = Γ(𝑥)Γ(𝑦)
Γ(𝑥 + 𝑦) for 𝑥 > 0, 𝑦 > 0.

1.7 Tests of Convergence for Series

Recall that a function 𝑓 (𝑥) is called a decreasing function iff 𝑓 (𝑠) ≥ 𝑓 (𝑡) for any
𝑠 ≤ 𝑡 in the domain of 𝑓 (𝑥).

We connect the convergence of improper integrals to the convergence of series as
follows.

(1.35) Theorem (Integral Test)

Let
∑
𝑎𝑛 be a series of positive terms. Let 𝑓 : [1,∞) → R be a continuous, positive

and decreasing function such that 𝑎𝑛 = 𝑓 (𝑛) for each 𝑛 ∈ N.

(1) If
∫∞

1 𝑓 (𝑡)𝑑𝑡 is convergent, then
∑
𝑎𝑛 is convergent.

(2) If
∫∞

1 𝑓 (𝑡)𝑑𝑡 diverges to∞, then
∑
𝑎𝑛 diverges to∞.

Proof. Since 𝑓 (𝑡) is positive and decreasing, in any closed interval [𝑘, 𝑘 + 1]
for 𝑘 ∈ N, the maximum value of 𝑓 (𝑡) is 𝑓 (𝑘) and the minimum value of 𝑓 (𝑡) is
𝑓 (𝑘 + 1). Thus, the integrals and the partial sums have the following relation:
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∫ 𝑛+1

1
𝑓 (𝑡) 𝑑𝑡 =

∫ 2

1
𝑓 (𝑡) 𝑑𝑡 +

∫ 3

2
𝑓 (𝑡) 𝑑𝑡 + · · · +

∫ 𝑛+1

𝑛

𝑓 (𝑡) 𝑑𝑡

≤
∫ 2

1
𝑓 (1) 𝑑𝑡 +

∫ 3

2
𝑓 (2) 𝑑𝑡 + · · · +

∫ 𝑛+1

𝑛

𝑓 (𝑛) 𝑑𝑡

= 𝑓 (1) + 𝑓 (2) + · · · 𝑓 (𝑛)

= 𝑓 (1) +
∫ 2

1
𝑓 (2) 𝑑𝑡 +

∫ 3

2
𝑓 (3) 𝑑𝑡 + · · · +

∫ 𝑛

𝑛−1
𝑓 (𝑛) 𝑑𝑡

≤ 𝑓 (1) +
∫ 2

1
𝑓 (𝑡) 𝑑𝑡 +

∫ 3

2
𝑓 (𝑡) 𝑑𝑡 + · · · +

∫ 𝑛

𝑛−1
𝑓 (𝑛) 𝑑𝑡

= 𝑓 (1) +
∫ 𝑛

1
𝑓 (𝑡) 𝑑𝑡 .

As 𝑓 (1) = 𝑎1, . . . , 𝑓 (𝑛) = 𝑎𝑛, we obtain∫ 𝑛+1

1
𝑓 (𝑡) 𝑑𝑡 ≤ 𝑎1 + 𝑎2 + · · · + 𝑎𝑛 ≤ 𝑎1 +

∫ 𝑛

1
𝑓 (𝑡) 𝑑𝑡 .

If
∫ 𝑛

1
𝑓 (𝑡) 𝑑𝑡 is finite, then the right hand inequality shows that the sequence of

partial sums 𝑎1 + · · · + 𝑎𝑛 of the series
∑
𝑎𝑛 is an increasing sequence having an

upper bound. Hence, this sequence converges; that is, the series
∑
𝑎𝑛 is convergent.

If
∫ 𝑛

1
𝑓 (𝑡) 𝑑𝑡 = ∞, then the left hand inequality similarly shows that

∑
𝑎𝑛 diverges

to∞.

We remark that in the above theorem, the hypothesis that 𝑓 (𝑥) is positive is taken
for convenience. Even if 𝑓 (𝑥) is not positive, under the rest of the hypotheses the
same conclusion can be obtained. The reason is, 𝑓 (𝑥) is continuous and decreasing
implies that if it is not positive throughout its domain [1,∞), then either it is
negative on [1,∞) or there exists 𝑎 ∈ [1,∞) such that 𝑓 (𝑥) is positive on [1, 𝑎)
and negative on (𝑎,∞). Correspondingly, the sequence (𝑓 (𝑛)) will have a tail
consisting of negative terms. Then convergence of the improper integral will imply
the convergence of the series. The second conclusion will be reformulated as “if
the improper integral diverges to ±∞, then the series will diverge to ±∞”.

Notice that when the series converges, the value of the integral can be different
from the sum of the series. Moreover, Integral test assumes implicitly that (𝑎𝑛) is a
decreasing sequence. Further, the integral test is also applicable when the interval
of integration is [𝑚,∞) instead of [1,∞) .
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(1.36) Example

Show that
∞∑︁
𝑛=1

1
𝑛𝑝

converges for 𝑝 > 1 and diverges for 𝑝 ≤ 1.

For 𝑝 = 1, the series is the harmonic series; and it diverges. Suppose 𝑝 ≠ 1.
Consider the function 𝑓 (𝑡) = 1/𝑡𝑝 from [1,∞) to R. This is a continuous, positive
and decreasing function.∫ ∞

1

1
𝑡𝑝

𝑑𝑡 = lim
𝑏→∞

𝑡−𝑝+1

−𝑝 + 1

���𝑏
1
=

1
1 − 𝑝 lim

𝑏→∞

( 1
𝑏𝑝−1 − 1

)
=

{
1

𝑝−1 if 𝑝 > 1

∞ if 𝑝 < 1.

Then the Integral test proves the statement.

Note that for 𝑝 > 1, the sum of the series
∑
𝑛−𝑝 need not be equal to 1/(𝑝 − 1).

(1.37) Example

Does the series
∞∑︁
𝑛=1

𝑛 + 7
𝑛(𝑛 + 3)

√
𝑛 + 5

converge?

Let 𝑎𝑛 =
𝑛 + 7

𝑛(𝑛 + 3)
√
𝑛 + 5

and 𝑏𝑛 =
1

𝑛3/2 . Then

𝑎𝑛

𝑏𝑛
=

√
𝑛(𝑛 + 7)

(𝑛 + 3)
√
𝑛 + 5

→ 1 as 𝑛 →∞.

Since
∑ 1

𝑛3/2 is convergent, Limit comparison test says that the given series is
convergent.

(1.38) Example

Show that the series
∞∑︁
𝑛=2

1
𝑛(log𝑛)𝛼 converges for 𝛼 > 1 and diverges to∞ for 𝛼 ≤ 1.

The function 𝑓 (𝑥) = 1
𝑥 (log𝑥)𝛼 is continuous, positive, and decreasing on [2,∞) .

By the integral test, it converges when
∫ ∞

2

1
𝑥 (log𝑥)𝛼 𝑑𝑥 converges. Evaluating the

integral, we have ∫ ∞
2

1
𝑥 (log𝑥)𝛼 𝑑𝑥 =

∫ ∞
log 2

1
𝑡𝛼

𝑑𝑡 .

As in (1.36), we conclude that the series converges for 𝛼 > 1 and diverges to∞ for
𝛼 ≤ 1.

There are various ways to determine whether a series converges or not; occasion-
ally, some information on its sum is also obtained.
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(1.39) Theorem (Comparison Test)
Let

∑
𝑎𝑛 and

∑
𝑏𝑛 be series of non-negative terms. Suppose there exists 𝑘 > 0 such

that 0 ≤ 𝑎𝑛 ≤ 𝑘𝑏𝑛 for each 𝑛 > 𝑚 for some𝑚 ∈ N.
(1) If

∑
𝑏𝑛 converges, then

∑
𝑎𝑛 converges.

(2) If
∑
𝑎𝑛 diverges to∞, then

∑
𝑏𝑛 diverges to∞.

Proof. (1) Consider all partial sums of the series having more than 𝑚 terms. We
see that

𝑎1 + · · · + 𝑎𝑚 + 𝑎𝑚+1 + · · · + 𝑎𝑛 ≤ 𝑎1 + · · · + 𝑎𝑚 + 𝑘
𝑛∑︁

𝑗=𝑚+1
𝑏 𝑗 .

Since
∑
𝑏𝑛 converges, so does

∑𝑛
𝑗=𝑚+1 𝑏 𝑗 . And then

∑
𝑎𝑛 is an increasing bounded

sequence; so it converges.

(2) If
∑
𝑏𝑛 is convergent, then by (a),

∑
𝑎𝑛 would become convergent!

Caution: The comparison test holds for series of non-negative terms.

(1.40) Theorem (Ratio Comparison Test)
Let

∑
𝑎𝑛 and

∑
𝑏𝑛 be series of non-negative terms. Suppose there exists𝑚 ∈ N such

that for each 𝑛 > 𝑚, 𝑎𝑛 > 0, 𝑏𝑛 > 0, and
𝑎𝑛+1
𝑎𝑛
≤ 𝑏𝑛+1

𝑏𝑛
.

(1) If
∑
𝑏𝑛 converges, then

∑
𝑎𝑛 converges.

(2) If
∑
𝑎𝑛 diverges to∞, then

∑
𝑏𝑛 diverges to∞.

Proof. For 𝑛 > 𝑚,

𝑎𝑛 =
𝑎𝑛

𝑎𝑛−1

𝑎𝑛−1
𝑎𝑛−2

· · · 𝑎𝑚+2
𝑎𝑚+1

𝑎𝑚+1 ≤
𝑏𝑛

𝑏𝑛−1

𝑏𝑛−1
𝑏𝑛−2

· · · 𝑏𝑚+2
𝑏𝑚+1

𝑎𝑚+1 =
𝑎𝑚+1
𝑏𝑚+1

𝑏𝑛 .

By (1.39), if
∑
𝑏𝑛 converges, then

∑
𝑎𝑛 converges. This proves (1). And, (2) follows

from (1) by contradiction.

(1.41) Theorem (Limit Comparison Test)
Let

∑
𝑎𝑛 and

∑
𝑏𝑛 be series of non-negative terms. Suppose there exists𝑚 ∈ N such

that for each 𝑛 > 𝑚, 𝑎𝑛 > 0, 𝑏𝑛 > 0, and lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= 𝑘.

(1) If 𝑘 > 0 then
∑
𝑏𝑛 and

∑
𝑎𝑛 converge or diverge to∞, together.

(2) If 𝑘 = 0 and
∑
𝑏𝑛 converges, then

∑
𝑎𝑛 converges.

(3) If 𝑘 = ∞ and
∑
𝑏𝑛 diverges to∞ then

∑
𝑎𝑛 diverges to∞.
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Proof. (1) Let 𝜖 = 𝑘/2 > 0. The limit condition implies that there exists 𝑀 ∈ N
such that

𝑘

2
<

𝑎𝑛

𝑏𝑛
<

3𝑘
2

for each 𝑛 > 𝑀 > 𝑚.

By the Comparison test, the conclusion is obtained.

(2) Let 𝜖 = 1. The limit condition implies that there exists 𝑀 ∈ N such that

−1 <
𝑎𝑛

𝑏𝑛
< 1 for each 𝑛 > 𝑀 > 𝑚.

Using the right hand inequality and the Comparison test we conclude that conver-
gence of

∑
𝑏𝑛 implies the convergence of

∑
𝑎𝑛 .

(3) If 𝑘 = ∞, lim(𝑏𝑛/𝑎𝑛) = 0. Use (2).

(1.42) Example

Do the series (a)
∞∑︁
𝑛=1

log𝑛
𝑛3/2 (b)

∞∑︁
𝑛=1

1 + 𝑛 log𝑛
1 + 𝑛2 converge?

(a) Take 𝑎𝑛 =
log𝑛
𝑛3/2 and 𝑏𝑛 =

1
𝑛5/4 . Then

lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= lim

𝑛→∞
log𝑛
𝑛1/4 = lim

𝑥→∞
log𝑥
𝑥1/4 = lim

𝑥→∞
1/𝑥

(1/4)𝑥−3/4 = lim
𝑥→∞

4
𝑥1/4 = 0.

Since
∑
𝑏𝑛 converges, by the Limit comparison test,

∑
𝑎𝑛 converges.

(b) Take 𝑎𝑛 =
1 + 𝑛 log𝑛

1 + 𝑛2 and 𝑏𝑛 =
1
𝑛
. Then

lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= lim

𝑛→∞
𝑛 + 𝑛2 log𝑛

1 + 𝑛2 = ∞.

As
∑
𝑏𝑛 diverges to∞, by the Limit comparison test,

∑
𝑎𝑛 diverges to∞.

(1.43) Theorem (D’ Alembert Ratio Test)
Let

∑
𝑎𝑛 be a series of positive terms. Suppose lim

𝑛→∞
𝑎𝑛+1
𝑎𝑛

= ℓ .

(1) If ℓ < 1, then
∑
𝑎𝑛 converges.

(2) If ℓ > 1 or ℓ = ∞, then
∑
𝑎𝑛 diverges to∞.

(3) If ℓ = 1, then no conclusion is obtained.

Proof. (1) Given that lim(𝑎𝑛+1/𝑎𝑛) = ℓ < 1. Choose 𝛿 such that ℓ < 𝛿 < 1. There
exists𝑚 ∈ N such that for each 𝑛 > 𝑚, 𝑎𝑛+1/𝑎𝑛 < 𝛿. Then

𝑎𝑛

𝑎𝑚+1
=

𝑎𝑛

𝑎𝑛−1

𝑎𝑛−1
𝑎𝑛−2

· · · 𝑎𝑚+2
𝑎𝑚+1

< 𝛿𝑛−𝑚+1.
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Thus, 𝑎𝑛 < 𝛿𝑛−𝑚+1𝑎𝑚+1. Consequently,

𝑎𝑚+1 + 𝑎𝑚+2 + · · · + 𝑎𝑛 < 𝑎𝑚+1(1 + 𝛿 + 𝛿2 + · · · 𝛿𝑛−𝑚+1).

Since 𝛿 < 1, this approaches a limit as 𝑛 →∞. Therefore, the series

𝑎𝑚+1 + 𝑎𝑚+2 + · · ·𝑎𝑛 + · · ·

converges. In that case, the series
∑
𝑎𝑛 = (𝑎1 + · · · + 𝑎𝑚) + 𝑎𝑚+1 + 𝑎𝑚+2 + · · ·

converges.

(2) Given that lim(𝑎𝑛+1/𝑎𝑛) = ℓ > 1. There exists 𝑚 ∈ N such that for each 𝑛 > 𝑚,

𝑎𝑛+1 > 𝑎𝑛 . Then
𝑎𝑚+1 + 𝑎𝑚+2 + · · · + 𝑎𝑛 > 𝑎𝑚+1(𝑛 −𝑚).

Since 𝑎𝑚+1 > 0, this approaches∞ as 𝑛 →∞. Therefore, the series

𝑎𝑚+1 + 𝑎𝑚+2 + · · ·𝑎𝑛 + · · ·

diverges to ∞. In that case, the series
∑
𝑎𝑛 = (𝑎1 + · · · + 𝑎𝑚) + 𝑎𝑚+1 + 𝑎𝑚+2 + · · ·

diverges to∞. The other case of ℓ = ∞ is similar.
(3) The series

∑(1/𝑛) diverges to∞. Here, lim(𝑎𝑛+1/𝑎𝑛) = lim(𝑛/(𝑛 + 1)) = 1.
But the series

∑(1/𝑛2) is convergent although lim(𝑎𝑛+1/𝑎𝑛) = 1.

(1.44) Example

Does the series
∞∑︁
𝑛=1

𝑛!
𝑛𝑛

converge?

Write 𝑎𝑛 = 𝑛!/(𝑛𝑛). Then

𝑎𝑛+1
𝑎𝑛

=
(𝑛 + 1)!𝑛𝑛
(𝑛 + 1)𝑛+1 𝑛!

=

( 𝑛

𝑛 + 1

)𝑛
→ 1

𝑒
< 1 as 𝑛 →∞.

By D’ Alembert’s ratio test, the series converges.
Then it follows that the sequence

(
𝑛!/𝑛𝑛

)
converges to 0.

(1.45) Example
By Ratio test, it follows that the series

1 + 1 + 1
2!
+ 1

3!
+ · · · + 1

𝑛!
+ · · ·

is convergent. In fact, this series converges to 𝑒. To see this, consider

𝑠𝑛 = 1 + 1 + 1
2!
+ · · · + 1

𝑛!
, 𝑡𝑛 =

(
1 + 1

𝑛

)𝑛
.
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By the Binomial theorem,

𝑡𝑛 = 1 + 1 + 1
2!

(
1 − 1

𝑛

)
+ · · · + 1

𝑛!

[(
1 − 1

𝑛

) (
1 − 2

𝑛

)
· · ·

(
1 − 𝑛 − 1

𝑛

)]
≤ 𝑠𝑛 .

Thus taking limit as 𝑛 →∞, we have

𝑒 = lim
𝑛→∞

𝑡𝑛 ≤ lim
𝑛→∞

𝑠𝑛 .

Also, for 𝑛 > 𝑚, where𝑚 is any fixed natural number,

𝑡𝑛 ≥ 1 + 1 + 1
2!

(
1 − 1

𝑛

)
+ · · · + 1

𝑚!

[(
1 − 1

𝑛

) (
1 − 2

𝑛

)
· · ·

(
1 − 𝑚 − 1

𝑛

)]
Taking limit as 𝑛 →∞ we have

𝑒 = lim
𝑛→∞

𝑡𝑛 ≥ 𝑠𝑚 .

Since𝑚 is arbitrary, taking the limit as𝑚 →∞, we have

𝑒 ≥ lim
𝑚→∞

𝑠𝑚 .

Therefore, lim
𝑚→∞

𝑠𝑚 = 𝑒. That is,
∞∑︁
𝑛=0

1
𝑛!

= 𝑒.

(1.46) Example

Does the series
∞∑︁
𝑛=1

4𝑛 (𝑛!)2
(2𝑛)! converge?

Let 𝑎𝑛 =
4𝑛 (𝑛!)2
(2𝑛)! . We have

𝑎𝑛+1
𝑎𝑛

=
4𝑛+1((𝑛 + 1)!)2
(2(𝑛 + 1))!

(2𝑛)!
4𝑛 (𝑛!)2

=
2(𝑛 + 1)
2𝑛 + 1

.

Since its limit is equal to 1, the Ratio test fails. However,
𝑎𝑛+1
𝑎𝑛

> 1. Since 𝑎1 = 2, we
see that each 𝑎𝑛 > 2. That is, the sequence (𝑎𝑛) does not converge to 0. Therefore,
the series diverges. Since it is a series of positive terms, it diverges to∞.

(1.47) Theorem (Cauchy Root Test)
Let

∑
𝑎𝑛 be a series of positive terms. Suppose lim

𝑛→∞
(𝑎𝑛)1/𝑛 = ℓ .

(1) If ℓ < 1, then
∑
𝑎𝑛 converges.

(2) If ℓ > 1 or ℓ = ∞, then
∑
𝑎𝑛 diverges to∞.

(3) If ℓ = 1, then no conclusion is obtained.
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Proof. (1) Suppose ℓ < 1. Choose 𝛿 such that ℓ < 𝛿 < 1. Due to the limit condition,
there exists an𝑚 ∈ N such that for each 𝑛 > 𝑚, (𝑎𝑛)1/𝑛 < 𝛿. That is, 𝑎𝑛 < 𝛿𝑛 . Since
0 < 𝛿 < 1,

∑
𝛿𝑛 converges. By Comparison test,

∑
𝑎𝑛 converges.

(2) Given that ℓ > 1 or ℓ = ∞, we see that (𝑎𝑛)1/𝑛 > 1 for infinitely many values of
𝑛. That is, the sequence

(
𝑎𝑛
)

does not converge to 0. Therefore,
∑
𝑎𝑛 is divergent.

It diverges to∞ since it is a series of positive terms.
(3) Once again, for both the series

∑(1/𝑛) and
∑(1/𝑛2), we see that (𝑎𝑛)1/𝑛 has the

limit 1. But one is divergent, the other is convergent.

Remark 1.48 In fact, for a sequence (𝑎𝑛) of positive terms if lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

exists,

then lim
𝑛→∞
(𝑎𝑛)1/𝑛 exists and the two limits are equal.

To see this, suppose lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

= ℓ . Let 𝜖 > 0. Then we have an𝑚 ∈ N such that for

all 𝑛 > 𝑚, ℓ − 𝜖 <
𝑎𝑛+1
𝑎𝑛

< ℓ + 𝜖. Use the right side inequality first. For all such 𝑛,

𝑎𝑛 < (ℓ + 𝜖)𝑛−𝑚𝑎𝑚 . Then

(𝑎𝑛)1/𝑛 < (ℓ + 𝜖)
(
(ℓ + 𝜖)−𝑚𝑎𝑚

)1/𝑛 → ℓ + 𝜖 as 𝑛 →∞.

Therefore, lim(𝑎𝑛)1/𝑛 ≤ ℓ + 𝜖 for every 𝜖 > 0. That is, lim(𝑎𝑛)1/𝑛 ≤ ℓ .

Similarly, the left side inequality gives lim(𝑎𝑛)1/𝑛 ≥ ℓ .

Notice that this gives an alternative proof of (1.47).

(1.49) Example

Does the series
∞∑︁
𝑛=0

2(−1)𝑛−𝑛 = 2 + 1
4
+ 1

2
+ 1

16
+ · · · converge?

Let 𝑎𝑛 = 2(−1)𝑛−𝑛 . Then

𝑎𝑛+1
𝑎𝑛

=

{
1/8 if 𝑛 even
2 if 𝑛 odd.

Clearly, its limit does not exist. But

(𝑎𝑛)1/𝑛 =

{
21/𝑛−1 if 𝑛 even
2−1/𝑛−1 if 𝑛 odd

This has limit 1/2 < 1. Therefore, by Cauchy root test, the series converges.
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1.8 Alternating series
If the terms of a series have alternating signs, then the earlier tests are not applicable.
For example, the methods discussed so far fail on deciding whether the series∑(−1)𝑛/𝑛 converges or not.

(1.50) Theorem (Leibniz Alternating Series Test)
Let (𝑎𝑛) be a sequence of positive terms decreasing to 0; that is, for each 𝑛,

𝑎𝑛 ≥ 𝑎𝑛+1 > 0, and lim
𝑛→∞

𝑎𝑛 = 0. Then the series
∞∑︁
𝑛=1
(−1)𝑛+1𝑎𝑛 converges, and its

sum lies between 𝑎1 − 𝑎2 and 𝑎1.

Proof. The partial sum upto 2𝑛 terms is

𝑠2𝑛 = (𝑎1−𝑎2)+(𝑎3−𝑎4)+· · ·+(𝑎2𝑛−1−𝑎2𝑛) = 𝑎1−
[
(𝑎2−𝑎3)+· · ·+(𝑎2𝑛−2−𝑎2𝑛−1)+𝑎2𝑛

]
.

It is a sum of 𝑛 positive terms bounded above by 𝑎1 and below by 𝑎1 − 𝑎2. Hence
𝑠2𝑛 converges to some 𝑠 with 𝑎1 − 𝑎2 ≤ 𝑠 ≤ 𝑎1.

The partial sum upto 2𝑛 + 1 terms is 𝑠2𝑛+1 = 𝑠2𝑛 + 𝑎2𝑛+1. It converges to 𝑠 as
lim𝑎2𝑛+1 = 0. Hence the series converges to some 𝑠 with 𝑎1 − 𝑎2 ≤ 𝑠 ≤ 𝑎1.

The bounds for 𝑠 can be sharpened by taking 𝑠2𝑛 ≤ 𝑠 ≤ 𝑠2𝑛−1 for 𝑛 > 1.

Leibniz test now implies that the series 1− 1
2 +

1
3 −

1
4 +

1
5 + · · · is convergent to some

𝑠 with 1/2 ≤ 𝑠 ≤ 1. By taking more terms, we can have different bounds such as

1 − 1
2
+ 1

3
− 1

4
=

7
12
≤ 𝑠 ≤ 1 − 1

2
+ 1

3
=

10
12

In contrast, the harmonic series 1 + 1
2 +

1
3 +

1
4 +

1
5 + · · · diverges to∞.

We say that the series
∑
𝑎𝑛 is absolutely convergent iff the series

∑ |𝑎𝑛 | is
convergent.

An alternating series
∑
𝑎𝑛 is said to be conditionally convergent iff it is conver-

gent but it is not absolutely convergent.
Thus for a series of non-negative terms, convergence and absolute convergence

coincide. As we just saw, an alternating series may be convergent but not absolutely
convergent.

The series 1 − 1
2 +

1
3 −

1
4 +

1
5 + · · · is a conditionally convergent series. It shows

that the converse of the following theorem is not true.
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(1.51) Theorem
An absolutely convergent series is convergent.

Proof. Let
∑
𝑎𝑛 be an absolutely convergent series. Then

∑ |𝑎𝑛 | is convergent.
Let 𝜖 > 0. By Cauchy criterion, there exists an 𝑛0 ∈ N such that for all 𝑛 > 𝑚 > 𝑛0,

we have
|𝑎𝑚 | + |𝑎𝑚+1 | + · · · + |𝑎𝑛 | < 𝜖.

Now,
|𝑎𝑚 + 𝑎𝑚+1 + · · · + 𝑎𝑛 | ≤ |𝑎𝑚 | + |𝑎𝑚+1 | + · · · + |𝑎𝑛 | < 𝜖.

Again, by Cauchy criterion, the series
∑
𝑎𝑛 is convergent.

An absolutely convergent series can be rearranged in any way we like, but the
sum remains the same. Whereas a rearrangement of the terms of a conditionally
convergent series may lead to divergence or convergence to any other number. In
fact, a conditionally convergent series can always be rearranged in a way so that the
rearranged series converges to any desired number; we will not prove this fact.

(1.52) Example

Do the series (a)
∞∑︁
𝑛=1
(−1)𝑛+1 1

2𝑛
(b)

∞∑︁
𝑛=1

cos𝑛
𝑛2 converge?

(a)
∑(2)−𝑛 converges. Therefore, the given series converges absolutely; hence it

converges.

(b)
���cos𝑛
𝑛2

��� ≤ 1
𝑛2 and

∑(𝑛−2) converges. By comparision test, the given series
converges absolutely; and hence it converges.

(1.53) Example

Discuss the convergence of the series
∞∑︁
𝑛=1

(−1)𝑛+1
𝑛𝑝

.

For 𝑝 > 1, the series
∑
𝑛−𝑝 converges. Therefore, the given series converges

absolutely for 𝑝 > 1.
For 0 < 𝑝 ≤ 1, by Leibniz test, the series converges. But

∑
𝑛−𝑝 does not converge.

Therefore, the given series converges conditionally for 0 < 𝑝 ≤ 1.
For 𝑝 ≤ 0, lim (−1)𝑛+1

𝑛𝑝
≠ 0. Therefore, the given series diverges in this case.

(1.54) Example

Does the series 1 − 1
4
− 1

16
+ 1

9
+ 1

25
+ 1

49
− · · · converge?
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Here, the series has been made up from the terms 1/𝑛2 by taking first one term,
next two negative terms of squares of next even numbers, then three positive terms
which are squares of next three odd numbers, and so on. This is a rearrangement of
the series

1 − 1
22 +

1
32 −

1
42 +

1
52 −

1
62 + · · ·

which is absolutely convergent (since
∑(1/𝑛2) is convergent). Therefore, the

given series is convergent and its sum is the same as that of the alternating se-
ries

∑(−1)𝑛+1(1/𝑛2).

1.9 Exercises for Chapter 1
1. Show the following:

(a) lim
𝑛→∞

ln𝑛
𝑛

= 0. (b) lim
𝑛→∞

𝑛1/𝑛 = 1. (c) lim
𝑛→∞

𝑥𝑛 = 0 for |𝑥 | < 1.

(d) lim
𝑛→∞

𝑛𝑝

𝑥𝑛
= 0 for 𝑥 > 1. (e) lim

𝑛→∞
𝑥𝑛

𝑛!
= 0 (f) lim

𝑛→∞

(
1 + 𝑥

𝑛

)𝑛
= 𝑒𝑥

2. Prove the following:

(a) It is not possible that a series converges to a real number ℓ and also
diverges to −∞.

(b) It is not possible that a series diverges to∞ and also to −∞.
3. Prove the following:

(a) If both the series
∑
𝑎𝑛 and

∑
𝑏𝑛 converge, then the series

∑(𝑎𝑛 + 𝑏𝑛),∑(𝑎𝑛 − 𝑏𝑛) and
∑
𝑘𝑎𝑛 converge; where 𝑘 is any real number.

(b) If
∑
𝑎𝑛 converges and

∑
𝑏𝑛 diverges to ±∞, then

∑(𝑎𝑛 +𝑏𝑛) diverges to
±∞, and

∑(𝑎𝑛 − 𝑏𝑛) diverges to ∓∞.
(c) If

∑
𝑎𝑛 diverges to ±∞, and 𝑘 > 0, then

∑
𝑘𝑎𝑛 diverges to ±∞.

(d) If
∑
𝑎𝑛 diverges to ±∞, and 𝑘 < 0, then

∑
𝑘𝑎𝑛 diverges to ∓∞.

4. Give examples for the following:

(a)
∑
𝑎𝑛 and

∑
𝑏𝑛 both diverge, but

∑(𝑎𝑛 + 𝑏𝑛) converges to a nonzero
number.

(b)
∑
𝑎𝑛 and

∑
𝑏𝑛 both diverge, and

∑(𝑎𝑛 + 𝑏𝑛) diverges to∞.
(c)

∑
𝑎𝑛 and

∑
𝑏𝑛 both diverge, and

∑(𝑎𝑛 + 𝑏𝑛) diverges to −∞.
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5. Show that the sequence 1, 1.1, 1.1011, 1.10110111, 1.1011011101111 . . .
converges.

6. Determine whether the following series converge:

(a)
∞∑︁
𝑛=1

−𝑛
3𝑛 + 1

(b)
∞∑︁
𝑛=1

ln𝑛
𝑛3/2 (c)

∞∑︁
𝑛=1

1 + 𝑛 ln𝑛
1 + 𝑛2

Ans: (a) converges (b) diverges (c) diverges to∞.

7. Test for convergence the series
1
3
+
(2
3
)2 + (3

7
)3 + · · · + ( 𝑛

2𝑛 + 1
)𝑛 + · · ·.

Ans: converges.

8. Is the integral
∫ ∞
−∞

1
1 + 𝑥2 𝑑𝑥 convergent? Ans: Yes.

9. Is the area under the curve 𝑦 = (ln𝑥)/𝑥2 for 1 ≤ 𝑥 < ∞ finite? Ans: Yes.

10. Evaluate (a)
∫ 3

0

𝑑𝑥

(𝑥 − 1)2/3
(b)

∫ 3

0

𝑑𝑥

𝑥 − 1
Ans: (a) 3(1 + 21/3) (b) does not converge.

11. Show that
∫ ∞

1

sin𝑥
𝑥𝑝

𝑑𝑥 converges for all 𝑝 > 0.

12. Show that
∫ ∞

0

sin𝑥
𝑥𝑝

𝑑𝑥 converges for 0 < 𝑝 ≤ 1.

13. Show that the series
∞∑︁
𝑛=2

1
𝑛(ln𝑛)𝛼 converges for 𝛼 > 1 and diverges to ∞ for

𝛼 ≤ 1.

14. Does the series
∞∑︁
𝑛=1

4𝑛 (𝑛!)2
(2𝑛)! converge? Ans: diverges to∞.

15. Does the series 1 − 1
4
− 1

16
+ 1

9
+ 1

25
+ 1

49
− · · · converge? Ans: Yes.

16. Let (𝑎𝑛) be a sequence of positive terms. Show that if
∑∞

𝑛=1
𝑎𝑛

1+𝑎𝑛 converges,
then

∑∞
𝑛=1 𝑎𝑛 converges.

17. Let (𝑎𝑛) be a sequence of positive decreasing terms. Show that if
∑∞

𝑛=1 𝑎𝑛
converges, then the sequence (𝑛𝑎𝑛) converges to 0.



2
Series Representation of Functions

2.1 Power Series
A power series apparently is a generalization of a polynomial. A polynomial in 𝑥

looks like
𝑝 (𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + · · · + 𝑎𝑛𝑥𝑛 .

A power series is an infinite sum of the same form. The question is though a
polynomial defines a function for 𝑥 ∈ R,when does a power series define a function?
That is, for what values of 𝑥, a power series sums to a number?

Let 𝑐 ∈ R. A power series about 𝑥 = 𝑐 is a series of the form
∞∑︁
𝑛=0

𝑎𝑛 (𝑥 − 𝑐)𝑛 = 𝑎0 + 𝑎1(𝑥 − 𝑐) + 𝑎2(𝑥 − 𝑐)2 + · · ·

The point𝑐 is called the center of the power series and the real numbers𝑎0, 𝑎1, · · · , 𝑎𝑛, · · ·
are its coefficients.

When 𝑥 = 𝑐 and 𝑛 = 0, we agree to read the term 𝑎0(𝑥 − 𝑐)0 as 𝑎0. This will save
space in writing a power series.

For example, the geometric series

1 + 𝑥 + 𝑥2 + · · · + 𝑥𝑛 + · · ·

is a power series about 𝑥 = 0 with each coefficient as 1. We know that its sum is
1

1 − 𝑥 for −1 < 𝑥 < 1. And we know that for |𝑥 | ≥ 1, the geometric series does
not converge. That is, the series defines a function from (−1, 1) to R and it is not
meaningful for other values of 𝑥 .

(2.1) Example
Show that the following power series converges for 0 < 𝑥 < 4.

1 − 1
2
(𝑥 − 2) + 1

4
(𝑥 − 2)2 + · · · + (−1)𝑛

2𝑛
(𝑥 − 2)𝑛 + · · ·

40
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It is a geometric series with the ratio as 𝑟 = (−1/2) (𝑥 − 2). Thus it converges for
| (−1/2) (𝑥 − 2) | < 1. Simplifying we get the constraint as 0 < 𝑥 < 4.

Notice that the power series sums to

1
1 − 𝑟 =

1
1 − −1

2(𝑥−2)
=

2
𝑥
.

Thus, the power series gives a series expansion of the function 2
𝑥

for 0 < 𝑥 < 4.
Truncating the series to 𝑛 terms give us polynomial approximations of 2

𝑥
.

A fundamental result for the power series is the following, which we state and prove
for power series about the point 0. Results on power series about any point 𝑐 can
be obtained from this particular case in a similar manner or with the substitution
𝑦 = 𝑥 − 𝑐.

(2.2) Theorem (Convergence Theorem for Power Series)
Suppose the power series

∑∞
𝑛=0 𝑎𝑛𝑥

𝑛 is convergent for 𝑥 = 𝛼 and divergent for 𝑥 = 𝛽

for some 𝛼 > 0, 𝛽 > 0. Then the power series converges absolutely for all 𝑥 with
|𝑥 | < 𝛼 ; and it diverges for all 𝑥 with |𝑥 | > 𝛽.

Proof. The power series converges for 𝑥 = 𝛼 means that
∑
𝑎𝑛𝛼

𝑛 converges. Thus
lim
𝑛→∞

𝑎𝑛𝛼
𝑛 = 0. Then we have an 𝑀 ∈ N such that for all 𝑛 > 𝑀, |𝑎𝑛𝛼𝑛 | < 1.

Let 𝑥 ∈ R be such that |𝑥 | < 𝛼. Write 𝑡 = | 𝑥
𝛼
|. We have

for each 𝑛 > 𝑀, |𝑎𝑛𝑥𝑛 | = |𝑎𝑛𝛼𝑛 | | 𝑥𝛼 |
𝑛 < 𝑡𝑛 .

As 0 ≤ 𝑡 < 1, the geometric series
∑∞

𝑛=𝑚+1 𝑡
𝑛 converges. By comparison test,∑∞

𝑛=𝑚+1 |𝑎𝑛𝑥𝑛 | converges. Adding to it some finite terms, it follows that
∑∞

𝑛=0 |𝑎𝑛𝑥𝑛 |
converges. That is, the power series converges absolutely for all 𝑥 with |𝑥 | < 𝛼.

For the divergence part of the theorem, suppose, on the contrary that the power
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series converges for some 𝑐 > 𝛽. By the convergence part, the series must converge
for 𝑥 = 𝛽, a contradiction.

Notice that if the power series is about a point 𝑥 = 𝑐, then we take 𝑦 = 𝑥 − 𝑐 and
apply (2.2). Also, for 𝑥 = 0, the power series

∑
𝑎𝑛𝑥

𝑛 always converges.
In view of (2.2), we introduce some terminology.
Consider the power series

∑∞
𝑛=0 𝑎𝑛 (𝑥 − 𝑐)𝑛 . The real number

𝑅 = lub{𝛼 ≥ 0 : the power series converges for all 𝑥 with |𝑥 − 𝑐 | < 𝛼}

is called the radius of convergence of the power series.
That is, 𝑅 is such a non-negative number that the power series converges for all

𝑥 with |𝑥 − 𝑐 | < 𝑅 and it diverges for all 𝑥 with |𝑥 − 𝑐 | > 𝑅. Further, 𝑅 = ∞ iff the
power series converges for all 𝑥 ∈ R.

If the radius of convergence of the power series
∑
𝑎𝑛 (𝑥−𝑐)𝑛 is 𝑅, then the interval

of convergence of the power series is

[𝑐 − 𝑅, 𝑐 + 𝑅] iff it converges at both 𝑥 = 𝑐 − 𝑅 and 𝑥 = 𝑐 + 𝑅.
(𝑐 − 𝑅, 𝑐 + 𝑅) iff it diverges at both 𝑥 = 𝑐 − 𝑅 and 𝑥 = 𝑐 + 𝑅.
[𝑐 − 𝑅, 𝑐 + 𝑅) iff it converges at 𝑥 = 𝑐 − 𝑅 and diverges at 𝑥 = 𝑐 + 𝑅.
(𝑐 − 𝑅, 𝑐 + 𝑅] iff it diverges at 𝑥 = 𝑐 − 𝑅 and converges at 𝑥 = 𝑐 + 𝑅.

That is, the interval of convergence of the power series is the open interval
(𝑐−𝑅, 𝑐+𝑅) along with the point(s) 𝑐−𝑅 and/or 𝑐+𝑅, wherever it is convergent. Due
to (2.2) the power series converges everywhere inside the interval of convergence, it
converges absolutely inside the open interval (𝑐−𝑅, 𝑐+𝑅), and it diverges everywhere
beyond the interval of convergence.

Also, see that when 𝑅 = ∞, the power series converges for all 𝑥 ∈ R, and when
𝑅 = 0, the power series converges only at the point 𝑥 = 𝑐, whence its sum is 𝑎0.

To determine the interval of convergence, you must find the radius of convergence
𝑅, and then test for its convergence separately for the end-points 𝑥 = 𝑐 − 𝑅 and
𝑥 = 𝑐 + 𝑅.

The radius of convergence can be found out by ratio test and/or root test, or any
other test.

(2.3) Theorem

The radius of convergence of the power series
∞∑︁
𝑛=0

𝑎𝑛 (𝑥 − 𝑐)𝑛 is lim
𝑛→∞
|𝑎𝑛 |−1/𝑛 provided

this limit is either a real number or∞.
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Proof. For the power series
∞∑︁
𝑛=0

𝑎𝑛 (𝑥 − 𝑐)𝑛, suppose lim
𝑛→∞
|𝑎𝑛 |1/𝑛 = 𝑟 ∈ R ∪ {∞}.

We need to show the following:
(1) If 𝑟 ∈ R and 𝑟 > 0, then the radius of convergence of the power series is 1/𝑟 .
(2) If 𝑟 = 0, then the power series converges for all 𝑥 ∈ R.
(3) If 𝑟 = ∞, then the power series converges only for 𝑥 = 0.

(1) Suppose lim
𝑛→∞
|𝑎𝑛 |1/𝑛 = 𝑟 > 0. Now,

|𝑥 − 𝑐 | < 1
𝑟
⇒ |𝑥 − 𝑐 | lim

𝑛→∞
|𝑎𝑛 |1/𝑛 < 1⇒ lim

𝑛→∞
|𝑎𝑛 (𝑥 − 𝑐)𝑛 |1/𝑛 < 1.

By the root test, it follows that the series is convergent when |𝑥 − 𝑐 | < 1
𝑟
. Next,

|𝑥 − 𝑐 | > 1
𝑟
⇒ |𝑥 − 𝑐 | lim

𝑛→∞
|𝑎𝑛 |1/𝑛 > 1⇒ lim

𝑛→∞
|𝑎𝑛 (𝑥 − 𝑐)𝑛 |1/𝑛 > 1.

Again, the root test implies that the series is divergent when |𝑥 − 𝑐 | > 1
𝑟
.

(2) If 𝑟 = 0, then for any 𝑥 ∈ R, lim |𝑎𝑛 (𝑥 − 𝑐)𝑛 |1/𝑛 = |𝑥 − 𝑐 | lim |𝑎𝑛 |1/𝑛 = 0. By the
root test, the series converges for each 𝑥 ∈ R.
(3) If 𝑟 = ∞, then for any 𝑥 ≠ 𝑐, lim |𝑎𝑛 (𝑥 − 𝑐)𝑛 | = lim |𝑥 − 𝑐 | |𝑎𝑛 |1/𝑛 = ∞. By the
root test,

∑
𝑎𝑛 (𝑥 − 𝑐)𝑛 diverges for each 𝑥 ≠ 𝑐.

Instead of the Root test, if we apply the Ratio test, then we obtain the following
theorem.

(2.4) Theorem

The radius of convergence of the power series
∞∑︁
𝑛=0

𝑎𝑛 (𝑥 − 𝑐)𝑛 is given by lim
𝑛→∞

��� 𝑎𝑛
𝑎𝑛+1

���,
provided that this limit is either a real number or equal to∞.

Also, we sometimes need to use the method of substitution. In this connection,
the following result is useful.

(2.5) Theorem
Let 𝑅 > 0 and let 𝑓 : (−𝑅, 𝑅) → R be a continuous function. If

∞∑
𝑛=0

𝑎𝑛𝑥
𝑛 converges

absolutely for |𝑥 | < 𝑅, then
∞∑
𝑛=0

𝑎𝑛 (𝑓 (𝑥))𝑛 converges absolutely for |𝑓 (𝑥) | < 𝑅.

(2.6) Example
For what values of 𝑥, do the following power series converge?

(a)
∞∑︁
𝑛=0

𝑛!𝑥𝑛 (b)
∞∑︁
𝑛=0

𝑥𝑛

𝑛!
(c)

∞∑︁
𝑛=0
(−1)𝑛 𝑥2𝑛+1

2𝑛 + 1
(d)

∞∑︁
𝑛=0
(−1)𝑛 𝑥

𝑛+1

𝑛 + 1
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(a) 𝑎𝑛 = 𝑛!. Thus lim |𝑎𝑛/𝑎𝑛+1 | = lim 1/(𝑛 + 1) = 0. Hence 𝑅 = 0. That is, the series
is only convergent for 𝑥 = 0.

(b) 𝑎𝑛 = 1/𝑛!. Thus lim |𝑎𝑛/𝑎𝑛+1 | = lim(𝑛 + 1) = ∞. Hence 𝑅 = ∞. That is, the
series is convergent for all 𝑥 ∈ R.
(c) Here, the power series in not in the form

∑
𝑏𝑛𝑥

𝑛 . The series can be thought of as

𝑥

(
1 − 𝑥2

3
+ 𝑥

4

5
+ · · ·

)
= 𝑥

∞∑︁
𝑛=0
(−1)𝑛 𝑡𝑛

2𝑛 + 1
for 𝑡 = 𝑥2.

Now, for the power series
∑︁
(−1)𝑛 𝑡𝑛

2𝑛 + 1
, 𝑎𝑛 = (−1)𝑛/(2𝑛 + 1).

Thus lim |𝑎𝑛/𝑎𝑛+1 | = lim 2𝑛+3
2𝑛+1 = 1. Hence 𝑅 = 1. That is, for |𝑡 | = 𝑥2 < 1, the series

converges and for |𝑡 | = 𝑥2 > 1, the series diverges.

Alternatively, you can use the geometric series. That is, for any 𝑥 ∈ R, consider the
series

𝑥

(
1 − 𝑥2

3
+ 𝑥

4

5
+ · · ·

)
.

Write 𝑏𝑛 for the 𝑛th coefficient of the power series. By the ratio test, the series
converges if

lim
𝑛→∞

��� 𝑏𝑛
𝑏𝑛+1

��� = lim
𝑛→∞

2𝑛 + 3
2𝑛 + 1

|𝑥2 | = 𝑥2 < 1.

That is, the power series converges for −1 < 𝑥 < 1. Also, by the ratio test, the series
diverges for |𝑥 | > 1.

What happens for |𝑥 | = 1?
For 𝑥 = −1, the original power series is an alternating series; it converges due to
Liebniz. Similarly, for 𝑥 = 1, the alternating series also converges.
Hence the interval of convergence for the original power series (in 𝑥) is [−1, 1] .

(d) Consider the series in the form 𝑥

∞∑︁
𝑛=0
(−1)𝑛+1 𝑥𝑛

𝑛 + 1
.

For the series
∞∑︁
𝑛=0
(−1)𝑛+1 𝑥𝑛

𝑛 + 1
, 𝑎𝑛 =

(−1)𝑛+1
𝑛 + 1

.Thus, lim
𝑛→∞

|𝑎𝑛 |
|𝑎𝑛+1 |

= lim
𝑛→∞

𝑛 + 2
𝑛 + 1

= 1.

Hence 𝑅 = 1. That is, the series is convergent for all 𝑥 ∈ (−1, 1).
Here again, you can use directly the ratio test on the series for any fixed 𝑥 as in (c).

For 𝑥 = −1, the series is −1 − 1
2
− 1

3
− · · · Since the harmonic series is divergent,

the power series at 𝑥 = −1 is divergent.
For 𝑥 = 1, the series is 1 − 1

2
+ 1

3
− 1

4
+ · · · Since the alternating harmonic series is



Series Representation of Functions 45

convergent, the power series at 𝑥 = 1 is convergent.
Therefore, the interval of convergence of the original power series is (−1, 1] .

If 𝑅 is the radius of convergence of a power series
∑
𝑎𝑛 (𝑥 − 𝑎)𝑛, then the series

defines a function 𝑓 (𝑥) from the open interval (𝑎 − 𝑅, 𝑎 + 𝑅) to R by

𝑓 (𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑎) + 𝑎2(𝑥 − 𝑎)2 + · · · =
∞∑︁
𝑛=0

𝑎𝑛 (𝑥 − 𝑎)𝑛 for 𝑥 ∈ (𝑎 − 𝑅, 𝑎 + 𝑅).

This function can be differentiated and integrated term-by-term and it so happens
that the new series obtained by such term-by-term differentiation or integration has
the same radius of convergence and they define the derivative and the integral of
𝑓 (𝑥). We state it without proof.

(2.7) Theorem
Let the power series

∑∞
𝑛=0 𝑎𝑛 (𝑥 − 𝑐)𝑛 have radius of convergence 𝑅 > 0. Then the

power series defines a function 𝑓 : (𝑐 −𝑅, 𝑐 +𝑅) → R. Further, 𝑓 ′(𝑥) and
∫
𝑓 (𝑥)𝑑𝑥

exist as functions from (𝑐 − 𝑅, 𝑐 + 𝑅) to R and these are given by

𝑓 (𝑥) =
∞∑︁
𝑛=0

𝑎𝑛 (𝑥−𝑐)𝑛, 𝑓 ′(𝑥) =
∞∑︁
𝑛=1

𝑛𝑎𝑛 (𝑥−𝑐)𝑛−1,

∫
𝑓 (𝑥)𝑑𝑥 =

∞∑︁
𝑛=0

𝑎𝑛
(𝑥 − 𝑐)𝑛+1
𝑛 + 1

+𝐶,

where all the three power series converge for all 𝑥 ∈ (𝑐 − 𝑅, 𝑐 + 𝑅).

Caution: Term by term differentiation may not work for series, which are not power

series. For example,
∞∑︁
𝑛=1

sin(𝑛!𝑥)
𝑛2 is convergent for all 𝑥 . Differentiaing term by

term, we obtain the series
∞∑︁
𝑛=1

𝑛! cos(𝑛!𝑥)
𝑛2 , which diverges for all 𝑥 .

Further, power series about the same point can be multiplied by using a gener-
alization of multiplication of polynomials. We write the multiplication of power
series about 𝑥 = 0 for simplicity.

(2.8) Theorem
Let the power series

∑
𝑎𝑛 (𝑥−𝑐)𝑛 and

∑
𝑏𝑛 (𝑥−𝑐)𝑛 have the same radii of convergence

𝑅 > 0. Then their product
∑
𝑑𝑛 (𝑥 −𝑐)𝑛 has the same radius of convergence 𝑅, where

𝑑𝑛 =

𝑛∑︁
𝑘=0

𝑎𝑘𝑏𝑛−𝑘 = 𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + · · · + 𝑎𝑛−1𝑏1 + 𝑎𝑛𝑏0.

Moreover, the functions they define satisfy the following for 𝑐 − 𝑅 < 𝑥 < 𝑐 + 𝑅:

If 𝑓 (𝑥) =
∑︁

𝑎𝑛 (𝑥 − 𝑐)𝑛, 𝑔(𝑥) =
∑︁

𝑏𝑛 (𝑥 − 𝑐)𝑛, then 𝑓 (𝑥)𝑔(𝑥) =
∑︁

𝑑𝑛 (𝑥 − 𝑐)𝑛 .
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(2.9) Example
Determine power series expansions of the following functions:

(a) 𝑔(𝑥) = 2
(𝑥 − 1)3

(b) 𝑔(𝑥) = tan−1 𝑥 (c) log(1 + 𝑥) (d)
log(1 + 𝑥)

1 − 𝑥

(a) For −1 < 𝑥 < 1,
1

1 − 𝑥 = 1 + 𝑥 + 𝑥2 + 𝑥3 + · · ·.
Differentiating term by term, we have

1
(1 − 𝑥)2

= 1 + 2𝑥 + 3𝑥2 + 4𝑥3 + · · ·

Differentiating once more, we get

2
(1 − 𝑥)3

= 2 + 6𝑥 + 12𝑥2 + · · · =
∞∑︁
𝑛=2

𝑛(𝑛 − 1)𝑥𝑛−2 for − 1 < 𝑥 < 1.

(b)
1

1 + 𝑥2 = 1 − 𝑥2 + 𝑥4 − 𝑥6 + 𝑥8 − · · · for |𝑥2 | < 1.

Integrating term by term we have

tan−1 𝑥 +𝐶 = 𝑥 − 𝑥3

3
+ 𝑥

5

5
− 𝑥7

7
+ · · · for − 1 < 𝑥 < 1.

Evaluating at 𝑥 = 0, we see that 𝐶 = 0. Hence the power series for tan−1 𝑥 .

(c) For −1 < 𝑥 < 1,
1

1 + 𝑥 = 1 − 𝑥 + 𝑥2 − 𝑥3 + 𝑥4 − · · ·.
Integrating term by term and evaluating at 𝑥 = 0, we obtain

log(1 + 𝑥) = 𝑥 − 𝑥2

2
+ 𝑥

3

3
− 𝑥4

4
+ · · · for − 1 < 𝑥 < 1.

(d) Using the results in (c) and the geometric series for 1/(1 − 𝑥), we have

log(1 + 𝑥)
1 − 𝑥 =

∞∑︁
𝑛=1

(−1)𝑛−1 𝑥𝑛

𝑛
·
∞∑︁
𝑛=0

𝑥𝑛 for − 1 < 𝑥 < 1.

For obtaining the product of the two power series, we need to write the first in the
form

∑
𝑎𝑛𝑥

𝑛 . (Notice that for the second series, each 𝑏𝑛 = 1.) Here, the first series
is

log(1 + 𝑥) =
∞∑︁
𝑛=0

𝑎𝑛𝑥
𝑛, where 𝑎0 = 0 and 𝑎𝑛 =

(−1)𝑛−1

𝑛
for 𝑛 ≥ 1.

Thus the product above is
log(1 + 𝑥)

1 − 𝑥 =

∞∑︁
𝑛=0

𝑐𝑛𝑥
𝑛, where

𝑐𝑛 = 𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + · · · + 𝑎𝑛𝑏0 = 𝑎0 + 𝑎1 + · · ·𝑎𝑛 = 1 − 1
2
+ 1

3
− · · · + (−1)𝑛−1

𝑛
.
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The following theorem due to Abel shows that continuity is somehow inbuilt in
a power series. It helps in evaluating a series at the endpoints of the interval of
convergence.

(2.10) Theorem (Abel)

Let 𝑅 be the radius of convergence of the power series
∑∞

𝑛=0 𝑎𝑛𝑥
𝑛 whose sum is 𝑓 (𝑥)

for |𝑥 | < 𝑅.

(1) If the power series converges at 𝑥 = −𝑅, then
∑∞

𝑛=0 𝑎𝑛 (−𝑅)𝑛 = lim
𝑥→−𝑅+

𝑓 (𝑥).

(2) If the power series converges at 𝑥 = 𝑅, then
∑∞

𝑛=0 𝑎𝑛𝑅
𝑛 = lim

𝑥→𝑅−
𝑓 (𝑥).

(2.11) Example
We know that log(1+𝑥) = ∑∞

𝑛=1(−1)𝑛+1 𝑥𝑛
𝑛

. The radius of convergence of this power
series is 1. By Abel’s theorem,

lim
𝑥→1−

log(1 + 𝑥) =
∞∑︁
𝑛=1
(−1)𝑛+1 1𝑛

𝑛
⇒

∞∑︁
𝑛=1

(−1)𝑛+1
𝑛

= log 2.

Observe what Abel’s theorem does not say. In general, if a function has a power
series representation in the interval |𝑥 | < 𝑅 and the function has a limit as 𝑥 → 𝑅−,
then the series need not converge at 𝑥 = 𝑅. See the following example.

(2.12) Example
Consider the function 𝑓 (𝑥) = 1

1+𝑥2 . It has the power series representation
∑∞

𝑛=0(−1)𝑛𝑥2𝑛

for |𝑥 | < 1. As 𝑥 → 1−, the function 𝑓 (𝑥) has the limit 1/2. However, at 𝑥 = 1, the
power series

∑∞
𝑛=0(−1)𝑛 (1)2𝑛 = 1 − 1 + 1 − 1 + 1 · · · does not converge.

2.2 Taylor’s formulas
For an elegant power series representation of smooth functions we require Taylor’s
formulas. It has two forms: differential form and integral form. The differential
form is a generalization of the Mean Value Theorem for differentiable functions.
However, we will first prove the integral form, and then deduce the differential form.
In what follows, if 𝑓 : [𝑎, 𝑏] → R, then its derivative at 𝑥 = 𝑎 is taken as the right
hand derivative, and at 𝑥 = 𝑏, the derivative is taken as the left hand derivative of
𝑓 (𝑥).
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(2.13) Theorem (Taylor’s Formula in Integral Form)
Let 𝑓 (𝑥) be an (𝑛 + 1)-times continuously differentiable function on [𝑎, 𝑏] . Let
𝑥 ∈ [𝑎, 𝑏] . Then

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 𝑓 ′′(𝑎)
2!
(𝑥 − 𝑎)2 + · · · + 𝑓 (𝑛) (𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 + 𝑅𝑛 (𝑥),

where 𝑅𝑛 (𝑥) =
∫ 𝑥

𝑎

(𝑥 − 𝑡)𝑛
𝑛!

𝑓 (𝑛+1) (𝑡) 𝑑𝑡 . An estimate for 𝑅𝑛 (𝑥) is given by

𝑚 (𝑥 − 𝑎)𝑛+1
(𝑛 + 1)! ≤ 𝑅𝑛 (𝑥) ≤

𝑀 (𝑥 − 𝑎)𝑛+1
(𝑛 + 1)!

where𝑚 ≤ 𝑓 𝑛+1(𝑥) ≤ 𝑀 for 𝑥 ∈ [𝑎, 𝑏] .

Proof. We prove it by induction on 𝑛. For 𝑛 = 0, we should show that

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑅0(𝑥) = 𝑓 (𝑎) +
∫ 𝑥

𝑎

𝑓 ′(𝑡) 𝑑𝑡 .

But this follows from the Fundamental theorem of calculus. Now, suppose that
Taylor’s formula holds for 𝑛 = 𝑘. That is, we have

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 𝑓 ′′(𝑎)
2!
(𝑥 − 𝑎)2 + · · · + 𝑓 (𝑘) (𝑎)

𝑘!
(𝑥 − 𝑎)𝑘 + 𝑅𝑘 (𝑥),

where 𝑅𝑘 (𝑥) =
∫ 𝑥

𝑎

(𝑥 − 𝑡)𝑘
𝑘!

𝑓 (𝑘+1) (𝑡) 𝑑𝑡 . We evaluate 𝑅𝑘 (𝑥) using integration by

parts with the first function as 𝑓 (𝑘+1) (𝑡) and the second function as (𝑥 − 𝑡)𝑘/𝑘!.
Remember that the variable of integration is 𝑡 and 𝑥 is a fixed number. Then

𝑅𝑘 (𝑥) =
[
− 𝑓 (𝑘+1) (𝑡) (𝑥 − 𝑡)

𝑘+1

(𝑘 + 1)!

]𝑥
𝑎
+
∫ 𝑥

𝑎

𝑓 (𝑘+2) (𝑡) (𝑥 − 𝑡)
𝑘+1

(𝑘 + 1)! 𝑑𝑡

= 𝑓 (𝑘+1) (𝑎) (𝑥 − 𝑎)
𝑘+1

(𝑘 + 1)! +
∫ 𝑥

𝑎

𝑓 (𝑘+2) (𝑡) (𝑥 − 𝑡)
𝑘+1

(𝑘 + 1)! 𝑑𝑡

=
𝑓 (𝑘+1) (𝑎)
(𝑘 + 1)! (𝑥 − 𝑎)

𝑘+1 + 𝑅𝑘+1(𝑥).

This completes the proof of Taylor’s formula. For the estimate of 𝑅𝑛 (𝑥), Observe
that ∫ 𝑥

𝑎

(𝑥 − 𝑡)𝑛
𝑛!

𝑑𝑡 =
−(𝑥 − 𝑡)𝑛+1
(𝑛 + 1)!

���𝑥
𝑎
=
(𝑥 − 𝑎)𝑛+1
(𝑛 + 1)! .

Since𝑚 ≤ 𝑓 𝑛+1(𝑥) ≤ 𝑀, the estimate for 𝑅𝑛 (𝑥) follows.

To derive the differential form of Taylor’s formula, we use the following result.
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(2.14) Theorem (Weighted Mean Value Theorem)
Let 𝑓 (𝑡) and 𝑔(𝑡) be continuous real valued functions on [𝑎, 𝑏], where 𝑔(𝑡) does not
change sign in [𝑎, 𝑏] . Then there exists 𝑐 ∈ [𝑎, 𝑏] such that∫ 𝑏

𝑎

𝑓 (𝑡)𝑔(𝑡) 𝑑𝑡 = 𝑓 (𝑐)
∫ 𝑏

𝑎

𝑔(𝑡) 𝑑𝑡 .

Proof. Without loss of generality assume that 𝑔(𝑡) ≥ 0. Since 𝑓 (𝑡) is continuous,
let 𝛼 = min 𝑓 (𝑡) and 𝛽 = max 𝑓 (𝑡) in [𝑎, 𝑏] . Then

𝛼

∫ 𝑏

𝑎

𝑔(𝑡) 𝑑𝑡 ≤
∫ 𝑏

𝑎

𝑓 (𝑡)𝑔(𝑡) 𝑑𝑡 ≤ 𝛽

∫ 𝑏

𝑎

𝑔(𝑡) 𝑑𝑡 .

If
∫𝑏
𝑎
𝑔(𝑡) 𝑑𝑡 = 0, then

∫𝑏
𝑎
𝑓 (𝑡)𝑔(𝑡) 𝑑𝑡 = 0. In this case,

∫𝑏
𝑎
𝑓 (𝑡)𝑔(𝑡) 𝑑𝑡 = 𝑓 (𝑐)

∫𝑏
𝑎
𝑔(𝑡) 𝑑𝑡 .

So, suppose that
∫𝑏
𝑎
𝑔(𝑡) 𝑑𝑡 ≠ 0. Then

∫𝑏
𝑎
𝑔(𝑡) 𝑑𝑡 > 0. Consequently,

𝛼 ≤
∫𝑏
𝑎
𝑓 (𝑡)𝑔(𝑡) 𝑑𝑡∫𝑏
𝑎
𝑔(𝑡) 𝑑𝑡

≤ 𝛽.

By the intermediate value theorem, there exists 𝑐 ∈ [𝑎, 𝑏] such that∫𝑏
𝑎
𝑓 (𝑡)𝑔(𝑡) 𝑑𝑡∫𝑏
𝑎
𝑔(𝑡) 𝑑𝑡

= 𝑓 (𝑐).

(2.15) Theorem (Taylor’s Formula in Differential Form)
Let 𝑛 ∈ N. Suppose that 𝑓 (𝑛) (𝑥) is continuously differentiable on [𝑎, 𝑏] . Then there
exists 𝑐 ∈ [𝑎, 𝑏] such that

𝑓 (𝑥) = 𝑓 (𝑎)+𝑓 ′(𝑎) (𝑥−𝑎)+ 𝑓
′′(𝑎)
2!
(𝑥−𝑎)2+· · ·+ 𝑓

(𝑛) (𝑎)
𝑛!

(𝑥−𝑎)𝑛+ 𝑓
(𝑛+1) (𝑐)
(𝑛 + 1)! (𝑥−𝑎)

𝑛+1.

Proof. Let 𝑥 ∈ (𝑎, 𝑏). The function 𝑔(𝑡) = (𝑥 − 𝑡)𝑛 does not change sign in [𝑎, 𝑥] .
By the weighted mean value theorem, there exists 𝑐 ∈ [𝑎, 𝑥] such that∫ 𝑥

𝑎

(𝑥 − 𝑡)𝑛 𝑓 (𝑛+1) (𝑡) 𝑑𝑡 = 𝑓 (𝑛+1) (𝑐)
∫ 𝑥

𝑎

(𝑥 − 𝑡)𝑛 𝑑𝑡 = −𝑓 (𝑛+1) (𝑐) (𝑥 − 𝑡)
𝑛+1

𝑛 + 1

���𝑥
𝑎

= 𝑓 (𝑛+1) (𝑐) (𝑥 − 𝑎)
𝑛+1

𝑛 + 1
.

Using the Taylor’s formula in integral form, we have
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𝑅𝑛 (𝑥) =
1
𝑛!

∫ 𝑥

𝑎

(𝑥 − 𝑡)𝑛 𝑓 (𝑛+1) (𝑡) 𝑑𝑡 = 1
𝑛!

𝑓 (𝑛+1) (𝑐) (𝑥 − 𝑎)
𝑛+1

𝑛 + 1
=

𝑓 (𝑛+1) (𝑐)
(𝑛 + 1)! (𝑥 − 𝑎)

𝑛+1.

Remark 2.16 Taylor’s formula in differential form can be proved directly by
repeated use of the Mean value theorem, or Rolle’s theorem. It is as follows.

For 𝑥 = 𝑎, the formula holds. So, let 𝑥 ∈ (𝑎, 𝑏] . For any 𝑡 ∈ [𝑎, 𝑥], let

𝑝 (𝑡) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑡 − 𝑎) + 𝑓 ′′(𝑎)
2!
(𝑡 − 𝑎)2 + · · · + 𝑓 (𝑛) (𝑎)

𝑛!
(𝑡 − 𝑎)𝑛 .

Here, we treat 𝑥 as a certain point, not a variable; and 𝑡 as a variable. Write

𝑔(𝑡) = 𝑓 (𝑡) − 𝑝 (𝑡) − 𝑓 (𝑥) − 𝑝 (𝑥)
(𝑥 − 𝑎)𝑛+1

(𝑡 − 𝑎)𝑛+1.

We see that 𝑔(𝑎) = 0, 𝑔′(𝑎) = 0, 𝑔′′(𝑎) = 0, . . . , 𝑔(𝑛) (𝑎) = 0, and 𝑔(𝑥) = 0.

By Rolle’s theorem, there exists 𝑐1 ∈ (𝑎, 𝑥) such that 𝑔′(𝑐1) = 0. Since 𝑔(𝑎) = 0,
apply Rolle’s theorem once more to get a 𝑐2 ∈ (𝑎, 𝑐1) such that 𝑔′′(𝑐2) = 0.

Continuing this way, we get a 𝑐𝑛+1 ∈ (𝑎, 𝑐𝑛) such that 𝑔(𝑛+1) (𝑐𝑛+1) = 0.

Since 𝑝 (𝑡) is a polynomial of degree at most 𝑛, 𝑝 (𝑛+1) (𝑡) = 0. Then

𝑔(𝑛+1) (𝑡) = 𝑓 (𝑛+1) (𝑡) − 𝑓 (𝑥) − 𝑝 (𝑥)
(𝑥 − 𝑎)𝑛+1

(𝑛 + 1)!.

Evaluating at 𝑡 = 𝑐𝑛+1 we have 𝑓 (𝑛+1) (𝑐𝑛+1) −
𝑓 (𝑥) − 𝑝 (𝑥)
(𝑥 − 𝑎)𝑛+1

(𝑛 + 1)! = 0. That is,

𝑓 (𝑥) − 𝑝 (𝑥)
(𝑥 − 𝑎)𝑛+1

=
𝑓 (𝑛+1) (𝑐𝑛+1)
(𝑛 + 1)! .

Consequently, 𝑔(𝑡) = 𝑓 (𝑡) − 𝑝 (𝑡) − 𝑓 (𝑛+1) (𝑐𝑛+1)
(𝑛 + 1)! (𝑡 − 𝑎)𝑛+1.

Evaluating it at 𝑡 = 𝑥 and using the fact that 𝑔(𝑥) = 0, we get

𝑓 (𝑥) = 𝑝 (𝑥) + 𝑓 (𝑛+1) (𝑐𝑛+1)
(𝑛 + 1)! (𝑥 − 𝑎)𝑛+1.

Since 𝑥 is an arbitrary point in (𝑎, 𝑏], this completes the proof.

The polynomial

𝑝 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 𝑓 ′′(𝑎)
2!
(𝑥 − 𝑎)2 + · · · + 𝑓 (𝑛) (𝑎)

𝑛!
(𝑥 − 𝑎)𝑛
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in Taylor’s formula is called as Taylor’s polynomial of order 𝑛. Notice that the
degree of the Taylor’s polynomial may be less than or equal to 𝑛. The expression
given for 𝑓 (𝑥) there is called Taylor’s formula for 𝑓 (𝑥). Taylor’s polynomial is an
approximation to 𝑓 (𝑥) with the error

𝑅𝑛 (𝑥) =
𝑓 (𝑛+1) (𝑐𝑛+1)
(𝑛 + 1)! (𝑥 − 𝑎)𝑛+1.

How good 𝑓 (𝑥) is approximated by 𝑝 (𝑥) depends on the smallness of the error
𝑅𝑛 (𝑥). For example, if we use 𝑝 (𝑥) of order 5 for approximating sin𝑥 at 𝑥 = 0, then
we get

sin𝑥 = 𝑥 − 𝑥3

3!
+ 𝑥

5

5!
+ 𝑅6(𝑥), where 𝑅6(𝑥) =

sin𝜃
6!

𝑥6.

Here, 𝜃 lies between 0 and 𝑥 . The absolute error is bounded above by |𝑥 |6/6!.
However, if we take the Taylor’s polynomial of order 6, then 𝑝 (𝑥) is the same as in
the above, but the absolute error is now |𝑥 |7/7!. If 𝑥 is near 0, this is smaller than
the earlier bound.

Notice that if 𝑓 (𝑥) is a polynomial of degree 𝑛, then Taylor’s polynomial of order
𝑛 is equal to the original polynomial.

As (2.6) shows, by clever manipulation of known series and functions, we may
be able to have a series representation of some of them.

In general, we ask: Which functions can have a power series representation, and
how to obtain a power series from such a given function?

2.3 Taylor series
Taylor’s formulas (2.15 and 2.13) say that under suitable hypotheses a function can
be written as

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 𝑓 ′′(𝑎)
2!
(𝑥 − 𝑎)2 + · · · + 𝑓 (𝑛) (𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 + 𝑅𝑛 (𝑥),

where

𝑅𝑛 (𝑥) =
𝑓 (𝑛+1) (𝑐)
(𝑛 + 1)! (𝑥 − 𝑎)

𝑛+1 OR 𝑅𝑛 (𝑥) =
∫ 𝑥

𝑎

(𝑥 − 𝑡)𝑛
𝑛!

𝑓 (𝑛+1) (𝑡) 𝑑𝑡 .

If 𝑅𝑛 (𝑥) converges to 0 for all 𝑥 in an interval around the point 𝑥 = 𝑎, then the
ensuing series on the right hand side would converge and then the function can be
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written in the form of a series. That is, under the conditions that 𝑓 (𝑥) has derivatives
of all order, and 𝑅𝑛 (𝑥) → 0 for all 𝑥 in an interval around 𝑥 = 𝑎, the function 𝑓 (𝑥)
has a power series representation

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 𝑓 ′′(𝑎)
2!
(𝑥 − 𝑎)2 + · · · + 𝑓 (𝑛) (𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 + · · ·

Such a series is called the Taylor series expansion of the function 𝑓 (𝑥). When
𝑎 = 0, the Taylor series is called the Maclaurin series.

Conversely, if a function 𝑓 (𝑥) has a power series expansion about 𝑥 = 𝑎, then by
repeated differentiation and evaluation at 𝑥 = 𝑎 shows that the coefficients of the

power series are precisely of the form
𝑓 (𝑛) (𝑎)
𝑛!

as in the Taylor series.

(2.17) Example
Find the Taylor series expansion of the function 𝑓 (𝑥) = 1/𝑥 at 𝑥 = 2. In which
interval around 𝑥 = 2, the series converges?

We see that 𝑓 (𝑥) = 1
𝑥
, 𝑓 (2) = 1

2
; · · · ; 𝑓 (𝑛) (𝑥) = (−1)𝑛𝑛!

𝑥𝑛+1
, 𝑓 (𝑛) (2) = (−1)𝑛𝑛!

2𝑛+1
.

Hence the Taylor series for 𝑓 (𝑥) = 1/𝑥 is

1
2
− 𝑥 − 2

22 + (𝑥 − 2)2
23 − · · · + (−1)𝑛 (𝑥 − 2)𝑛

2𝑛+1
+ · · ·

We now require the remainder term in the Taylor expansion. The absolute value
of the remainder term in the differential form is (for any 𝑐, 𝑥 in an interval around
𝑥 = 2)

|𝑅𝑛 | =
��� 𝑓 (𝑛+1) (𝑐)(𝑛 + 1)! (𝑥 − 2)𝑛+1

��� = ��� (𝑥 − 2)𝑛+1
𝑐𝑛+2

���
Here, 𝑐 lies between 𝑥 and 2. Clearly, if 𝑥 is near 2, |𝑅𝑛 | → 0. Hence the Taylor
series represents the function near 𝑥 = 2.

However, a direct calculation can be done looking at the Taylor series so obtained.
Here, the series is a geometric series with ratio 𝑟 = −(𝑥 − 2)/2. Hence it converges
absolutely whenever

|𝑟 | < 1, i.e., |𝑥 − 2| < 2 i.e., 0 < 𝑥 < 4.

Thus the series represents the function 𝑓 (𝑥) = 1/𝑥 for 0 < 𝑥 < 4.

(2.18) Example
Consider the function 𝑓 (𝑥) = 𝑒𝑥 . For its Maclaurin series, we find that

𝑓 (0) = 1, 𝑓 ′(0) = 1, · · · , 𝑓 (𝑛) (0) = 1, · · ·
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Hence
𝑒𝑥 = 1 + 𝑥 + 𝑥

2

2!
+ · · · + 𝑥

𝑛

𝑛!
+ · · ·

Using the integral form of the remainder,

|𝑅𝑛 (𝑥) | =
��� ∫ 𝑥

𝑎

(𝑥 − 𝑡)𝑛
𝑛!

𝑓 (𝑛+1) (𝑡) 𝑑𝑡
��� = ��� ∫ 𝑥

0

(𝑥 − 𝑡)𝑛
𝑛!

𝑒𝑡 𝑑𝑡

���→ 0 as 𝑛 →∞.

Hence, 𝑒𝑥 has the above power series expansion for each 𝑥 ∈ R.
Directly, by the ratio test, this power series has the radius of convergence

𝑅 = lim
𝑛→∞

𝑎𝑛

𝑎𝑛+1
= lim

𝑛→∞
(𝑛 + 1)!

𝑛!
= ∞.

Therefore, for every 𝑥 ∈ R the above series converges.

(2.19) Example

You can show that cos𝑥 =

∞∑︁
𝑛=0

(−1)𝑛𝑥2𝑛

(2𝑛)! . The Taylor polynomials approximating

cos𝑥 are 𝑃2𝑛 (𝑥) =
∞∑︁
𝑘=𝑛

(−1)𝑘𝑥2𝑘

(2𝑘)! . The following picture shows how these polyno-

mials approximate cos𝑥 for 0 ≤ 𝑥 ≤ 9.

In the above Maclaurin series expansion of cos𝑥, we have the absolute value of the
remainder in the differential form as

|𝑅2𝑛 (𝑥) | =
|𝑥 |2𝑛+1
(2𝑛 + 1)! → 0 as 𝑛 →∞

for any 𝑥 ∈ R. Hence the series represents cos𝑥 for each 𝑥 ∈ R.

(2.20) Example
Let𝑚 ∈ R. Show that, for −1 < 𝑥 < 1,

(1 + 𝑥)𝑚 = 1 +
∞∑︁
𝑛=1

(
𝑚

𝑛

)
𝑥𝑛, where

(
𝑚

𝑛

)
=
𝑚(𝑚 − 1) · · · (𝑚 − 𝑛 + 1)

𝑛!
.



54 MA1102 Classnotes

To see this, find the derivatives of the given function:

𝑓 (𝑥) = (1 + 𝑥)𝑚, 𝑓 (𝑛) (𝑥) =𝑚(𝑚 − 1) · · · (𝑚 − 𝑛 + 1)𝑥𝑚−𝑛 .

Then the Maclaurin series for 𝑓 (𝑥) is the given series. For this series, we see that

lim
𝑛→∞

��� 𝑎𝑛
𝑎𝑛+1

��� = lim
𝑛→∞

���𝑚(𝑚 − 1) · · · (𝑚 − 𝑛 + 1)
𝑛!

(𝑛 + 1)!
𝑚(𝑚 − 1) · · · (𝑚 − 𝑛)

��� = lim
𝑛→∞

��� 𝑛 + 1
𝑚 − 𝑛

��� = 1.

Alternatively, you can show that the remainder term in the Maclaurin series expan-
sion goes to 0 as 𝑛 →∞ for −1 < 𝑥 < 1.

The series so obtained is called a binomial series expansion of (1 + 𝑥)𝑚 . Substi-
tuting values of 𝑚, we get series for different functions. Notice that when 𝑚 ∈ N,
the binomial series terminates to give a polynomial and it represents (1 + 𝑥)𝑚 for
each 𝑥 ∈ R.

(2.21) Example
Consider the function 𝑓 (𝑥) =

√
1 + 𝑥 . With𝑚 = 1/2, the binomial series expansion

gives

√
1 + 𝑥 =

∞∑︁
𝑛=0

(−1)𝑛+1(2𝑛)!
22𝑛 (𝑛!)2(2𝑛 − 1)

𝑥𝑛 = 1 + 𝑥
2
− 𝑥2

8
+ 𝑥3

16
− · · · for − 1 < 𝑥 < 1.

Using the estimate (We have not derived it.)

4𝑛√︁
𝜋 (𝑛 + 1/3)

≤
(
2𝑛
𝑛

)
≤ 4𝑛√︁

𝜋 (𝑛 + 1/4)

it follows that at 𝑥 = 1, the power series converges absolutely. Thus, By Abel’s
theorem, we obtain

∞∑︁
𝑛=0

(−1)𝑛+1(2𝑛)!
22𝑛 (𝑛!)2(2𝑛 − 1)

= lim
𝑥→1−

𝑓 (𝑥) =
√

2.

Similarly, the power series is absolutely convergent at 𝑥 = −1. Therefore,
∞∑︁
𝑛=0

(−1)𝑛+1(2𝑛)!
22𝑛 (𝑛!)2(2𝑛 − 1)

(−1)𝑛 = lim
𝑥→−1+

𝑓 (𝑥) = 0.

It implies that
∞∑︁
𝑛=1

(2𝑛)!
22𝑛 (𝑛!)2(2𝑛 − 1)

= 1.

Remark 2.22 There exist functions which are 𝑛 times differentiable for each
𝑛 ∈ N but they are not represented by their Taylor series in any interval. For



Series Representation of Functions 55

example, consider the following function:

𝑓 (𝑥) =
{
𝑒−1/𝑥2 if 𝑥 ≠ 0
0 if 𝑥 = 0.

For each 𝑛 ∈ N, 𝑓 (𝑛) (0) = 0; so, the Taylor series of 𝑓 (𝑥) is the power series of
which each coefficient is 0. Except at the point 𝑥 = 0, the Taylor series does not
match with the function. Here, notice that 𝑅𝑛 (𝑥), which is equal to 𝑒−1/𝑥2 does not
converge to 0 as 𝑛 → ∞. Thus, in order that a function is represented by its Taylor
series in an interval, it is essential that the remainder term 𝑅𝑛 (𝑥) must converge to
0 for all 𝑥 in that interval as 𝑛 →∞.

2.4 Fourier series
In the power series for sin𝑥 = 𝑥 −𝑥3/3!+· · · , the periodicity of sin𝑥 is not obvious.
Recall that 𝑓 (𝑥) is called 2ℓ-periodic for ℓ > 0 iff 𝑓 (𝑥+2ℓ) = 𝑓 (𝑥) for all 𝑥 ∈ R. For
the time being, we restrict to 2𝜋-periodic functions. We will see that a 2𝜋-periodic
function can be expanded in a series involving sines and cosines instead of powers
of 𝑥 .

A trigonometric series is of the form
1
2
𝑎0 +

∞∑︁
𝑛=1
(𝑎𝑛 cos𝑛𝑥 + 𝑏𝑛 sin𝑛𝑥).

Since both cosine and sine functions are 2𝜋-periodic, if the trigonometric series
converges to a function 𝑓 (𝑥), then necessarily 𝑓 (𝑥) is also 2𝜋-periodic. Thus,

𝑓 (0) = 𝑓 (2𝜋) = 𝑓 (4𝜋) = 𝑓 (6𝜋) = · · · and 𝑓 (−𝜋) = 𝑓 (𝜋), etc.

Moreover, if 𝑓 (𝑥) = 1
2𝑎0 +

∑∞
𝑛=1(𝑎𝑛 cos𝑛𝑥 +𝑏𝑛 sin𝑛𝑥), say, for all 𝑥 ∈ [−𝜋, 𝜋], then

the coefficients can be determined from 𝑓 (𝑥). Towards this, multiply 𝑓 (𝑡) by cos𝑚𝑡

and integrate to obtain:∫ 𝜋

−𝜋
𝑓 (𝑡) cos𝑚𝑡 𝑑𝑡 =

1
2
𝑎0

∫ 𝜋

−𝜋
cos𝑚𝑡 𝑑𝑡 +

∞∑︁
𝑛=1

𝑎𝑛

∫ 𝜋

−𝜋
cos𝑛𝑡 cos𝑚𝑡 𝑑𝑡

+
∞∑︁
𝑛=1

𝑏𝑛

∫ 𝜋

−𝜋
sin𝑛𝑡 cos𝑚𝑡 𝑑𝑡 .
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For𝑚,𝑛 = 0, 1, 2, 3, . . . ,

∫ 𝜋

−𝜋
cos𝑛𝑡 cos𝑚𝑡 𝑑𝑡 =


0 if 𝑛 ≠𝑚

𝜋 if 𝑛 =𝑚 > 0
2𝜋 if 𝑛 =𝑚 = 0

and
∫ 𝜋

−𝜋
sin𝑛𝑡 cos𝑚𝑡 𝑑𝑡 = 0.

Thus, we obtain∫ 𝜋

−𝜋
𝑓 (𝑡) cos𝑚𝑡 𝑑𝑡 = 𝜋𝑎𝑚, for all𝑚 = 0, 1, 2, 3, · · ·

Similarly, by multiplying 𝑓 (𝑡) by sin𝑚𝑡 and integrating, and using the fact that

∫ 𝜋

−𝜋
sin𝑛𝑡 sin𝑚𝑡 𝑑𝑡 =


0 if 𝑛 ≠𝑚

𝜋 if 𝑛 =𝑚 > 0
0 if 𝑛 =𝑚 = 0

we obtain ∫ 𝜋

−𝜋
𝑓 (𝑡) sin𝑚𝑡 𝑑𝑡 = 𝜋𝑏𝑚, for all𝑚 = 1, 2, 3, · · ·

Let 𝑓 : R→ R be a 2𝜋-periodic function integrable on [−𝜋, 𝜋] . Write

𝑎𝑛 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) cos𝑛𝑡 𝑑𝑡, for 𝑛 = 0, 1, 2, 3, . . . ;

𝑏𝑛 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) sin𝑛𝑡 𝑑𝑡 for 𝑛 = 1, 2, 3, . . . .

Then the trigonometric series

1
2
𝑎0 +

∞∑︁
𝑛=1
(𝑎𝑛 cos𝑛𝑥 + 𝑏𝑛 sin𝑛𝑥)

is called the Fourier series of 𝑓 (𝑥).
To state and understand a relevant result about when the Fourier series of a function

𝑓 (𝑥) converges at a point, we require the following notation and terminology.
Let 𝑓 : R→ R be a function. Let 𝑐 ∈ R. Write

𝑓 (𝑐+) = lim
ℎ→0+

𝑓 (𝑐 + ℎ), 𝑓 (𝑐−) = lim
ℎ→0+

𝑓 (𝑐 − ℎ).

We use the following terminology:

𝑓 (𝑥) has a finite jump at 𝑥 = 𝑐 iff 𝑓 (𝑐+) exists, 𝑓 (𝑐−) exists, and 𝑓 (𝑐+) ≠
𝑓 (𝑐−) .
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𝑓 (𝑥) is piecewise continuous iff on any finite interval 𝑓 (𝑥) is continuous
except for at most a finite number of finite jumps.

the right hand slope of 𝑓 (𝑥) is equal to lim
ℎ→0+

𝑓 (𝑐 + ℎ) − 𝑓 (𝑐+)
ℎ

.

the left hand slope of 𝑓 (𝑥) is equal to lim
ℎ→0−

𝑓 (𝑐 + ℎ) − 𝑓 (𝑐−)
ℎ

.

𝑓 (𝑥) is piecewise smooth iff 𝑓 (𝑥) is piecewise continuous and 𝑓 (𝑥) has both
left hand slope and right hand slope at every point.

(2.23) Theorem (Convergence of Fourier Series)
Let 𝑓 : R → R be a 2𝜋-periodic piecewise smooth function. Then the Fourier
series of 𝑓 (𝑥) converges at each 𝑥 ∈ R. Further, at any point 𝑐 ∈ R, the following
statements hold:

(1) If 𝑓 (𝑥) is continuous at 𝑐, then the Fourier series sums to 𝑓 (𝑐).
(2) If 𝑓 (𝑥) is not continuous at 𝑐, then the Fourier series sums to 1

2 [𝑓 (𝑐+)+𝑓 (𝑐−)] .

We observe that a 2𝜋-periodic function 𝑓 : R → R, which is bounded and
piecewise monotonic on [−𝜋, 𝜋] is piecewise smooth. Similarly, a 2𝜋-periodic
function 𝑓 : R → R, which has left and right derivatives at each point and is
piecewise continuous on [−𝜋, 𝜋], is also piecewise smooth. Thus, the Fourier
series for these types of functions converge.

Fourier series can represent functions which cannot be represented by a Taylor
series, or a conventional power series; for example, a step function.

(2.24) Example
Find the Fourier series of the function 𝑓 (𝑥) given by the following which is extended
to R with periodicity 2𝜋 :

𝑓 (𝑥) =
{

1 if 0 ≤ 𝑥 < 𝜋

2 if 𝜋 ≤ 𝑥 < 2𝜋

Due to periodic extension, we can rewrite the function 𝑓 (𝑥) on [−𝜋, 𝜋) as

𝑓 (𝑥) =
{

2 if − 𝜋 ≤ 𝑥 < 0
1 if 0 ≤ 𝑥 < 𝜋
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Then the coefficients of the Fourier series are computed as follows:

𝑎0 =
1
𝜋

∫ 0

−𝜋
𝑓 (𝑡) 𝑑𝑡 + 1

𝜋

∫ 𝜋

0
𝑓 (𝑡) 𝑑𝑡 = 3.

𝑎𝑛 =
1
𝜋

∫ 0

−𝜋
2 cos𝑛𝑡 𝑑𝑡 + 1

𝜋

∫ 𝜋

0
cos𝑛𝑡 𝑑𝑡 = 0.

𝑏𝑛 =
1
𝜋

∫ 0

−𝜋
2 sin𝑛𝑡 𝑑𝑡 + 1

𝜋

∫ 𝜋

0
sin𝑛𝑡 𝑑𝑡 =

(−1)𝑛 − 1
𝑛𝜋

.

Notice that 𝑏1 = − 2
𝜋
, 𝑏2 = 0, 𝑏3 = − 2

3𝜋 , 𝑏4 = 0, . . . . Therefore,

𝑓 (𝑥) = 3
2
− 2
𝜋

(
sin𝑥 + sin 3𝑥

3
+ sin 5𝑥

5
+ · · ·

)
.

Here, the last expression for 𝑓 (𝑥) holds for all 𝑥 ∈ R, where ever 𝑓 (𝑥) is continuous;
in particular, for 𝑥 ∈ [−𝜋, 𝜋) except at 𝑥 = 0. Notice that 𝑥 = 0 is a point of
discontinuity of 𝑓 (𝑥). By the convergence theorem, the Fourier series at 𝑥 = 0 sums

to
𝑓 (0+) + 𝑓 (0−)

2
, which is equal to

3
2
.

Once we have a series representation of a function, we should see how the partial
sums of the series approximate the function. In the above example, let us write

𝑓𝑚 (𝑥) =
1
2
𝑎0 +

𝑚∑︁
𝑛=1
(𝑎𝑛 cos𝑛𝑥 + 𝑏𝑛 sin𝑛𝑥).

The approximations 𝑓1(𝑥), 𝑓3(𝑥), 𝑓5(𝑥), 𝑓9(𝑥) and 𝑓15(𝑥) to 𝑓 (𝑥) are shown in the
figure below.
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Remark 2.25 In the above example, we found that

𝑓 (𝑥) = 3
2
− 2
𝜋

(
sin𝑥 + sin 3𝑥

3
+ sin 5𝑥

5
+ · · ·

)
.

In particular, at 𝑥 = 𝜋 , the function 𝑓 (𝑥) is not differentiable. However, each term
on the right hand side is differentiable at 𝑥 = 𝜋 . It means that each term of a Fourier
series can be differentiable at a point, but the sum of the series is not differentiable
at that point. Indeed, if we differentiate each term of the series and sum the terms
after evaluation at 𝜋 , we get the divergent series 2

𝜋
(−1 − 1 − 1 − · · · ).

(2.26) Example
Show that the Fourier series for 𝑓 (𝑥) = 𝑥2 defined on [0, 2𝜋) is given by

4𝜋2

6
+
∞∑︁
𝑛=1

( 4
𝑛2 cos𝑛𝑥 − 4𝜋

𝑛
sin𝑛𝑥

)
.

Extend 𝑓 (𝑥) to R by periodicity 2𝜋 . We thus have 𝑓 (2𝜋) = 𝑓 (0) = 0. Then

𝑓 (−𝜋) = 𝑓 (−𝜋+2𝜋) = 𝑓 (𝜋) = 𝜋2, 𝑓 (−𝜋/2) = 𝑓 (−𝜋/2+2𝜋) = 𝑓 (3𝜋/2) = (3𝜋/2)2.

Thus the function 𝑓 (𝑥) on [−𝜋, 𝜋) is defined by

𝑓 (𝑥) =
{
(𝑥 + 2𝜋)2 if − 𝜋 ≤ 𝑥 < 0
𝑥2 if 0 ≤ 𝑥 < 𝜋.

Notice that 𝑓 (𝑥) is neither odd nor even. The coefficients of the Fourier series for
𝑓 (𝑥) are

𝑎0 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) 𝑑𝑡 = 1

𝜋

∫ 2𝜋

0
𝑡2 𝑑𝑡 =

8𝜋2

3
.

𝑎𝑛 =
1
𝜋

∫ 2𝜋

0
𝑡2 cos𝑛𝑡 𝑑𝑡 =

4
𝑛2 for 𝑛 = 1, 2, 3, . . .

𝑏𝑛 =
1
𝜋

∫ 2𝜋

0
𝑡2 sin𝑛𝑡 𝑑𝑡 = −4𝜋

𝑛
for 𝑛 = 1, 2, 3, . . .

Hence the Fourier series for 𝑓 (𝑥) is as claimed.
As per the extension of 𝑓 (𝑥) to R, we see that in the interval (2𝑘𝜋, 2(𝑘 + 1)𝜋), the

function is defined by 𝑓 (𝑥) = (𝑥 − 2𝑘𝜋)2. Thus it has discontinuities at the points
𝑥 = 0, ±2𝜋, ±4𝜋, . . . At such a point 𝑥 = 2𝑘𝜋, the series converges to the average
value of the left and right side limits, i.e., the series when evaluated at 2𝑘𝜋 yields
the value
1
2

[
lim

𝑥→2𝑘𝜋−
𝑓 (𝑥)+ lim

𝑥→2𝑘𝜋+
𝑓 (𝑥)

]
=

1
2

[
lim

𝑥→2𝑘𝜋−
(𝑥−2𝑘𝜋)2+ lim

𝑥→2𝑘𝜋+
(𝑥−2(𝑘+1)𝜋)2

]
= 2𝜋2.
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2.5 Odd and even functions
If 𝑓 (𝑥) is an odd function, that is, if 𝑓 (−𝑥) = −𝑓 (𝑥), then the Fourier coefficients
for 𝑓 (𝑥) are

𝑎𝑛 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) cos𝑛𝑡 𝑑𝑡 = 0 for 𝑛 = 0, 1, 2, . . . .

𝑏𝑛 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) sin𝑛𝑡 𝑑𝑡 = 2

𝜋

∫ 𝜋

0
𝑓 (𝑡) sin𝑛𝑡 𝑑𝑡 for 𝑛 = 1, 2, 3, . . . .

In this case, the Fourier series for 𝑓 (𝑥) is given by
∞∑︁
𝑛=1

𝑏𝑛 sin𝑛𝑥, 𝑏𝑛 =
2
𝜋

∫ 𝜋

0
𝑓 (𝑡) sin𝑛𝑡 𝑑𝑡 for 𝑛 = 1, 2, 3, . . . .

Similarly, if 𝑓 (𝑥) is an even function, that is, 𝑓 (−𝑥) = 𝑓 (𝑥), then its Fourier series
is given by

𝑎0
2
+
∞∑︁
𝑛=1

𝑎𝑛, 𝑎𝑛 =
2
𝜋

∫ 𝜋

0
𝑓 (𝑡) cos𝑛𝑡 𝑑𝑡 for 𝑛 = 0, 1, 2, . . . .

(2.27) Example

Show that 𝑥2 =
𝜋2

3
+ 4

∞∑︁
𝑛=1
(−1)𝑛 cos𝑛𝑥

𝑛2 for all 𝑥 ∈ [−𝜋, 𝜋] .

Let 𝑓 (𝑥) be the periodic extension of the function 𝑥 ↦→ 𝑥2 on [−𝜋, 𝜋) to R. Since
𝜋2 = (−𝜋)2, such an extension with period 2𝜋 exists, and it is continuous. The
extension of 𝑓 (𝑥) = 𝑥2 to R is not the function 𝑥2. For instance, in the interval
[𝜋, 3𝜋], its extension looks like 𝑓 (𝑥) = (𝑥 − 2𝜋)2. With this understanding, we go
for the Fourier series expansion of 𝑓 (𝑥) = 𝑥2 in the interval [−𝜋, 𝜋] . We also see
that 𝑓 (𝑥) is an even function. Its Fourier series is a cosine series. The coefficients
of the series are as follows:

𝑎0 =
2
𝜋

∫ 𝜋

0
𝑡2 𝑑𝑡 =

2
3
𝜋2.

𝑎𝑛 =
2
𝜋

∫ 𝜋

0
𝑡2 cos𝑛𝑡 𝑑𝑡 =

4
𝑛2 (−1)𝑛 for 𝑛 = 1, 2, 3, . . .

Therefore,

𝑓 (𝑥) = 𝑥2 =
𝜋2

3
+ 4

∞∑︁
𝑛=1
(−1)𝑛 cos𝑛𝑥

𝑛2 for all 𝑥 ∈ [−𝜋, 𝜋] .
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In particular, by taking 𝑥 = 0 and 𝑥 = 𝜋, we have
∞∑︁
𝑛=1

(−1)𝑛+1
𝑛2 =

𝜋2

12
,

∞∑︁
𝑛=1

1
𝑛2 =

𝜋2

6
.

Due to the periodic extension of 𝑓 (𝑥) to R, we see that

(𝑥 − 2𝜋)2 =
𝜋2

3
+ 4

∞∑︁
𝑛=1
(−1)𝑛 cos𝑛𝑥

𝑛2 for all 𝑥 ∈ [𝜋, 3𝜋] .

It also follows that the same sum (of the series) is equal to (𝑥−4𝜋)2 for 𝑥 ∈ [3𝜋, 5𝜋],
etc.

(2.28) Example

Show that for 0 < 𝑥 < 2𝜋,
1
2
(𝜋 − 𝑥) =

∞∑︁
𝑛=1

sin𝑛𝑥
𝑛

.

Let 𝑓 (𝑥) = 𝑥 for 0 ≤ 𝑥 < 2𝜋. Extend 𝑓 (𝑥) to R by taking the periodicity as 2𝜋.
As in (2.27), 𝑓 (𝑥) is not an odd function. For instance, 𝑓 (−𝜋/2) = 𝑓 (3𝜋/2) =
3𝜋/2 ≠ 𝑓 (𝜋/2) = 𝜋/2.

The coefficients of the Fourier series for 𝑓 (𝑥) are as follows:

𝑎0 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) 𝑑𝑡 = 1

𝜋

∫ 2𝜋

0
𝑡 𝑑𝑡 = 2𝜋,

𝑎𝑛 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) cos𝑛𝑡 𝑑𝑡 =

1
𝜋

∫ 2𝜋

0
𝑡 cos𝑛𝑡 𝑑𝑡 = 0.

𝑏𝑛 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) sin𝑛𝑡 𝑑𝑡 = 1

𝜋

∫ 2𝜋

0
𝑡 sin𝑛𝑡 𝑑𝑡

=
1
𝜋

[−𝑛 cos𝑛𝑡
𝑛

]2𝜋

0
+ 1
𝑛𝜋

∫ 2𝜋

0
cos𝑛𝑡 𝑑𝑡 = − 2

𝜋
.

By the convergence theorem, 𝑥 = 𝜋 − 2
∞∑︁
𝑛=1

sin𝑛𝑥
𝑛

for 0 < 𝑥 < 2𝜋, which yields

the required result.

2.6 Half range Fourier series
Suppose a piecewise smooth function 𝑓 : (0, 𝜋) → R is given. To find its Fourier
series, we need to extend it to R so that the extended function is 2𝜋-periodic. Such
an extension can be done in at least two ways.
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1. Even Extension:

First, extend 𝑓 (𝑥) to (−𝜋, 𝜋) by requiring that 𝑓 (𝑥) is an even function. This
requirement forces 𝑓 (−𝑥) = 𝑓 (𝑥) for each 𝑥 ∈ (−𝜋, 𝜋). Next, we extend this 𝑓 (𝑥)
which has now been defined on (−𝜋, 𝜋) to R with periodicity 2𝜋. Notice that since
𝑓 (0), 𝑓 (−𝜋) and 𝑓 (𝜋) are not given, we may have to define them. The only
constraint is that 𝑓 (𝑥) is required to be even; so we must take 𝑓 (𝜋) = 𝑓 (−𝜋). If we
define these values in such a way that the extended function is continuous at these
points, then the Fourier series will converge to these values at these points. Since
the extended function is even and of period 2𝜋 , its Fourier series is a cosine series
given by

𝑎0
2
+
∞∑︁
𝑛=1

𝑎𝑛 cos𝑛𝑥, 𝑎𝑛 =
2
𝜋

∫ 𝜋

0
𝑓 (𝑡) cos𝑛𝑡 𝑑𝑡, 𝑛 = 0, 1, 2, 3, . . . , 𝑥 ∈ R.

In this case, we say that the Fourier series is a half-range cosine series for 𝑓 (𝑥).
In case, domain of 𝑓 is [0, 𝜋), (0, 𝜋] or [0, 𝜋], the values 𝑓 (0) and/or 𝑓 (𝜋) may

be already available, and we do not need to define those.

2. Odd Extension:

First, extend 𝑓 (𝑥) from (0, 𝜋) to (−𝜋, 𝜋) by requiring that 𝑓 (𝑥) is an odd function.
This requirement forces 𝑓 (−𝑥) = −𝑓 (𝑥) for each 𝑥 ∈ (−𝜋, 𝜋). In particular, the
extended function 𝑓 (𝑥) will satisfy 𝑓 (0) = 𝑓 (−0) = −𝑓 (0) leading to 𝑓 (0) = 0.
Next, we extend this 𝑓 (𝑥) which has now been defined on (−𝜋, 𝜋) to R with
periodicity 2𝜋. This will force 𝑓 (−𝜋) = 𝑓 (𝜋). Again, the requirement that 𝑓 (𝑥) is
odd implies that 𝑓 (−𝜋) = −𝑓 (𝜋) = 𝑓 (𝜋) leading to 𝑓 (−𝜋) = 𝑓 (𝜋) = 0. Thus, the
odd extension of 𝑓 (𝑥) with periodicity 2𝜋 will satisfy 𝑓 (𝑘𝜋) = 0 for all integers 𝑘 .
By the convergence theorem, the Fourier series of the extended odd function 𝑓 (𝑥)
will be equal to 𝑓 (𝑥) at each 𝑥 ≠ 𝑘𝜋 .
In addition, if 𝑓 is already defined on [0, 𝜋] with 𝑓 (0) = 𝑓 (𝜋) = 0, then the Fourier
series of the odd extension of 𝑓 (𝑥) with period 2𝜋 will represent the function 𝑓 (𝑥)
at all points 𝑥 ∈ R.

The Fourier series expansion of this extended 𝑓 (𝑥) is a sine series given by

𝑓 (𝑥) =
∞∑︁
𝑛=1

𝑏𝑛 sin𝑛𝑥, 𝑏𝑛 =
2
𝜋

∫ 𝜋

0
𝑓 (𝑡) sin𝑛𝑡 𝑑𝑡, 𝑛 = 1, 2, 3, . . . , 𝑥 ∈ R.

In this case, we say that the Fourier series is a half-range sine series for 𝑓 (𝑥).
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(2.29) Example

Find half-range cosine and sine series for 𝑓 (𝑥) =
{
𝑥 if 0 ≤ 𝑥 ≤ 𝜋/2
𝜋 − 𝑥 if 𝜋/2 < 𝑥 ≤ 𝜋.

1. With an even extension, the Fourier coefficients are given by 𝑎0 = 𝜋/2 and for
𝑛 = 1, 2, 3, . . .,

𝑎𝑛 =
2
𝜋

∫ 𝜋

0
𝑓 (𝑡) cos𝑛𝑡 𝑑𝑡 =

2
𝜋

∫ 𝜋/2

0
𝑡 cos𝑛𝑡 𝑑𝑡 + 2

𝜋

∫ 𝜋

𝜋/2
(𝜋 − 𝑡) cos𝑛𝑡 𝑑𝑡

=
2

𝜋𝑛2

(
2 cos

𝑛𝜋

2
− 1 − cos𝑛𝜋

)
.

Notice that 𝑎𝑛 = 0 when 𝑛 is odd, and 𝑎𝑛 = 0 when 𝑛 = 4𝑘 for any integer 𝑘 . Thus

𝑓 (𝑥) = 𝜋

4
− 2
𝜋

(cos 2𝑥
12 + cos 6𝑥

32 + cos 10𝑥
52 + · · ·

)
, for 𝑥 ∈ [0, 𝜋] .

2. With an odd extension, the Fourier coefficients are given by 𝑎𝑛 = 0 and for
𝑛 = 1, 2, 3, . . .,

𝑏𝑛 =
2
𝜋

∫ 𝜋

0
𝑓 (𝑡) sin𝑛𝑡 𝑑𝑡 = 2

𝜋

∫ 𝜋/2

0
𝑡 sin𝑛𝑡 𝑑𝑡 + 2

𝜋

∫ 𝜋

𝜋/2
(𝜋 − 𝑡) sin𝑛𝑡 𝑑𝑡

=
2
𝜋

[
− 𝑡

𝑛
cos𝑛𝑡 + 1

𝑛2 sin𝑛𝑡
]𝜋/2

0
+ 2
𝜋

[𝑡 − 𝜋
𝑛

cos𝑛𝑡 − 1
𝑛2 sin𝑛𝑡

]𝜋
𝜋/2

=
2
𝜋

(
− 𝜋

2𝑛
cos

𝑛𝜋

2
+ 1
𝑛2 sin

𝑛𝜋

2

)
+ 2
𝜋

( 𝜋
2𝑛

cos
2𝜋
𝑛
+ 1
𝑛2 sin

𝑛𝜋

2

)
=

4
𝜋𝑛2 sin

𝑛𝜋

2
=

{
4

𝜋𝑛2 (−1) (𝑛−1)/2 for 𝑛 odd
0 for 𝑛 even.

Here, 𝑓 (0) = 𝑓 (𝜋) = 0. Thus 𝑓 (𝑥) = 4
𝜋

( sin𝑥
12 −

sin 3𝑥
32 + sin 5𝑥

52 − · · ·
)
, for 𝑥 ∈ [0, 𝜋] .

Justify why do we write the equalities 𝑓 (𝑥) = · · · in both the cases.

(2.30) Example
Find the sine series expansion of cos𝑥 in [0, 𝜋] .

We work with the odd extension of cos𝑥 with period 2𝜋 to R. Observe that the
odd extension 𝑓 (𝑥) of cos𝑥 has the following values in [−𝜋, 𝜋]:

𝑓 (𝑥) =


− cos𝑥 if − 𝜋 < 𝑥 < 0
cos𝑥 if 0 < 𝑥 < 𝜋

0 if 𝑥 = −𝜋, 0, 𝜋 .
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The Fourier coefficients are given by 𝑎𝑛 = 0 and

𝑏𝑛 =
2
𝜋

∫ 𝜋

0
cos 𝑡 sin𝑛𝑡 𝑑𝑡 =

0 for 𝑛 odd
4𝑛

𝜋 (𝑛2−1) for 𝑛 even.

Therefore, the Fourier sine expansion of cos𝑥 is
8
𝜋

∞∑︁
𝑛=1

𝑛 sin(2𝑛𝑥)
4𝑛2 − 1

in [0, 𝜋].

At 𝑥 = 0 and 𝑥 = 𝜋 , the Fourier series sums to 0 = 𝑓 (0) = 𝑓 (𝜋), but different from
cos 0 and cos𝜋 . At other points, the series represents cos𝑥 . That is,

cos𝑥 =
8
𝜋

∞∑︁
𝑛=1

𝑛 sin(2𝑛𝑥)
4𝑛2 − 1

for 𝑥 ∈ (0, 𝜋).

Similarly, you can verify that sin𝑥 =
2
𝜋
− 4
𝜋

∞∑︁
𝑛=1

cos(2𝑛𝑥)
4𝑛2 − 1

for 𝑥 ∈ (0, 𝜋).

There is another approach to construct a Fourier series for a function with domain
as (0, 𝜋), which we discuss in the last section.

2.7 Functions defined on (−ℓ, ℓ)
Suppose 𝑓 : (−ℓ, ℓ) → R is given. We first extend 𝑓 (𝑥) to a 2ℓ-periodic function on
R. While constructing such an extension, we may have to define 𝑓 (−ℓ). Especially,
we take 𝑓 (−ℓ) = lim

𝑥→−ℓ+
𝑓 (𝑥) so that the extended function is continuous at 𝑥 = −ℓ .

Of course, if originally 𝑓 is a function given on [−ℓ, ℓ), then this definition of 𝑓 (−ℓ)
is not necessary. Next, we change the independent variable by taking 𝑥 = ℓ𝑦/𝜋 ,
equivalently, 𝑦 = 𝜋𝑥/ℓ . That is, we define the function ℎ(𝑦) = 𝑓 (ℓ𝑦/𝜋). Since 𝑓 (𝑥)
is a 2ℓ-periodic function, ℎ(𝑦) is a 2𝜋-periodic function. Then, we construct the
Fourier series for ℎ(𝑦) and in this Fourier series substitute 𝑦 = 𝜋𝑥/ℓ for obtaining
the Fourier series for 𝑓 (𝑥). Now, the Fourier series for ℎ(𝑦) is given by

𝑎0
2
+
∞∑︁
𝑛=1

(
𝑎𝑛 cos𝑛𝑦 + 𝑏𝑛 sin𝑛𝑦

)
,

where the Fourier coefficients are (In 𝑎𝑛, 𝑛 = 0, 1, 2, 3, . . .; and in 𝑏𝑛, 𝑛 = 1, 2, 3, . . ..)

𝑎𝑛 =
1
𝜋

∫ 𝜋

−𝜋
𝑓

( ℓ
𝜋
𝑠

)
cos𝑛𝑠 𝑑𝑠, 𝑏𝑛 =

1
𝜋

∫ 𝜋

−𝜋
𝑓

( ℓ
𝜋
𝑠

)
cos𝑛𝑠 𝑑𝑠.
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Substituting 𝑡 = ℓ
𝜋
𝑠, 𝑑𝑠 = 𝜋

ℓ
𝑑𝑡, we have

𝑎𝑛 =
1
ℓ

∫ ℓ

−ℓ
𝑓 (𝑡) cos

(𝑛𝜋𝑡
ℓ

)
𝑑𝑡, 𝑏𝑛 =

1
ℓ

∫ ℓ

−ℓ
𝑓 (𝑡) sin

(𝑛𝜋𝑡
ℓ

)
𝑑𝑡 .

Substituting 𝑦 = 𝜋𝑥/ℓ in the above Fourier series, we obtain the Fourier series for
𝑓 (𝑥), which is

𝑎0
2
+
∞∑︁
𝑛=1

[
𝑎𝑛 cos

(𝑛𝜋𝑥
ℓ

)
+ 𝑏𝑛 sin

(𝑛𝜋𝑥
ℓ

)]
.

In general, such a Fourier series need neither be a sine series nor a cosine series.
Sometimes, this series is called a full range Fourier series.

(2.31) Example
Construct the Fourier series for 𝑓 (𝑥) = |𝑥 | for 𝑥 ∈ [−ℓ, ℓ) for a given ℓ > 0.

We extend the given function to 𝑓 : R → R with period 2ℓ . It is shown in the
following figure:

Notice that the function 𝑓 : R→ R is not |𝑥 |; it is |𝑥 | on [−ℓ, ℓ). Due to its period as
2ℓ, it is |𝑥 − 2ℓ | on [ℓ, 3ℓ) etc. However, it is an even function; so its Fourier series
is a cosine function.

The Fourier coefficients are

𝑏𝑛 = 0, 𝑎0 =
2
ℓ

∫ ℓ

0
|𝑡 | 𝑑𝑡 = 2

ℓ

∫ ℓ

0
𝑡 𝑑𝑡 = ℓ,

𝑎𝑛 =
2
ℓ

∫ ℓ

0
𝑡 cos

(𝑛𝜋𝑡
ℓ

)
𝑑𝑡 =

{
0 for 𝑛 even
− 4ℓ
𝑛2𝜋2 for 𝑛 odd

Therefore the (full range) Fourier series for 𝑓 (𝑥) shows that in [−ℓ, ℓ],

|𝑥 | = ℓ

2
− 4ℓ
𝜋2

[
cos(𝜋𝑥/ℓ)

12 + cos(3𝜋𝑥/ℓ)
32 + · · · + cos((2𝑛 + 1)𝜋𝑥/ℓ)

(2𝑛 + 1)2
+ · · ·

]
.

Notice that the Fourier series represents the function at the end-points 𝑥 = −ℓ and
𝑥 = ℓ also since the function is continuous at these points.
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2.8 Functions defined on (0, ℓ)
Suppose that 𝑓 : (0, ℓ) → R is given for which we require a Fourier series. As in
the case of functions defined on (0, 𝜋), we have essentially two approaches to the
problem. One, by an even extension, and the other, by an odd extension.
1. Even extension: In this approach, we extend 𝑓 (𝑥) to (−ℓ, ℓ) so that the extended
function is an even function. Then, we find its Fourier series following the idea
of the last section. That is, we first impose 𝑓 (−𝑥) = 𝑓 (𝑥) for 𝑥 ∈ (0, ℓ) and
define 𝑓 (0) (anyway we like) so that 𝑓 on (−ℓ, ℓ) is an even function. Of course,
if 𝑓 : [0, ℓ) → R, then we do not have to define 𝑓 (0). Next, we extend this 𝑓 (𝑥)
to R by making it periodic with period 2ℓ . Then, we find the Fourier series for
the function ℎ(𝑦) = 𝑓 (ℓ𝑦/𝜋), and then substitute 𝑦 = 𝜋𝑥/ℓ in this Fourier series to
obtain the Fourier series for 𝑓 (𝑥). Since 𝑓 (𝑥) has been first extended to an even
function of period 2ℓ , the function ℎ(𝑦) is even and it has period 2𝜋 so that the final
Fourier series is a cosine series. In this case, the Fourier series for ℎ(𝑦) is

𝑎0
2
+
∞∑︁
𝑛=1

(
𝑎𝑛 cos𝑛𝑦

)
, 𝑎𝑛 =

2
𝜋

∫ 𝜋

0
𝑓

( ℓ
𝜋
𝑠

)
cos𝑛𝑠 𝑑𝑠, 𝑛 = 0, 1, 2, 3, . . . .

Substituting 𝑡 = ℓ
𝜋
𝑠, 𝑑𝑠 = 𝜋

ℓ
𝑑𝑡, and 𝑦 = 𝜋𝑥/ℓ in the above Fourier series, we obtain

the Fourier series for 𝑓 (𝑥). It is

𝑎0
2
+
∞∑︁
𝑛=1

(
𝑎𝑛 cos

𝑛𝜋𝑥

ℓ

)
, 𝑎𝑛 =

2
ℓ

∫ ℓ

0
𝑓 (𝑡) cos

(𝑛𝜋𝑡
ℓ

)
𝑑𝑡, 𝑛 = 0, 1, 2, 3, . . . .

The Fourier series sums to the function 𝑓 : R→ R, where 𝑓 (𝑥) is an even function
of period 2ℓ and it agrees with the given function 𝑓 (𝑥) on (0, ℓ). In particular, if
𝑓 (𝑥) is piecewise continuous on (0, ℓ), then at 𝑥 = 0, the Fourier series sums to
lim
𝑥→0+

𝑓 (𝑥) and at 𝑥 = ℓ , the Fourier series sums to lim
𝑥→ℓ−

𝑓 (𝑥).
The Fourier series so obtained is called the half-range cosine series as earlier.

(2.32) Example
Find the half-range cosine series for 𝑓 (𝑥) = 2𝑥 − 1 for 0 < 𝑥 < 1 and show that

1
12 +

1
32 +

1
52 + · · · =

𝜋2

8
.

Here, the half-range cosine series is

𝑎0
2
+
∞∑︁
𝑛=1

𝑎𝑛 cos
(𝑛𝜋𝑥

1

)
,
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where 𝑎0 = 2
1

∫ 1
0 (2𝑥 − 1)𝑑𝑥 = 0 and

𝑎𝑛 =
2
1

∫ 1

0
(2𝑥 − 1) cos

(𝑛𝜋𝑥
1

)
𝑑𝑥 =

4
𝑛2𝜋2

[
(−1)𝑛 − 1

]
=

{
0 for 𝑛 even
−8
𝑛2𝜋2 for 𝑛 odd.

Notice that 𝑓 (𝑥) is continuous on 0 < 𝑥 < 1. Hence,

2𝑥 − 1 = − 8
𝜋2

[cos𝜋𝑥
12 + cos 3𝜋𝑥

32 + cos 5𝜋𝑥
52 + · · ·

]
for 0 < 𝑥 < 1.

At 𝑥 = 0, the Fourier series sums to lim
𝑥→0+
(2𝑥 − 1) = −1. Hence,

1
12 +

1
32 +

1
52 + · · · =

𝜋2

8
.

2. Odd extension: In this approach, we extend 𝑓 (𝑥) to (−ℓ, ℓ) so that the extended
function is an odd function. Then, we find its Fourier series following the idea of
the last section. That is, we first impose 𝑓 (−𝑥) = −𝑓 (𝑥) for 𝑥 ∈ (0, ℓ) so that 𝑓 on
(−ℓ, ℓ) is an odd function. Notice that it also requires setting 𝑓 (0) = 𝑓 (−ℓ) = 0.
Next, we extend this 𝑓 (𝑥) to R by making it periodic with period 2ℓ . Then, we find
the Fourier series for the function ℎ(𝑦) = 𝑓 (ℓ𝑦/𝜋), and then substitute 𝑦 = 𝜋𝑥/ℓ in
this Fourier series to obtain the Fourier series for 𝑓 (𝑥). Since 𝑓 (𝑥) has been first
extended to an odd function of period 2ℓ , the function ℎ(𝑦) is odd and it has period
2𝜋 so that its Fourier series is a sine series. In this case, the Fourier series for ℎ(𝑦)
is

∞∑︁
𝑛=1

(
𝑏𝑛 sin𝑛𝑦

)
, 𝑏𝑛 =

2
𝜋

∫ 𝜋

0
𝑓

( ℓ
𝜋
𝑠

)
sin𝑛𝑠 𝑑𝑠, 𝑛 = 1, 2, 3, . . . .

Substituting 𝑡 = ℓ
𝜋
𝑠, 𝑑𝑠 = 𝜋

ℓ
𝑑𝑡, and 𝑦 = 𝜋𝑥/ℓ in the Fourier series, we obtain the

Fourier series for 𝑓 (𝑥). It is
∞∑︁
𝑛=1

𝑏𝑛 sin
(𝑛𝜋𝑥

ℓ

)
, 𝑏𝑛 =

2
ℓ

∫ ℓ

0
𝑓 (𝑡) sin

(𝑛𝜋𝑡
ℓ

)
𝑑𝑡, 𝑛 = 1, 2, 3, . . . .

The Fourier series sums to the function 𝑓 : R→ R, where 𝑓 (𝑥) is an odd function
of period 2ℓ and it agrees with the given function 𝑓 (𝑥) on (0, ℓ). In particular, at
𝑥 = 0 and at 𝑥 = ℓ , the Fourier series sums to 0.

The series so obtained is called a half-range sine series.

(2.33) Example

Find the half-range sine series for 𝑓 (𝑥) =
{

1 if 0 < 𝑥 < 1
0 if 1 ≤ 𝑥 < 2.
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Here, ℓ = 2. Thus, the Fourier sine series is
∞∑︁
𝑛=1

𝑏𝑛 sin
(𝑛𝜋𝑥

2

)
, where

𝑏𝑛 =
2
2

∫ 2

0
𝑓 (𝑥) sin

(𝑛𝜋𝑡
2

)
𝑑𝑡 =

∫ 1

0
sin

(𝑛𝜋𝑡
2

)
𝑑𝑡 =

2
𝑛𝜋

[
1 − cos

(𝑛𝜋
2

)]
.

2.9 Functions defined on (𝑎, 𝑏)
We now consider determining Fourier series for functions 𝑓 : (𝑎, 𝑏) → R. In
applications, we do not usually encounter such a case. We go ahead for theoretical
interest. Since we know how to construct Fourier series for a function with domain
as (0, 𝜋) or as (−𝜋, 𝜋), we have the following three approaches to the problem.

1. In the first approach, we define the continuous bĳection 𝑔 : (0, 𝜋) → (𝑎, 𝑏) given
by

𝑔(𝑦) = 𝑎 + 𝑏 − 𝑎
𝜋

𝑦 for 𝑦 ∈ (0, 𝜋).

Now, the composition 𝑓 ◦ 𝑔 is a function from (0, 𝜋) to R. Next, we take an even
extension of 𝑓 ◦𝑔 with periodicity 2𝜋 ; and call this extended function as ℎ. We then
construct the Fourier series for ℎ(𝑦) = 𝑓 (𝑔(𝑦)) . Finally, we substitute

𝑦 = 𝑔−1(𝑥) = 𝜋 (𝑥 − 𝑎)
𝑏 − 𝑎 for 𝑥 ∈ (𝑎, 𝑏)

in the Fourier series for ℎ(𝑦). This gives the half-range cosine series for 𝑓 (𝑥) on
(𝑎, 𝑏).

2. In the second approach, we use the same continuous bĳection 𝑔 : (0, 𝜋) → (𝑎, 𝑏)
given by

𝑔(𝑦) = 𝑎 + 𝑏 − 𝑎
𝜋

𝑦 for 𝑦 ∈ (0, 𝜋).

The composition map 𝑓 ◦ 𝑔 is a function from (0, 𝜋) to R. Next, we take an odd
extension of 𝑓 ◦𝑔 with periodicity 2𝜋 ; and call this extended function as ℎ. We then
construct the Fourier series for ℎ(𝑦). Finally, we substitute

𝑦 = 𝑔−1(𝑥) = 𝜋 (𝑥 − 𝑎)
𝑏 − 𝑎 for 𝑥 ∈ (𝑎, 𝑏)

in the Fourier series for ℎ(𝑦). This gives the half-range sine series for 𝑓 (𝑥) on
(𝑎, 𝑏).
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3. In the third approach, we define the continuous bĳection 𝑔 : (−𝜋, 𝜋) → (𝑎, 𝑏)
given by

𝑔(𝑦) = 𝑎 + 𝑏
2
+ 𝑏 − 𝑎

2𝜋
𝑦 for 𝑦 ∈ (−𝜋, 𝜋).

The composition 𝑓 ◦ 𝑔 is a function from (−𝜋, 𝜋) to R. Next, we extend 𝑓 ◦ 𝑔 with
periodicity 2𝜋 ; and call this extended function as ℎ. We then construct the Fourier
series for ℎ(𝑦) . Finally, in the Fourier series for ℎ(𝑦), we substitute

𝑦 = 𝑔−1(𝑥) = 𝜋

𝑏 − 𝑎 (2𝑥 − 𝑎 − 𝑏)

to obtain the Fourier series for 𝑓 (𝑥) on (𝑎, 𝑏).

In general, such a Fourier series need neither be a sine series nor a cosine series.
Sometimes, this series is called a full range Fourier series.

Observe that if a function 𝑓 has domain (0, 𝜋), then we can scale it to length 2𝜋
by using the third approach. That is, we take the function 𝑔 : (−𝜋, 𝜋) → (0, 𝜋) as

𝑔(𝑦) = 𝜋 + 𝑦
2

for 𝑦 ∈ (0, 𝜋).

Then, we find the Fourier series for ℎ(𝑦) = 𝑓 (𝑔(𝑦)). Finally, in the Fourier series
for ℎ(𝑦), we substitute 𝑦 = 𝑔−1(𝑥) = 2𝑥 − 𝜋 to obtain the Fourier series for 𝑓 (𝑥). In
general, such a Fourier series may involve both sine and cosine terms.

(2.34) Example
We consider Example 2.29 once again to illustrate the third approach when the
function is initially defined on [0, 𝜋]. There, we had

𝑓 (𝑥) =
{
𝑥 if 0 ≤ 𝑥 ≤ 𝜋/2
𝜋 − 𝑥 if 𝜋/2 < 𝑥 ≤ 𝜋.

Here, 𝑓 (𝑥) is also given at the end-points. We use the same formula for 𝑔(𝑥) at the
end-points also. That is, we define 𝑔 : [−𝜋, 𝜋] → [0, 𝜋] by

𝑥 = 𝑔(𝑦) = 𝜋 + 𝑦
2

, ℎ(𝑦) = 𝑓

(𝜋 + 𝑦
2

)
=

{
(𝜋 + 𝑦)/2 if − 𝜋 ≤ 𝑦 ≤ 0
(𝜋 − 𝑦)/2 if 0 < 𝑦 ≤ 𝜋.

Notice that the functionℎ(𝑦) happens to be an even function withℎ(−𝜋) = ℎ(𝜋) = 0.
Then the Fourier coefficients are given by 𝑏𝑛 = 0 and

𝑎0 =
1
𝜋

∫ 0

−𝜋

𝜋 + 𝑡
2

𝑑𝑡 + 1
𝜋

∫ 𝜋

0

𝜋 − 𝑡
2

𝑑𝑡 =
𝜋

2
.
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𝑎𝑛 =
1
𝜋

∫ 0

−𝜋

𝜋 + 𝑡
2

cos𝑛𝑡 𝑑𝑡 + 1
𝜋

∫ 𝜋

0

𝜋 − 𝑡
2

cos𝑛𝑡 𝑑𝑡 =

{
2

𝜋𝑛2 for 𝑛 odd
0 for 𝑛 even.

The Fourier series for ℎ(𝑦) is given by

𝜋

4
+
∑︁
𝑛 odd

2
𝜋𝑛2 cos𝑛𝑦.

Using 𝑦 = 𝑔−1(𝑥) = 2𝑥 − 𝜋, we have the Fourier series for 𝑓 (𝑥). Also 𝑓 (𝑥) is
continuous at 𝑥 = 0 and 𝑥 = 𝜋 . Therefore,

𝑓 (𝑥) = 𝜋

4
+ 2
𝜋

∞∑︁
𝑛=1

1
(2𝑛 + 1)2

cos
(
(2𝑛 + 1) (2𝑥 − 𝜋)

)
for 𝑥 ∈ [0, 𝜋] .

Notice that it is the same series we obtained earlier in Example 2.29(1) by even
extension. This is so because ℎ(𝑦) happens to be an even function.

A Fun Problem: Show that the 𝑛th partial sum of the Fourier series for 𝑓 (𝑥) can
be written as the following integral:

𝑠𝑛 (𝑥) =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥 + 𝑡) sin(2𝑛 + 1)𝑡/2

2 sin 𝑡/2 𝑑𝑡 .

We know that 𝑠𝑛 (𝑥) =
𝑎0
2
+

𝑛∑︁
𝑘=1
(𝑎𝑘 cos𝑘𝑥 + 𝑏𝑘 sin𝑘𝑥), where

𝑎𝑘 =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) cos𝑘𝑡 𝑑𝑡, 𝑏𝑘 =

1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) sin𝑘𝑡 𝑑𝑡 .

Substituting these values in the expression for 𝑠𝑛 (𝑥), we have

𝑠𝑛 (𝑥) =
1

2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) 𝑑𝑡 + 1

𝜋

𝑛∑︁
𝑘=1

[ ∫ 𝜋

−𝜋
𝑓 (𝑡) cos𝑘𝑥 cos𝑘𝑡 𝑑𝑡 +

∫ 𝜋

−𝜋
𝑓 (𝑡) sin𝑘𝑥 sin𝑘𝑡 𝑑𝑡

]
=

1
𝜋

∫ 𝜋

−𝜋

[ 𝑓 (𝑡)
2
+

𝑛∑︁
𝑘=1
{𝑓 (𝑡) cos𝑘𝑥 cos𝑘𝑡 + 𝑓 (𝑡) sin𝑘𝑥 sin𝑘𝑡}

]
𝑑𝑡

=
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡)

[1
2
+

𝑛∑︁
𝑘=1

cos𝑘 (𝑡 − 𝑥)
]
𝑑𝑡 :=

1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡)𝜎𝑛 (𝑡 − 𝑥) 𝑑𝑡 .

The expression 𝜎𝑛 (𝑧) for 𝑧 = 𝑡 − 𝑥 can be re-written as follows:

𝜎𝑛 (𝑧) =
1
2
+ cos 𝑧 + cos 2𝑧 + · · · + cos𝑛𝑧.
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Thus

2𝜎𝑛 (𝑧) cos 𝑧
= cos 𝑧 + 2 cos 𝑧 cos 𝑧 + 2 cos 𝑧 cos 2𝑧 + · · · + 2 cos 𝑧 cos𝑛𝑧
= cos 𝑧 + [1 + cos 2𝑧] + [cos 𝑧 + cos 3𝑧] + · · · + [cos(𝑛 − 1)𝑧 + cos(𝑛 + 1)𝑧]
= 1 + 2 cos 𝑧 + 2 cos 2𝑧 + · · · + 2 cos(𝑛 − 1)𝑧 + 2 cos𝑛𝑧 + 2 cos(𝑛 + 1)𝑧
= 2𝜎𝑛 (𝑧) − cos𝑛𝑧 + cos(𝑛 + 1)𝑧.

This gives

𝜎𝑛 (𝑧) =
cos𝑛𝑧 − cos(𝑛 + 1)𝑧

2(1 − cos 𝑧) =
sin(2𝑛 + 1)𝑧/2

2 sin 𝑧/2 .

Substituting 𝜎𝑛 (𝑧) with 𝑧 = 𝑡 − 𝑥, we have

𝑠𝑛 (𝑥) =
1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑡) sin(2𝑛 + 1) (𝑡 − 𝑥)/2

2 sin(𝑡 − 𝑥)/2 𝑑𝑡 .

Since the integrand is 2𝜋-periodic, the value of the integral remains same on any
interval of length 2𝜋. Thus

𝑠𝑛 (𝑥) =
1
𝜋

∫ 𝑥+𝜋

𝑥−𝜋
𝑓 (𝑡) sin(2𝑛 + 1) (𝑡 − 𝑥)/2

2 sin(𝑡 − 𝑥)/2 𝑑𝑡 .

Introduce a new variable 𝑦 = 𝑡 − 𝑥, i.e., 𝑡 = 𝑥 + 𝑦. And then write the integral in
terms of 𝑡 instead of 𝑦 to obtain

𝑠𝑛 (𝑥) =
∫ 𝜋

−𝜋
𝑓 (𝑥 + 𝑦) sin(2𝑛 + 1)𝑦/2

2 sin𝑦/2 𝑑𝑦 =

∫ 𝜋

−𝜋
𝑓 (𝑥 + 𝑡) sin(2𝑛 + 1)𝑡/2

2 sin 𝑡/2 𝑑𝑡 .

This integral is called the Dirichlet Integral. In particular, taking 𝑓 (𝑥) = 1, we see
that 𝑎0 = 2, 𝑎𝑘 = 0 and 𝑏𝑘 = 0 for 𝑘 ∈ N; and then we get the identity

1
𝜋

∫ 𝜋

−𝜋

sin
(
(2𝑛 + 1)𝑡/2

)
2 sin

(
𝑡/2

) 𝑑𝑡 = 1 for each 𝑛 ∈ N.

2.10 Exercises for Chapter 2
1. Determine the interval of convergence for each of the following power series:

(a)
∞∑︁
𝑛=1

𝑥𝑛

𝑛
(b)

∞∑︁
𝑛=1

𝑥𝑛

𝑛2 (c)
∞∑︁
𝑛=0
(−1)𝑛 𝑥

𝑛+1

𝑛 + 1
Ans: (a) [−1, 1) (b) [−1, 1] (c) (−1, 1].
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2. Determine the interval of convergence of the series
2𝑥
1
− (2𝑥)

2

2
+ (2𝑥)

3

3
− · · ·.

Ans: (−1/2, 1/2].
3. Determine power series expansion of the following functions:

(a) ln(1 + 𝑥) (b)
ln(1 + 𝑥)

1 − 𝑥
4. The function

1
1 − 𝑥 has the power series representation

∑∞
𝑛=0 𝑥

𝑛 with interval
of convergence (−1, 1). Prove that the function has power series representation
around any 𝑐 ≠ 1.

5. Find the sum of the alternating harmonic series
∞∑︁
𝑛=0

(−1)𝑛
𝑛 + 1

. Ans: ln 2.

6. Give an approximation scheme for
∫ 𝑎

0

sin𝑥
𝑥

𝑑𝑥 where 𝑎 > 0.

Ans: 𝑎 +∑∞𝑛=1(−𝑎)2𝑛+1/[(2𝑛 + 1)2(2𝑛)!].

7. Show that sin−1 𝑥 = 𝑥 + 1
2
· 1

3
𝑥3 + 1 · 3

2 · 4 ·
1
5
𝑥5 + 1 · 3 · 5

2 · 4 · 6 ·
1
7
𝑥7 + · · · for −1 <

𝑥 < 1.

Then, deduce that 1 + 1
2

1
3
+ 1 · 3

2 · 4 ·
1
5
+ 1 · 3 · 5

2 · 4 · 6 ·
1
7
+ · · · = 𝜋

2
.

8. Find the Fourier series of 𝑓 (𝑥) given by: 𝑓 (𝑥) = 0 for −𝜋 ≤ 𝑥 < 0; and
𝑓 (𝑥) = 1 for 0 ≤ 𝑥 ≤ 𝜋. Say also how the Fourier series represents 𝑓 (𝑥).
Hence give a series expansion of 𝜋/4.
Ans: 1/2 + (2/𝜋)∑∞𝑛=0(2𝑛 + 1)−1 sin[(2𝑛 + 1)𝑥].

9. Considering the fourier series for |𝑥 |, deduce that
𝜋2

8
=

∞∑︁
𝑛=0

1
(2𝑛 + 1)2

.

10. Considering the fourier series for 𝑥, deduce that
𝜋

4
=

∞∑︁
𝑛=0

(−1)𝑛
2𝑛 + 1

.

11. Considering the fourier series for 𝑓 (𝑥) given by: 𝑓 (𝑥) = −1, for −𝜋 ≤ 𝑥 < 0

and 𝑓 (𝑥) = 1 for 0 ≤ 𝑥 ≤ 𝜋 deduce that
𝜋

4
=

∞∑︁
𝑛=0

(−1)𝑛
2𝑛 + 1

.

12. Considering 𝑓 (𝑥) = 𝑥2, show that for each 𝑥 ∈ [0, 𝜋],

𝜋2

6
+ 2

∞∑︁
𝑛=1

(−1)𝑛 cos𝑛𝑥
𝑛2 =

∞∑︁
𝑛=1

𝑛2𝜋2(−1)𝑛+1 + 2(−1)𝑛 − 2
𝑛3𝜋

sin𝑛𝑥.

13. Represent the function 𝑓 (𝑥) = 1 − |𝑥 | for −1 ≤ 𝑥 ≤ 1 as a cosine series.
Ans: 1/2 + (4/𝜋2)∑∞𝑛=0(2𝑛 + 1)−2 cos[(2𝑛 + 1)𝜋𝑥].



3
Basic Matrix Operations

3.1 Addition and multiplication
A matrix is a rectangular array of symbols. For us these symbols are real numbers
or, in general, complex numbers. The individual numbers in the array are called
the entries of the matrix. The number of rows and the number of columns in any
matrix are necessarily positive integers. A matrix with 𝑚 rows and 𝑛 columns is
called an𝑚 × 𝑛 matrix and it may be written as

𝐴 =


𝑎11 · · · 𝑎1𝑛
...

...

𝑎𝑚1 · · · 𝑎𝑚𝑛

 ,
or as 𝐴 = [𝑎𝑖 𝑗 ] for short with 𝑎𝑖 𝑗 ∈ F for 𝑖 = 1, . . . ,𝑚 and 𝑗 = 1, . . . , 𝑛. The number
𝑎𝑖 𝑗 which occurs at the entry in 𝑖th row and 𝑗 th column is referred to as the (𝑖, 𝑗)-th
entry of the matrix [𝑎𝑖 𝑗 ] .

As usual,R denotes the set of all real numbers andC denotes the set of all complex
numbers. We will write F for either R or C. The numbers in F will also be referred
to as scalars. Thus each entry of a matrix is a scalar.

The set of all𝑚 × 𝑛 matrices with entries from F will be denoted by F𝑚×𝑛 .
A row vector of size 𝑛 is a matrix in F1×𝑛 . A typical row vector is written as
[𝑎1 · · · 𝑎𝑛] . Similarly, a column vector of size 𝑛 is a matrix in F𝑛×1. A typical
column vector is written as 

𝑎1
...

𝑎𝑛

 or as
[
𝑎1 · · · 𝑎𝑛

]𝑇
for saving space. We will write both F1×𝑛 and F𝑛×1 as F𝑛 . The elements of F𝑛, called
vectors will be written as (𝑎1, . . . , 𝑎𝑛).

So, (𝑎1, . . . , 𝑎𝑛) is either the row vector
[
𝑎1 · · · 𝑎𝑛

]
or the column vector[

𝑎1 · · · 𝑎𝑛
]𝑇 .

73
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Any matrix in F𝑚×𝑛 is said to have its size as 𝑚 × 𝑛. If 𝑚 = 𝑛, the rectangular
array becomes a square array with 𝑛 rows and 𝑛 columns; and the matrix is called a
square matrix of order 𝑛.

Two matrices of the same size are considered equal when their corresponding
entries are equal, i.e., if 𝐴 = [𝑎𝑖 𝑗 ] ∈ F𝑚×𝑛 and 𝐵 = [𝑏𝑖 𝑗 ] ∈ F𝑚×𝑛, then

𝐴 = 𝐵 iff 𝑎𝑖 𝑗 = 𝑏𝑖 𝑗

for each 𝑖 ∈ {1, . . . ,𝑚} and for each 𝑗 ∈ {1, . . . , 𝑛}. Thus matrices of different sizes
are unequal.

Sum of two matrices of the same size is a matrix whose entries are obtained by
adding the corresponding entries in the given two matrices. That is, if 𝐴 = [𝑎𝑖 𝑗 ] ∈
F𝑚×𝑛 and 𝐵 = [𝑏𝑖 𝑗 ] ∈ F𝑚×𝑛, then

𝐴 + 𝐵 = [𝑎𝑖 𝑗 + 𝑏𝑖 𝑗 ] ∈ F𝑚×𝑛 .

For example, [
1 2 3
2 3 1

]
+
[
3 1 2
2 1 3

]
=

[
4 3 5
4 4 4

]
.

The + here is called addition as usual. We informally say that matrices are added
entry-wise. Matrices of different sizes can never be added. It follows that

𝐴 + 𝐵 = 𝐵 +𝐴

whenever + is defined. Similarly, matrices can be multiplied by a scalar entry-wise.
If 𝛼 ∈ F and 𝐴 = [𝑎𝑖 𝑗 ] ∈ F𝑚×𝑛, then

𝛼 𝐴 = [𝛼 𝑎𝑖 𝑗 ] ∈ F𝑚×𝑛 .

We write the zero matrix in F𝑚×𝑛, all entries of which are 0, as 0. Thus,

𝐴 + 0 = 0 +𝐴 = 𝐴

for all matrices 𝐴 ∈ F𝑚×𝑛, with an implicit understanding that 0 ∈ F𝑚×𝑛 . For
𝐴 = [𝑎𝑖 𝑗 ], the matrix −𝐴 ∈ F𝑚×𝑛 is taken as one whose (𝑖 𝑗)th entry is −𝑎𝑖 𝑗 . Thus

−𝐴 = (−1)𝐴 and 𝐴 + (−𝐴) = −𝐴 +𝐴 = 0.

We also abbreviate 𝐴 + (−𝐵) to 𝐴 − 𝐵, as usual.
For example,

3
[
1 2 3
2 3 1

]
−
[
3 1 2
2 1 3

]
=

[
0 5 7
4 8 0

]
.

The addition and scalar multiplication as defined above satisfy the following prop-
erties:
Let 𝐴, 𝐵,𝐶 ∈ F𝑚×𝑛 . Let 𝛼, 𝛽 ∈ F.
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1. 𝐴 + 𝐵 = 𝐵 +𝐴.
2. (𝐴 + 𝐵) +𝐶 = 𝐴 + (𝐵 +𝐶).
3. 𝐴 + 0 = 0 +𝐴 = 𝐴.

4. 𝐴 + (−𝐴) = (−𝐴) +𝐴 = 0.
5. 𝛼 (𝛽𝐴) = (𝛼𝛽)𝐴.
6. 𝛼 (𝐴 + 𝐵) = 𝛼𝐴 + 𝛼𝐵.
7. (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴.
8. 1𝐴 = 𝐴.

Notice that whatever we discuss here for matrices apply to row vectors and column
vectors, in particular. But remember that a row vector cannot be added to a column
vector unless both are of size 1 × 1.

Another operation that we have on matrices is multiplication of matrices, which
is a bit involved. Let 𝐴 = [𝑎𝑖𝑘] ∈ F𝑚×𝑛 and 𝐵 = [𝑏𝑘 𝑗 ] ∈ F𝑛×𝑟 . Then their product
𝐴𝐵 is a matrix [𝑐𝑖 𝑗 ] ∈ F𝑚×𝑟 , where the entries are given by

𝑐𝑖 𝑗 = 𝑎𝑖1𝑏1 𝑗 + · · · + 𝑎𝑖𝑛𝑏𝑛𝑗 =
𝑛∑︁

𝑘=1
𝑎𝑖𝑘𝑏𝑘 𝑗 .

Notice that the matrix product 𝐴𝐵 is defined only when the number of columns in 𝐴

is equal to the number of rows in 𝐵.

A particular case might be helpful. Suppose 𝐴 is a row vector in F1×𝑛 and 𝐵 is a
column vector in F𝑛×1. Then their product 𝐴𝐵 ∈ F1×1; it is a matrix of size 1 × 1.
Often we will identify such matrices with numbers. The product now looks like:

[
𝑎1 · · · 𝑎𝑛

] 
𝑏1
...

𝑏𝑛

 =
[
𝑎1𝑏1 + · · · + 𝑎𝑛𝑏𝑛

]
This is helpful in visualizing the general case, which looks like

𝑎11 𝑎1𝑘 𝑎1𝑛

𝑎𝑖1 · · · 𝑎𝑖𝑘 · · · 𝑎𝑖𝑛

𝑎𝑚1 𝑎𝑚𝑘 𝑎𝑚𝑛





𝑏11 𝑏1 𝑗 𝑏1𝑟
...

𝑏ℓ1 𝑏ℓ 𝑗 𝑏ℓ𝑟
...

𝑏𝑛1 𝑏𝑛𝑗 𝑏𝑛𝑟


=



𝑐11 𝑐1 𝑗 𝑐1𝑟

𝑐𝑖1 𝑐𝑖 𝑗 𝑐𝑖𝑟

𝑐𝑚1 𝑐𝑚𝑗 𝑐𝑚𝑟


The 𝑖th row of 𝐴 multiplied with the 𝑗 th column of 𝐵 gives the (𝑖 𝑗)th entry in 𝐴𝐵.

Thus to get 𝐴𝐵, you have to multiply all𝑚 rows of 𝐴 with all 𝑟 columns of 𝐵.
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(3.1) Example
In the following, call the first matrix as 𝐴 and the second as 𝐵. The equality shows
how the right hand side 𝐴𝐵 is computed.

3 5 −1
4 0 2
−6 −3 2



2 −2 3 1
5 0 7 8
9 −4 1 1

 =


22 −2 43 42
26 −16 14 6
−9 4 −37 −28

 .
Further, look at the 𝑘th column of 𝐴𝐵, the columns of 𝐴 and the entries in the 𝑘th
column of 𝐵. We have


22
26
−9

 = 2


3
4
−6

 + 5


5
0
−3

 + 9


−1

2
2

 .
−2
−16

4

 = −2


3
4
−6

 + 0


5
0
−3

 − 4


−1

2
2

 .
43
14
−37

 = 3


3
4
−6

 + 7


5
0
−3

 + 1


−1

2
2

 .
42
6
−28

 = 1


3
4
−6

 + 8


5
0
−3

 + 1


−1

2
2

 .
In general, suppose that the columns of 𝐴 are 𝐶1, . . . ,𝐶𝑛 and that the 𝑘th column
of 𝐵 has entries 𝑏1𝑘 , . . . , 𝑏𝑛𝑘 in that order; then, the 𝑘th column of 𝐴𝐵 is given by
𝑏1𝑘𝐶1 + · · · + 𝑏𝑛𝑘𝐶𝑛.

If 𝑢 ∈ F1×𝑛 and 𝑣 ∈ F𝑛×1, then 𝑢𝑣 ∈ F1×1, which we identify with a scalar; but
𝑣𝑢 ∈ F𝑛×𝑛 . [

3 6 1
] 

1
2
4

 =
[
19

]
,


1
2
4


[
3 6 1

]
=


3 6 1
6 12 2
12 24 4

 .
It shows clearly that matrix multiplication is not commutative. Commutativity can
break down due to various reasons. First of all when 𝐴𝐵 is defined, 𝐵𝐴 may not be
defined. Second, even when both 𝐴𝐵 and 𝐵𝐴 are defined, they may not be of the
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same size; and third, even when they are of the same size, they need not be equal.
For example, [

1 2
2 3

] [
0 1
2 3

]
=

[
4 7
6 11

]
but

[
0 1
2 3

] [
1 2
2 3

]
=

[
2 3
8 13

]
.

It does not mean that 𝐴𝐵 is never equal to 𝐵𝐴. There can be some particular
matrices 𝐴 and 𝐵 both in F𝑛×𝑛 such that 𝐴𝐵 = 𝐵𝐴. An extreme case is 𝐴 𝐼 = 𝐼 𝐴,

where 𝐼 is the identity matrix defined by 𝐼 = [𝛿𝑖 𝑗 ], where Kronecker’s delta is
defined as follows:

𝛿𝑖 𝑗 =

{
1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
for 𝑖, 𝑗 ∈ N.

In fact, 𝐼 serves as the identity of multiplication. 𝐼 looks like

1 0 · · · 0 0
0 1 · · · 0 0

...

0 0 · · · 1 0
0 0 · · · 0 1


=



1
1
. . .

1
1


.

We often do not write the zero entries for better visibility of some pattern.
Unlike numbers, product of two nonzero matrices can be a zero matrix. For

example, [
1 0
0 0

] [
0 0
0 1

]
=

[
0 0
0 0

]
.

It is easy to verify the following properties of matrix multiplication:

1. If 𝐴 ∈ F𝑚×𝑛, 𝐵 ∈ F𝑛×𝑟 and 𝐶 ∈ F𝑟×𝑝, then (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶).
2. If 𝐴, 𝐵 ∈ F𝑚×𝑛 and 𝐶 ∈ F𝑛×𝑟 , then (𝐴 + 𝐵)𝐶 = 𝐴𝐵 +𝐴𝐶.
3. If 𝐴 ∈ F𝑚×𝑛 and 𝐵,𝐶 ∈ F𝑛×𝑟 , then 𝐴(𝐵 +𝐶) = 𝐴𝐵 +𝐴𝐶.
4. If 𝛼 ∈ F, 𝐴 ∈ F𝑚×𝑛 and 𝐵 ∈ F𝑛×𝑟 , then 𝛼 (𝐴𝐵) = (𝛼𝐴)𝐵 = 𝐴(𝛼𝐵).

You can see matrix multiplication in a block form. Suppose for two matrices 𝐴
and 𝐵, their product is well defined. By looking at smaller matrices in 𝐴 and in 𝐵,
we can write their product as follows:

𝐴 =

[
𝐴1 𝐴2
𝐴3 𝐴4

]
, 𝐵 =

[
𝐵1 𝐵2
𝐵3 𝐵4

]
⇒ 𝐴𝐵 =

[
𝐴1𝐵1 +𝐴2𝐵3 𝐴1𝐵2 +𝐴2𝐵4
𝐴3𝐵1 +𝐴4𝐵3 𝐴3𝐵2 +𝐴4𝐵4

]
provided that the blocks 𝐴𝑖 and 𝐵 𝑗 are such that all the products involved in the
above are well-defined.
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Powers of square matrices can be defined inductively by taking

𝐴0 = 𝐼 and 𝐴𝑛 = 𝐴𝐴𝑛−1 for 𝑛 ∈ N.

A square matrix 𝐴 of order𝑚 is called invertible iff there exists a matrix 𝐵 of order
𝑚 such that

𝐴𝐵 = 𝐼 = 𝐵𝐴.

Such a matrix 𝐵 is called an inverse of 𝐴. If 𝐶 is another inverse of 𝐴, then

𝐶 = 𝐶𝐼 = 𝐶 (𝐴𝐵) = (𝐶𝐴)𝐵 = 𝐼𝐵 = 𝐵.

Therefore, an inverse of a matrix is unique and is denoted by 𝐴−1. We talk of
invertibility of square matrices only; and all square matrices are not invertible. For
example, 𝐼 is invertible but 0 is not. If 𝐴𝐵 = 0 for nonzero square matrices 𝐴 and 𝐵,

then neither 𝐴 nor 𝐵 is invertible. (Show it.) Invertible matrices play a crucial role
in solving linear systems uniquely. We will come back to the issue later.

It is easy to verify that if 𝐴, 𝐵 ∈ F𝑛×𝑛 are invertible matrices, then (𝐴𝐵)−1 =

𝐵−1𝐴−1.

Remark 3.2 If 𝐴 and 𝐵 are square matrices of the same order, then 𝐴𝐵 = 𝐼

implies that 𝐵𝐴 = 𝐼 . This fact will be proved later. It means that a square matrix 𝐴

of order 𝑛 is invertible iff there exists a square matrix 𝐵 of order 𝑛 such that 𝐴𝐵 = 𝐼

iff there exists a square matrix 𝐶 of order 𝑛 such that 𝐶𝐴 = 𝐼 .

3.2 Transpose and adjoint
We consider another operation on matrices. Given a matrix𝐴 ∈ F𝑚×𝑛, its transpose
is a matrix in F𝑛×𝑚, which is denoted by 𝐴𝑇 , and is defined by

the (𝑖, 𝑗)th entry of 𝐴𝑇 = the ( 𝑗, 𝑖)th entry of𝐴.

That is, the 𝑖th column of 𝐴𝑇 is the column vector
[
𝑎𝑖1 · · · 𝑎𝑖𝑛

]𝑇
. The rows of 𝐴 are

the columns of 𝐴𝑇 and the columns of 𝐴 are the rows of 𝐴𝑇 . For example,

𝐴 =

[
1 2 3
2 3 1

]
⇒ 𝐴𝑇 =


1 2
2 3
3 1

 .
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In particular, if 𝑢 =
[
𝑎1 · · · 𝑎𝑚

]
is a row vector, then its transpose is

𝑢𝑇 =


𝑎1
...

𝑎𝑚

 ,
which is a column vector. Similarly, the transpose of a column vector is a row
vector. Notice that the transpose notation goes well with our style of writing a
column vector as the transpose of a row vector. If you write 𝐴 as a row of column
vectors, then you can express 𝐴𝑇 as a column of row vectors, as in the following:

𝐴 =
[
𝐶1 · · · 𝐶𝑛

]
⇒ 𝐴𝑇 =


𝐶𝑇

1
...

𝐶𝑇
𝑛

 , 𝐴 =


𝑅1
...

𝑅𝑚

 ⇒ 𝐴𝑇 =
[
𝑅𝑇1 · · · 𝑅

𝑇
𝑚

]
.

The following are some of the properties of this operation of transpose.

1. (𝐴𝑇 )𝑇 = 𝐴.

2. (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 .
3. (𝛼𝐴)𝑇 = 𝛼𝐴𝑇 .

4. (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 .

5. If 𝐴 is invertible, then 𝐴𝑇 is invertible, and (𝐴𝑇 )−1 = (𝐴−1)𝑇 .

In the above properties, we assume that the operations are allowed, that is, in (2),
𝐴 and 𝐵 must be of the same size. Similarly, in (4), the number of columns in 𝐴

must be equal to the number of rows in 𝐵; and in (5), 𝐴 must be a square matrix.
It is easy to see all the above properties, except perhaps the fourth one. For this,

let 𝐴 ∈ F𝑚×𝑛 and 𝐵 ∈ F𝑛×𝑟 . Now, the ( 𝑗, 𝑖)th entry in (𝐴𝐵)𝑇 is the (𝑖, 𝑗)th entry in
𝐴𝐵; and it is given by

𝑎𝑖1𝑏 𝑗1 + · · · + 𝑎𝑖𝑛𝑏 𝑗𝑛 .

On the other side, the ( 𝑗, 𝑖)th entry in 𝐵𝑇𝐴𝑇 is obtained by multiplying the 𝑗 th row
of 𝐵𝑇 with the 𝑖th column of 𝐴𝑇 . This is same as multiplying the entries in the 𝑗 th
column of 𝐵 with the corresponding entries in the 𝑖th row of 𝐴, and then taking the
sum. Thus it is

𝑏 𝑗1𝑎𝑖1 + · · · + 𝑏 𝑗𝑛𝑎𝑖𝑛 .

This is the same as computed earlier.
We write 𝛼 for the complex conjugate of a scalar 𝛼. That is, 𝑏 + 𝑖𝑐 = 𝑏 − 𝑖𝑐 for

𝑏, 𝑐 ∈ R. Thus, if 𝑎𝑖 𝑗 ∈ R, then 𝑎𝑖 𝑗 = 𝑎𝑖 𝑗 .
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Close to the operations of transpose of a matrix is the adjoint. Let 𝐴 = [𝑎𝑖 𝑗 ] ∈
F𝑚×𝑛 . The adjoint of 𝐴 is denoted as 𝐴∗, and is defined by

the (𝑖, 𝑗)th entry of 𝐴∗ = the complex conjugate of ( 𝑗, 𝑖)th entry of𝐴.

The adjoint of 𝐴 is also called the conjugate transpose of 𝐴.
When𝐴 has only real entries,𝐴∗ = 𝐴𝑇 . The 𝑖th column of𝐴∗ is the column vector[
𝑎𝑖1, · · · , 𝑎𝑖𝑛

]𝑇
. For example,

𝐴 =

[
1 2 3
2 3 1

]
⇒ 𝐴∗ =


1 2
2 3
3 1

 , 𝐵 =

[
1 + 𝑖 2 3

2 3 1 − 𝑖

]
⇒ 𝐵∗ =


1 − 𝑖 2

2 3
3 1 + 𝑖

 .
Similar to the transpose, the adjoint satisfies the following properties:

1. (𝐴∗)∗ = 𝐴.

2. (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗.
3. (𝛼𝐴)∗ = 𝛼𝐴∗.

4. (𝐴𝐵)∗ = 𝐵∗𝐴∗.

5. If 𝐴 is invertible, then 𝐴∗ is invertible, and (𝐴∗)−1 = (𝐴−1)∗.

Here also, in (2), the matrices 𝐴 and 𝐵 must be of the same size, and in (4), the
number of columns in 𝐴 must be equal to the number of rows in 𝐵.

3.3 Special types of matrices
Recall that the zero matrix is a matrix each entry of which is 0. We write 0 for all
zero matrices of all sizes. The size is to be understood from the context.

Let𝐴 = [𝑎𝑖 𝑗 ] ∈ F𝑛×𝑛 be a square matrix of order 𝑛. The entries 𝑎𝑖𝑖 are called as the
diagonal entries of 𝐴. The first diagonal entry is 𝑎11, and the last diagonal entry is
𝑎𝑛𝑛 . The entries of 𝐴, which are not the diagonal entries, are called as off-diagonal
entries of 𝐴; they are 𝑎𝑖 𝑗 for 𝑖 ≠ 𝑗 . In the following matrix, the diagonal entries are
shown in red: 

1 2 3
2 3 4
3 4 0

 .
Here, 1 is the first diagonal entry, 3 is the second diagonal entry and 0 is the third
and the last diagonal entry.
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If all off-diagonal entries of𝐴 are 0, then𝐴 is said to be a diagonal matrix. Only
a square matrix can be a diagonal matrix. There is a way to generalize this notion to
any matrix, but we do not require it. Notice that the diagonal entries in a diagonal
matrix need not all be nonzero. For example, the zero matrix of order 𝑛 is also a
diagonal matrix. The following is a diagonal matrix. We follow the convention of
not showing the off-diagonal entries in a diagonal matrix.

1
3

0

 =

1 0 0
0 3 0
0 0 0

 .
We also write a diagonal matrix with diagonal entries 𝑑1, . . . , 𝑑𝑛 as diag(𝑑1, . . . , 𝑑𝑛).
Thus the above diagonal matrix is also written as

diag(1, 3, 0).

Recall that the identity matrix is a square matrix of which each diagonal entry is
1 and each off-diagonal entry is 0. Obviously,

𝐼𝑇 = 𝐼 ∗ = 𝐼−1 = diag(1, . . . , 1) = 𝐼 .

When identity matrices of different orders are used in a context, we will use the
notation 𝐼𝑚 for the identity matrix of order 𝑚. If 𝐴 ∈ F𝑚×𝑛, then 𝐴𝐼𝑛 = 𝐴 and
𝐼𝑚𝐴 = 𝐴.

We write 𝑒𝑖 for a column vector whose 𝑖th component is 1 and all other components
0. That is, the 𝑗 th component of 𝑒𝑖 is 𝛿𝑖 𝑗 . In F𝑛×1, there are then 𝑛 distinct column
vectors

𝑒1, . . . , 𝑒𝑛 .

The 𝑒𝑖s are referred to as the standard basis vectors. These are the columns of
the identity matrix of order 𝑛, in that order; that is, 𝑒𝑖 is the 𝑖th column of 𝐼 . The
transposes of these 𝑒𝑖s are the rows of 𝐼 . That is, the 𝑖th row of 𝐼 is 𝑒𝑇𝑖 . Thus

𝐼 =
[
𝑒1 · · · 𝑒𝑛

]
=


𝑒𝑇1
...

𝑒𝑇𝑛

 .
A scalar matrix is a square matrix having all diagonal entries equal, and all

off-diagonal entries as 0. That is, a scalar matrix is of the form 𝛼𝐼, for some scalar
𝛼. The following is a scalar matrix:

diag(3, 3, 3, 3) =


3

3
3

3
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If 𝐴, 𝐵 ∈ F𝑚×𝑚 and 𝐴 is a scalar matrix, then 𝐴𝐵 = 𝐵𝐴. Conversely, if 𝐴 ∈ F𝑚×𝑚
is such that 𝐴𝐵 = 𝐵𝐴 for all 𝐵 ∈ F𝑚×𝑚, then 𝐴 must be a scalar matrix. This fact is
not obvious, and you should try to prove it.

A matrix 𝐴 ∈ F𝑚×𝑛 is said to be upper triangular iff all entries below the
diagonal are zero. That is, 𝐴 = [𝑎𝑖 𝑗 ] is upper triangular when 𝑎𝑖 𝑗 = 0 for 𝑖 > 𝑗 .

Similarly, a matrix is called lower triangular iff all its entries above the diagonal
are zero. Both upper triangular and lower triangular matrices are referred to as
triangular matrices. In the following, 𝐿 is a lower triangular matrix, and 𝑈 is an
upper triangular matrix, both of order 3.

𝐿 =


1
2 3
3 4 5

 , 𝑈 =


1 2 3

3 4
5

 .
A diagonal matrix is both upper triangular and lower triangular. Transpose of a
lower triangular matrix is an upper triangular matrix and vice versa.

A square matrix𝐴 is called hermitian iff𝐴∗ = 𝐴. And𝐴 is called skew hermitian
iff 𝐴∗ = −𝐴. A hermitian matrix with real entries satisfies 𝐴𝑇 = 𝐴; and accordingly,
such a matrix is called a real symmetric matrix. In general,𝐴 is called a symmetric
matrix iff 𝐴𝑇 = 𝐴. We also say that 𝐴 is skew symmetric iff 𝐴𝑇 = −𝐴. In the
following, 𝐵 is symmetric, 𝐶 is skew-symmetric, 𝐷 is hermitian, and 𝐸 is skew-
hermitian. 𝐵 is also hermitian and 𝐶 is also skew-hermitian.

𝐵 =


1 2 3
2 3 4
3 4 5

 , 𝐶 =


0 2 −3
−2 0 4

3 −4 0

 , 𝐷 =


1 −2𝑖 3
2𝑖 3 4
3 4 5

 , 𝐸 =


0 2 + 𝑖 3
−2 + 𝑖 𝑖 4𝑖
−3 4𝑖 0

 .
Notice that a skew-symmetric matrix must have a zero diagonal, and the diagonal
entries of a skew-hermitian matrix must be 0 or purely imaginary. Reason:

𝑎𝑖𝑖 = −𝑎𝑖𝑖 ⇒ 2Re(𝑎𝑖𝑖) = 0.

Let𝐴 be a square matrix. Since𝐴+𝐴𝑇 is symmetric and𝐴−𝐴𝑇 is skew symmetric,
every square matrix can be written as a sum of a symmetric matrix and a skew
symmetric matrix:

𝐴 =
1
2
(𝐴 +𝐴𝑇 ) + 1

2
(𝐴 −𝐴𝑇 ).

Similar rewriting is possible with hermitian and skew hermitian matrices:

𝐴 =
1
2
(𝐴 +𝐴∗) + 1

2
(𝐴 −𝐴∗).
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A square matrix 𝐴 is called unitary iff 𝐴∗𝐴 = 𝐼 = 𝐴𝐴∗. In addition, if 𝐴 is real,
then it is called an orthogonal matrix. That is, an orthogonal matrix is a matrix
with real entries satisfying 𝐴𝑇𝐴 = 𝐼 = 𝐴𝐴𝑇 . Notice that a square matrix is unitary
iff it is invertible and its inverse is equal to its adjoint. Similarly, a real matrix is
orthogonal iff it is invertible and its inverse is its transpose. In the following, 𝐵 is a
unitary matrix of order 2, and 𝐶 is an orthogonal matrix (also unitary) of order 3:

𝐵 =
1
2

[
1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖

]
, 𝐶 =

1
3


2 1 2
−2 2 1

1 2 −2

 .
The following are examples of orthogonal 2 × 2 matrices, for any fixed 𝜃 ∈ F:

𝑂1 :=
[
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

]
, 𝑂2 :=

[
cos𝜃 sin𝜃
sin𝜃 − cos𝜃

]
.

𝑂1 is said to be a rotation by an angle 𝜃 and 𝑂2 is called a reflection by an angle
𝜃/2 along the 𝑥-axis. Can you say why are they so called?

A square matrix 𝐴 is called normal iff 𝐴∗𝐴 = 𝐴𝐴∗. All hermitian matrices and
all real symmetric matrices are normal matrices. For example,[

1 + 𝑖 1 + 𝑖
−1 − 𝑖 1 + 𝑖

]
is a normal matrix; verify this. Also see that this matrix is neither hermitian nor
skew-hermitian. In fact, a matrix is normal iff it is in the form 𝐵 + 𝑖𝐶, where 𝐵,𝐶

are hermitian and 𝐵𝐶 = 𝐶𝐵. Can you prove this fact?

3.4 Linear independence
We look at row and column vectors and study some of their properties.

If 𝑣 =
[
𝑎1 · · · 𝑎𝑛

]𝑇 ∈ F𝑛×1, then we can express 𝑣 in terms of the standard basis
vectors 𝑒1, . . . , 𝑒𝑛 as 𝑣 = 𝑎1𝑒1 + · · · + 𝑎𝑛𝑒𝑛 . We now generalize the notions involved.

Let 𝑣1, . . . , 𝑣𝑚, 𝑣 ∈ F𝑛 . We say that 𝑣 is a linear combination of the vectors
𝑣1, . . . , 𝑣𝑚 if there exist scalars 𝛼1, . . . , 𝛼𝑚 ∈ F such that

𝑣 = 𝛼1𝑣1 + · · ·𝛼𝑚𝑣𝑚 .

For example, in F2×1, one linear combination of 𝑣1 =
[
1 1

]𝑇 and 𝑣2 =
[
1 − 1

]𝑇 is
as follows:

2
[
1
1

]
+ 1

[
1
−1

]
=

[
3
1

]
.
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Is
[
4 2

]𝑇 a linear combination of 𝑣1 and 𝑣2? Yes, since[
4
−1

]
= 1

[
1
1

]
+ 3

[
1
−1

]
.

In fact, every vector in F2×1 is a linear combination of 𝑣1 and 𝑣2. Reason:[
𝑎

𝑏

]
=
𝑎 + 𝑏

2

[
1
1

]
+ 𝑎 − 𝑏

2

[
1
−1

]
.

However, every vector in F2×1 is not a linear combination of
[
1 1

]𝑇 and
[
2 2

]𝑇
.

Reason? Any linear combination of these two vectors is a multiple of
[
1 1

]𝑇
. Then[

1 0
]𝑇 is not a linear combination of these two vectors.

Remark 3.3 As we have seen in (3.1), the columns of𝐴𝐵 are linear combinations
of columns of 𝐴. The scalars in these linear combinations are the entries of
corresponding columns of 𝐵.

The vectors 𝑣1, . . . , 𝑣𝑚 in F𝑛 are called linearly dependent iff at least one of them
is a linear combination of others. The vectors are called linearly independent iff
none of them is a linear combination of others.

For example, (1, 1), (1,−1), (4, 1) are linearly dependent vectors whereas (1, 1),
(1,−1) are linearly independent vectors.

Linear independence of a list of vectors can be characterized the following way:

(3.4) Theorem
The vectors 𝑣1, . . . , 𝑣𝑚 ∈ F𝑛 are linearly independent iff for 𝛼1, . . . , 𝛼𝑚 ∈ F,

if 𝛼1𝑣1 + · · ·𝛼𝑚𝑣𝑚 = 0 then 𝛼1 = · · · = 𝛼𝑚 = 0.

Notice that if 𝛼1 = · · · = 𝛼𝑚 = 0, then obviously, 𝛼1𝑣1 + · · · + 𝛼𝑚𝑣𝑚 = 0. But the
above characterization demands its converse. It says that if you start with a linear
combination and equate it to 0, then you must be able to derive that each coefficient
in that linear combination is 0. That is, the only way the 0 vector can be written as a
linear combination of the list of vectors 𝑣1, . . . , 𝑣𝑚 is the trivial linear combination,
where each coefficient is 0. The condition given in the theorem is false when we
have scalars not all zero such that the linear combination becomes 0. In fact, we
prove this statement:

𝑣1, . . . , 𝑣𝑚 are linearly dependent
iff 𝛼1𝑣1 + · · · + 𝛼𝑚𝑣𝑚 = 0 for scalars 𝛼1, . . . , 𝛼𝑚 not all zero.
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Proof. If the vectors 𝑣1, . . . , 𝑣𝑚 are linearly dependent then one of them is a linear
combination of others. That is, we have an 𝑖 ∈ {1, . . . ,𝑚} such that

𝑣𝑖 = 𝛼1𝑣1 + · · · + 𝛼𝑖−1𝑣𝑖−1 + 𝛼𝑖+1𝑣𝑖+1 + · · · + 𝛼𝑚𝑣𝑚 .

Then
𝛼1𝑣1 + · · · + 𝛼𝑖−1𝑣𝑖−1 + (−1)𝑣𝑖 + 𝛼𝑖+1𝑣𝑖+1 + · · · + 𝛼𝑚𝑣𝑚 = 0.

Here, we see that a linear combination becomes zero, where at least one of the
coefficients, that is, the 𝑖th one is nonzero.

Conversely, suppose we have scalars 𝛼1, . . . , 𝛼𝑚 not all zero such that

𝛼1𝑣1 + · · · + 𝛼𝑚𝑣𝑚 = 0.

Suppose 𝛼 𝑗 ≠ 0. Then

𝑣 𝑗 = −
𝛼1
𝛼 𝑗

𝑣1 − · · · −
𝛼 𝑗−1

𝛼 𝑗

𝑣 𝑗−1 −
𝛼 𝑗+1
𝛼 𝑗

𝑣 𝑗+1 − · · · −
𝛼𝑚

𝛼 𝑗

𝑣𝑚 .

That is, 𝑣1, . . . , 𝑣𝑛 are linearly dependent.

(3.5) Example
Are the vectors (1, 1, 1), (2, 1, 1), (3, 1, 0) linearly independent?

We start with an arbitrary linear combination and equate it to the zero vector.
Solve the resulting linear equations to determine whether all the coefficients are
necessarily 0 or not. So, let

𝑎(1, 1, 1) + 𝑏 (2, 1, 1) + 𝑐 (3, 1, 0) = (0, 0, 0).

Comparing the components, we have

𝑎 + 2𝑏 + 3𝑐 = 0, 𝑎 + 𝑏 + 𝑐 = 0, 𝑎 + 𝑏 = 0.

The last two equations imply that 𝑐 = 0. Substituting in the first, we see that
𝑎 + 2𝑏 = 0. This and the equation 𝑎 + 𝑏 = 0 give 𝑏 = 0. Then it follows that 𝑎 = 0.

We conclude that the given vectors are linearly independent.
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Caution: Be careful with the direction of implication here. Your work-out must be
in the form

𝑚∑︁
𝑖=1

𝛼𝑖𝑣𝑖 = 0⇒ · · · ⇒ each 𝛼𝑖 = 0.

To see how linear independence is helpful, consider the following system of linear
equations:

𝑥1 +2𝑥2 −3𝑥3 = 2
2𝑥1 −𝑥2 +2𝑥3 = 3
4𝑥1 +3𝑥2 −4𝑥3 = 7

Here, we find that the third equation is redundant, since 2 times the first plus the
second gives the third. That is, the third one linearly depends on the first two. (You
can of course choose any other equation here as linearly depending on other two,
but that is not important.) Now, take the row vectors of coefficients of the unknowns
and the right hand side, as in the following:

𝑣1 = (1, 2, −3, 2), 𝑣2 = (2, −1, 2, 3), 𝑣3 = (4, 3, −4, 7).

We see that 𝑣3 = 2𝑣1 + 𝑣2, as it should be. Here, the list of vectors 𝑣1, 𝑣2, 𝑣3 is
linearly dependent. But the list 𝑣1, 𝑣2 is linearly independent. Thus, solving the
given system of linear equations is the same thing as solving the system with only
first two equations. For solving linear systems, it is of primary importance to find
out which equations linearly depend on others. Once determined, such equations
can be thrown away, and the rest can be solved.

A question: can you find four linearly independent vectors in R1×3?

3.5 Determinant
There are two important quantities associated with a square matrix. One is the trace
and the other is the determinant.

The sum of all diagonal entries of a square matrix is called the trace of the matrix.
That is, if 𝐴 = [𝑎𝑖 𝑗 ] ∈ F𝑚×𝑚, then

tr(𝐴) = 𝑎11 + · · · + 𝑎𝑚𝑚 =

𝑚∑︁
𝑘=1

𝑎𝑘𝑘 .

In addition to tr(𝐼𝑚) =𝑚, tr(0) = 0, the trace satisfies the following properties:

Let 𝐴, 𝐵 ∈ F𝑚×𝑚 . Let 𝛽 ∈ F.
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1. tr(𝛽𝐴) = 𝛽 tr(𝐴).
2. tr(𝐴𝑇 ) = tr(𝐴) and tr(𝐴∗) = tr(𝐴).
3. tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵) and tr(𝐴𝐵) = tr(𝐵𝐴) .
4. tr(𝐴∗𝐴) = 0 iff tr(𝐴𝐴∗) = 0 iff 𝐴 = 0.

The last one follows from the observation that tr(𝐴∗𝐴) = ∑𝑚
𝑖=1

∑𝑚
𝑗=1 |𝑎𝑖 𝑗 |2 = tr(𝐴𝐴∗).

The second quantity, called the determinant of a square matrix𝐴 = [𝑎𝑖 𝑗 ] ∈ F𝑛×𝑛,
written as det(𝐴), is defined inductively as follows:

If 𝑛 = 1, then det(𝐴) = 𝑎11.

If 𝑛 > 1, then det(𝐴) = ∑𝑛
𝑗=1(−1)1+ 𝑗 𝑎1 𝑗 det(𝐴1 𝑗 )

where the matrix𝐴1 𝑗 ∈ F(𝑛−1)×(𝑛−1) is obtained from𝐴 by deleting the first row and
the 𝑗 th column of 𝐴.

When𝐴 = [𝑎𝑖 𝑗 ] is written showing all its entries, we also write det(𝐴) by replacing
the two big closing brackets [ and ] by two vertical bars | and |. For a 2 × 2 matrix,
its determinant is seen as follows:

det
[
𝑎11 𝑎12
𝑎21 𝑎22

]
=

����𝑎11 𝑎12
𝑎21 𝑎22

���� = (−1)1+1𝑎11det[𝑎22]+(−1)1+2𝑎12det[𝑎21] = 𝑎11𝑎22−𝑎12𝑎21.

Similarly, for a 3 × 3 matrix, we need to compute three 2 × 2 determinants. For
example,

det

1 2 3
2 3 1
3 1 2

 =
������
1 2 3
2 3 1
3 1 2

������
= (−1)1+1 × 1 ×

����3 1
1 2

���� + (−1)1+2 × 2 ×
����2 1
3 2

���� + (−1)1+3 × 3 ×
����2 3
3 1

����
= 1 ×

����3 1
1 2

���� − 2 ×
����2 1
3 2

���� + 3 ×
����2 3
3 1

����
= (3 × 2 − 1 × 1) − 2 × (2 × 2 − 1 × 3) + 3 × (2 × 1 − 3 × 3)
= 5 − 2 × 1 + 3 × (−7) = −18.

To see the determinant geometrically, consider a 2 × 2 matrix 𝐴 = [𝑎𝑖 𝑗 ] with real
entries. Let 𝑢 be the vector with initial point at (0, 0) and end-point at (𝑎11, 𝑎12).
Similarly, let 𝑣 be the vector starting from the origin and ending at the point
(𝑎21, 𝑎22) . Their sum 𝑢 + 𝑣 is the vector whose initial point is the origin and end-
point is (𝑎11 + 𝑎21, 𝑎21 + 𝑎22). Denote by Δ, the area of the parallelogram with one
vertex at the origin, and other vertices at the end-points of vectors 𝑢, 𝑣 and 𝑢 + 𝑣 .
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Writing the acute angle between the vectors 𝑢 and 𝑣 as 𝜃, we have

Δ2 = |𝑢 |2 |𝑣 |2 sin2 𝜃 = |𝑢 |2 |𝑣 |2(1 − cos2 𝜃 ) = |𝑢 |2 |𝑣 |2
(
1 − (𝑢 · 𝑣)

2

|𝑢 |2 |𝑣 |2

)
= |𝑢 |2 |𝑣 |2 − (𝑢 · 𝑣)2 = (𝑎2

11 + 𝑎
2
12) (𝑎

2
21 + 𝑎

2
22) − (𝑎11𝑎21 + 𝑎12𝑎22)2

= (𝑎11𝑎22 − 𝑎12𝑎21)2 = (det(𝐴))2.

That is, the absolute value of det(𝐴) is the area of the parallelogram whose sides
are represented by the row vectors of 𝐴. In R1×3, similarly, you can show that
the absolute value of det(𝐴) is the volume of the parallelepiped whose sides are
represented by the row vectors of 𝐴.

For a lower triangular matrix, its determinant is the product of its diagonal entries.��������������

𝑎11
𝑎12 𝑎22
𝑎13 𝑎23 𝑎33

. . .

𝑎𝑛1 · · · 𝑎𝑛𝑛

��������������
= 𝑎11

�����������
𝑎22
𝑎23 𝑎33

. . .

𝑎𝑛1 · · · 𝑎𝑛𝑛

�����������
= · · · = 𝑎11𝑎22 · · ·𝑎𝑛𝑛 .

The determinant of any triangular matrix (upper or lower), is the product of its
diagonal entries. In particular, the determinant of a diagonal matrix is also the
product of its diagonal entries. Thus, if 𝐼 is the identity matrix of order 𝑛, then
det(𝐼 ) = 1 and det(−𝐼 ) = (−1)𝑛 .

Our definition of determinant expands the determinant in the first row. In fact,
the same result may be obtained by expanding it in any other row, or even any other
column. Along with this, some more properties of the determinant is listed in the
following theorem. We introduce some terminology to state the theorem.

Let 𝐴 ∈ F𝑛×𝑛 .
Write the sub-matrix obtained from 𝐴 by deleting the 𝑖th row and the 𝑗 th column
as 𝐴𝑖 𝑗 . The (𝑖, 𝑗)th co-factor of 𝐴 is (−1)𝑖+ 𝑗det(𝐴𝑖 𝑗 ); it is denoted by 𝐶𝑖 𝑗 (𝐴).
Sometimes, when the matrix 𝐴 is fixed in a context, we write 𝐶𝑖 𝑗 (𝐴) as 𝐶𝑖 𝑗 .

The adjugate of 𝐴 is the 𝑛 × 𝑛 matrix obtained by taking transpose of the matrix
whose (𝑖, 𝑗)th entry is 𝐶𝑖 𝑗 (𝐴); it is denoted by adj(𝐴). That is, adj(𝐴) ∈ F𝑛×𝑛 is the
matrix whose (𝑖, 𝑗)th entry is the ( 𝑗, 𝑖)th co-factor 𝐶 𝑗𝑖 (𝐴).
Denote by 𝐴 𝑗 (𝑥) the matrix obtained from 𝐴 by replacing the 𝑗 th column of 𝐴 by
the (new) column vector 𝑥 ∈ F𝑛×1.

Some important facts about the determinant are listed below without proof.

(3.6) Theorem
Let 𝐴 ∈ F𝑛×𝑛 . Let 𝑖, 𝑗, 𝑘 ∈ {1, . . . , 𝑛}. Then the following statements are true.
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(1) det(𝐴) = ∑
𝑖 𝑎𝑖 𝑗𝐶𝑖 𝑗 (𝐴) =

∑
𝑖 𝑎𝑖 𝑗 (−1)𝑖+ 𝑗 det(𝐴𝑖 𝑗 ) for any fixed 𝑗 .

(2) For any 𝑗 ∈ {1, . . . , 𝑛}, det(𝐴 𝑗 (𝑥 + 𝑦) ) = det(𝐴 𝑗 (𝑥) ) + det(𝐴 𝑗 (𝑦) ).
(3) For any 𝛼 ∈ F, det(𝐴 𝑗 (𝛼𝑥) ) = 𝛼 det(𝐴 𝑗 (𝑥) ).
(4) For 𝐴 ∈ F𝑛×𝑛, let 𝐵 ∈ F𝑛×𝑛 be the matrix obtained from 𝐴 by interchanging

the 𝑗 th and the 𝑘th columns, where 𝑗 ≠ 𝑘. Then det(𝐵) = −det(𝐴).
(5) If a column of 𝐴 is replaced by that column plus a scalar multiple of another

column, then determinant does not change.
(6) Columns of 𝐴 are linearly dependent iff det(𝐴) = 0.
(7) det(𝐴) = ∑

𝑗 𝑎𝑖 𝑗 (−1)𝑖+ 𝑗𝐴𝑖 𝑗 for any fixed 𝑖 .

(8) All of (2)-(6) are true for rows instead of columns.
(9) If𝐴 is a triangular matrix, then det(𝐴) is equal to the product of the diagonal

entries of 𝐴.
(10) det(𝐴𝐵) = det(𝐴) det(𝐵) for any matrix 𝐵 ∈ F𝑛×𝑛 .
(11) If 𝐴 is invertible, then det(𝐴) ≠ 0 and det(𝐴−1) = (det(𝐴))−1.

(12) If 𝐵 = 𝑃−1𝐴𝑃 for some invertible matrix 𝑃, then det(𝐴) = det(𝐵).
(13) 𝐴 is invertible iff columns of 𝐴 are linearly independent iff rows of 𝐴 are

linearly independent iff det(𝐴) ≠ 0.
(14) det(𝐴𝑇 ) = det(𝐴).
(15) 𝐴 adj(𝐴) = adj(𝐴)𝐴 = det(𝐴) 𝐼 .

Proof. (1) Construct a matrix 𝐶 ∈ F(𝑛+1)×(𝑛+1) by taking its first row and first
column as 𝑒1 ∈ F(𝑛+1)×1 and filling up the rest with the entries of 𝐴. In block form,
it looks like:

𝐶 =

[
1

𝐴

]
.

Omitted entries are all 0. Then det(𝐶) = det(𝐴). Now, exchange the first row and
the (𝑖 + 1)th rows in 𝐶. Call the matrix so obtained as 𝐷. Then

det(𝐶) = −det(𝐷) = −
∑︁
𝑖

𝑎𝑖 𝑗 (−1)𝑖+1+ 𝑗det(𝐷𝑖 𝑗 ),

where 𝐷𝑖 𝑗 ∈ F𝑛×𝑛 are the minors in 𝐷. The 𝑖th row of 𝐷𝑖 𝑗 is 𝑒𝑖 ∈ F1×𝑛 . To compute
det(𝐷𝑖 𝑗 ), exchange the first and the 𝑖th rows in 𝐷𝑖 𝑗 . Then det(𝐷𝑖 𝑗 ) = −det(𝐴𝑖 𝑗 ),
where 𝐴𝑖 𝑗 are the minors in 𝐴. Therefore,

det(𝐴) = det(𝐶) = −
∑︁
𝑖

𝑎𝑖 𝑗 (−1)𝑖+1+ 𝑗det(𝐷𝑖 𝑗 ) =
∑︁
𝑖

𝑎𝑖 𝑗 (−1)𝑖+ 𝑗det(𝐴𝑖 𝑗 ).
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(2)-(4) These properties can be seen by direct calculations.

(5)-(7) These properties follow from (2)-(4).

(8) Similar to the proofs of (2)-(6).

(9)-(10) Use induction on the order of the matrix.

(11) Let 𝐴 be invertible. Now, 1 = det(𝐼 ) = det(𝐴𝐴−1) = det(𝐴)det(𝐴−1) shows
that det(𝐴) ≠ 0 and det(𝐴−1) = (det(𝐴))−1.

(12) It follows from (10)-(11).

(13) If the columns of 𝐴 are linearly independent, then 𝐴 is invertible. By (11),
det(𝐴) ≠ 0. So, suppose the columns of 𝐴 are linearly dependent. Say, the 𝑘th
column of 𝐴 is a linear combination of the columns 1 through 𝑘 − 1. Let 𝐵 be the
matrix identical to𝐴 except at the 𝑘th column; the 𝑘th column of 𝐵 is the 𝑘th column
of 𝐴 minus that linear combination of the columns 1 through 𝑘 − 1 of 𝐴. Due to (5),
det(𝐴) = det(𝐵) = 0, as the 𝑘th column of 𝐵 has all entries 0.

(14) Consider the case 𝑗 = 1. This property asserts that a determinant can be
expanded in its first column. For 𝑛 = 1, 2 it is easy to verify that expansion of
a determinant can be made in the first column. Suppose that determinants of all
matrices of order less than or equal to𝑚 − 1 can be expanded in their first columns.
Let 𝐴 ∈ F𝑚×𝑚 . Now, expanding in the first row,

det(𝐴) =
∑︁
𝑖

𝑎1 𝑗 (−1)1+ 𝑗det(𝐴1 𝑗 ).

The minors det(𝐴𝑖 𝑗 ) can be expanded in their first column. That is,

det(𝐴1 𝑗 ) =
𝑚∑︁
𝑖=2
(−1)𝑖−1+1𝑎𝑖1𝐵𝑖 𝑗 ,

where 𝐵𝑖 𝑗 denotes the determinant of the (𝑛 − 2) × (𝑛 − 2) matrix obtained from
𝐴 by deleting the first and the 𝑖th rows, and deleting the first and the 𝑗 th columns.
Thus the only term in det(𝐴) involving 𝑎1 𝑗𝑎𝑖1 is (−1)𝑖+ 𝑗+1𝑎1 𝑗𝑎𝑖1𝐵𝑖 𝑗 .

By the inductive assumption, det(𝐴1 𝑗 ) =
∑𝑛

𝑗=2(−1)𝑖+ 𝑗+1𝑎1 𝑗𝐵𝑖 𝑗 . Therefore, the only
term in det(𝐴) = ∑

𝑖 𝑎1 𝑗 (−1)1+ 𝑗det(𝐴1 𝑗 ) involving 𝑎1 𝑗𝑎𝑖1 is (−1)𝑖+ 𝑗+1𝑎1 𝑗𝑎𝑖1𝐵𝑖 𝑗 .

For 𝑗 ≠ 1, a proof similar to the proof of (1) above can be constructed.

(15) Consider 𝐴 adj(𝐴). Due to (1), the 𝑗 th diagonal entry in this product is

𝑛∑︁
𝑖=1

𝑎𝑖 𝑗𝐶𝑖 𝑗 (𝐴) = det(𝐴).
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For the non-diagonal entries, let 𝑖 ≠ 𝑗 . Construct a matrix 𝐵 which is identical to 𝐴

except at the 𝑗 th row. The 𝑗 th row of 𝐵 is the same as the 𝑖th row of 𝐴. Now, look at
the co-factors 𝐶𝑘 𝑗 (𝐵). Such a co-factor is obtained by deleting the 𝑘th row and the
𝑗 th column of 𝐵 and then taking the determinant of the resulting (𝑛 − 1) × (𝑛 − 1)
matrix. This is same as 𝐶𝑘 𝑗 (𝐴). Hence, the (𝑖, 𝑘)th entry in 𝐴 adj(𝐴) is

𝑛∑︁
𝑘=1

𝑎𝑖𝑘𝐶𝑖𝑘 (𝐴) =
𝑛∑︁

𝑘=1
𝑎𝑖𝑘𝐶𝑖𝑘 (𝐵) = det(𝐵) = 0,

since the 𝑖th and the 𝑘th rows are equal in 𝐵. Therefore, 𝐴 adj(𝐴) = det(𝐴) 𝐼 .
The product formula adj(𝐴)𝐴 = det(𝐴) 𝐼 is proved similarly.

From (6) it follows that if some column of 𝐴 is the zero vector, then det(𝐴) = 0.
Also, if some column of 𝐴 is a scalar multiple of another column, then det(𝐴) = 0.
Similar conditions on rows (instead of columns) imply that det(𝐴) = 0.

Using the above properties, the computational complexity for evaluating a deter-
minant can be reduced drastically. The trick is to bring a matrix to a triangular form
using the row operations mentioned in (3.6-3,4,5). Next, compute the product of
the diagonal entries in the upper triangular form to get the determinant.

(3.7) Example���������
1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

���������
𝑅1
=

���������
1 0 0 1
0 1 0 2
0 −1 1 2
0 −1 −1 2

���������
𝑅2
=

���������
1 0 0 1
0 1 0 2
0 0 1 4
0 0 −1 4

���������
𝑅3
=

���������
1 0 0 1
0 1 0 2
0 0 1 4
0 0 0 8

��������� = 8.

Here, 𝑅1 replaces the second row with second plus the first row, then replaces the
third row with the third plus the first row, and the fourth row with the fourth plus the
first row. 𝑅2 replaces the third and the fourth rows with the third plus the second,
and the fourth plus the second, respectively. Finally, 𝑅3 replaces the fourth row
with the fourth plus the third row.

Finally, the upper triangular matrix has the required determinant.

(3.8) Theorem
Let 𝐴 ∈ C𝑛×𝑛 .

(1) If 𝐴 is hermitian, then det(𝐴) ∈ R.
(2) If 𝐴 is unitary, then |det(𝐴) | = 1.

(3) If 𝐴 is orthogonal, then det(𝐴) = ±1.
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Proof. (1) Let 𝐴 be hermitian. Then 𝐴 = 𝐴∗. It implies

det(𝐴) = det(𝐴∗) = det(𝐴) = det(𝐴).

Hence, det(𝐴) ∈ R.

(2) Let 𝐴 be unitary. Then 𝐴∗𝐴 = 𝐴𝐴∗ = 𝐼 . Now,

1 = det(𝐼 ) = det(𝐴∗𝐴) = det(𝐴)det(𝐴) = det(𝐴)det(𝐴) = |det(𝐴) |2.

Hence |det(𝐴) | = 1.

(3) Let 𝐴 be an orthogonal matrix. That is, 𝐴 ∈ R𝑛×𝑛 and 𝐴 is unitary. Then
det(𝐴) ∈ R and by (2), |det(𝐴) | = 1. That is, det(𝐴) = ±1.

3.6 Exercises for Chapter 3
1. Show that given any𝑛 ∈ N there exist matrices𝐴, 𝐵 ∈ R𝑛×𝑛 such that𝐴𝐵 ≠ 𝐵𝐴.

2. Let 𝐴 =


1 1 0
0 1 2
0 0 1

 . Compute 𝐴𝑛 . Ans:

1 𝑛 + 1 𝑛(𝑛 + 1)
0 1 2(𝑛 + 1)
0 0 1

 .
3. Let 𝐴 ∈ F𝑚×𝑛; 𝐵 ∈ F𝑛×𝑘 ; 𝐴1, . . . , 𝐴𝑚 be the rows of 𝐴; 𝐵1, . . . , 𝐵𝑘 be the

columns of 𝐵. Show that
(a) 𝐴1𝐵, . . . , 𝐴𝑚𝐵 are the rows of 𝐴𝐵.
(b) 𝐴𝐵1, . . . , 𝐴𝐵𝑘 are the columns of 𝐴𝐵.

4. Let 𝐴 ∈ F𝑛×𝑛; 𝐼 be the identity matrix of order 𝑛. Find the inverse of the

2𝑛 × 2𝑛 matrix
[
𝐼 𝐴

0 𝐼

]
. Ans:

[
𝐼 −𝐴
0 𝐼

]
.

5. If 𝐴 is a hermitian (symmetric) invertible matrix, then show that 𝐴−1 is
hermitian (symmetric).

6. If 𝐴 is a lower (upper) triangular invertible matrix, then 𝐴−1 is lower (upper)
triangular.

7. Show that each orthogonal 2 × 2 matrix is either a reflection or a rotation.
8. Let 𝑢, 𝑣,𝑤 ∈ F𝑛×1. Show that {𝑢 + 𝑣, 𝑣 +𝑤,𝑤 + 𝑢} is linearly independent iff
{𝑢, 𝑣,𝑤} is linearly independent.

9. Find linearly independent vectors from 𝑈 = {(𝑎, 𝑏, 𝑐) : 2𝑎 + 3𝑏 − 4𝑐 = 0} so
that the set of all linear combinations of which is exactly𝑈 .

Ans: (2, 0, 1), (0, 4, 3).
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10. Determine linearly independent vectors so that the set of linear combinations
of which is 𝑈 = {(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ∈ R5 : 𝑎 = 𝑐 = 𝑒, 𝑏 + 𝑑 = 0}.
Ans: (1, 0, 1, 0, 1), (0, 1, 0,−1, 0).

11. Calculate the determinants of the following matrices:

(a)

2 3 4
0 1 2
2 0 1

 (b)


1 −1 2 −2
2 −2 1 −1
−2 1 −1 2
−1 2 −2 1


(c)


2 3 1 2
0 2 1 3
0 2 1 −2
−2 1 −1 1


.

Ans: (a) 6 (b) 0 (c) 40.
12. Let 𝑎1, . . . , 𝑎𝑛 ∈ R. Let 𝐴 ∈ R𝑛×𝑛 have the (𝑖, 𝑗)th entry as 𝑎𝑖−1

𝑗 . Show that
det(𝐴) = Π𝑖< 𝑗 (𝑎𝑖 − 𝑎 𝑗 ). [𝐴 is called a Vandermonde’s matrix.]



4
Row Reduced Echelon Form

4.1 Elementary row operations
While solving a system of linear equations, we add and subtract equations, multiply
an equation with a nonzero constant, and exchange two equations. These heuristics
give rise to the row operations on a matrix.

There are three kinds of Elementary Row Operations for a matrix 𝐴 ∈ F𝑚×𝑛:

Exchange of two rows.

Multiplication of a row by a nonzero constant.

Adding to a row a nonzero multiple of another row.

(4.1) Example
See the following computation on the first matrix. We get the second matrix from
the first by adding to the third row (−3) times the first row. In symbols, we write
this operation as 𝑅3 ← 𝑅3 − 3𝑅1. Similarly, the third matrix is obtained from the
second by adding to the second row (−2) the first row. We write this operation as
𝑅2 ← 𝑅2 − 2𝑅1. 

1 1 1
2 2 2
3 3 3


𝑅3←𝑅3−3𝑅1−→


1 1 1
2 2 2
0 0 0


𝑅2←𝑅2−2𝑅1−→


1 1 1
0 0 0
0 0 0

 .
We will write 𝐴

𝑂−→ 𝐵 to mean that the matrix 𝐵 is obtained from𝐴 by using the
row operation𝑂 . Specifically, we will use the following notation for the elementary
row operations (We assume that 𝛼 is a nonzero scalar.):

𝑅𝑖 ↔ 𝑅 𝑗 : The 𝑖th row and the 𝑗 th row are exchanged.

𝑅𝑖 ← 𝛼𝑅𝑖 : The 𝑖th row is multiplied by a scalar 𝛼 .

𝑅𝑖 ← 𝑅𝑖 + 𝛼𝑅 𝑗 : To the 𝑖th row 𝛼 times the 𝑗 th row is added.

94
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The elementary row operations can be captured by matrix multiplication. For
this purpose, we define the three types of elementary matrices 𝐸 [𝑖, 𝑗], 𝐸𝛼 [𝑖] and
𝐸𝛼 [𝑖, 𝑗] as in the following:

𝐸 [𝑖, 𝑗] is obtained from 𝐼 by exchanging the 𝑖th and 𝑗 th rows.
𝐸𝛼 [𝑖] is obtained from 𝐼 by multiplying 𝛼 to the 𝑖th row.
𝐸𝛼 [𝑖, 𝑗] is obtained from 𝐼 by adding to its 𝑖th row 𝛼 times the 𝑗 th row.

The context will specify the order of these elementary matrices.
The following are some elementary matrices of order 3:

𝐸 [1, 2] =

0 1 0
1 0 0
0 0 1

 , 𝐸−3 [2] =

1 0 0
0 −3 0
0 0 1

 , 𝐸−3 [3, 1] =


1 0 0
0 1 0
−3 0 1

 .
To use these elementary matrices, consider a 3 × 3 matrix, say, 𝐴 =


1 1 1
2 2 2
3 3 3

 . Now,

𝐸 [1, 2]𝐴 =


0 1 0
1 0 0
0 0 1



1 1 1
2 2 2
3 3 3

 =

2 2 2
1 1 1
3 3 3

 , 𝐴
𝑅1↔𝑅2−→


2 2 2
1 1 1
3 3 3

 .
𝐸−3 [2]𝐴 =


1 0 0
0 −3 0
0 0 1



1 1 1
2 2 2
3 3 3

 =


1 1 1
−6 −6 −6

3 3 3

 , 𝐴
𝑅2←−3𝑅2−→


1 1 1
−6 −6 −6

3 3 3

 .
𝐸−3 [3, 1]𝐴 =


1 0 0
0 1 0
−3 0 1



1 1 1
2 2 2
3 3 3

 =

1 1 1
2 2 2
0 0 0

 , 𝐴
𝑅3←𝑅3−3𝑅1−→


1 1 1
2 2 2
0 0 0

 .
We find that the way 𝐸 [1, 2], 𝐸−3 [2] and 𝐸−3 [3, 1] have been obtained from 𝐼 , in
the same way 𝐸 [1, 2]𝐴, 𝐸−3 [2]𝐴 and 𝐸−3 [3, 1]𝐴 have been obtained from 𝐴. This
is true in general.

Let 𝐴 ∈ F𝑚×𝑛 . Consider 𝐸 [𝑖, 𝑗], 𝐸𝛼 [𝑖], 𝐸𝛼 [𝑖, 𝑗] ∈ F𝑚×𝑚 for 𝛼 ≠ 0. The following
may be verified:

1. 𝐴
𝑅𝑖↔𝑅 𝑗−→ 𝐸 [𝑖, 𝑗]𝐴.

That is, 𝐸 [𝑖, 𝑗]𝐴 is the matrix obtained from 𝐴 by exchanging the 𝑖th and the
𝑗 th rows.

2. 𝐴
𝑅𝑖←𝛼𝑅𝑖−→ 𝐸𝛼 [𝑖]𝐴.

That is, 𝐸𝛼 [𝑖]𝐴 is the matrix obtained from 𝐴 by multiplying 𝛼 to the 𝑖th row.



96 MA1102 Classnotes

3. 𝐴
𝑅𝑖←𝑅𝑖+𝛼𝑅 𝑗−→ 𝐸𝛼 [𝑖, 𝑗]𝐴.

That is, 𝐸𝛼 [𝑖, 𝑗]𝐴 is the matrix obtained from 𝐴 by adding to the 𝑖th 𝛼 times
the 𝑗 th row.

For example, the computation

1 1 1
2 2 2
3 3 3


𝑅3←𝑅3−3𝑅1−→


1 1 1
2 2 2
0 0 0


𝑅2←𝑅2−2𝑅1−→


1 1 1
0 0 0
0 0 0


shows that


1 1 1
2 2 2
0 0 0

 = 𝐸−3 [3, 1]

1 1 1
2 2 2
3 3 3

 , and

1 1 1
0 0 0
0 0 0

 = 𝐸−2 [2, 1]

1 1 1
2 2 2
0 0 0

 .
Often we will apply elementary operations in a sequence. In this way, the above
operations could be shown as

1 1 1
2 2 2
3 3 3

 𝑂−→

1 1 1
0 0 0
0 0 0

 , where 𝑂 = 𝑅3 ← 𝑅3 − 3𝑅1, 𝑅2 ← 𝑅2 − 2𝑅1.

In this case,

1 1 1
0 0 0
0 0 0

 = 𝐸−2 [2, 1] 𝐸−3 [3, 1]

1 1 1
2 2 2
3 3 3

 .
Notice that the elementary matrices are multiplied in the reverse order corre-

sponding to the elementary row operations.

4.2 Row reduced echelon form
Elementary row operations can be used to convert a matrix to a nice form, which
we discuss next.

The first nonzero entry (from left) in a nonzero row of a matrix is called a pivot.
We denote a pivot in a row by putting a box around it. A column where a pivot
occurs is called a pivotal column.

A matrix 𝐴 ∈ F𝑚×𝑛 is said to be in row reduced echelon form (RREF) iff the
following conditions are satisfied:

1. Each pivot is equal to 1.
2. The column index of the pivot in any nonzero row𝑅 is smaller than the column

index of the pivot in any row below 𝑅.

3. In a pivotal column, all entries other than the pivot, are zero.
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4. All zero rows are at the bottom.

(4.2) Example

The matrix


1 2 0 0
0 0 1 0
0 0 0 1

 is in row reduced echelon form whereas the matrices


0 1 3 0
0 0 0 2
0 0 0 0
0 0 0 0


,


0 1 3 1
0 0 0 1
0 0 0 0
0 0 0 0


,


0 1 3 0
0 0 0 1
0 0 0 1
0 0 0 0


,


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1


are not in row reduced echelon form.

Any matrix can be brought to a row reduced echelon form by using elementary
row operations. We give an algorithm to achieve this.

Reduction to RREF

1. Set the work region 𝑅 as the whole matrix 𝐴.

2. If all entries in 𝑅 are 0, then stop.

3. If there are nonzero entries in 𝑅, then find the leftmost nonzero column. Mark
it as the pivotal column.

4. Find the topmost nonzero entry in the pivotal column. Suppose it is 𝛼. Box
it; it is a pivot.

5. If the pivot is not on the top row of 𝑅, then exchange the row of 𝐴 which
contains the top row of 𝑅 with the row where the pivot is.

6. If 𝛼 ≠ 1, then replace the top row of 𝑅 in 𝐴 by 1/𝛼 times that row.

7. Make all entries, except the pivot, in the pivotal column as zero by replacing
each row above and below the top row of 𝑅 using elementary row operations
in 𝐴 with that row and the top row of 𝑅.

8. Find the sub-matrix to the right and below the pivot. If no such sub-matrix
exists, then stop. Else, reset the work region 𝑅 to this sub-matrix, and go to
Step 2.

We will refer to the output of the above reduction algorithm as the row reduced
echelon form or, the RREF of a given matrix.
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(4.3) Example

𝐴 =


1 1 2 0
3 5 7 1
1 5 4 5
2 8 7 9


𝑂1−→


1 1 2 0
0 2 1 1
0 4 2 5
0 6 3 9


𝑅2←1/2𝑅2−→


1 1 2 0
0 1 1

2
1
2

0 4 2 5
0 6 3 9


𝑂2−→


1 0 3

2 −
1
2

0 1 1
2

1
2

0 0 0 3
0 0 0 6


𝑅3←1/3𝑅3−→


1 0 3

2 −
1
2

0 1 1
2

1
2

0 0 0 1
0 0 0 6


𝑂3−→


1 0 3

2 0
0 1 1

2 0
0 0 0 1
0 0 0 0


= 𝐵

Here, 𝑂1 = 𝑅2 ← 𝑅2 − 3𝑅1, 𝑅3 ← 𝑅3 − 𝑅1, 𝑅4 ← 𝑅4 − 2𝑅1;
𝑂2 = 𝑅2 ← 𝑅2 − 𝑅1, 𝑅3 ← 𝑅3 − 4𝑅2, 𝑅4 ← 𝑅4 − 6𝑅2; and
𝑂3 = 𝑅1 ← 𝑅1 + 1/2𝑅3, 𝑅2 ← 𝑅2 − 1/2𝑅3, 𝑅4 ← 𝑅4 − 6𝑅3.

Notice that

𝐵 = 𝐸−6 [4, 3] 𝐸−1/2 [2, 3] 𝐸1/2 [1, 3] 𝐸1/3 [3] 𝐸−6 [4, 2] 𝐸−4 [3, 2] 𝐸−1 [2, 1]𝐸1/2 [2]
𝐸−2 [4, 1] 𝐸−1 [3, 1] 𝐸−3 [2, 1]𝐴.

The products are in reverse order.

(4.4) Example

Consider 𝐴 =


1 0 0
0 1 0
0 0 0

 , 𝐵 =


1 0 0
0 0 0
0 0 1

 . Then

RREF(𝐴) RREF(𝐵) =

1 0 0
0 1 0
0 0 0



1 0 0
0 0 1
0 0 0

 =

1 0 0
0 0 1
0 0 0

 ≠ RREF(𝐴𝐵) = 𝐴𝐵 =


1 0 0
0 0 0
0 0 0

 .
Thus, RREF of a product need not be equal to the product of RREFs.

Observe that if a square matrix 𝐴 is invertible, then 𝐴𝐴−1 = 𝐼 implies that 𝐴 does
not have a zero row.

(4.5) Theorem
A square matrix is invertible iff it is a product of elementary matrices.

Proof. 𝐸 [𝑖, 𝑗] is its own inverse, 𝐸1/𝛼 [𝑖] is the inverse of 𝐸𝛼 [𝑖], and 𝐸−𝛼 [𝑖, 𝑗] is the
inverse of 𝐸𝛼 [𝑖, 𝑗] . So, product of elementary matrices is invertible.
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Conversely, suppose that 𝐴 is invertible. Let 𝐸𝐴−1 be the RREF of 𝐴−1. If 𝐸𝐴−1

has a zero row, then 𝐸𝐴−1𝐴 also has a zero row. That is, 𝐸 has a zero row, which is
impossible since 𝐸 is invertible. So, 𝐸𝐴−1 does not have a zero row. Then each row
in the square matrix 𝐸𝐴−1 has a pivot. But the only square matrix in RREF having
a pivot at each row is the identity matrix. Therefore, 𝐸𝐴−1 = 𝐼 . That is, 𝐴 = 𝐸, a
product of elementary matrices.

Using the above theorem, we can show that the row reduced form of a matrix does
not depend on the algorithm we use.

(4.6) Theorem
Let 𝐴 ∈ F𝑚×𝑛 . There exists a unique matrix in F𝑚×𝑛 in row reduced echelon form
obtained from 𝐴 by elementary row operations.

Proof. Suppose 𝐵,𝐶 ∈ F𝑚×𝑛 are matrices in RREF such that each has been
obtained from 𝐴 by elementary row operations. Recall that elementary matrices
are invertible and their inverses are also elementary matrices. Then 𝐵 = 𝐸1𝐴 and
𝐶 = 𝐸2𝐴 for some invertible matrices 𝐸1, 𝐸2 ∈ F𝑚×𝑚 . Now, 𝐵 = 𝐸1𝐴 = 𝐸1(𝐸2)−1𝐶.

Write 𝐸 = 𝐸1(𝐸2)−1 to have 𝐵 = 𝐸𝐶, where 𝐸 is invertible.
We consider a particular case first, when 𝑛 = 1. Here, 𝐵 and𝐶 are column vectors

in RREF. Thus, they can be zero vectors or 𝑒1. Since 𝐵 = 𝐸𝐶, where 𝐸 is invertible,
it cannot happen that one is the zero vector and the other is 𝑒1. Thus, either both are
zero vectors or both are 𝑒1. In either case, 𝐵 = 𝐶.

For 𝑛 > 1, assume, on the contrary, that 𝐵 ≠ 𝐶. Then there exists a column index,
say 𝑘 ≥ 1, such that the first 𝑘 −1 columns of 𝐵 coincide with the first 𝑘 −1 columns
of 𝐶, respectively; and the 𝑘th column of 𝐵 is not equal to the 𝑘th column of 𝐶. Let
𝑢 be the 𝑘th column of 𝐵, and let 𝑣 be the 𝑘th column of 𝐶. We have 𝑢 = 𝐸𝑣 and
𝑢 ≠ 𝑣 .

Suppose the pivotal columns that appear within the first 𝑘 − 1 columns in 𝐶 are
𝑒1, . . . , 𝑒 𝑗 . Then 𝑒1, . . . , 𝑒 𝑗 are also the pivotal columns in 𝐵 that appear within the
first 𝑘 − 1 columns. Since 𝐵 = 𝐸𝐶, we have 𝐶 = 𝐸−1𝐵; and consequently,

𝑒1 = 𝐸𝑒1 = 𝐸−1𝑒1, . . . , 𝑒 𝑗 = 𝐸𝑒 𝑗 = 𝐸−1𝑒 𝑗 .

The column vector 𝑢 may be a pivotal column in 𝐵 or a non-pivotal column in 𝐵.

Similarly, 𝑣 may be pivotal or non-pivotal in𝐶. If both 𝑢 and 𝑣 are pivotal columns,
then both are equal to 𝑒 𝑗+1. This contradicts 𝑢 ≠ 𝑣 . So, assume that 𝑢 is non-pivotal
in 𝐵 or 𝑣 is non-pivotal in 𝐶.
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If 𝑢 is non-pivotal in 𝐵, then 𝑢 = 𝛼1𝑒1 + · · · + 𝛼 𝑗𝑒 𝑗 for some scalars 𝛼1, . . . , 𝛼 𝑗 .

(See it.) Then

𝑣 = 𝐸−1𝑢 = 𝛼1𝐸
−1𝑒1 + · · · + 𝛼 𝑗𝐸

−1𝑒 𝑗 = 𝛼1𝑒1 + · · · + 𝛼 𝑗𝑒 𝑗 = 𝑢.

This contradicts 𝑢 ≠ 𝑣 .

If 𝑣 is a non-pivotal column in 𝐶, then 𝑣 = 𝛽1𝑒1 + · · · + 𝛽 𝑗𝑒 𝑗 for some scalars
𝛽1, . . . , 𝛽 𝑗 . Then

𝑢 = 𝐸𝑣 = 𝛽1𝐸𝑒1 + · · · + 𝛽 𝑗𝐸𝑒 𝑗 = 𝛽1𝑒1 + · · · + 𝛽 𝑗𝑒 𝑗 = 𝑣 .

Here also, 𝑢 = 𝑣, which is a contradiction.
Therefore, 𝐵 = 𝐶.

The number of pivots in the RREF of a matrix 𝐴 is called the rank of 𝐴, and it is
denoted by rank(𝐴). Since RREF of a matrix is unique, rank is well-defined.

For instance, in (4.3), rank(𝐴) = rank(𝐵) = 3.
Suppose 𝐵 is a matrix in RREF. If 𝐵 is invertible, then its RREF does not have

a zero row. So, the RREF is equal to 𝐼 . But 𝐵 is already in RREF. So, 𝐵 = 𝐼 .

Conversely, if 𝐵 = 𝐼 , then it is in invertible, and also it is in RREF. Therefore, a
matrix in RREF is invertible iff it is equal to 𝐼 .

(4.7) Theorem
A square matrix is invertible iff its rank is equal to its order.

Proof. Let𝐴 be a square matrix of order 𝑛. Let 𝐵 be the RREF of𝐴. Then 𝐵 = 𝐸𝐴,

where 𝐸 is invertible.
Let 𝐴 be invertible. Then 𝐵 is invertible. Since 𝐵 is in RREF, 𝐵 = 𝐼 . So,

rank(𝐴) = 𝑛.

Conversely, suppose rank(𝐴) = 𝑛. Then 𝐵 has 𝑛 number of pivots. Thus 𝐵 = 𝐼 . In
that case, 𝐴 = 𝐸−1𝐵 = 𝐸−1; and 𝐴 is invertible.

4.3 Determining rank & linear independence
Let 𝐴 be an𝑚 × 𝑛 matrix. Recall that rank(𝐴) is the number of pivots in the RREF
of 𝐴. If rank(𝐴) = 𝑟, then there are 𝑟 number of linearly independent columns
in 𝐴 and other columns are linear combinations of these 𝑟 columns. The linearly
independent columns correspond to the pivotal columns in the RREF of 𝐴. Also,
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there exist 𝑟 number of linearly independent rows of 𝐴 such that other rows are
linear combinations of these 𝑟 rows. The linearly independent rows correspond to
the nonzero rows in the RREF of 𝐴.

(4.8) Example

Consider 𝐴 =


1 1 1 2 1
1 2 1 1 1
3 5 3 4 3
−1 0 −1 −3 −1


.

Here, 𝑟𝑜𝑤 (3) = 𝑟𝑜𝑤 (1)+2𝑟𝑜𝑤 (2) and 𝑟𝑜𝑤 (4) = 𝑟𝑜𝑤 (2)−2𝑟𝑜𝑤 (1). And, 𝑟𝑜𝑤 (2)
is not a scalar multiple of 𝑟𝑜𝑤 (1), that is, 𝑟𝑜𝑤 (1), 𝑟𝑜𝑤 (2) are linearly independent;
and all other rows are linear combinations of 𝑟𝑜𝑤 (1) and 𝑟𝑜𝑤 (2).

Also, 𝑐𝑜𝑙 (3) = 𝑐𝑜𝑙 (5) = 𝑐𝑜𝑙 (1), 𝑐𝑜𝑙 (4) = 3 𝑐𝑜𝑙 (1) − 𝑐𝑜𝑙 (2), and 𝑐𝑜𝑙 (1), 𝑐𝑜𝑙 (2) are
linearly independent.

Verify that the RREF of 𝐴 is given by


1 0 1 3 1
0 1 0 −1 0
0 0 0 0 0
0 0 0 0 0


.

As expected, rank(𝐴) = 2.

The connection between linear combinations, linear dependence and linear inde-
pendence of rows and columns of a matrix, and its RREF may be stated as follows.

(4.9) Observation In the RREF of𝐴 suppose𝑅𝑖1, . . . , 𝑅𝑖𝑟 are the rows of𝐴 which
have become the nonzero rows in the RREF, and other rows have become the zero
rows. Also, suppose𝐶 𝑗1, . . . ,𝐶 𝑗𝑟 for 𝑗1 < · · · < 𝑗𝑟, are the columns of𝐴 which have
become the pivotal columns in the RREF, other columns being non-pivotal. Then
the following are true:

1. All rows of 𝐴 other than 𝑅𝑖1, . . . , 𝑅𝑖𝑟 are linear combinations of 𝑅𝑖1, . . . , 𝑅𝑖𝑟 .

2. The columns 𝐶 𝑗1, . . . ,𝐶 𝑗𝑟 have respectively become 𝑒1, . . . , 𝑒𝑟 in the RREF.

3. All columns of𝐴 other than𝐶 𝑗1, . . . ,𝐶 𝑗𝑟 are linear combinations of𝐶 𝑗1, . . . ,𝐶 𝑗𝑟 .

4. If 𝑒1, . . . , 𝑒𝑘 are all the pivotal columns in the RREF that occur to the
left of a non-pivotal column, then the non-pivotal column is in the form
(𝑎1, . . . , 𝑎𝑘 , 0, . . . , 0)𝑇 . Further, if a column𝐶 in𝐴 has become this non-pivotal
column in the RREF, then 𝐶 = 𝑎1𝐶 𝑗1 + · · · + 𝑎𝑘𝐶 𝑗𝑘 .

5. If 𝐴 is a square matrix, then 𝐴 is invertible iff its RREF is 𝐼 .
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As the above observation shows, elementary operations can be used to determine
linear dependence or independence of a finite set of vectors in F1×𝑛 . Suppose that
you are given with𝑚 number of vectors from F1×𝑛, say,

𝑢1 = (𝑢11, . . . , 𝑢1𝑛), . . . , 𝑢𝑚 = (𝑢𝑚1, . . . , 𝑢𝑚𝑛).

We form the matrix 𝐴 with rows as 𝑢1, . . . , 𝑢𝑚 . We then reduce 𝐴 to its RREF, say,
𝐵. If there are 𝑟 number of nonzero rows in 𝐵, then the rows corresponding to those
rows in𝐴 are linearly independent, and the other rows (which have become the zero
rows in 𝐵) are linear combinations of those 𝑟 rows.

(4.10) Example
From among the vectors (1, 2, 2, 1), (2, 1, 0,−1), (4, 5, 4, 1), (5, 4, 2,−1), find lin-
early independent vectors; and point out which are the linear combinations of these
independent ones.

We form a matrix with the given vectors as rows and then bring the matrix to its
RREF. 

1 2 2 1
2 1 0 −1
4 5 4 1
5 4 2 −1


𝑂1−→


1 2 2 1
0 −3 −4 −3
0 −3 −4 −3
0 −6 −8 −6


𝑂2−→


1 0 −2/3 −1
0 1 4/3 1
0 0 0 0
0 0 0 0


Here, 𝑂1 = 𝑅2 ← 𝑅2 − 2𝑅1, 𝑅3 ← 𝑅3 − 4𝑅1, 𝑅4 ← 𝑅4 − 5𝑅1 and

𝑂2 = 𝑅2 ← −3𝑅2, 𝑅1 ← 𝑅1 − 2𝑅2, 𝑅3 ← 𝑅3 + 3𝑅2, 𝑅4 ← 𝑅4 + 6𝑅2.

No row exchanges have been applied in this reduction, and the nonzero rows are
the first and the second rows. Therefore, the linearly independent vectors are
(1, 2, 2, 1), (0, 1, 4/3, 1); and the third and the fourth are linear combinations of
these.

The same method can be used in F𝑛×1. Just use the transpose of the columns,
form a matrix, and continue with row reductions. Finally, take the transposes of the
nonzero rows in the RREF.

Notice that compared to Gram-Schmidt, reduction to RREF is more efficient way
of extracting a linearly independent set retaining the span.

(4.11) Example
Suppose 𝐴 and 𝐵 are 𝑛 × 𝑛 matrices satisfying 𝐴𝐵 = 𝐼 . Show that both 𝐴 and 𝐵 are
invertible, and 𝐵𝐴 = 𝐼 .

Let 𝐸𝐴 be the RREF of 𝐴, where 𝐸 is a suitable product of elementary matrices.
If𝐴 is not invertible, then 𝐸𝐴 has a zero row, so that 𝐸𝐴𝐵 also has a zero row. Since
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𝐸𝐴𝐵 = 𝐸 does not have a zero row, we conclude that 𝐴 is invertible. Consequently,
𝐵 = 𝐴−1 is also invertible, and 𝐵𝐴 = 𝐼 .

However, if 𝐴 and 𝐵 are not square matrices, then 𝐴𝐵 = 𝐼 need not imply that
𝐵𝐴 = 𝐼 . For instance,[

2 0 −1
1 1 −1

] 
1 1
0 1
1 2

 =
[
1 0
0 1

]
,


1 1
0 1
1 2


[
2 0 −1
1 1 −1

]
=


3 1 −2
1 1 −1
4 2 −3

 .
You have seen earlier that there do not exist three linearly independent vectors in
R2. With the help of rank, now we can see why does it happen.

(4.12) Theorem
Let 𝑢1, . . . , 𝑢𝑘 , 𝑣1, . . . , 𝑣𝑚 ∈ F𝑛 . Suppose 𝑣1, . . . , 𝑣𝑚 ∈ span(𝑢1, . . . , 𝑢𝑘) and 𝑚 > 𝑘.

Then 𝑣1, . . . , 𝑣𝑚 are linearly dependent.

Proof. Consider all vectors as row vectors. Form the matrix 𝐴 by taking its rows
as 𝑢1, . . . , 𝑢𝑘 , 𝑣1, . . . , 𝑣𝑚 in that order. Now, 𝑟 = rank(𝐴) ≤ 𝑘. Similarly, construct
the matrix 𝐵 by taking its rows as 𝑣1, . . . , 𝑣𝑚, 𝑢1, . . . , 𝑢𝑘 , in that order. Now, 𝐴 and 𝐵

have the same RREF since one is obtained from the other by re-ordering the rows.
Therefore, rank(𝐵) = rank(𝐴) = 𝑟 ≤ 𝑘. Since 𝑚 > 𝑘 ≥ 𝑟, out of 𝑣1, . . . , 𝑣𝑚 at most
𝑟 vectors can be linearly independent.So, 𝑣1, . . . , 𝑣𝑚 are linearly dependent.

The following theorem is a corollary to the above.

(4.13) Theorem
Let 𝑣1, . . . , 𝑣𝑛 ∈ F𝑚 . Then there exists a unique 𝑟 ≤ 𝑛 such that some 𝑟 of these
vectors are linearly independent and other 𝑛 − 𝑟 vectors are linear combinations of
these 𝑟 vectors.

To see further connection between these notions, let 𝑢1, . . . , 𝑢𝑟 , 𝑢 ∈ F𝑚×1. Let
𝑎1, . . . , 𝑎𝑟 ∈ F and let 𝑃 ∈ F𝑚×𝑚 be invertible. We see that

𝑢 = 𝑎1𝑢1 + · · · + 𝑎𝑟𝑢𝑟 iff 𝑃𝑢 = 𝑎1𝑃𝑢1 + · · ·𝑎𝑟𝑃𝑢𝑟 .

Taking 𝑢 = 0, we see that the vectors 𝑢1, . . . , 𝑢𝑟 are linearly independent iff
𝑃𝑢1, . . . , 𝑃𝑢𝑟 are linearly independent.

Now, if 𝐴 ∈ F𝑚×𝑛, then its columns are vectors in F𝑚×1. The above equation
implies that if there exist 𝑟 number of columns in 𝐴 which are linearly independent
and other columns are linear combinations of these 𝑟 columns, then the same is true
for the matrix 𝑃𝐴.
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Similarly, let 𝑄 ∈ F𝑛×𝑛 be invertible. If there exist 𝑟 number of rows of 𝐴 which
are linearly independent and other rows are linear combinations of these 𝑟 rows,
then the same is true for the matrix 𝐴𝑄.

These facts along with the last theorem can be used to prove the following theorem.

(4.14) Theorem
Let 𝐴 ∈ F𝑚×𝑛 . Then
rank(𝐴) = the maximum number of linearly independent rows in 𝐴

= the maximum number of linearly independent columns in 𝐴

= rank(𝐴𝑇 )
= rank(𝑃𝐴𝑄) for invertible matrices 𝑃 ∈ F𝑚×𝑚 and 𝑄 ∈ F𝑛×𝑛 .

4.4 Computing inverse of a matrix
Let 𝐴 ∈ F𝑛×𝑛 . If 𝐴 is invertible, then using Property (15) of the determinant, its
inverse can be computed. However, computation of determinant is easier when
elementary row operations are used. This suggests that we use elementary row
operations directly for computing the inverse of a given matrix.

Observe that when 𝐴 is an invertible matrix of order 𝑛, its RREF has exactly 𝑛

pivots. The entries in each pivotal column above and below the pivot are 0. The
pivots are each equal to 1. Therefore, such a row reduced echelon matrix is nothing
but 𝐼 , the identity matrix of order 𝑛.

Now, look at the sequence of elementary matrices corresponding to the elementary
operations used in this row reduction of𝐴. The product of these elementary matrices
is 𝐴−1, since this product times 𝐴 is 𝐼 , which is the row reduced form of 𝐴. Now,
if we use the same elementary operations on 𝐼 , then the result will be 𝐴−1𝐼 = 𝐴−1.

Thus we obtain a procedure to compute the inverse of a matrix 𝐴 provided it is
invertible.

The work will be easier if we write the matrix 𝐴 and the identity matrix 𝐼 side by
side and apply the elementary operations on both of them simultaneously. For this
purpose, we introduce the notion of an augmented matrix.

If𝐴 ∈ F𝑚×𝑛 and 𝐵 ∈ F𝑚×𝑘 , then the matrix [𝐴|𝐵] ∈ F𝑚×(𝑛+𝑘) obtained from𝐴 and
𝐵 by writing first all the columns of 𝐴 and then the columns of 𝐵, in that order, is
called an augmented matrix.

The vertical bar shows the separation of columns of 𝐴 and of 𝐵, though, concep-
tually unnecessary.
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For computing the inverse of a matrix, start with the augmented matrix [𝐴|𝐼 ] .
Then we reduce [𝐴|𝐼 ] to its RREF. If the 𝐴-portion in the RREF is 𝐼 , then the
𝐼 -portion in the RREF gives 𝐴−1. If the 𝐴-portion in the RREF contains a zero
row, then 𝐴 is not invertible. Notice that if a zero row has appeared during the
RREF conversion, then we need not proceed towards the RREF; the matrix 𝐴 is not
invertible.

(4.15) Example
For illustration, consider the following square matrices:

𝐴 =


1 −1 2 0
−1 0 0 2

2 1 −1 −2
1 −2 4 2


, 𝐵 =


1 −1 2 0
−1 0 0 2

2 1 −1 −2
0 −2 0 2


.

We want to find the inverses of the matrices, if at all they are invertible.

Augment 𝐴 with an identity matrix to get


1 −1 2 0 1 0 0 0
−1 0 0 2 0 1 0 0

2 1 −1 −2 0 0 1 0
1 −2 4 2 0 0 0 1


.

Use elementary row operations. Since 𝑎11 = 1, we leave 𝑟𝑜𝑤 (1) untouched. To
zero-out the other entries in the first column, we use the sequence of elementary
row operations 𝑅2 ← 𝑅2 + 𝑅1, 𝑅3 ← 𝑅3 − 2𝑅1, 𝑅4 ← 𝑅4 − 𝑅1 to obtain


1 −1 2 0 1 0 0 0
0 −1 2 2 1 1 0 0
0 3 −5 −2 −2 0 1 0
0 −1 2 2 −1 0 0 1


.

The pivot is −1 in (2, 2) position. Use 𝑅2 ← −𝑅2 to make the pivot 1.


1 −1 2 0 1 0 0 0
0 1 −2 −2 −1 −1 0 0
0 3 −5 −2 −2 0 1 0
0 −1 2 2 −1 0 0 1


.
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Use 𝑅1 ← 𝑅1 + 𝑅2, 𝑅3 ← 𝑅3 − 3𝑅2, 𝑅4 ← 𝑅4 + 𝑅2 to zero-out all non-pivot entries
in the pivotal column to 0: 

1 0 0 −2 0 −1 0 0
0 1 −2 −2 −1 −1 0 0
0 0 1 4 1 3 1 0
0 0 0 0 −2 −1 0 1


.

Since a zero row has appeared in the𝐴 portion,𝐴 is not invertible. And rank(𝐴) = 3,
which is less than the order of 𝐴. The second portion of the augmented matrix has
no meaning now. However, it records the elementary row operations which were
carried out in the reduction process. Verify that this matrix is equal to

𝐸1 [4, 2] 𝐸−3 [3, 2] 𝐸1 [1, 2] 𝐸−1 [2] 𝐸−1 [4, 1] 𝐸−2 [3, 1] 𝐸1 [2, 1]

and that the first portion is equal to this matrix times 𝐴.
For 𝐵, we proceed similarly. The augmented matrix [𝐵 |𝐼 ] with the first pivot looks

like: 
1 −1 2 0 1 0 0 0
−1 0 0 2 0 1 0 0

2 1 −1 −2 0 0 1 0
0 −2 0 2 0 0 0 1


.

The sequence of elementary row operations 𝑅2 ← 𝑅2 + 𝑅1, 𝑅3 ← 𝑅3 − 2𝑅1 yields
1 −1 2 0 1 0 0 0
0 −1 2 2 1 1 0 0
0 3 −5 −2 −2 0 1 0
0 −2 0 2 0 0 0 1


.

Next, the pivot is −1 in (2, 2) position. Use 𝑅2 ← −𝑅2 to get the pivot as 1.
1 −1 2 0 1 0 0 0
0 1 −2 −2 −1 −1 0 0
0 3 −5 −2 −2 0 1 0
0 −2 0 2 0 0 0 1


.

And then 𝑅1 ← 𝑅1 + 𝑅2, 𝑅3 ← 𝑅3 − 3𝑅2, 𝑅4 ← 𝑅4 + 2𝑅2 gives
1 0 0 −2 0 −1 0 0
0 1 −2 −2 −1 −1 0 0
0 0 1 4 1 3 1 0
0 0 −4 −2 −2 −2 0 1


.
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Next pivot is 1 in (3, 3) position. Now, 𝑅2 ← 𝑅2 + 2𝑅3, 𝑅4 ← 𝑅4 + 4𝑅3 produces


1 0 0 −2 0 −1 0 0
0 1 0 6 1 5 2 0
0 0 1 4 1 3 1 0
0 0 0 14 2 10 4 1


.

Next pivot is 14 in (4, 4) position. Use 𝑅4 ← 1/4𝑅4 to get the pivot as 1:


1 0 0 −2 0 −1 0 0
0 1 0 6 1 5 2 0
0 0 1 4 1 3 1 0
0 0 0 1 1/7 5/7 2/7 1/14


.

Use 𝑅1 ← 𝑅1 + 2𝑅4, 𝑅2 ← 𝑅2 − 6𝑅4, 𝑅3 ← 𝑅3 − 4𝑅4 to zero-out the entries in the
pivotal column: 

1 0 0 0 2/7 3/7 4/7 1/7
0 1 0 0 1/7 5/7 2/7 −3/7
0 0 1 0 3/7 1/7 −1/7 −2/7
0 0 0 1 1/7 5/7 2/7 1/14


.

Thus 𝐵−1 = 1
7


2 3 4 1
1 5 2 −3
3 1 −1 −2
1 5 2 1

2


. Verify that 𝐵−1𝐵 = 𝐵𝐵−1 = 𝐼 .

4.5 Linear equations
We can now use our knowledge about matrices to settle some issues regarding
solvability of linear equations. A system of linear equations, also called a linear
system with𝑚 equations in 𝑛 unknowns looks like:

𝑎11𝑥1 + 𝑎12𝑥2 + · · ·𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + · · ·𝑎2𝑛𝑥𝑛 = 𝑏2
...

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + · · ·𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚
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Using the abbreviations

𝑥 =


𝑥1
...

𝑥𝑛

 , 𝑏 =


𝑏1
...

𝑏𝑚

 , 𝐴 = [𝑎𝑖 𝑗 ],

the system can be written in the compact form:

𝐴𝑥 = 𝑏.

Here, 𝐴 ∈ F𝑚×𝑛, 𝑥 ∈ F𝑛×1 and 𝑏 ∈ F𝑚×1 so that𝑚 is the number of equations and 𝑛

is the number of unknowns in the system. Notice that for linear systems, we deviate
from our symbolism and write 𝑏 as a column vector and 𝑥𝑖 are unknown scalars.
The system 𝐴𝑥 = 𝑏 is solvable, also said to have a solution, iff there exists a vector
𝑢 ∈ F𝑛×1 such that 𝐴𝑢 = 𝑏.

Thus, the system 𝐴𝑥 = 𝑏 is solvable iff 𝑏 is a linear combination of columns of
𝐴. Also, 𝐴𝑥 = 𝑏 has a unique solution iff 𝑏 is a linear combination of columns of 𝐴
and the columns of 𝐴 are linearly independent. These issues are better tackled with
the help of the corresponding homogeneous system

𝐴𝑥 = 0.

The homogeneous system always has a solution, namely, 𝑥 = 0. It has infinitely
many solutions iff it has a nonzero solution. For, if 𝑢 is a solution, so is 𝛼𝑢 for any
scalar 𝛼.

To study the non-homogeneous system, we use the augmented matrix [𝐴|𝑏] ∈
F𝑚×(𝑛+1) which has its first 𝑛 columns as those of 𝐴 in the same order, and the
(𝑛 + 1)th column is 𝑏.

(4.16) Theorem
Let 𝐴 ∈ F𝑚×𝑛 and let 𝑏 ∈ F𝑚×1. Then the following statements are true:

(1) If [𝐴′ | 𝑏′] is obtained from [𝐴 | 𝑏] by applying a finite sequence of elementary
row operations, then each solution of 𝐴𝑥 = 𝑏 is a solution of 𝐴′𝑥 = 𝑏′, and
vice versa.

(2) (Consistency) 𝐴𝑥 = 𝑏 has a solution iff rank( [𝐴 | 𝑏]) = rank(𝐴).
(3) If 𝑢 is a (particular) solution of𝐴𝑥 = 𝑏, then each solution of𝐴𝑥 = 𝑏 is given

by 𝑢 + 𝑦, where 𝑦 is a solution of the homogeneous system 𝐴𝑥 = 0.
(4) If 𝑟 = rank( [𝐴 | 𝑏]) = rank(𝐴) < 𝑛, then there are 𝑛 − 𝑟 unknowns which

can take arbitrary values; and other 𝑟 unknowns can be determined from the
values of these 𝑛 − 𝑟 unknowns.
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(5) If𝑚 < 𝑛, then the homogeneous system has infinitely many solutions.

(6) 𝐴𝑥 = 𝑏 has a unique solution iff rank( [𝐴 | 𝑏]) = rank(𝐴) = 𝑛.

(7) If𝑚 = 𝑛, then 𝐴𝑥 = 𝑏 has a unique solution iff det(𝐴) ≠ 0.
(8) (Cramer’s Rule) If 𝑚 = 𝑛 and det(𝐴) ≠ 0, then the solution of 𝐴𝑥 = 𝑏 is

given by
𝑥 𝑗 = det(𝐴 𝑗 (𝑏) )/det(𝐴) for each 𝑗 ∈ {1, . . . , 𝑛}.

Proof. (1) If [𝐴′ | 𝑏′] has been obtained from [𝐴 | 𝑏] by a finite sequence of
elementary row operations, then 𝐴′ = 𝐸𝐴 and 𝑏′ = 𝐸𝑏, where 𝐸 is the product of
corresponding elementary matrices. The matrix 𝐸 is invertible. Now, 𝐴′𝑥 = 𝑏′ iff
𝐸𝐴𝑥 = 𝐸𝑏 iff 𝐴𝑥 = 𝐸−1𝐸𝑏 = 𝑏.

(2) Due to (1), we assume that [𝐴 | 𝑏] is in RREF. Suppose 𝐴𝑥 = 𝑏 has a solution.
If there is a zero row in 𝐴, then the corresponding entry in 𝑏 is also 0. Therefore,
there is no pivot in 𝑏. Hence rank( [𝐴 | 𝑏]) = rank(𝐴) .

Conversely, suppose that rank( [𝐴 | 𝑏]) = rank(𝐴) = 𝑟 . Then there is no pivot in
𝑏. That is, 𝑏 is a non-pivotal column in [𝐴 | 𝑏] . Thus, 𝑏 is a linear combination of
pivotal columns, which are some columns of 𝐴. Therefore, 𝐴𝑥 = 𝑏 has a solution.

(3) Let 𝑢 be a solution of 𝐴𝑥 = 𝑏. Then 𝐴𝑢 = 𝑏. Now, 𝑧 is a solution of 𝐴𝑥 = 𝑏

iff 𝐴𝑧 = 𝑏 iff 𝐴𝑧 = 𝐴𝑢 iff 𝐴(𝑧 − 𝑢) = 0 iff 𝑧 − 𝑢 is a solution of 𝐴𝑥 = 0. That is,
each solution 𝑧 of 𝐴𝑥 = 𝑏 is expressed in the form 𝑧 = 𝑢 + 𝑦 for a solution 𝑦 of the
homogeneous system 𝐴𝑥 = 0.

(4) Let rank( [𝐴 | 𝑏]) = rank(𝐴) = 𝑟 < 𝑛. By (2), there exists a solution. Due to (3),
we consider solving the corresponding homogeneous system. Due to (1), assume
that 𝐴 is in RREF. There are 𝑟 number of pivots in 𝐴 and 𝑚 − 𝑟 number of zero
rows. Omit all the zero rows; it does not affect the solutions. Write the system as
linear equations. Rewrite the equations by keeping the unknowns corresponding to
pivots on the left hand side, and taking every other term to the right hand side. The
unknowns corresponding to pivots are now expressed in terms of the other 𝑛 − 𝑟
unknowns. For obtaining a solution, we may arbitrarily assign any values to these
𝑛 − 𝑟 unknowns, and the unknowns corresponding to the pivots get evaluated by the
equations.

(5) Let 𝑚 < 𝑛. Then 𝑟 = rank(𝐴) ≤ 𝑚 < 𝑛. Consider the homogeneous system
𝐴𝑥 = 0. By (4), there are 𝑛 − 𝑟 ≥ 1 number of unknowns which can take arbitrary
values, and other 𝑟 unknowns are determined accordingly. Each such assignment
of values to the 𝑛 − 𝑟 unknowns gives rise to a distinct solution resulting in infinite
number of solutions of 𝐴𝑥 = 0.
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(6) It follows from (3) and (4).

(7) If 𝐴 ∈ F𝑛×𝑛, then it is invertible iff rank(𝐴) = 𝑛 iff det(𝐴) ≠ 0. Then use (6). In
this case, the unique solution is given by 𝑥 = 𝐴−1𝑏.

(8) Recall that 𝐴 𝑗 (𝑏) is the matrix obtained from 𝐴 by replacing the 𝑗 th column of
𝐴 with the vector 𝑏. Since det(𝐴) ≠ 0, by (6), 𝐴𝑥 = 𝑏 has a unique solution, say
𝑦 ∈ F𝑛×1. Write the identity 𝐴𝑦 = 𝑏 in the form:

𝑦1


𝑎11
...

𝑎𝑛1

 + · · · + 𝑦 𝑗


𝑎1 𝑗
...

𝑎𝑛𝑗

 + · · · + 𝑦𝑛

𝑎1𝑛
...

𝑎𝑛𝑛

 =

𝑏1
...

𝑏𝑛

 .
This gives

𝑦1


𝑎11
...

𝑎𝑛1

 + · · · +

(𝑦 𝑗𝑎1 𝑗 − 𝑏1)

...

(𝑦 𝑗𝑎𝑛𝑗 − 𝑏𝑛)

 + · · · + 𝑦𝑛

𝑎1𝑛

· · ·
𝑎𝑛𝑛

 = 0.

In this sum, the 𝑗 th vector is a linear combination of other vectors, where −𝑦 𝑗s are
the coefficients. Therefore,�������

𝑎11 · · · (𝑦 𝑗𝑎1 𝑗 − 𝑏1) · · · 𝑎1𝑛
...

𝑎𝑛1 · · · (𝑦 𝑗𝑎𝑛𝑗 − 𝑏𝑛) · · · 𝑎𝑛𝑛

������� = 0.

From Property (6) of the determinant, it follows that

𝑦 𝑗

�������
𝑎11 · · · 𝑎1 𝑗 · · · 𝑎1𝑛

...

𝑎𝑛1 · · · 𝑎𝑛𝑗 · · · 𝑎𝑛𝑛

������� −
�������
𝑎11 · · · 𝑏1 · · · 𝑎1𝑛

...

𝑎𝑛1 · · · 𝑏𝑛 · · · 𝑎𝑛𝑛

������� = 0.

Therefore, 𝑦 𝑗 = det(𝐴 𝑗 (𝑏) )/det(𝐴).

A system of linear equations 𝐴𝑥 = 𝑏 is said to be consistent iff rank( [𝐴|𝑏]) =
rank(𝐴). Due to (4.16-1) only consistent systems have solutions. And, (4.16-2)
asserts that all solutions of the non-homogeneous system can be obtained by adding
a particular solution to solutions of the corresponding homogeneous system.

4.6 Gauss-Jordan elimination
To determine whether a system of linear equations is consistent or not, it is enough
to convert the augmented matrix [𝐴|𝑏] to its RREF and then check whether an entry
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in the𝑏 portion of the augmented matrix has become a pivot or not. In fact, the pivot
check shows that corresponding to the zero rows in the portion of 𝐴 in the RREF of
[𝐴|𝑏], all the entries in 𝑏 must be zero. Thus an entry in the 𝑏 portion has become
a pivot guarantees that the system is inconsistent, else the system is consistent.

(4.17) Example
Is the following system of linear equations consistent?

5𝑥1 + 2𝑥2 − 3𝑥3 + 𝑥4 = 7
𝑥1 − 3𝑥2 + 2𝑥3 − 2𝑥4 = 11

3𝑥1 + 8𝑥2 − 7𝑥3 + 5𝑥4 = 8

We take the augmented matrix and reduce it to its RREF by elementary row opera-
tions. 

5 2 −3 1 7
1 −3 2 −2 11
3 8 −7 5 8


𝑂1−→


1 2/5 −3/5 1/5 7/5
0 −17/5 13/5 −11/5 48/5
0 34/5 −26/5 22/5 −19/5


𝑂2−→


1 0 −5/17 −1/17 43/17

0 1 −13/17 11/17 −48/17

0 0 0 0 77/5


Here, 𝑂1 = 𝑅1 ← 1/5𝑅1, 𝑅2 ← 𝑅2 − 𝑅1, 𝑅3 ← 𝑅3 − 3𝑅1 and

𝑂2 = 𝑅2 ← −5/17𝑅2, 𝑅1 ← 𝑅1 − 2/5𝑅2, 𝑅3 ← 𝑅3 − 34/5𝑅2.

Since an entry in the 𝑏 portion has become a pivot, the system is inconsistent. In
fact, you can verify that the third row in𝐴 is simply first row minus twice the second
row, whereas the third entry in 𝑏 is not the first entry minus twice the second entry.
Therefore, the system is inconsistent.

(4.18) Example
Give conditions under which the system 𝑥 +𝑦+5𝑧 = 3, 𝑥 +2𝑦+𝑎𝑧 = 5, 𝑥 +2𝑦+4𝑧 = 𝑏

is consistent.
We take the augmented matrix and reduce it to its RREF by elementary row

operations.
1 1 5 3
1 2 𝑎 5
1 2 4 𝑏

 −→


1 1 5 3
0 1 𝑎 − 5 2
0 1 −1 𝑏 − 3

 −→


1 0 10 − 𝑎 1
0 1 𝑎 − 5 2
0 0 4 − 𝑎 𝑏 − 5
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We see that rank[𝐴|𝑏] = rank(𝐴) if 4 − 𝑎 ≠ 0 or if 𝑏 − 5 = 0. That is,
if 𝑎 ≠ 4, the system is consistent; and if 𝑏 = 5, then also the system is consistent.

Gauss-Jordan elimination is an application of converting the augmented matrix
to its RREF for solving linear systems.

(4.19) Example
We change the last equation in the previous example to make it consistent. The
system now looks like:

5𝑥1 + 2𝑥2 − 3𝑥3 + 𝑥4 = 7
𝑥1 − 3𝑥2 + 2𝑥3 − 2𝑥4 = 11

3𝑥1 + 8𝑥2 − 7𝑥3 + 5𝑥4 = −15

The reduction to echelon form will change that entry as follows: take the aug-
mented matrix and reduce it to its echelon form by elementary row operations.

5 2 −3 1 7
1 −3 2 −2 11
3 8 −7 5 −15


𝑂1−→


1 2/5 −3/5 1/5 7/5
0 −17/5 13/5 −11/5 48/5
0 34/5 −26/5 22/5 −96/5


𝑂2−→


1 0 −5/17 −1/17 43/17

0 1 −13/17 11/17 −48/17

0 0 0 0 0


with 𝑂1 = 𝑅1 ← 1/5𝑅1, 𝑅2 ← 𝑅2 − 𝑅1, 𝑅3 ← 𝑅3 − 3𝑅1 and

𝑂2 = 𝑅2 ← −5/17𝑅2, 𝑅1 ← 𝐸1 − 2/5𝑅2, 𝑅3 ← 𝑅3 − 34/5𝑅2.

This expresses the fact that the third equation is redundant. Now, solving the new
system in RREF is easier. Writing as linear equations, we have

1 𝑥1 − 5
17𝑥3 − 1

17𝑥4 =
43
17

1 𝑥2 −13
17𝑥3 +11

17𝑥4 = −48
17

The unknowns corresponding to the pivots are called the basic variables and the
other unknowns are called the free variable. By assigning the free variables to any
arbitrary values, the basic variables can be evaluated. So, we assign a free variable
𝑥𝑖 an arbitrary number, say 𝛼𝑖, and express the basic variables in terms of the free
variables to get a solution of the equations.

In the above reduced system, the basic variables are 𝑥1 and 𝑥2; and the unknowns
𝑥3, 𝑥4 are free variables. We assign 𝑥3 to 𝛼3 and 𝑥4 to 𝛼4. The solution is written as
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follows:

𝑥1 = 43
17 +

5
17𝛼3 + 1

17𝛼4, 𝑥2 = −48
17 +

13
17𝛼3 − 11

17𝛼4, 𝑥3 = 𝛼3, 𝑥4 = 𝛼4.

Notice that any solution of the system is in the form 𝑢 + 𝑣, where

𝑢 =


43
17
−48

17
0
0


, 𝑣 =


5
17𝛼3
1
17𝛼4

𝛼3

𝛼4


;

𝑢 is a particular solution of the system, and 𝑣 is a solution of the corresponding
homogeneous system.

4.7 Exercises for Chapter 4
1. Convert the following matrices into RREF and determine their ranks.

(a)

5 2 −3 1 7
1 −3 2 −2 11
3 8 −7 5 8

 (b)

5 2 −3 1 30
1 −3 2 −2 11
3 8 −7 5 8


2. Determine linear independence of {(1, 2, 2, 1), (1, 3, 2, 1), (4, 1, 2, 2), (5, 2, 4, 3)}

in C1×4. Ans: Linearly dependent.
3. Compute 𝐴−1 using RREF and also using determinant, where

𝐴 =


4 −7 −5
−2 4 3

3 −5 −4

 . Ans:


1 3 1
−1 1 2
2 1 −2

 .
4. Solve the following system by Gauss-Jordan elimination:

𝑥1 +𝑥2 +𝑥3 +𝑥4 −3𝑥5 = 6
2𝑥1 +3𝑥2 +𝑥3 +4𝑥4 −9𝑥5 = 17
𝑥1 +𝑥2 +𝑥3 +2𝑥4 −5𝑥5 = 8
2𝑥1 +2𝑥2 +2𝑥3 +3𝑥4 −8𝑥5 = 14

5. Check if the system is consistent. If so, determine the solution set.

(a) 𝑥1 − 𝑥2 + 2𝑥3 − 3𝑥4 = 7, 4𝑥1 + 3𝑥3 + 𝑥4 = 9, 2𝑥1 − 5𝑥2 + 𝑥3 = −2,
3𝑥1 − 2𝑥2 − 2𝑥3 + 10𝑥4 = −12.

(b) 𝑥1 − 𝑥2 + 2𝑥3 − 3𝑥4 = 7, 4𝑥1 + 3𝑥3 + 𝑥4 = 9, 2𝑥1 − 5𝑥2 + 𝑥3 = −2,
3𝑥1 − 2𝑥2 − 2𝑥3 + 10𝑥4 = −14.
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6. Using Gauss-Jordan elimination determine the values of 𝑘 ∈ R so that the
system of linear equations 𝑥 + 𝑦 − 𝑧 = 1, 2𝑥 + 3𝑦 + 𝑘𝑧 = 3, 𝑥 + 𝑘𝑦 + 3𝑧 = 2
has (a) no solution, (b) infinitely many solutions, (c) exactly one solution.

7. Let 𝐴 be an 𝑛 × 𝑛 matrix with integer entries and det(𝐴2) = 1. Show that all
entries of 𝐴−1 are also integers.

8. Let 𝐴 ∈ F𝑚×𝑛 have columns 𝐴1, . . . , 𝐴𝑛 . Let 𝑏 ∈ F𝑚 . Show the following:

(a) The equation 𝐴𝑥 = 0 has a non-zero solution iff 𝐴1, . . . , 𝐴𝑛 are linearly
dependent.

(b) The equation 𝐴𝑥 = 𝑏 has at least one solution iff 𝑏 ∈ span{𝐴1, . . . , 𝐴𝑛}.
(c) Let 𝑢 be a solution of 𝐴𝑥 = 𝑏. Then, 𝑢 is the only solution of 𝐴𝑥 = 𝑏 iff

𝐴1, . . . , 𝐴𝑛 are linearly independent.
(d) The equation 𝐴𝑥 = 𝑏 has a unique solution iff rank𝐴 = rank[𝐴|𝑏] =

number of unknowns.
9. Let 𝐴 ∈ F𝑚×𝑛 have rank 𝑟 . Give reasons for the following:

(a) rank(𝐴) ≤ min{𝑚,𝑛}.
(b) If 𝑛 > 𝑚, then there exist 𝑥,𝑦 ∈ F𝑛×1 such that 𝑥 ≠ 𝑦 and 𝐴𝑥 = 𝐴𝑦.

(c) If 𝑛 < 𝑚, then there exists 𝑦 ∈ F𝑚×1 such that for no 𝑥 ∈ F𝑛×1, 𝐴𝑥 = 𝑦.

(d) If 𝑛 =𝑚, then the following statements are equivalent:
i. 𝐴𝑢 = 𝐴𝑣 implies 𝑢 = 𝑣 for all 𝑢, 𝑣 ∈ F𝑛×1.
ii. Corresponding to each 𝑦 ∈ F𝑛×1, there exists 𝑥 ∈ F𝑚×1 such that

𝑦 = 𝐴𝑥 .



5
Matrix Eigenvalue Problem

5.1 Eigenvalues and eigenvectors

In this chapter, unless otherwise specified, we assume that any matrix is a square
matrix with complex entries.

Let 𝐴 ∈ C𝑛×𝑛 . A complex number 𝜆 is called an eigenvalue of 𝐴 iff there exists a
non-zero vector 𝑣 ∈ C𝑛×1 such that𝐴𝑣 = 𝜆𝑣 . Such a vector 𝑣 is called an eigenvector
of 𝐴 for (or, associated with, or, corresponding to) the eigenvalue 𝜆.

(5.1) Example

Consider the matrix 𝐴 =


1 1 1
0 1 1
0 0 1

 . It has an eigenvector
[
1 0 0

]𝑇 associated with the

eigenvalue 1.

Is
[
2 0 0

]𝑇 also an eigenvector associated with the same eigenvalue 1?

In fact, corresponding to an eigenvalue, there are infinitely many eigenvectors.

(5.2) Theorem

Let 𝐴 ∈ C𝑛×𝑛 . Let 𝑣 ∈ C𝑛×1, 𝑣 ≠ 0. Then, 𝑣 is an eigenvector of 𝐴 for the eigenvalue
𝜆 ∈ C iff 𝑣 is a nonzero solution of the homogeneous system (𝐴 − 𝜆𝐼 )𝑥 = 0 iff
det(𝐴 − 𝜆𝐼 ) = 0.

Proof. The complex number 𝜆 is an eigenvalue of 𝐴 iff we have a nonzero vector
𝑣 ∈ C𝑛×1 such that 𝐴𝑣 = 𝜆𝑣 iff (𝐴 − 𝜆𝐼 )𝑣 = 0 and 𝑣 ≠ 0 iff 𝐴 − 𝜆𝐼 is not invertible
iff det(𝐴 − 𝜆𝐼 ) = 0.

115
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5.2 Characteristic polynomial
The polynomial det(𝐴−𝑡𝐼 ) is called the characteristic polynomial of the matrix𝐴.
Thus any complex number 𝜆 that satisfies the characteristic polynomial of a matrix
𝐴, is an eigenvalue of 𝐴.

Since the characteristic polynomial of a matrix 𝐴 of order 𝑛 is a polynomial of
degree 𝑛 in 𝑡, it has exactly 𝑛, not necessarily distinct, complex zeros. And these
are the eigenvalues of 𝐴. Notice that, here, we are using the fundamental theorem
of algebra which says that each polynomial of degree 𝑛 with complex coefficients
can be factored into exactly 𝑛 linear factors.

(5.3) Example
Find the eigenvalues and corresponding eigenvectors of the matrix

𝐴 =


1 0 0
1 1 0
1 1 1

 .
The characteristic polynomial is

det(𝐴 − 𝑡𝐼 ) =
1 − 𝑡 0 0

1 1 − 𝑡 0
1 1 1 − 𝑡

= (1 − 𝑡)3.

Thus, 1 is the only eigenvalue of 𝐴.
To get an eigenvector, we solve 𝐴

[
𝑎 𝑏 𝑐

]𝑇
= 1

[
𝑎 𝑏 𝑐

]𝑇 or that

𝑎 = 𝑎, 𝑎 + 𝑏 = 𝑏, 𝑎 + 𝑏 + 𝑐 = 𝑐.

It gives 𝑎 = 𝑏 = 0 and 𝑐 ∈ F can be arbitrary. Since an eigenvector is nonzero, all
the eigenvectors are given by

[
0 0 𝑐

]𝑇
, for any 𝑐 ≠ 0.

The eigenvalue 𝜆 being a zero of the characteristic polynomial has certain mul-
tiplicity. That is, the maximum 𝑘 such that (𝑡 − 𝜆)𝑘 divides the characteristic
polynomial is called the algebraic multiplicity of the eigenvalue 𝜆.

In (5.3), the algebraic multiplicity of the eigenvalue 1 is 3.

(5.4) Example

For 𝐴 =

[
0 1
−1 0

]
, the characteristic polynomial is 𝑡2 + 1. It has eigenvalues as 𝑖 and
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−𝑖 . The corresponding eigenvectors are obtained by solving

𝐴
[
𝑎 𝑏

]𝑇
= 𝑖

[
𝑎 𝑏

]𝑇 and 𝐴
[
𝑎 𝑏

]𝑇
= −𝑖

[
𝑎 𝑏

]𝑇
.

For 𝜆 = 𝑖, we have 𝑏 = 𝑖𝑎,−𝑎 = 𝑖𝑏. Thus,
[
𝑎 𝑖𝑎

]𝑇 is an eigenvector for 𝑎 ≠ 0.
For the eigenvalue −𝑖, the eigenvectors are

[
𝑎 − 𝑖𝑎

]
for 𝑎 ≠ 0.

Here, algebraic multiplicity of each eigenvalue is 1.

If a matrix of order 𝑛 has only real entries, then its characteristic polynomial has
only real coefficients. Then complex zeros of the characteristic polynomial occur
in conjugate pairs. That is, if 𝛼 + 𝑖𝛽 is an eigenvalue of a matrix with real entries,
where 𝛽 ≠ 0, then 𝛼 − 𝑖𝛽 is also an eigenvalue of this matrix.

We say that 𝐴, 𝐵 ∈ C𝑛×𝑛 are similar iff there exists an invertible matrix 𝑃 ∈ C𝑛×𝑛
such that 𝐵 = 𝑃−1𝐴𝑃. Some easy consequences of our definition are listed in the
following theorem.

(5.5) Theorem
(1) A matrix and its transpose have the same eigenvalues.

(2) Similar matrices have the same eigenvalues.

(3) The diagonal entries of any triangular matrix are precisely its eigenvalues.

Proof. (1) det(𝐴𝑇 − 𝑡𝐼 ) = det((𝐴 − 𝑡𝐼 )𝑇 ) = det(𝐴 − 𝑡𝐼 ).
(2) det(𝑃−1𝐴𝑃−𝑡𝐼 ) = det(𝑃−1(𝐴−𝑡𝐼 )𝑃) = det(𝑃−1)det(𝐴−𝑡𝐼 )det(𝑃) = det(𝐴−𝑡𝐼 ).
(3) If 𝐴 is triangular, then det(𝐴 − 𝑡𝐼 ) = (𝑎11 − 𝑡) · · · (𝑎𝑛𝑛 − 𝑡).

(5.6) Theorem
det(𝐴) equals the product and tr(𝐴) equals the sum of all eigenvalues of 𝐴.

Proof. Let 𝜆1, . . . , 𝜆𝑛 be the eigenvalues of 𝐴, not necessarily distinct. Now,

det(𝐴 − 𝑡𝐼 ) = (𝜆1 − 𝑡) · · · (𝜆𝑛 − 𝑡) .

Put 𝑡 = 0. It gives det(𝐴) = 𝜆1 · · · 𝜆𝑛 .
Expand det(𝐴 − 𝑡𝐼 ) and equate the coefficients of 𝑡𝑛−1 to get

Coeff of 𝑡𝑛−1 in det(𝐴 − 𝑡𝐼 ) = Coeff of 𝑡𝑛−1 in (𝑎11 − 𝑡) · 𝐴11
= · · · = Coeff of 𝑡𝑛−1 in (𝑎11 − 𝑡) · (𝑎22 − 𝑡) · · · (𝑎𝑛𝑛 − 𝑡) = (−1)𝑛−1tr(𝐴).

But Coeff of 𝑡𝑛−1 in (𝜆1 − 𝑡) · · · (𝜆𝑛 − 𝑡) is (−1)𝑛−1 ·∑ 𝜆𝑖 .

(5.7) Theorem (Caley-Hamilton)
Any square matrix satisfies its characteristic polynomial.
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Proof. Let𝐴 ∈ C𝑛×𝑛 . Let 𝑝 (𝑡) = 𝑐0+𝑐1𝑡 +· · ·+𝑐𝑛𝑡𝑛 be the characteristic polynomial
of 𝐴. We show that 𝑝 (𝐴) = 0, the zero matrix. (3.6-15) with the matrix 𝐴 − 𝑡 𝐼 says
that

𝑝 (𝑡) 𝐼 = det(𝐴 − 𝑡𝐼 ) 𝐼 =
[
adj (𝐴 − 𝑡𝐼 )

]
(𝐴 − 𝑡𝐼 ).

The entries in adj (𝐴 − 𝑡𝐼 ) are polynomials in 𝑡 of degree at most 𝑛 − 1. Write

adj (𝐴 − 𝑡𝐼 ) := 𝐵0 + 𝑡𝐵1 + · · · + 𝑡𝑛−1𝐵𝑛−1,

where 𝐵0, . . . , 𝐵𝑛−1 ∈ C𝑛×𝑛 . Then

𝑐0𝐼 + 𝑐1𝐼𝑡 + · · · + 𝑐𝑛𝐼𝑡𝑛 = 𝑝 (𝑡)𝐼 = (𝐵0 + 𝑡𝐵1 + · · · 𝑡𝑛−1𝐵𝑛−1) (𝐴 − 𝑡 𝐼 ).

Comparing the coefficients of 𝑡𝑘 , we obtain

𝑐0𝐼 = 𝐵0𝐴, 𝑐1𝐼 = 𝐵1𝐴 − 𝐵0, . . . , 𝑐𝑛−1𝐼 = 𝐵𝑛−1𝐴 − 𝐵𝑛−2, 𝑐𝑛𝐼 = −𝐵𝑛−1.

Then, substituting these values in 𝑝 (𝐴), we have

𝑝 (𝐴) = 𝑐0𝐼 + 𝑐1𝐴 + · · · + 𝑐𝑛𝐴𝑛 = 𝑐0𝐼 + 𝑐1𝐼𝐴 + · · · + 𝑐𝑛𝐼𝐴𝑛

= 𝐵0𝐴 + (𝐵1𝐴 − 𝐵0)𝐴 + · · · + (𝐵𝑛−1𝐴 − 𝐵𝑛−2)𝐴𝑛−1 − 𝐵𝑛−1𝐴
𝑛 = 0.

Suppose a matrix 𝐴 ∈ C𝑛×𝑛 has the characteristic polynomial

𝑎0 + 𝑎1𝑡 + · · · + 𝑎𝑛−1𝑡
𝑛−1 + (−1)𝑛𝑡𝑛 .

By Cayley-Hamilton theorem, 𝑎0𝐼 + 𝑎1𝐴 + · · · + (−1)𝑛𝐴𝑛 = 0. Then

𝐴𝑛 = (−1)𝑛−1 (𝑎0𝐼 + 𝑎1𝐴 + · · · + 𝑎𝑛−1𝐴
𝑛−1) .

Thus, computation of 𝐴𝑛, 𝐴𝑛+1, . . . can be reduced to computing 𝐴, 𝐴2, . . . , 𝐴𝑛−1.

A similar approach shows that the inverse of a matrix can be expressed as a
polynomial in the matrix. If 𝐴 is invertible, then det(𝐴) ≠ 0; so that 0 is not an
eigenvalue of 𝐴. That is, 𝑎0 ≠ 0. Then

𝑎0𝐼 +𝐴
(
𝑎1𝐼 + · · · + 𝑎𝑛−1𝐴

𝑛−2 + (−1)𝑛𝐴𝑛−1) = 0.

Multiplying 𝐴−1 and simplifying, we obtain

𝐴−1 = − 1
𝑎0

(
𝑎1𝐼 + 𝑎2𝐴 + · · · + 𝑎𝑛−1𝐴

𝑛−2 + (−1)𝑛𝐴𝑛−1) .
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5.3 Inner product and norm of vectors
The inner product of two vectors 𝑢 = (𝑎1, . . . , 𝑎𝑛) and 𝑣 = (𝑏1, . . . , 𝑏𝑛) in F𝑛 is
defined as

⟨𝑢, 𝑣⟩ = 𝑎1𝑏1 + · · · + 𝑎𝑛𝑏𝑛 .
In particular, if F = R, then 𝑢, 𝑣 ∈ R𝑛 and 𝑏𝑖 = 𝑏𝑖 so that

⟨𝑢, 𝑣⟩ = 𝑎1𝑏1 + · · · + 𝑎𝑛𝑏𝑛 .

For instance, if 𝑢 = (1, 2, 3) ∈ R3 and 𝑣 = (2, 1, 3) ∈ R3, then their inner product is

⟨𝑢, 𝑣⟩ = 1 × 2 + 2 × 1 + 3 × 3 = 13.

If 𝑥 = (1 + 𝑖, 2 − 𝑖, 1) ∈ C3 and 𝑦 = (1 − 𝑖, 1 + 𝑖, 1) ∈ C3, then their inner product is

⟨𝑥,𝑦⟩ = (1 + 𝑖) (1 + 𝑖) + (2 − 𝑖) (1 − 𝑖) + 1 × 1 = 2 − 𝑖 .

Notice that the inner product of two vectors in F𝑛 is a scalar.
When we consider row or column vectors, their inner product can be given via

matrix multiplication.
Let 𝑢, 𝑣 ∈ F1×𝑛. Then ⟨𝑢, 𝑣⟩ = 𝑢𝑣∗.

Reason: Suppose 𝑢 =
[
𝑎1 · · · 𝑎𝑛

]
and 𝑣 =

[
𝑏1 · · · 𝑏𝑛

]
. Then

𝑢𝑣∗ =
[
𝑎1 · · · 𝑎𝑛

] 
𝑏1
...

𝑏𝑛

 = 𝑎1𝑏1 + · · · + 𝑎𝑛𝑏𝑛 = ⟨𝑢, 𝑣⟩.

In particular, if 𝑢, 𝑣 ∈ R1×𝑛 then ⟨𝑢, 𝑣⟩ = 𝑢𝑣𝑇 .
Similarly, if 𝑢, 𝑣 ∈ F𝑛×1 then ⟨𝑢, 𝑣⟩ = 𝑣∗𝑢.

Verification: Suppose 𝑢 =


𝑎1
...

𝑎𝑛

 and 𝑣 =


𝑏1
...

𝑏𝑛

 . Then

𝑣∗𝑢 =
[
𝑏1 · · · 𝑏𝑛

] 
𝑎1
...

𝑎𝑛

 = 𝑏1𝑎1 + · · · + 𝑏𝑛𝑎𝑛 = ⟨𝑢, 𝑣⟩.

In particular, when 𝑢, 𝑣 ∈ R𝑛×1, ⟨𝑢, 𝑣⟩ = 𝑣𝑇𝑢.
The inner product satisfies the following properties:

For 𝑥,𝑦, 𝑧 ∈ F𝑛 and 𝛼, 𝛽 ∈ F,
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1. ⟨𝑥, 𝑥⟩ ≥ 0.
2. ⟨𝑥, 𝑥⟩ = 0 iff 𝑥 = 0.
3. ⟨𝑥,𝑦⟩ = ⟨𝑦, 𝑥⟩.
4. ⟨𝑥 + 𝑦, 𝑧⟩ = ⟨𝑥, 𝑧⟩ + ⟨𝑦, 𝑧⟩.
5. ⟨𝑧, 𝑥 + 𝑦⟩ = ⟨𝑧, 𝑥⟩ + ⟨𝑧,𝑦⟩.
6. ⟨𝛼𝑥,𝑦⟩ = 𝛼 ⟨𝑥,𝑦⟩.
7. ⟨𝑥, 𝛽𝑦⟩ = 𝛽 ⟨𝑥,𝑦⟩.

The inner product gives rise to the length of a vector as in the familiar case of
R1×3. We now call the generalized version of length as the norm. If 𝑢 ∈ F𝑛, we
define its norm, denoted by ∥𝑢∥ as the nonnegative square root of ⟨𝑢,𝑢⟩. That is,
∥𝑢∥ =

√︁
⟨𝑢,𝑢⟩.

Thus, if 𝑢 = (𝑎1, . . . , 𝑎𝑛) ∈ F𝑛, then ∥𝑢∥ =
√︁
|𝑎1 |2 + · · · + |𝑎𝑛 |2.

In particular, when 𝑢 = (𝑎, . . . , 𝑎𝑛) ∈ R𝑛, we have ∥𝑢∥ =
√︃
𝑎2

1 + · · · + 𝑎
2
𝑛.

Using matrix product, we may write the norm as follows:

If 𝑢 ∈ R1×𝑛, then ∥𝑢∥ =
√
𝑢𝑢𝑇 . If 𝑢 ∈ R𝑛×1, then ∥𝑢∥ =

√
𝑢𝑇𝑢.

If 𝑢 ∈ C1×𝑛, then ∥𝑢∥ =
√
𝑢𝑢∗. If 𝑢 ∈ C𝑛×1, then ∥𝑢∥ =

√
𝑢∗𝑢.

The norm satisfies the following properties:

For 𝑥,𝑦 ∈ F𝑛 and 𝛼 ∈ F,

1. ∥𝑥 ∥ ≥ 0.
2. ∥𝑥 ∥ = 0 iff 𝑥 = 0.
3. ∥𝛼𝑥 ∥ = |𝛼 | ∥𝑥 ∥.
4. |⟨𝑥,𝑦⟩| ≤ ∥𝑥 ∥ ∥𝑦∥. (Cauchy-Schwartz inequality)
5. ∥𝑥 + 𝑦∥ ≤ ∥𝑥 ∥ + ∥𝑦∥. (Triangle inequality)

A proof of Cauchy-Schwartz inequality goes as follows:

If 𝑦 = 0, then the inequality clearly holds. Else, ⟨𝑦,𝑦⟩ ≠ 0. Write 𝛼 =
⟨𝑥,𝑦⟩
⟨𝑦,𝑦⟩ . Then

𝛼 =
⟨𝑦,𝑥⟩
⟨𝑦,𝑦⟩ and 𝛼 ⟨𝑥,𝑦⟩ = |𝛼 |2∥𝑦∥2. Then

0 ≤ ⟨𝑥 − 𝛼𝑦, 𝑥 − 𝛼𝑦⟩ = ⟨𝑥, 𝑥⟩ − 𝛼 ⟨𝑥,𝑦⟩ + 𝛼
(
𝛼 ⟨𝑦,𝑦⟩ − ⟨𝑦, 𝑥⟩

)
= ∥𝑥 ∥2 − 𝛼 ⟨𝑥,𝑦⟩ = ∥𝑥 ∥2 − |𝛼 |2∥𝑦∥2 = ∥𝑥 ∥2 − |⟨𝑥,𝑦⟩|

2

∥𝑦∥4
∥𝑦∥2.

The triangle inequality can be proved using Cauchy-Schwartz, as in the following:

∥𝑥 +𝑦∥2 = ⟨𝑥 +𝑦, 𝑥 +𝑦⟩ = ∥𝑥 ∥2 + ∥𝑦∥2 + ⟨𝑥,𝑦⟩ + ⟨𝑦, 𝑥⟩ ≤ ∥𝑥 ∥2 + ∥𝑦∥2 + 2∥𝑥 ∥ ∥𝑦∥.
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Let 𝑥,𝑦 ∈ F𝑛 . We say that the vectors 𝑥 and 𝑦 are orthogonal, and we write this
as 𝑥 ⊥ 𝑦, when ⟨𝑥,𝑦⟩ = 0. That is,

𝑥 ⊥ 𝑦 iff ⟨𝑥,𝑦⟩ = 0.

It follows that if 𝑥 ⊥ 𝑦, then ∥𝑥 ∥2+∥𝑦∥2 = ∥𝑥+𝑦∥2. This is referred to as Pythagoras
law. The converse of Pythagoras law holds when F = R, but fails in general for
F = C.

Adjoints of matrices behave in a very predictable way with the inner product.

(5.8) Theorem
Let 𝐴 ∈ F𝑚×𝑛, 𝑥 ∈ F𝑛×1, and let 𝑦 ∈ F𝑚×1. Then

⟨𝐴𝑥,𝑦⟩ = ⟨𝑥,𝐴∗𝑦⟩ and ⟨𝐴∗𝑦, 𝑥⟩ = ⟨𝑦,𝐴𝑥⟩.

Proof. Recall that in F𝑟×1, ⟨𝑢, 𝑣⟩ = 𝑣∗𝑢. Further, 𝐴𝑥 ∈ F𝑚×1 and 𝐴∗𝑦 ∈ F𝑛×1. We
are using the same notation for both the inner products in F𝑚×1 and in F𝑛×1. We then
have

⟨𝐴𝑥,𝑦⟩ = 𝑦∗𝐴𝑥 = (𝐴∗𝑦)∗𝑥 = ⟨𝑥,𝐴∗𝑦⟩.

The second equality follows from the first.

Often the definition of an adjoint is taken using the identity: ⟨𝐴𝑥,𝑦⟩ = ⟨𝑥,𝐴∗𝑦⟩.
We show that unitary or orthogonal matrices preserve inner product and also the

norm.

(5.9) Theorem
Let 𝐴 ∈ C𝑛×𝑛 be a unitary or an orthogonal matrix.

(1) For each pair of vectors 𝑥,𝑦, ⟨𝐴𝑥,𝐴𝑦⟩ = ⟨𝑥,𝑦⟩. In particular, ∥𝐴𝑥 ∥ = ∥𝑥 ∥
for any 𝑥 .

(2) The columns of 𝐴 are orthogonal and each is of norm 1.

(3) The rows of 𝐴 are orthogonal, and each is of norm 1.

Proof. (1) ⟨𝐴𝑥,𝐴𝑦⟩ = ⟨𝑥,𝐴∗𝐴𝑦⟩ = ⟨𝑥,𝑦⟩. Take 𝑥 = 𝑦 for the second equality.

(2) Since 𝐴∗𝐴 = 𝐼 , the 𝑖th row of 𝐴∗ multiplied with the 𝑗 th column of 𝐴 gives 𝛿𝑖 𝑗 .
However, this product is simply the inner product of the 𝑗 th column of 𝐴 with the
𝑖th column of 𝐴.

(3) It follows from (2). Also, considering 𝐴𝐴∗ = 𝐼 , we get this result.
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5.4 Gram-Schmidt orthogonalization
Linear independence of a finite list of vectors can be determined using the inner
product.

Let 𝑣1, . . . , 𝑣𝑛 ∈ F𝑛 . We say that these vectors are orthogonal iff ⟨𝑣𝑖, 𝑣 𝑗 ⟩ = 0 for
all pairs of indices 𝑖, 𝑗 with 𝑖 ≠ 𝑗 .

Orthogonality is stronger than linear independence, as the following theorem
shows.

(5.10) Theorem
Any orthogonal list of nonzero vectors in F𝑛 is linearly independent.

Proof. Let 𝑣1, . . . , 𝑣𝑛 ∈ F𝑛 be nonzero vectors. For scalars 𝑎1, . . . , 𝑎𝑛, let

𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 = 0.

Take inner product of both the sides with 𝑣1. Since ⟨𝑣𝑖, 𝑣1⟩ = 0 for each 𝑖 ≠ 1, we
obtain ⟨𝑎1𝑣1, 𝑣1⟩ = 0. But ⟨𝑣1, 𝑣1⟩ ≠ 0. Therefore, 𝑎1 = 0. Similarly, it follows that
each 𝑎𝑖 = 0.

It will be convenient to use the following terminology. We denote the set of all
linear combinations of vectors 𝑣1, . . . , 𝑣𝑚 by span(𝑣1, . . . , 𝑣𝑚); and read it as the span
of the vectors 𝑣1, . . . , 𝑣𝑚 .

Our procedure, called Gram-Schmidt orthogonalization, constructs orthogonal
vectors 𝑣1, . . . , 𝑣𝑘 from the given vectors 𝑢1, . . . , 𝑢𝑚 so that

span(𝑣1, . . . , 𝑣𝑘) = span(𝑢1, . . . , 𝑢𝑚), 𝑘 ≤ 𝑚.

It is described in (5.11) below. First, let us see how we proceed.
Given two linearly independent vectors 𝑢1, 𝑢2 on the plane how do we construct

two orthogonal vectors?
Keep 𝑣1 = 𝑢1. Take out the projection of 𝑢2 on 𝑢1 to get 𝑣2. Now, 𝑣2 ⊥ 𝑣1.

What is the projection of 𝑢2 on 𝑢1?
Its length is ⟨𝑢2, 𝑢1⟩. Its direction is that of 𝑢1, i.e., 𝑢1/∥𝑢1∥.

Thus 𝑣1 = 𝑢1, 𝑣2 = 𝑢2 −
⟨𝑢2, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1.

We may continue this process of taking out projections in 𝑛 dimensions.
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(5.11) Theorem
Let 𝑢1, 𝑢2, . . . , 𝑢𝑚 ∈ F𝑛 . Define

𝑣1 = 𝑢1

𝑣2 = 𝑢2 −
⟨𝑢2, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1

...

𝑣𝑚 = 𝑢𝑚 −
⟨𝑢𝑚, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1 − · · · −
⟨𝑢𝑚, 𝑣𝑚−1⟩
⟨𝑣𝑚−1, 𝑣𝑚−1⟩

𝑣𝑚−1

In the above process, if 𝑣𝑖 = 0, then both𝑢𝑖 and 𝑣𝑖 are ignored for the rest of the steps.
After ignoring such 𝑢𝑖s and 𝑣𝑖s suppose we obtain the vectors as 𝑣 𝑗1, . . . , 𝑣 𝑗𝑘 . Then
𝑣 𝑗1, . . . , 𝑣 𝑗𝑘 are orthogonal and span(𝑣 𝑗1, . . . , 𝑣 𝑗𝑘) = span{𝑢1, 𝑢2, . . . , 𝑢𝑚}. Further, if
𝑣𝑖 = 0 for 𝑖 > 1, then 𝑢𝑖 ∈ span{𝑢1, . . . , 𝑢𝑖−1}.

Proof Outline: We verify algebraically our geometric intuition:

𝑣1 = 𝑢1, 𝑣2 = 𝑢2 −
⟨𝑢2, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1.

Hence ⟨𝑣2, 𝑣1⟩ =
〈
𝑢2 −

⟨𝑢2, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1, 𝑣1
〉
= ⟨𝑢2, 𝑣1⟩ −

⟨𝑢2, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

⟨𝑣1, 𝑣1⟩ = 0.

If 𝑣2 = 0, then 𝑢2 is a scalar multiple of 𝑢1. If 𝑣2 ≠ 0, then 𝑢1, 𝑢2 are linearly
independent.

Similar to our verification of 𝑣2 ⊥ 𝑣1, we can prove that 𝑣𝑖+1 is orthogonal to
𝑣1, . . . , 𝑣𝑖 for each 𝑖 ≥ 1, by using induction.

We need to prove that both the sets spans the same set. Notice that

If𝑥1, . . . , 𝑥𝑟 ∈ span(𝑦1, . . . , 𝑦𝑠), then span(𝑥1, . . . , 𝑥𝑟 ) ⊆ span(𝑦1, . . . , 𝑦𝑠).

For, if 𝑣 = 𝛼1𝑥1 + · · · + 𝛼𝑟𝑥𝑟 and 𝑥𝑖 = 𝑎𝑖1𝑣1 + · · ·𝑎𝑖𝑠𝑣𝑠 , then substituting for each 𝑥𝑖

in the previous expression and combining terms, we get

𝑣 =

𝑠∑︁
𝑖=1
(𝛼1𝑎1𝑖 + · · · + 𝛼𝑟𝑎𝑟𝑖)𝑣𝑖 ∈ span(𝑣1, . . . , 𝑣𝑠).

If𝑢𝑖 is a linear combination of𝑢1, . . . , 𝑢𝑖−1, then span(𝑢1, . . . , 𝑢𝑖−1) = span(𝑢1, . . . , 𝑢𝑖).
Now observe inductively that 𝑣1, . . . , 𝑣𝑖 ∈ span(𝑢1, . . . , 𝑢𝑖).
From the algorithm, it can also be observed, using induction, that 𝑢1, . . . , 𝑢𝑖 ∈

span(𝑣1, . . . , 𝑣𝑖).
Therefore, we get span(𝑢1, . . . , 𝑢𝑖) = span(𝑣1, . . . , 𝑣𝑖) for each 𝑖 ≥ 1.
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(5.12) Example
Consider the vectors 𝑢1 = (1, 0, 0), 𝑢2 = (1, 1, 0) and 𝑢3 = (1, 1, 1). Apply Gram-
Schmidt Orthogonalization.

𝑣1 = (1, 0, 0).

𝑣2 = 𝑢2 −
⟨𝑢2, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1 = (1, 1, 0) − (1, 1, 0) · (1, 0, 0)(1, 0, 0) · (1, 0, 0) (1, 0, 0)

= (1, 1, 0) − 1 (1, 0, 0) = (0, 1, 0).

𝑣3 = 𝑢3 −
⟨𝑢3, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1 −
⟨𝑢3, 𝑣2⟩
⟨𝑣2, 𝑣2⟩

𝑣2

= (1, 1, 1) − (1, 1, 1) · (1, 0, 0) (1, 0, 0) − (1, 1, 1) · (0, 1, 0) (0, 1, 0)
= (1, 1, 1) − (1, 0, 0) − (0, 1, 0) = (0, 0, 1).

The set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is orthogonal; and span of the new vectors is the
same as span of the old ones, which is R3.

(5.13) Example
The vectors 𝑢1 = (1, 1, 0), 𝑢2 = (0, 1, 1), 𝑢3 = (1, 0, 1) form a basis for F3. Apply
Gram-Schmidt Orthogonalization.

𝑣1 = (1, 1, 0).

𝑣2 = 𝑢2 −
⟨𝑢2, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1 = (0, 1, 1) − (0, 1, 1) · (1, 1, 0)(1, 1, 0) · (1, 1, 0) (1, 1, 0)

= (0, 1, 1) − 1
2
(1, 1, 0) =

(
− 1

2
,
1
2
, 1
)
.

𝑣3 = 𝑢3 −
⟨𝑢3, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1 −
⟨𝑢3, 𝑣2⟩
⟨𝑣2, 𝑣2⟩

𝑣2

= (1, 0, 1) − (1, 0, 1) · (1, 1, 0) (1, 1, 0) − (1, 0, 1) ·
(
− 1

2
,
1
2
, 1
) (
− 1

2
,
1
2
, 1
)

= (1, 0, 1) − 1
2
(1, 1, 0) − 1

3

(
− 1

2
,
1
2
, 1
)
=

(
− 2

3
,
2
3
,−2

3

)
.

The set
{
(1, 1, 0),

(
− 1

2
,
1
2
, 1
)
,

(
− 2

3
,
2
3
,−2

3

)}
is orthogonal.

(5.14) Example
Use Gram-Schmidt orthogonalization on the vectors𝑢1 = (1, 1, 0, 1),𝑢2 = (0, 1, 1,−1)
and 𝑢3 = (1, 3, 2,−1).
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𝑣1 = (1, 1, 0, 1).

𝑣2 = 𝑢2 −
⟨𝑢2, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1 = (0, 1, 1,−1) − ⟨(0, 1, 1,−1), (1, 1, 0, 1)⟩
⟨(1, 1, 0, 1), (1, 1, 0, 1)⟩ (1, 1, 0, 1) = (0, 1, 1,−1).

𝑣3 = 𝑢3 −
⟨𝑢3, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1 −
⟨𝑢3, 𝑣2⟩
⟨𝑣2, 𝑣2⟩

𝑣2

= (1, 3, 2,−1) − ⟨(1, 3, 2,−1), (1, 1, 0, 1)⟩
⟨(1, 1, 0, 1), (1, 1, 0, 1)⟩ (1, 1, 0, 1)

− ⟨(1, 3, 2,−1), (0, 1, 1,−1)⟩
⟨(0, 1, 1,−1), (0, 1, 1,−1)⟩ (0, 1, 1,−1)

= (1, 3, 2,−1) − (1, 1, 0, 1) − 2(0, 1, 1,−1) = (0, 0, 0, 0).

Notice that since 𝑢1, 𝑢2 are already orthogonal, Gram-Schmidt process returned
𝑣2 = 𝑢2. Next, the process also revealed the fact that 𝑢3 = 𝑢1 + 2𝑢2.

(5.15) Example
Use Gram-Schmidt orthogonalization on the vectors𝑢1 = (1, 2, 2, 1), 𝑢2 = (2, 1, 0,−1),
𝑢3 = (4, 5, 4, 1) and 𝑢4 = (5, 4, 2,−1).

𝑣1 = (1, 2, 2, 1) .

𝑣2 = (2, 1, 0,−1) − ⟨(2, 1, 0,−1), (1, 2, 2, 1)⟩
⟨(1, 2, 2, 1), (1, 2, 2, 1)⟩ (1, 2, 2,−1) =

(17
10

,
2
5
,−3

5
,−13

10

)
.

𝑣3 = (4, 5, 4, 1) −
⟨(4, 5, 4, 1), (1, 2, 2, 1)⟩
⟨(1, 2, 2, 1), (1, 2, 2, 1)⟩ (1, 2, 2, 1)

−
⟨(4, 5, 4, 1), ( 32 , 0,−1, 1

2 )⟩

⟨
(

17
10 ,

2
5 ,−

3
5 ,−

13
10

)
,

(
17
10 ,

2
5 ,−

3
5 ,−

13
10

)
⟩

(17
10

,
2
5
,−3

5
,−13

10

)
= (0, 0, 0, 0).

So, we ignore 𝑣3, 𝑢3 and note that 𝑢3 is a linear combination of 𝑢1, 𝑢2; and hence,
a linear combination of 𝑣1, 𝑣2. Next, we compute

𝑣4 = 𝑢4 −
⟨𝑢4, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1 −
⟨𝑢4, 𝑣2⟩
⟨𝑣2, 𝑣2⟩

𝑣2 = 0.

Now, 𝑢4 is a linear combination of 𝑢1, 𝑢2, and thus, it is a linear combination of
𝑣1, 𝑣2. In fact,𝑢3 = 2𝑢1+𝑢2 and𝑢4 = 𝑢1+2𝑢2. So, 𝑣1 ⊥ 𝑣2 and span(𝑢1, 𝑢2, 𝑢3, 𝑢4) =
span(𝑣1, 𝑣2).
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5.5 Hermitian and unitary matrices
Recall that a hermitian matrix is one for which the adjoint coincides with itself,
and a unitary matrix is one for which its adjoint coincides with its inverse. Real
hermitian matrices are called real symmetric matrices and real unitary matrices are
called orthogonal matrices. If 𝐴 is an orthogonal matrix, then each column of it is
orthogonal to any other column. For example, the rotation in the plane given by[

cos𝜃 − sin𝜃
sin𝜃 cos𝜃

]
for any real number 𝜃 is an orthogonal matrix. It can be shown that any orthogonal
2×2 matrix is a rotation combined with a reflection on a straight line. Similarly, any
orthogonal matrix in the three dimensional euclidean space is a rotation combined
with a reflection on a plane.

(5.16) Theorem
Let 𝐴 ∈ C𝑛×𝑛 . Let 𝜆 be any eigenvalue of 𝐴.

(1) If 𝐴 is hermitian or real symmetric, then 𝜆 ∈ R.
(2) If𝐴 is skew-hermitian or skew-symmetric, then 𝜆 is purely imaginary or zero.
(3) If 𝐴 is unitary or orthogonal, then |𝜆 | = 1.

Proof. Let 𝜆 ∈ C be an eigenvalue of 𝐴 with an eigenvector 𝑣 ∈ C𝑛×1. Now,
𝐴𝑣 = 𝜆𝑣 and 𝑣 ≠ 0. Pre-multiplying with 𝑣∗, we have 𝑣∗𝐴𝑣 = 𝜆𝑣∗𝑣 ∈ C. Taking
adjoint, we obtain: 𝑣∗𝐴∗𝑣 = 𝜆𝑣∗𝑣 .

(1) Let 𝐴 be hermitian, i.e., 𝐴∗ = 𝐴. Then 𝜆𝑣∗𝑣 = 𝑣∗𝐴∗𝑣 = 𝑣∗𝐴𝑣 = 𝜆𝑣∗𝑣 .

Since 𝑣∗𝑣 ≠ 0, 𝜆 = 𝜆. That is, 𝜆 is real.

(2) When 𝐴 is skew-hermitian, 𝐴∗ = −𝐴. Then 𝜆𝑣∗𝑣 = 𝑣∗𝐴∗𝑣 = −𝑣∗𝐴𝑣 = −𝜆𝑣∗𝑣 .
Since 𝑣∗𝑣 ≠ 0, 𝜆 = −𝜆. That is, 2Re(𝜆) = 0. So, 𝜆 is purely imaginary or zero.

(3) Let 𝐴 be unitary, i.e., 𝐴∗𝐴 = 𝐼 . Now, 𝐴𝑣 = 𝜆𝑣 . Taking adjoint, we have
𝑣∗𝐴∗ = 𝜆𝑣∗. Then 𝑣∗𝑣 = 𝑣∗𝐼𝑣 = 𝑣∗𝐴∗𝐴𝑣 = 𝜆𝜆𝑣∗𝑣 = |𝜆 |2𝑣∗𝑣 . Since 𝑣∗𝑣 ≠ 0, |𝜆 | = 1.

Not only each eigenvalue of a real symmetric matrix is real, but also a corre-
sponding real eigenvector can be chosen. It follows from the general fact that if
a real matrix has a real eigenvalue, then there exists a corresponding real eigen-
vector. To see this, let 𝐴 ∈ R𝑛×𝑛 have a real eigenvalue 𝜆 with corresponding
eigenvector 𝑣 = 𝑥 + 𝑖𝑦, where 𝑥,𝑦 ∈ R𝑛×1. Comparing the real and imaginary parts
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in 𝐴(𝑥 + 𝑖𝑦) = 𝜆(𝑥 + 𝑖𝑦), we have 𝐴𝑥 = 𝜆𝑥 and 𝐴𝑦 = 𝜆𝑦. Since 𝑥 + 𝑖𝑦 ≠ 0, at least
one of 𝑥 or 𝑦 is nonzero. Such a nonzero vector is a real eigenvector corresponding
to the eigenvalue 𝜆 of 𝐴.

5.6 Diagonalization

(5.17) Theorem
Eigenvectors corresponding to distinct eigenvalues of a square matrix are linearly
independent.

Proof. Let 𝜆1, . . . , 𝜆𝑚 be all the distinct eigenvalues of 𝐴 ∈ C𝑛×𝑛 . Let 𝑣1, . . . , 𝑣𝑚 be
corresponding eigenvectors. We use induction on 𝑖 ∈ {1, . . . ,𝑚}.

For 𝑖 = 1, since 𝑣1 ≠ 0, {𝑣1} is linearly independent.
Induction Hypothesis: for 𝑖 = 𝑘 suppose {𝑣1, . . . , 𝑣𝑘} is linearly independent. We

use the characterization of linear independence as proved in (3.4).
The induction hypothesis implies that if we equate any linear combination of

𝑣1, . . . , 𝑣𝑘 to 0, then the coefficients in the linear combination must all be 0. Now,
for 𝑖 = 𝑘 + 1, we want to show that 𝑣1, . . . , 𝑣𝑘 , 𝑣𝑘+1 are linearly independent. So, we
start equating an arbitrary linear combination of these vectors to 0. Our aim is to
derive that each scalar coefficient in such a linear combination must be 0. Towards
this, assume that

𝛼1𝑣1 + 𝛼2𝑣2 + · · · + 𝛼𝑘𝑣𝑘 + 𝛼𝑘+1𝑣𝑘+1 = 0. (5.6.1)

Then, 𝐴(𝛼1𝑣1 + 𝛼2𝑣2 + · · · + 𝛼𝑘𝑣𝑘 + 𝛼𝑘+1𝑣𝑘+1) = 0. Since 𝐴𝑣 𝑗 = 𝜆 𝑗𝑣 𝑗 , we have

𝛼1𝜆1𝑣1 + 𝛼2𝜆2𝑣2 + · · · + 𝛼𝑘𝜆𝑘𝑣𝑘 + 𝛼𝑘+1𝜆𝑘+1𝑣𝑘+1 = 0. (5.6.2)

Multiply (5.6.1) with 𝜆𝑘+1. Subtract from (5.6.2) to get:

𝛼1(𝜆1 − 𝜆𝑘+1)𝑣1 + · · · + 𝛼𝑘 (𝜆𝑘 − 𝜆𝑘+1)𝑣𝑘 = 0.

By the Induction Hypothesis, 𝛼 𝑗 (𝜆 𝑗 − 𝜆𝑘+1) = 0 for each 𝑗 = 1, . . . , 𝑘 . Since
𝜆1, . . . , 𝜆𝑘+1 are distinct, we conclude that 𝛼1 = · · · = 𝛼𝑘 = 0. Then, from (5.6.1), it
follows that 𝛼𝑘+1𝑣𝑘+1 = 0. As 𝑣𝑘+1 ≠ 0, we have 𝛼𝑘+1 = 0.

Suppose an 𝑛 ×𝑛 matrix𝐴 has 𝑛 linearly independent eigenvectors 𝑣1, . . . , 𝑣𝑛. Let
𝜆1, . . . , 𝜆𝑛 be the corresponding eigenvalues. We find that

𝐴𝑣1 = 𝜆1𝑣1, . . . , 𝐴𝑣𝑛 = 𝜆𝑛𝑣𝑛 .
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Construct the matrix 𝑃 ∈ C𝑛×𝑛 by taking its columns as the eigenvectors 𝑣1, . . . , 𝑣𝑛 .

That is, let
𝑃 =

[
𝑣1 𝑣2 · · · 𝑣𝑛−1 𝑣𝑛

]
.

Also, construct the diagonal matrix 𝐷 = diag(𝜆1, . . . , 𝜆𝑛). That is,

𝐷 =


𝜆1

. . .

𝜆𝑛

 .
Then the above product of𝐴with the 𝑣𝑖s can be written as a single equation𝐴𝑃 = 𝑃𝐷.

Now, rank(𝑃) = 𝑛. So, 𝑃 is an invertible matrix. Then

𝑃−1𝐴𝑃 = 𝐷.

Let 𝐴 ∈ C𝑛×𝑛 . We call 𝐴 to be diagonalizable iff there exists an invertible matrix
𝑃 such that 𝑃−1𝐴𝑃 is a diagonal matrix. (That is, 𝐴 is similar to a diagonal matrix.)
We also say that 𝐴 is diagonalizable by the matrix 𝑃 iff 𝑃−1𝐴𝑃 = 𝐷.

(5.18) Theorem
An 𝑛 × 𝑛 matrix is diagonalizable iff it has 𝑛 linearly independent eigenvectors.

Proof. In fact, we have already proved that if an 𝑛 × 𝑛 matrix 𝐴 has 𝑛 linearly
independent eigenvectors, then 𝐴 is diagonalizable.

For the converse, suppose that𝐴 ∈ C𝑛×𝑛 is diagonalizable. So, let 𝑃 =
[
𝑣1, · · · 𝑣𝑛

]
be an invertible matrix and let 𝐷 = diag(𝜆1, . . . , 𝜆𝑛) be such that 𝑃−1𝐴𝑃 = 𝐷. Then
𝐴𝑃 = 𝑃𝐷. Then 𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑛. That is, each 𝑣𝑖 is an eigenvector of 𝐴.
Moreover, 𝑃 is invertible implies that 𝑣1, . . . , 𝑣𝑛 are linearly independent.

(5.19) Example

Consider the matrix

[
1 1
0 1

]
.

Since it is upper triangular, its eigenvalues are the diagonal entries.
That is, 1 is the only eigenvalue of 𝐴 with algebraic multiplicity 2. To find the

eigenvectors, we solve

(𝐴 − 1 𝐼 )
[
𝑎

𝑏

]
= 0.

The equation can be rewritten as 𝑎 + 𝑏 = 𝑎, 𝑏 = 𝑏. Solving the equations, we have
𝑏 = 0 and 𝑎 arbitrary. There is only one linearly independent eigenvector, namely,[
𝑎 0

]𝑇 for a nonzero scalar 𝑎. Therefore, 𝐴 is not diagonalizable.

The following result is now obvious.
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(5.20) Theorem
If𝐴 ∈ C𝑛×𝑛 has𝑛 distinct eigenvalues 𝜆1, . . . , 𝜆𝑛, then it is similar to diag(𝜆1, . . . , 𝜆𝑛).

We state, without proof, another sufficient condition for diagonalizability.

(5.21) Theorem (Spectral Theorem)
A square matrix is normal iff it is diagonalized by a unitary matrix.
Each real symmetric matrix is diagonalized by an orthogonal matrix.

Since each hermitian matrix is a normal matrix, it follows that each hermitian
matrix is diagonalizable by a unitary matrix.

To diagonalize a matrix 𝐴 means that we determine an invertible matrix 𝑃 and
a diagonal matrix 𝐷 such that 𝑃−1𝐴𝑃 = 𝐷. Notice that only square matrices can
possibly be diagonalized.

In general, diagonalization starts with determining eigenvalues and corresponding
eigenvectors of𝐴.We then construct the diagonal matrix𝐷 by taking the eigenvalues
𝜆1, . . . , 𝜆𝑛 of 𝐴. Next, we construct 𝑃 by putting the corresponding eigenvectors
𝑣1, . . . , 𝑣𝑛 as columns of 𝑃 in that order. Then 𝑃−1𝐴𝑃 = 𝐷. This work succeeds
provided that the list of eigenvectors 𝑣1, . . . , 𝑣𝑛 in C𝑛×1 are linearly independent.

Once we know that a matrix 𝐴 is diagonalizable, we can give a procedure to
diagonalize it. All we have to do is determine the eigenvalues and corresponding
eigenvectors so that the eigenvectors are linearly independent and their number is
equal to the order of 𝐴. Then, put the eigenvectors as columns to construct the
matrix 𝑃 . Then 𝑃−1𝐴𝑃 is a diagonal matrix.

(5.22) Example

Consider the matrix 𝐴 =


1 −1 −1
−1 1 −1
−1 −1 1

 .
It is real symmetric having eigenvalues −1, 2 and 2. To find the associated

eigenvectors, we must solve the linear systems of the form 𝐴𝑥 = 𝜆𝑥.

For the eigenvalue −1, the system 𝐴𝑥 = −𝑥 gives

𝑥1 − 𝑥2 − 𝑥3 = −𝑥1, −𝑥1 + 𝑥2 − 𝑥3 = −𝑥2, −𝑥1 − 𝑥2 + 𝑥3 = −𝑥3.

It has a solution: 𝑥1 = 𝑥2 = 𝑥3. One eigenvector is
[
1 1 1

]𝑇
.

For the eigenvalue 2, we have the equations as

𝑥1 − 𝑥2 − 𝑥3 = 2𝑥1, −𝑥1 + 𝑥2 − 𝑥3 = 2𝑥2, −𝑥1 − 𝑥2 + 𝑥3 = 2𝑥3.
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It leads to 𝑥1 +𝑥2 +𝑥3 = 0. We can have two linearly independent eigenvectors such
as

[
− 1 1 0

]𝑇 and
[
− 1 − 1 2

]𝑇
.

The three eigenvectors are orthogonal to each other. To orthonormalize, we divide
each by its norm. We end up at the following orthonormal eigenvectors:

1/
√

3
1/
√

3
1/
√

3

 ,

−1/
√

2
1/
√

2
0

 ,

−1/
√

6
−1/
√

6
2/
√

6

 .
They are orthogonal vectors in R3×1, each of norm 1. Taking

𝑃 =


1/
√

3 −1/
√

2 −1/
√

6
1/
√

3 1/
√

2 −1/
√

6
1/
√

3 0 2/
√

6

 ,
we have 𝑃−1 = 𝑃𝑇 , 𝑃−1𝐴𝑃 = 𝑃𝑇𝐴𝑃 =


−1 0 0

0 2 0
0 0 2

 .

5.7 Exercises for Chapter 5
1. Find the eigenvalues and the associated eigenvectors for the matrices given

below.

(a)
[
3 0
8 −1

]
(b)

[
3 2
−1 0

]
(c)

[
−2 −1

5 2

]
(d)


−2 0 3
−2 3 0

0 0 5

 .
Ans: (a) 𝜆1 = 3, 𝑣1 = [1 2]𝑇 ; 𝜆2 = −1, 𝑣2 = [0 1]𝑇 .
(b) 𝜆1 = 1, 𝑣1 = [1 − 1]𝑇 ; 𝜆2 = 2, 𝑣2 = [2 − 1]𝑇 .
(c) 𝜆1 = 𝑖, 𝑣1 = [1 2 + 𝑖]𝑇 ; 𝜆2 = −𝑖, 𝑣2 = [1 𝑖 − 2]𝑇 .
(d) 𝜆1 = −2, 𝑣1 = [5 2 0]𝑇 ; 𝜆2 = 3, 𝑣2 = [0 1 0]𝑇 ; 𝜆3 = 5, 𝑣3 = [3 − 3 7]𝑇 .

2. Let𝐴 be an 𝑛×𝑛 matrix and 𝛼 be a scalar such that each row (or each column)
sums to 𝛼. Show that 𝛼 is an eigenvalue of 𝐴.

3. Let 𝐴 ∈ C𝑛×𝑛 be invertible. Show that 𝜆 ∈ C is an eigenvalue of 𝐴 if and only
if 𝜆−1 is an eigenvalue of 𝐴−1.

4. The vectors 𝑢1 = (1, 2, 2), 𝑢2 = (−1, 0, 2), 𝑢3 = (0, 0, 1) are linearly indepen-
dent in F3. Apply Gram-Schmidt Orthogonalization.
Ans: 𝑣1 = 𝑢1, 𝑣2 = (−4/3,−2/3, 4/3), 𝑣3 = (2/9,−2/9, 1/9).
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5. Let 𝐴 ∈ R3×3 have the first two columns as (1/
√

3, 1/
√

3, 1/
√

3, )𝑇 and
(1/
√

2, 0,−1/
√

2)𝑇 . Determine the third column of 𝐴 so that 𝐴 is an or-
thogonal matrix. Ans: ±(1/

√
6) (1,−2, 1)𝑇 .

6. Show that eigenvectors corresponding to distinct eigenvalues of a unitary (or
orthogonal) matrix are orthogonal to each other.

7. Give an example of an 𝑛 × 𝑛 matrix that cannot be diagonalized.
Ans: 𝐴 = [𝑎𝑖 𝑗 ] ∈ C𝑛×𝑛 with 𝑎12 = 1 and all other entries as 0.

8. Find the matrix 𝐴 ∈ R3×3 that satisfies the given condition. Diagonalize it if
possible.

(a) 𝐴(𝑎, 𝑏, 𝑐)𝑇 = (𝑎 + 𝑏 + 𝑐, 𝑎 + 𝑏 − 𝑐, 𝑎 − 𝑏 + 𝑐)𝑇 for all 𝑎, 𝑏, 𝑐 ∈ R.
(b) 𝐴𝑒1 = 0, 𝐴𝑒2 = 𝑒1, 𝐴𝑒3 = 𝑒2.

(c) 𝐴𝑒1 = 𝑒2, 𝐴𝑒2 = 𝑒3, 𝐴𝑒3 = 0.
(d) 𝐴𝑒1 = 𝑒3, 𝐴𝑒2 = 𝑒2, 𝐴𝑒3 = 𝑒1.

9. Show that the following matrices are diagonalizable.

(a)


3/2 −1/2 0
−1/2 3/2 0

1/2 −1/2 1

 (b)


3 −1/2 −3/2
1 3/2 3/2
−1 −1/2 5/2

 .
10. Which of the following matrices is/are diagonalizable? If one is diagonaliz-

able, then diagonalize it.

(a)

1 1 1
1 −1 1
1 1 −1

 (b)

1 1 1
0 1 1
0 0 1

 (c)

1 0 1
1 1 0
0 1 1

 (d)

0 1 1
1 0 1
1 1 0

 .



Solutions to Exercises

Series of Numbers §1.9
1. Show the following:

(a) lim
𝑛→∞

ln𝑛
𝑛

= 0. (b) lim
𝑛→∞

𝑛1/𝑛 = 1. (c) lim
𝑛→∞

𝑥𝑛 = 0 for |𝑥 | < 1.

(d) lim
𝑛→∞

𝑛𝑝

𝑥𝑛
= 0 for 𝑥 > 1. (e) lim

𝑛→∞
𝑥𝑛

𝑛!
= 0 (f) lim

𝑛→∞

(
1 + 𝑥

𝑛

)𝑛
= 𝑒𝑥

(a) ln𝑥 is defined on [1,∞) . Using L’ Hospital’s rule, lim
𝑥→∞

ln𝑥
𝑥

= lim
𝑥→∞

1
𝑥
= 0.

Therefore, lim
𝑛→∞

ln𝑛
𝑛

= lim
𝑥→∞

ln𝑥
𝑥

= 0.

(b) lim 𝑛1/𝑛 = lim
𝑥→∞

𝑥1/𝑥 = lim
𝑥→∞

𝑒
1
𝑥

ln𝑥 = 𝑒 lim𝑥→∞
ln𝑥
𝑥 = 𝑒0 = 1.

Here, we have used continuity of 𝑒𝑥 .

(c) Write |𝑥 | = 1
1 + 𝑟 for some 𝑟 > 0. By the Binomial theorem, (1 + 𝑟 )𝑛 ≥

1 + 𝑛𝑟 > 𝑛𝑟 . So, 0 < |𝑥 |𝑛 = 1/(1 + 𝑟 )𝑛 < 1/(𝑛𝑟 ). As |𝑥 |𝑛 = |𝑥𝑛 |, we have
−1/(𝑛𝑟 ) < 𝑥𝑛 < 1/(𝑛𝑟 ). By Sandwich theorem, lim𝑥𝑛 = 0.

(d) Let 𝑥 > 1. We know that lim
𝑡→∞

𝑡𝑝

𝑥𝑡
= 0 for 𝑝 ∈ N. Therefore, lim

𝑛𝑝

𝑥𝑛
= 0.

If 𝑚 < 𝑝 < 𝑚 + 1 for an 𝑚 ∈ N, then 𝑛𝑝 < 𝑛𝑚+1. Use Sandwich theorem to
get the limit. If 𝑝 < 1, then similarly, use 𝑛𝑝 < 𝑛.

Analogously, show that the limits in (e) and (f) hold.
2. Prove the following:

(a) It is not possible that a series converges to a real number ℓ and also
diverges to −∞.

(b) It is not possible that a series diverges to∞ and also to −∞.

(a) Suupose
∑
𝑎 𝑗 converges to ℓ and also diverges to −∞. Then we have

natural numbers 𝑘,𝑚 such that for every 𝑛 ≥ 𝑘, ℓ − 1 <
∑𝑛

𝑗=1 𝑎 𝑗 < ℓ + 1.
And also for all 𝑛 ≥ 𝑚,

∑𝑛
𝑗=1 𝑎 𝑗 < ℓ − 2. Choose 𝑀 = max{𝑘,𝑚}. Then both

inequalities hold for 𝑛 = 𝑀. But this is not possible.

132
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(b) Suppose
∑
𝑎 𝑗 diverges to both∞ and to−∞.Then we have natural numbers

𝑘,𝑚 such that for each 𝑛 ≥ 𝑘,
∑𝑛

𝑗=1 𝑎 𝑗 > 1 and for each 𝑛 ≥ 𝑚,
∑𝑛

𝑗=1 𝑎 𝑗 < −1.
Choose 𝑀 = max{𝑘,𝑚}. Then both the inequalities hold for 𝑛 = 𝑀. But this
is impossible.

3. Prove the following:

(a) If both the series
∑
𝑎𝑛 and

∑
𝑏𝑛 converge, then the series

∑(𝑎𝑛 + 𝑏𝑛),∑(𝑎𝑛 − 𝑏𝑛) and
∑
𝑘𝑎𝑛 converge; where 𝑘 is any real number.

(b) If
∑
𝑎𝑛 converges and

∑
𝑏𝑛 diverges to ±∞, then

∑(𝑎𝑛 +𝑏𝑛) diverges to
±∞, and

∑(𝑎𝑛 − 𝑏𝑛) diverges to ∓∞.
(c) If

∑
𝑎𝑛 diverges to ±∞, and 𝑘 > 0, then

∑
𝑘𝑎𝑛 diverges to ±∞.

(d) If
∑
𝑎𝑛 diverges to ±∞, and 𝑘 < 0, then

∑
𝑘𝑎𝑛 diverges to ∓∞.

(a) Suppose
∑
𝑎𝑛 converges to ℓ and

∑
𝑏𝑛 converges to 𝑠 . Let 𝜖 > 0. Then we

have natural numbers 𝑘,𝑚 such that for all 𝑛 ≥ 𝑘, |∑𝑛
𝑗=1 𝑎 𝑗 − ℓ | < 𝜖/2; and for

all 𝑛 ≥ 𝑚, |∑𝑛
𝑗=1 𝑏 𝑗 − 𝑠 | < 𝜖/2. Choose 𝑀 = max{𝑘,𝑚}. Then for all 𝑛 ≥ 𝑀,

both the inequalities hold. So, we obtain��� 𝑛∑︁
𝑗=1
(𝑎 𝑗 + 𝑏 𝑗 ) − (ℓ + 𝑠)

��� ≤ ��� 𝑛∑︁
𝑗=1

𝑎 𝑗 − ℓ
��� + ��� 𝑛∑︁

𝑗=1
𝑏 𝑗 − 𝑠

��� < 𝜖/2 + 𝜖/2 = 𝜖.

Similarly, the other two are proved.

(b) Suppose
∑
𝑎𝑛 converges to ℓ and

∑
𝑏𝑛 diverges to∞. Let 𝑟 > 0. Then, we

have natural numbers 𝑘,𝑚 such that for all 𝑛 ≥ 𝑘, ℓ − 1 <
∑𝑛

𝑗=1 𝑎 𝑗 < ℓ + 1;
and for all 𝑛 ≥ 𝑚,

∑𝑛
𝑗=1 𝑏 𝑗 > 𝑟 + |ℓ | + 1. Choose 𝑀 = max{𝑘,𝑚}. Then all the

three inequalities hold for 𝑛 ≥ 𝑀. But then for all 𝑛 ≥ 𝑀,

ℓ − 1 <

𝑛∑︁
𝑗=1

𝑎 𝑗 , 𝑟 + |ℓ | + 1 <

𝑛∑︁
𝑗=1

𝑏 𝑗 .

That is, for all 𝑛 ≥ 𝑀, 𝑟 ≤ ℓ − 1 + 𝑟 + |ℓ | + 1 <
∑𝑛

𝑗=1(𝑎 𝑗 + 𝑏 𝑗 ).
Similarly, other cases are proved.

(c) Suppose
∑
𝑎𝑛 diverges to ±∞, and 𝑘 > 0. Let 𝑟 ∈ R. We have𝑚 ∈ N such

that for all 𝑛 ≥ 𝑚,
∑𝑛

𝑗=1 𝑎 𝑗 > 𝑟/𝑘. Then for all such 𝑛,
∑𝑛

𝑗=1(𝑘𝑎 𝑗 ) > 𝑟 .

Similarly other cases are proved.

(d) Suppose
∑
𝑎𝑛 diverges to ∞, and 𝑘 < 0. Let 𝑟 ∈ R. We have 𝑚 ∈ N such

that for all 𝑛 ≥ 𝑚,
∑𝑛

𝑗=1 𝑎 𝑗 > 𝑟/𝑘. Then for all such 𝑛,
∑𝑛

𝑗=1(𝑘𝑎 𝑗 ) < 𝑟, since
𝑘 < 0.
Similarly other cases are proved.
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4. Give examples for the following:

(a)
∑
𝑎𝑛 and

∑
𝑏𝑛 both diverge, but

∑(𝑎𝑛 + 𝑏𝑛) converges to a nonzero
number.

(b)
∑
𝑎𝑛 and

∑
𝑏𝑛 both diverge, and

∑(𝑎𝑛 + 𝑏𝑛) diverges to∞.
(c)

∑
𝑎𝑛 and

∑
𝑏𝑛 both diverge, and

∑(𝑎𝑛 + 𝑏𝑛) diverges to −∞.
(a) 1 + 1 + 1 + · · · diverges; 2 + (−1) + (−1) + · · · also diverges.
But (1 + 2)) + (1 + (−1)) + · · · = 3 + 0 + · · · converges to 3.

(b) 1 + 2 + 3 + 4 + · · · diverges; −1 − 1 − 1 − 1 − · · · also diverges.
And (1 − 1) + (2 − 1) + (3 − 1) + · · · = 0 + 1 + 2 + 3 + · · · diverges to∞.

(c) −1 − 2 − 3 − 4 − · · · diverges; 1 + 1 + 1 + 1 + · · · also diverges.
And (−1+ 1) + (−2+ 1) + (−3+ 1) + · · · = 0− 1− 2− 3− · · · diverges to −∞.

5. Show that the sequence 1, 1.1, 1.1011, 1.10110111, . . . converges.

Use either Cauchy sequences or monotonically increasing bounded sequences.
6. Determine whether the following series converge:

(a)
∞∑︁
𝑛=1

−𝑛
3𝑛 + 1

(b)
∞∑︁
𝑛=1

ln𝑛
𝑛3/2 (c)

∞∑︁
𝑛=1

1 + 𝑛 ln𝑛
1 + 𝑛2

(a) It diverges because lim
𝑛→∞

−𝑛
3𝑛 + 1

= −1
3
≠ 0.

(b) Take 𝑎𝑛 =
ln𝑛
𝑛3/2 and 𝑏𝑛 =

1
𝑛5/4 . Then

lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= lim

𝑛→∞
ln𝑛
𝑛1/4 = lim

𝑛→∞
1/𝑛

(1/4)𝑛−3/4 = lim
𝑛→∞

4
𝑛1/4 = 0.

Since
∑
𝑏𝑛 converges, by the Limit comparison test,

∑
𝑎𝑛 converges.

(c) Take 𝑎𝑛 =
1 + 𝑛 ln𝑛

1 + 𝑛2 and 𝑏𝑛 =
1
𝑛
. Then

lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= lim

𝑛→∞
𝑛 + 𝑛2 ln𝑛

1 + 𝑛2 = ∞.

As
∑
𝑏𝑛 diverges to∞, by the Limit comparison test,

∑
𝑎𝑛 diverges to∞.

7. Test for convergence the series
1
3
+
(2
3
)2 + (3

7
)3 + · · · + ( 𝑛

2𝑛 + 1
)𝑛 + · · ·.

Using Cauchy root test, lim
𝑛→∞
(𝑎𝑛)1/𝑛 = lim

𝑛→∞
𝑛

2𝑛 + 1
=

1
2
< 1.

Therefore, the series converges.

8. Is the integral
∫ ∞
−∞

1
1 + 𝑥2 𝑑𝑥 convergent?∫ 𝑏

𝑎

1
1 + 𝑥2 𝑑𝑥 = tan−1 𝑏 − tan−1 𝑎.
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So,∫ 0

−∞

1
1 + 𝑥2 𝑑𝑥 = lim

𝑎→−∞

∫ 0

𝑎

1
1 + 𝑥2 𝑑𝑥 = lim

𝑎→−∞
(− tan−1 𝑎) = −

(
− 𝜋

2

)
=
𝜋

2
.

∫ ∞
0

1
1 + 𝑥2 𝑑𝑥 = lim

𝑏→∞

∫ 𝑏

0

1
1 + 𝑥2 𝑑𝑥 = lim

𝑏→∞
(tan−1 𝑏) = 𝜋

2
.

Therefore, ∫ ∞
−∞

1
1 + 𝑥2 𝑑𝑥 =

∫ 0

−∞

1
1 + 𝑥2 𝑑𝑥 +

∫ ∞
0

1
1 + 𝑥2 𝑑𝑥

is convergent and its value is 𝜋/2 + 𝜋/2 = 𝜋.

9. Is the area under the curve 𝑦 = (ln𝑥)/𝑥2 for 1 ≤ 𝑥 < ∞ finite?

The question is whether
∫ ∞

1

ln𝑥
𝑥2 𝑑𝑥 converges?

Let 𝑏 > 1. Integrating by parts,∫ 𝑏

1

ln𝑥
𝑥2 𝑑𝑥 =

[
ln𝑥

(
− 1
𝑥

)]𝑏
1
−
∫ 𝑏

1

(−1
𝑥

) 1
𝑥
𝑑𝑥 = − ln𝑏

𝑏
− 1
𝑏
+ 1.

lim
𝑏→∞

∫ 𝑏

1

ln𝑥
𝑥2 𝑑𝑥 = lim

𝑏→∞

[
− ln𝑏

𝑏
− 1
𝑏
+ 1

]
= 1.

Therefore, the improper integral
∫ ∞

1

ln𝑥
𝑥2 𝑑𝑥 converges to 1. That is, the

required area is finite and it is equal to 1.

10. Evaluate (a)
∫ 3

0

𝑑𝑥

(𝑥 − 1)2/3
(b)

∫ 3

0

𝑑𝑥

𝑥 − 1
(a) The integrand is not defined at 𝑥 = 1. We consider it as an improper
integral. ∫ 3

0

𝑑𝑥

(𝑥 − 1)2/3
= lim

𝑏→1−

∫ 𝑏

0

𝑑𝑥

(𝑥 − 1)2/3
+ lim

𝑎→1+

∫ 3

𝑎

𝑑𝑥

(𝑥 − 1)2/3
.

lim
𝑏→1−

∫ 𝑏

0

𝑑𝑥

(𝑥 − 1)2/3
= lim

𝑏→1−
3(𝑥 −1)1/3

���𝑏
0
= lim

𝑏→1−
(3(𝑏 −1)1/3−3(−1)1/3) = 3.

lim
𝑎→1+

∫ 3

𝑎

𝑑𝑥

(𝑥 − 1)2/3
= lim

𝑎→1+
3(𝑥−1)1/3

���3
𝑎
= lim

𝑎→1+
(3(3−1)1/3−3(𝑎−1)1/3) = 3(2)1/3.

Hence
∫ 3

0

𝑑𝑥

(𝑥 − 1)2/3
= 3(1 + 21/3) .



136 MA1102 Classnotes

Had we not noticed that the integrand has discontinuity in the interior, we
would have ended up at a wrong computation such as∫ 3

0

𝑑𝑥

(𝑥 − 1)2/3
= 3(𝑥 − 1)1/3

���3
0
= 3(21/3 − (−1)1/3),

even though the answer happens to be correct here. See the next problem.
(b) Overlooking the point 𝑥 = 1, where the integrand is not defined, we may
compute ∫ 3

0

𝑑𝑥

𝑥 − 1
= ln |𝑥 − 1|

]3

0
= ln 2 − ln 1 = ln 2.

However, it is an improper integral and its value, if exists, must be computed
as follows: ∫ 3

0

𝑑𝑥

𝑥 − 1
= lim

𝑏→1−

∫ 𝑏

0

𝑑𝑥

𝑥 − 1
+ lim

𝑎→1+

∫ 3

𝑎

𝑑𝑥

𝑥 − 1
.

The integral converges provided both the limits are finite. However,

lim
𝑏→1−

∫ 𝑏

0

𝑑𝑥

𝑥 − 1
= lim

𝑏→1−

(
ln |𝑏 − 1| − ln | − 1|

)
= lim

𝑏→1−
ln(1 − 𝑏) = −∞.

Therefore,
∫ 3

0

𝑑𝑥

𝑥 − 1
does not converge.

11. Show that
∫ ∞

1

sin𝑥
𝑥𝑝

𝑑𝑥 converges for all 𝑝 > 0.

For 𝑝 > 1 and 𝑥 ≥ 1,
���sin𝑥
𝑥𝑝

��� ≤ 1
𝑥𝑝

. Since
∫ ∞

1

𝑑𝑥

𝑥𝑝
converges,

∫ ∞
1

���sin𝑥
𝑥𝑝

���𝑑𝑥
converges. Therefore,

∫ ∞
1

sin𝑥
𝑥𝑝

𝑑𝑥 converges.

For 0 < 𝑝 ≤ 1, use integration by parts:
∫ 𝑏

1

sin𝑥
𝑥𝑝

𝑑𝑥 = −cos𝑏
𝑏𝑝
+ cos 1

1𝑝
− 𝑝

∫ 𝑏

1

cos𝑥
𝑥𝑝+1

𝑑𝑥 .

Taking the limit as 𝑏 → ∞, we see that the first term goes to 0; the second
term is already a real number, the third term, an improper integral converges
as in the case for 𝑝 > 1 above. Therefore, the given improper integral also
converges in this case.

12. Show that
∫ ∞

0

sin𝑥
𝑥𝑝

𝑑𝑥 converges for 0 < 𝑝 ≤ 1.

For 𝑝 = 1, the integral
∫ 1

0

sin𝑥
𝑥

𝑑𝑥 is not an improper integral. Since
sin𝑥
𝑥

with its value at 0 as 1 is continuous on [0, 1], this integral exists.

For 0 < 𝑝 < 1 and 0 < 𝑥 ≤ 1, since
sin𝑥
𝑥𝑝
≤ 1

𝑥𝑝
and

∫ 1

0

𝑑𝑥

𝑥𝑝
converges due to
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last problem; the improper integral
∫ 1

0

sin𝑥
𝑥𝑝

𝑑𝑥 converges.

Next, the improper integral
∫ ∞

1

sin𝑥
𝑥𝑝

𝑑𝑥 converges due to last problem.

Hence
∫ ∞

0

sin𝑥
𝑥𝑝

𝑑𝑥 =

∫ 1

0

sin𝑥
𝑥𝑝

𝑑𝑥 +
∫ ∞

1

sin𝑥
𝑥𝑝

𝑑𝑥 converges.

13. Show that the series
∞∑︁
𝑛=2

1
𝑛(ln𝑛)𝛼 converges for 𝛼 > 1 and diverges to ∞ for

𝛼 ≤ 1.
(a) 𝛼 = 0. The series is clearly divergent.
(a) 𝛼 > 0. The function 𝑓 (𝑥) = 1

𝑥 (ln𝑥)𝛼 is continuous, positive, and decreasing

on [2,∞) . By the integral test, it converges when
∫ ∞

2

1
𝑥 (ln𝑥)𝛼 𝑑𝑥 converges.

Evaluating the integral, we have∫ ∞
2

1
𝑥 (ln𝑥)𝛼 𝑑𝑥 =

∫ ∞
ln 2

1
𝑡𝛼

𝑑𝑡 .

We conclude that the series converges for 𝛼 > 1 and diverges to∞ for 𝛼 ≤ 1.
(b) 𝛼 < 0. Then 1

𝑛(ln𝑛)𝛼 ≥
1
𝑛

for 𝑛 > 3. Comparing with the harmonic series,
it follows that the series is divergent.

14. Does the series
∞∑︁
𝑛=1

4𝑛 (𝑛!)2
(2𝑛)! converge?

The tests either give no information or are difficult to apply. However,

𝑎𝑛+1
𝑎𝑛

=
4𝑛+1((𝑛 + 1)!)2
(2(𝑛 + 1))!

(2𝑛)!
4𝑛 (𝑛!)2

=
2(𝑛 + 1)
2𝑛 + 1

> 1.

Since 𝑎1 = 2, we see that each 𝑎𝑛 > 2. That is, lim𝑎𝑛 ≥ 2 ≠ 0. Therefore, the
series diverges. Since it is a series of positive terms, it diverges to∞.

15. Does the series 1 − 1
4
− 1

16
+ 1

9
+ 1

25
+ 1

49
− · · · converge?

Here, the series has been made up from the terms 1/𝑛2 by taking first one
term, next two negative terms of squares of next even numbers, then three
positive terms which are squares of next three odd numbers, and so on. This
is a rearrangement of the series

1 − 1
22 +

1
32 −

1
42 +

1
52 −

1
62 + · · ·

which is absolutely convergent (since
∑(1/𝑛2) is convergent). Therefore, the

given series is convergent and its sum is the same as that of the alternating
series

∑(−1)𝑛+1(1/𝑛2).
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16. Let (𝑎𝑛) be a sequence of positive terms. Show that if
∑∞

𝑛=1
𝑎𝑛

1+𝑎𝑛 converges,
then

∑∞
𝑛=1 𝑎𝑛 converges.

Since
∞∑︁
𝑛=1

𝑎𝑛

1 + 𝑎𝑛
converges,

𝑎𝑛

1 + 𝑎𝑛
→ 0. Then

1
1 + 𝑎𝑛

= 1 − 𝑎𝑛

1 + 𝑎𝑛
→ 1.

Now,
𝑎𝑛

1 + 𝑎𝑛

/
𝑎𝑛 =

1
1 + 𝑎𝑛

→ 1.

Since
∑︁ 𝑎𝑛

1 + 𝑎𝑛
converges, so does

∑
𝑎𝑛 by limit comparison test.

17. Let (𝑎𝑛) be a sequence of positive non-increasing terms. Show that if
∑∞

𝑛=1 𝑎𝑛
converges, then the sequence (𝑛𝑎𝑛) converges to 0.
For any𝑚 ∈ N,

2𝑚𝑎2𝑚 ≤ 2(𝑎𝑚+1+· · ·+𝑎2𝑚), (2𝑚+1)𝑎2𝑚+1 ≤ 2(𝑎𝑚+1+· · ·+𝑎2𝑚+1)−𝑎2𝑚+1.

Since the series
∑
𝑎𝑛 converges, 𝑎𝑛 converges to 0. Using Cauchy criterion,

as𝑚 →∞,

2(𝑎𝑚+1 + · · · + 𝑎2𝑚) → 0, 2(𝑎𝑚+1 + · · · + 𝑎2𝑚+1) − 𝑎2𝑚+1 → 0.

Therefore, both 2𝑚𝑎2𝑚 → 0 and (2𝑚 + 1)𝑎2𝑚+1 → 0. That is, 𝑛𝑎𝑛 → 0.

Series Representation of Functions §2.10
1. Determine the interval of convergence for each of the following power series:

(a)
∞∑︁
𝑛=1

𝑥𝑛

𝑛
(b)

∞∑︁
𝑛=1

𝑥𝑛

𝑛2 (c)
∞∑︁
𝑛=0
(−1)𝑛 𝑥

𝑛+1

𝑛 + 1

(a) Its radius of convergence is lim
𝑛→∞

|𝑎𝑛 |
|𝑎𝑛+1 |

= lim
𝑛→∞

𝑛 + 1
𝑛

= 1.

The power series is around 𝑥 = 0, i.e., it is in the form
∑
𝑎𝑛 (𝑥 − 𝑎)𝑛, where

𝑎 = 0. Thus, the power series converges at every point in the interval (−1, 1).
To check at the end points:
For 𝑥 = −1, the series −1 + 1

2
− 1

3
+ · · · converges.

For 𝑥 = 1, the series is 1 + 1
2
+ 1

3
+ · · · diverges.

Therefore, its interval of convergence is (−1, 1) ∪ {−1} = [−1, 1).

(b) Its radius of convergence is lim
𝑛→∞

1/𝑛2

1/(𝑛 + 1)2
= 1.

At 𝑥 = ±1, the series
∑(1/𝑛2) converges.
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Hence the interval of convergence is [−1, 1] .

(c) Here, we consider the series in the form 𝑥

∞∑︁
𝑛=0
(−1)𝑛 𝑥𝑛

𝑛 + 1
.

For the series
∞∑︁
𝑛=0
(−1)𝑛 𝑥𝑛

𝑛 + 1
, 𝑎𝑛 = (−1)𝑛/(𝑛 + 1).

Thus lim |𝑎𝑛/𝑎𝑛+1 | = lim(𝑛 + 2)/(𝑛 + 1) = 1. Hence 𝑅 = 1. That is, the series
is convergent for all 𝑥 ∈ (−1, 1).
We know that the series converges at 𝑥 = 1 and diverges at 𝑥 = −1.
Therefore, the interval of convergence of the original power series is (−1, 1] .

2. Determine the interval of convergence of the series
2𝑥
1
− (2𝑥)

2

2
+ (2𝑥)

3

3
− · · ·.

Using Ratio test, we see that

lim
𝑛→∞

��� (2𝑥)𝑛+1
𝑛 + 1

𝑛

(2𝑥)𝑛
��� = lim

𝑛→∞

��� 𝑛

𝑛 + 1

���|2𝑥 | = |2𝑥 |.
Thus the series converges for |2𝑥 | < 1, i.e., for |𝑥 | < 1/2.
Also, we find that when 𝑥 = 1/2, the series converges and when 𝑥 = −1/2,
the series diverges.
Hence the interval of convergence of the series is (−1/2, 1/2] .

3. Determine power series expansion of the functions

(a) ln(1 + 𝑥) (b)
ln(1 + 𝑥)

1 − 𝑥
(a) For −1 < 𝑥 < 1,

1
1 + 𝑥 = 1 − 𝑥 + 𝑥2 − 𝑥3 + 𝑥4 − · · ·.

Integrating term by term and evaluating at 𝑥 = 0, we obtain

ln(1 + 𝑥) = 𝑥 − 𝑥2

2
+ 𝑥

3

3
− 𝑥4

4
+ · · · for − 1 < 𝑥 < 1.

(b) Using the results in (a) and the geometric series for 1/(1 − 𝑥), we have

ln(1 + 𝑥)
1 − 𝑥 =

∞∑︁
𝑛=1

(−1)𝑛−1 𝑥𝑛

𝑛
·
∞∑︁
𝑛=0

𝑥𝑛 for − 1 < 𝑥 < 1

For obtaining the product of the two power series, we need to write the first
in the form

∑
𝑎𝑛𝑥

𝑛 . (Notice that for the second series, each 𝑏𝑛 = 1.) Here, the
first series is

ln(1 + 𝑥) =
∞∑︁
𝑛=0

𝑎𝑛𝑥
𝑛, where 𝑎0 = 0 and 𝑎𝑛 =

(−1)𝑛−1

𝑛
for 𝑛 ≥ 1.
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Thus the product above is
ln(1 + 𝑥)

1 − 𝑥 =

∞∑︁
𝑛=0

𝑐𝑛𝑥
𝑛, where

𝑐𝑛 = 𝑎0𝑏𝑛 +𝑎1𝑏𝑛−1 + · · · +𝑎𝑛𝑏0 = 𝑎0 +𝑎1 + · · ·𝑎𝑛 = 1− 1
2
+ 1

3
− · · · + (−1)𝑛−1

𝑛
.

4. The function
1

1 − 𝑥 has interval of convergence (−1, 1) . However, prove that
it has power series representation around any 𝑐 ≠ 1.

1
1 − 𝑥 =

1
1 − 𝑐

1
1 − 𝑥−𝑐

1−𝑐
=

1
1 − 𝑐

∞∑︁
𝑛=0

1
(1 − 𝑐)𝑛 (𝑥 − 𝑐)

𝑛 .

This power series converges for all 𝑥 with |𝑥 − 𝑐 | < |1 − 𝑐 |, i.e., for 𝑥 ∈
(𝑐 − |1 − 𝑐 |, 𝑐 + |1 − 𝑐 |).
We also see that the function

1
1 − 𝑥 is well defined for each 𝑥 ≠ 1.

5. Find the sum of the alternating harmonic series
∞∑︁
𝑛=0

(−1)𝑛
𝑛

.

Consider the power series representation of
1

1 + 𝑥 . Integrating term by term.

1
1 + 𝑥 =

∞∑︁
𝑛=0
(−1)𝑛𝑥𝑛 ⇒ ln(1 + 𝑥) =

∞∑︁
𝑛=0
(−1)𝑛 𝑥

𝑛+1

𝑛 + 1
.

Notice that the interval of convergence of the first power series is (−1, 1).
But the interval of convergence of the second power series is (−1, 1] . Thus,
evaluating the second series at 𝑥 = 1, we have

ln 2 = 1 − 1
2
+ 1

3
− 1

4
+ 1

5
− · · ·

6. Give an approximation scheme for
∫ 𝑎

0

sin𝑥
𝑥

𝑑𝑥 where 𝑎 > 0.

Using the Maclaurin series for sin𝑥, we have

sin𝑥
𝑥

= 1 − 𝑥2

3!
+ 𝑥

4

5!
− 𝑥6

7
+ · · ·

Integrating term by term, we get∫ 𝑎

0

sin𝑥
𝑥

𝑑𝑥 = 𝑎 − 𝑎3

3! · 3 +
𝑎5

5! · 5 −
𝑎7

7! · 7 + · · ·

Approximations to the integral may be obtained by truncating the series
suitably.
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7. Show that 1 + 1
2

1
3
+ 1 · 3

2 · 4 ·
1
5
+ 1 · 3 · 5

2 · 4 · 6 ·
1
7
+ · · · = 𝜋

2
.

In the binomial series (1 + 𝑥)𝑚 = 1 +𝑚𝑥 + 𝑚(𝑚 − 1)
1 · 2 𝑥2 + 𝑚(𝑚 − 1) (𝑚 − 2)

1 · 2 · 3 𝑥3 + · · ·
for |𝑥 | < 1, substitute 𝑥 = −𝑡2 and𝑚 = −1/2 to obtain

1
√

1 − 𝑡2
= 1 + 1

2
𝑡2 + 1 · 3

2 · 4𝑡
4 + 1 · 3 · 5

2 · 4 · 6𝑡
6 + · · ·

Integrating this power series from 0 to 𝑥 for any 𝑥 ∈ (−1, 1), we have

sin−1 𝑥 =

∫ 𝑥

0

𝑑𝑡
√

1 − 𝑡2
= 𝑥 + 1

2
· 1

3
𝑥3 + 1 · 3

2 · 4 ·
1
5
𝑥5 + 1 · 3 · 5

2 · 4 · 6 ·
1
7
𝑥7 + · · ·

This series also converges for 𝑥 = 1. It may be seen as follows:

Here, leaving the first term,𝑢𝑛 =
1 · 3 · 5 · · · (2𝑛 − 1)
2 · 4 · · · 6 · · · (2𝑛) ·

1
2𝑛 + 1

, 𝑢𝑛+1 = 𝑢𝑛 ·
2𝑛 + 1
2𝑛 + 2

· 2𝑛 + 1
2𝑛 + 3

.

It follows that for 𝑛 ≥ 2, 𝑢𝑛+1 < 4
(
𝑛𝑢𝑛 − (𝑛 + 1)𝑢𝑛+1

)
.

Then 𝑠𝑚 =

𝑚∑︁
𝑛=2

𝑢𝑛 =

𝑚−1∑︁
𝑛=1

𝑢𝑛+1 < 4
(𝑚−1∑︁
𝑛=1
(𝑛𝑢𝑛 − (𝑛 + 1)𝑢𝑛+1

)
= 4(𝑢1 −𝑚𝑢𝑚) < 4𝑢1.

Hence 𝑠𝑚 is an increasing sequence of positive terms having an upper bound
as 4𝑢1.

That is, the series 1 +
∞∑︁
𝑛=1

𝑢𝑛 converges.

Therefore, for 𝑥 = 1, the series converges to sin−1 1 =
𝜋

2
.

8. Find the Fourier series of 𝑓 (𝑥) given by: 𝑓 (𝑥) = 0 for −𝜋 ≤ 𝑥 < 0; and
𝑓 (𝑥) = 1 for 0 ≤ 𝑥 ≤ 𝜋. Say also how the Fourier series represents 𝑓 (𝑥).
Hence give a series expansion of 𝜋/4.

𝑎𝑛 =
1
𝜋

∫ 𝜋

0
cos𝑛𝑥 𝑑𝑥 =

{
1 for 𝑛 = 0
0 for 𝑛 ≠ 0

𝑏𝑛 =
1
𝜋

∫ 𝜋

0
sin𝑛𝑥 𝑑𝑥 =

1
𝜋

[
1 − cos𝑛𝜋

𝑛

]
=

1 − (−1)𝑛
𝑛𝜋

=

{
2
𝑛𝜋

for 𝑛 odd
0 for 𝑛 even

Hence the Fourier series for 𝑓 (𝑥) is
1
2
+ 2
𝜋

∞∑︁
𝑛=0

sin(2𝑛 + 1)𝑥
2𝑛 + 1

.

By the convergence theorem for Fourier series, we know that this Fourier
series converges to 𝑓 (𝑥) for any 𝑥 ≠ 0. At 𝑥 = 0, the Fourier series converges
to 1/2.
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Taking 𝑥 = 𝜋/2, we have

1 =
1
2
+ 2
𝜋

∞∑︁
𝑛=0

sin(𝑛 + 1/2)𝜋
2𝑛 + 1

=
1
2
+ 2
𝜋

∞∑︁
𝑛=0

(−1)𝑛
2𝑛 + 1

.

Therefore,
𝜋

4
=

∞∑︁
𝑛=0

(−1)𝑛
2𝑛 + 1

.

9. Considering the fourier series for |𝑥 |, deduce that
𝜋2

8
=

∞∑︁
𝑛=0

1
(2𝑛 + 1)2

.

Cinsider 𝑓 (𝑥) = |𝑥 | in the interval [−𝜋, 𝜋]; extended to R with period 2𝜋.
Now, it is an even function. Thus each 𝑏𝑛 is 0. Next, 𝑎0 = (2/𝜋)

∫ 𝜋
0 𝑥 𝑑𝑥 = 𝜋.

And for 𝑛 > 0,

𝑎𝑛 =
2
𝜋

∫ 𝜋

0
𝑥 cos𝑛𝑥 𝑑𝑥 =

2
𝜋

[
(−1)𝑛 − 1

𝑛2

]
.

That is, 𝑎2𝑛 = 0, 𝑎2𝑛+1 =
−4

𝜋 (2𝑛 + 1)2
for 𝑛 = 1, 2, 3 . . .

By the convergence theorem for Fourier series, we have

|𝑥 | = 𝜋

2
− 4
𝜋

∞∑︁
𝑛=0

cos(2𝑛 + 1)𝑥
(2𝑛 + 1)2

for 𝑥 ∈ [−𝜋, 𝜋] .

Taking 𝑥 = 0, we have
𝜋2

8
=

∞∑︁
𝑛=0

1
(2𝑛 + 1)2

.

10. Considering the fourier series for 𝑥, deduce that
𝜋

4
=

∞∑︁
𝑛=0

(−1)𝑛
2𝑛 + 1

.

Consider 𝑓 (𝑥) = 𝑥 for 𝑥 ∈ [−𝜋, 𝜋] . It is an odd function. Hence in its Fourier
series, each 𝑎𝑛 = 0. For 𝑛 ≥ 1,

𝑏𝑛 =
2
𝜋

∫ 𝜋

0
𝑥 sin𝑛𝑥 𝑑𝑥 =

2
𝜋

[
−𝑥 cos𝑛𝑥

𝑛

]𝜋
0
+ 2
𝜋

∫ 𝜋

0

cos𝑛𝑥
𝑛

𝑑𝑥 =
2(−1)𝑛+1

𝑛
.

Thus the Fourier series for 𝑓 (𝑥) = 𝑥 in [−𝜋, 𝜋] is 2
∞∑︁
𝑛=1

(−1)𝑛+1
𝑛

sin𝑛𝑥.

Taking 𝑥 = 𝜋/2, we have
𝜋

4
=

∞∑︁
𝑛=1

(−1)𝑛+1
𝑛

sin
𝑛𝜋

2
=

∞∑︁
𝑛=0

(−1)𝑛
2𝑛 + 1

.

11. Considering the fourier series for 𝑓 (𝑥) given by: 𝑓 (𝑥) = −1, for −𝜋 ≤ 𝑥 < 0

and 𝑓 (𝑥) = 1 for 0 ≤ 𝑥 ≤ 𝜋. Deduce that
𝜋

4
=

∞∑︁
𝑛=0

(−1)𝑛
2𝑛 + 1

.
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Here, 𝑓 (𝑥) is an odd function. Thus in its Fourier series, each 𝑎𝑛 is 0.
For 𝑛 ≥ 1,

𝑏𝑛 =
2
𝜋

∫ 𝜋

0
sin𝑛𝑥 𝑑𝑥 =

2
𝑛𝜋
(1 − cos𝑛𝜋) = 2

𝑛𝜋
(1 − (−1)𝑛).

Due to the convergence theorem, 𝑓 (𝑥) = 4
𝜋

∞∑︁
𝑛=0

sin(2𝑛 + 1)𝑥
2𝑛 + 1

for 𝑥 ≠ 0.

Taking 𝑥 = 𝜋/2, we obtain the desired expression for 𝜋/4.
12. Considering 𝑓 (𝑥) = 𝑥2, show that for each 𝑥 ∈ [0, 𝜋],

𝜋2

6
+ 2

∞∑︁
𝑛=1

(−1)𝑛 cos𝑛𝑥
𝑛2 =

∞∑︁
𝑛=1

𝑛2𝜋2(−1)𝑛+1 + 2(−1)𝑛 − 2
𝑛3𝜋

sin𝑛𝑥.

We determine sine and cosine series expansions of 𝑓 (𝑥) = 𝑥2 for 0 ≤ 𝑥 ≤ 𝜋.

The odd and even expansions of 𝑓 (𝑥) are

𝑓𝑜𝑑𝑑 (𝑥) =
{
−𝑥2 for − 𝜋 ≤ 𝑥 < 0
𝑥2 for 0 ≤ 𝑥 < 𝜋,

𝑓𝑒𝑣𝑒𝑛 (𝑥) = 𝑥2 for − 𝜋 ≤ 𝑥 ≤ 𝜋.

We see that, as earlier, 𝑓𝑒𝑣𝑒𝑛 (𝑥) has the Fourier expansion
𝜋2

3
+ 4

∞∑︁
𝑛=1

(−1)𝑛 cos𝑛𝑥
𝑛2

for 𝑥 ∈ [0, 𝜋] . Due to the convergence theorem of Fourier series, this series
sums to 𝑥2 in [0, 𝜋] .

For the sine series expansion, we determine the Fourier series of 𝑓𝑜𝑑𝑑 (𝑥).
Here, each 𝑎𝑛 is 0. And for 𝑛 ≥ 1,

𝑏𝑛 =
2
𝜋

∫ 𝜋

0
𝑥2 sin𝑛𝑥 𝑑𝑥 = 2𝜋

(−1)𝑛+1
𝑛

+ 4
𝜋

[
(−1)𝑛 − 1

𝑛3

]
.

Due to the convergence theorem of Fourier series, 𝑥2 =
∑∞

𝑛=1 𝑏𝑛 sin𝑛𝑥 for
𝑥 ∈ [0, 𝜋] .
Equating both the sine and the cosine series for 𝑓 (𝑥) = 𝑥2 in [0, 𝜋], we obtain
the required result.

13. Represent the function 𝑓 (𝑥) = 1 − |𝑥 | for −1 ≤ 𝑥 ≤ 1 as a cosine series.

It is an even function. Thus its Fourier series is
𝑎0
2
+
∞∑︁
𝑛=1

𝑎𝑛 cos𝑛𝜋𝑥, where

𝑎0 = 2
∫ 1

0 (1 − 𝑥) 𝑑𝑥 = 1.
For 𝑛 ≥ 1,
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𝑎𝑛 =

∫ 1

−1
(1 − |𝑥 |) cos𝑛𝜋𝑥 𝑑𝑥 = 2

∫ 1

0
(1 − 𝑥) cos𝑛𝜋𝑥 𝑑𝑥 =

{
0 for 𝑛 even
4/(𝑛2𝜋2) for 𝑛 odd.

Thereofore, 1 − |𝑥 | = 1
2
+ 4
𝜋2

∞∑︁
𝑛=0

cos(2𝑛 + 1)𝜋𝑥
(2𝑛 + 1)2

for −1 ≤ 𝑥 ≤ 1.

Basic Matrix Operations §3.6
1. Show that given any 𝑛 ∈ N there exist matrices 𝐴, 𝐵 ∈ R𝑛×𝑛 such that

𝐴𝐵 ≠ 𝐵𝐴.

Let 𝐴 = [𝑒2 𝑒1 𝑒3 𝑒4 · · · 𝑒𝑛] and 𝐵 = [𝑣 𝑢 𝑢 · · · 𝑢], where 𝑒1, . . . , 𝑒𝑛 are
standard basis vectors of R𝑛×1 and 𝑢 = (1, 1, 1, . . . , 1)𝑇 , 𝑣 = (0, 0, 0, . . . , 0)𝑇 .

2. Let 𝐴 =


1 1 0
0 1 2
0 0 1

 . Compute 𝐴𝑛 .

We show that 𝐴𝑛 =


1 𝑛 𝑛(𝑛 − 1)
0 1 2𝑛
0 0 1

 for 𝑛 ∈ N by induction.

The basis case 𝑛 = 1 is obvious. Suppose 𝐴𝑛 is as given. Now,

𝐴𝑛+1 = 𝐴𝐴𝑛 =


1 1 0
0 1 2
0 0 1



1 𝑛 𝑛(𝑛 − 1)
0 1 2𝑛
0 0 1

 =

1 𝑛 + 1 (𝑛 + 1)𝑛
0 1 2(𝑛 + 1)
0 0 1

 .
Notice that taking 𝑛 = 0 in the matrix 𝐴𝑛, we see that 𝐴0 = 𝐼 .

3. Let 𝐴 ∈ F𝑚×𝑛; 𝐵 ∈ F𝑛×𝑘 . Let 𝐴1, . . . , 𝐴𝑚 be the rows of 𝐴 and let 𝐵1, . . . , 𝐵𝑘
be the columns of 𝐵. Show that
(a)𝐴1𝐵, . . . , 𝐴𝑀𝐵 are the rows of𝐴𝐵. (b)𝐴𝐵1, . . . , 𝐴𝐵𝑘 are the columns
of 𝐴𝐵.
(a) The 𝑗 th entry in 𝐴𝑖𝐵 is 𝐴𝑖 · 𝐵 𝑗 , which is the (𝑖, 𝑗)th entry in 𝐴𝐵.

(b) The 𝑖th entry in 𝐴𝐵 𝑗 is 𝐴𝑖 · 𝐵 𝑗 , which is the (𝑖, 𝑗)th entry in 𝐴𝐵.

4. Let 𝐴 ∈ F𝑛×𝑛; 𝐼 be the identity matrix of order 𝑛.

Find the inverse of the 2𝑛 × 2𝑛 matrix
[
𝐼 𝐴

0 𝐼

]
.

Check by muiltiplying:
[
𝐼 𝐴

0 𝐼

]−1

=

[
𝐼 −𝐴
0 𝐼

]
.
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5. If 𝐴 is a hermitian (symmetric) invertible matrix, then show that 𝐴−1 is
hermitian (symmetric).
𝐴∗ = 𝐴. Then (𝐴−1)∗ = (𝐴∗)−1 = 𝐴−1. So, 𝐴−1 is hermitian.
Similarly, for symmetric take transpose instead of conjugate transpose.

6. If 𝐴 is a lower (upper) triangular invertible matrix, then 𝐴−1 is lower (upper)
triangular.
Suppose 𝐴−1 = [𝑢1 · · ·𝑢𝑛] . Then 𝐴𝐴−1 = 𝐼 implies 𝐴𝑢𝑖 = 𝑒𝑖 . Now, 𝐴 is
lower triangular with nonzero entries on the diagonal. Writing 𝐴 = [𝑎𝑖 𝑗 ], and
𝑢𝑘 = [𝑦1, . . . , 𝑦𝑛]𝑡 , we have
𝑎11𝑦1 = 0, 𝑎12𝑦1 + 𝑎22𝑦2 = 0, . . . . This gives 𝑦1 = 0, 𝑦2 = 0, . . . 𝑦𝑖−1 = 0.
Thus 𝐴−1 is lower triangular.
Aliter: Suppose 𝐴 is a lower triangular matrix of order 𝑛. Let 𝐷 be the
diagonal matrix whose diagonal entries are exactly the diagonal entries of 𝐴
in the correct order. Since 𝐴 is invertible, 𝐷 is also invertible. Then write
𝐴 = 𝐷 (𝐼 + 𝑁 ). Here, 𝑁 is a lower triangular matrix with all diagonal entries
as 0. Then 𝑁𝑛 = 0. Verify that 𝐴−1 = (𝐼 − 𝑁 + 𝑁 2 − · · · + (−1)𝑛−1𝑁𝑛−1)𝐷−1.

Also, verify that this is a lower triangular matrix.
7. Show that each orthogonal 2 × 2 matrix is either a reflection or a rotation.

If 𝐴 = [𝑎𝑖 𝑗 ] is an orthogonal matrix of order 2, then 𝐴𝑇𝐴 = 𝐼 implies

𝑎2
11 + 𝑎

2
21 = 1 = 𝑎2

12 + 𝑎
2
22, 𝑎11𝑎12 + 𝑎21𝑎22 = 0.

Thus, there exist 𝛼, 𝛽 such that
𝑎11 = cos𝛼, 𝑎21 = sin𝛼, 𝑎12 = cos 𝛽, 𝑎22 = sin 𝛽 and cos(𝛼 − 𝛽) = 0.
It then follows that 𝐴 is in one of the following forms:

𝑂1 :=
[
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

]
, 𝑂2 :=

[
cos𝜃 sin𝜃
sin𝜃 − cos𝜃

]
.

Let
−−−−→
(𝑎, 𝑏) be the vector in the plane that starts at the origin and ends at the

point (𝑎, 𝑏). Writing the point (𝑎, 𝑏) as a column vector [𝑎 𝑏]𝑇 , we see that the
matrix product 𝑂1 [𝑎 𝑏]𝑇 is the end-point of the vector obtained by rotating
the vector

−−−−→
(𝑎, 𝑏) by an angle 𝜃 . Similarly, 𝑂2 [𝑎 𝑏]𝑇 gives a point obtained by

reflecting (𝑎, 𝑏) along a straight line that makes an angle 𝜃/2 with the 𝑥-axis.
Thus,𝑂1 is said to be a rotation by an angle 𝜃 and𝑂2 is called a reflection by
an angle 𝜃/2 along the 𝑥-axis.

8. Let 𝑢, 𝑣,𝑤 ∈ F𝑛×1. Show that {𝑢 + 𝑣, 𝑣 +𝑤,𝑤 + 𝑢} is linearly independent iff
{𝑢, 𝑣,𝑤} is linearly independent.
𝛼𝑢 + 𝛽𝑣 + 𝛾𝑤 = 0⇒ 𝛼+𝛽−𝛾

2 (𝑢 + 𝑣) + 𝛽+𝛾−𝛼
2 (𝑣 +𝑤) + 𝛼+𝛾−𝛽

2 (𝑤 + 𝑢) = 0
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⇒ 𝛼 + 𝛽 − 𝛾 = 0, 𝛽 + 𝛾 − 𝛼 = 0, 𝛼 + 𝛾 − 𝛽 = 0⇒ 𝛼 = 𝛽 = 𝛾 = 0.
So, {𝑢, 𝑣,𝑤} is linearly independent.
Conversely, 𝑎(𝑢+𝑣)+𝑏 (𝑣+𝑤)+𝑐 (𝑤+𝑢) = 0⇒ (𝑎+𝑐)𝑢+(𝑎+𝑏)𝑣+(𝑏+𝑐)𝑤 = 0
⇒ 𝑎 + 𝑐 = 0, 𝑎 + 𝑏 = 0, 𝑏 + 𝑐 = 0⇒ 𝑎 = 0, 𝑏 = 0, 𝑐 = 0.
Hence {𝑢 + 𝑣, 𝑣 +𝑤,𝑤 + 𝑢} is linearly independent.

9. Find linearly independent vectors from 𝑈 = {(𝑎, 𝑏, 𝑐) : 2𝑎 + 3𝑏 − 4𝑐 = 0} so
that the set of linear combinations of which is exactly𝑈 .
𝑈 = {(𝑎, 𝑏, 𝑐) : 2𝑎 + 3𝑏 − 4𝑐 = 0} = {(𝑎, 𝑏, 2𝑎+3𝑏

4 ) : 𝑎, 𝑏 ∈ R}.
The vectors (1, 0, 1/2) and (0, 1, 3/4) are in𝑈 .(
𝑎, 𝑏, 2𝑎+3𝑏

4
)
= 𝑎(1, 0, 1/2) + 𝑏 (0, 1, 3/4). So, these two vectors span𝑈 .

Now, 𝑎(1, 0, 1/2) + 𝑏 (0, 1, 3/4) = (0, 0, 0) ⇒ 𝑎 = 0, 𝑏 = 0, 2𝑎+3𝑏
4 = 0.

So, the vectors are linearly independent.

10. Determine linearly independent vectors so that the set of linear combinations
of which is𝑈 = {(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ∈ R5 : 𝑎 = 𝑐 = 𝑒, 𝑏 + 𝑑 = 0}.
𝑈 = {(𝑎, 𝑏, 𝑎,−𝑏, 𝑎) : 𝑎, 𝑏 ∈ R} = {𝑎(1, 0, 1, 0, 1) + 𝑏 (0, 1, 0,−1, 0) : 𝑎, 𝑏 ∈ R.
If 𝑎(1, 0, 1, 0, 1) + 𝑏 (0, 1, 0,−1, 0) = 0, then 𝑎 = 𝑏 = 0.
So, the vectors are (1, 0, 1, 0, 1) and (0, 1, 0,−1, 0).

Row Reduced Echelon Form §4.7
1. Convert the following matrices into RREF and determine their ranks.

(a)

5 2 −3 1 7
1 −3 2 −2 11
3 8 −7 5 8

 (b)

5 2 −3 1 30
1 −3 2 −2 11
3 8 −7 5 8


(a) RREF of the matrix is


1 0 −5/17 −1/17 0
0 1 −13/17 11/17 0
0 0 0 0 1

 . So its ranks is 3.

(b) RREF of the matrix is

1 0 −5/17 −1/17 112/17

0 1 −13/17 11/17 −25/17

0 0 0 0 0

 . So its rank is 2.

2. Determine linear independence of {(1, 2, 2, 1), (1, 3, 2, 1), (4, 1, 2, 2), (5, 2, 4, 3)}
in C1×4.
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The RREF of the matrix whose rows are the given vectors is


1 0 0 1/3
0 1 0 0
0 0 1 1/3
0 0 0 0


.

Since a zero row has appeared in the RREF, the vectors are linearly depen-
dent. Moreover, there had been no row exchanges in this reduction, and the
fourth vector has been reduced to the zero row. Thus the fourth vector is a
linear combination of the three previous ones.
Alternative: Take the matrix, where the given vectors are taken as column vec-

tors. Reduce it to RREF. You obtain:


1 0 0 2
0 1 0 −1
0 0 1 1
0 0 0 0


. Thus the fourth vector is a

linear combination of the earlier ones, whose coefficients are 2,−1, 1, respec-
tively. You can verify that (5, 2, 4, 3) = 2(1, 2, 2, 1) −1(1, 3, 2, 1) +1(4, 1, 2, 2).
So, the set is linearly dependent.

3. Compute𝐴−1 using RREF and also using determinant, where𝐴 =


4 −7 −5
−2 4 3

3 −5 −4

 .
Compute and see that 𝐴−1 =


1 3 1
−1 1 2
2 1 −2

 .
4. Solve the following system by Gauss-Jordan elimination:

𝑥1 +𝑥2 +𝑥3 +𝑥4 −3𝑥5 = 6
2𝑥1 +3𝑥2 +𝑥3 +4𝑥4 −9𝑥5 = 17
𝑥1 +𝑥2 +𝑥3 +2𝑥4 −5𝑥5 = 8
2𝑥1 +2𝑥2 +2𝑥3 +3𝑥4 −8𝑥5 = 14

We reduce the augmented matrix to its RREF:
1 1 1 1 −3 6
2 3 1 4 −9 17
1 1 1 2 −5 8
2 2 2 3 −8 14


→


1 1 1 1 −3 6
0 1 −1 2 −3 5
0 0 0 1 −2 2
0 0 0 1 −2 2


→


1 0 2 −1 0 1
0 1 −1 2 −3 5
0 0 0 1 −2 2
0 0 0 1 −2 2


→


1 0 2 0 −2 3
0 1 −1 0 1 1
0 0 0 1 −2 2
0 0 0 0 0 0


.
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Find out the row operations used in each step. Since no pivot is on the 𝑏

portion, the system is consistent. To solve this system, we consider only the
pivot rows, ignoring the bottom zero rows. The basis variables are 𝑥1, 𝑥2, 𝑥4
and the free variables are 𝑥3, 𝑥5. Write 𝑥3 = 𝛼 and 𝑥5 = 𝛽. Then

𝑥1 = 3 − 2𝛼 + 2𝛽, 𝑥2 = 1 + 𝛼 − 𝛽, 𝑥3 = 𝛼, 𝑥4 = 2 + 2𝛽, 𝑥5 = 𝛽.

5. Check if the system is consistent. If so, determine the solution set.

(a) 𝑥1 − 𝑥2 + 2𝑥3 − 3𝑥4 = 7, 4𝑥1 + 3𝑥3 + 𝑥4 = 9, 2𝑥1 − 5𝑥2 + 𝑥3 = −2,
3𝑥1 − 2𝑥2 − 2𝑥3 + 10𝑥4 = −12.

(b) 𝑥1 − 𝑥2 + 2𝑥3 − 3𝑥4 = 7, 4𝑥1 + 3𝑥3 + 𝑥4 = 9, 2𝑥1 − 5𝑥2 + 𝑥3 = −2,
3𝑥1 − 2𝑥2 − 2𝑥3 + 10𝑥4 = −14.

(a) RREF of [𝐴|𝑏] is


1 0 0 2 0
0 1 0 1/3 0
0 0 1 −7/3 0
0 0 0 0 1


. Thus inconsistent.

(b) RREF of [𝐴|𝑏] is


1 0 0 2 −10/9
0 1 0 1/3 23/27
0 0 1 −7/3 121/27
0 0 0 0 0


.

Thus solution is 𝑥1 = −10
9 + 2𝛼, 𝑥2 = 23

27 +
𝛼
3 , 𝑥3 = 121

27 +
7𝛼
3 , 𝑥4 = 𝛼.

6. Using Gauss-Jordan elimination determine the values of 𝑘 ∈ R so that the
system of linear equations

𝑥 + 𝑦 − 𝑧 = 1, 2𝑥 + 3𝑦 + 𝑘𝑧 = 3, 𝑥 + 𝑘𝑦 + 3𝑧 = 2

has (a) no solution, (b) infinitely many solutions, (c) exactly one solution.

Gauss-Jordan elimination on [𝐴|𝑏] yields


1 0 −𝑘 − 3 0
0 1 𝑘 + 2 1
0 0 (𝑘 + 3) (2 − 𝑘) 2 − 𝑘

 .
(a) The system has no solution when (𝑘 + 3) (2 − 𝑘) = 0 but 2 − 𝑘 ≠ 0,
that is, when 𝑘 = −3.
(b) It has infinitely many solutions when (𝑘 + 3) (2 − 𝑘) = 0 = 2 − 𝑘,
that is, when 𝑘 = 2.
(c) It has exactly one solution when (𝑘 + 3) (2 − 𝑘) ≠ 0,
that is, when 𝑘 ≠ −3, 𝑘 ≠ 2.

7. Let 𝐴 be an 𝑛 × 𝑛 matrix with integer entries and det(𝐴2) = 1. Show that all
entries of 𝐴−1 are also integers.
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det(𝐴2) = [det(𝐴)]2 = 1 ⇒ det(𝐴) = ±1. So, 𝐴 is invertible. Since 𝐴 has
integer entries, adj(𝐴) has also integer entries. Now,𝐴−1 = [det(𝐴)]−1adj(𝐴)
has inteeger entries.

8. Let 𝐴 ∈ F𝑚×𝑛 have columns 𝐴1, . . . , 𝐴𝑛 . Let 𝑏 ∈ F𝑚 . Show the following:

(a) The equation 𝐴𝑥 = 0 has a non-zero solution iff 𝐴1, . . . , 𝐴𝑛 are linearly
dependent.

(b) The equation 𝐴𝑥 = 𝑏 has at least one solution iff 𝑏 ∈ span{𝐴1, . . . , 𝐴𝑛}.
(c) Let 𝑢 be a solution of 𝐴𝑥 = 𝑏. Then, 𝑢 is the only solution of 𝐴𝑥 = 𝑏 iff

𝐴1, . . . , 𝐴𝑛 are linearly independent.
(d) The equation 𝐴𝑥 = 𝑏 has a unique solution iff rank𝐴 = rank[𝐴|𝑏] =

number of unknowns.

(a) We have scalars𝛼1, . . . , 𝛼𝑛 not all 0 such that
∑
𝛼𝑖𝐴𝑖 = 0.But each𝐴𝑖 = 𝐴𝑒𝑖 .

So, 𝐴(∑𝛼𝑖𝑒𝑖) = 0. Here, take 𝑥 =
∑
𝛼𝑖𝑒𝑖 . See that 𝑥 ≠ 0.

(b) If 𝑏 is a linear combination of the columns of 𝐴, then that linear combina-
tion provides a solution. Conversely, a solution provides a linear combination
of columns of 𝐴 which is equal to 𝑏.

(c) We have 𝐴𝑢 = 𝑏. Assume that 𝐴1, . . . , 𝐴𝑛 are linearly independent. If
𝐴𝑣 = 𝑏, then𝐴(𝑢−𝑣) = 0. Let𝑢−𝑣 = (𝛼1, . . . , 𝛼𝑛)𝑇 . Then𝐴(𝑢−𝑣) = 0 can be
rewritten as 𝛼1𝐴1 + · · ·𝛼𝑛𝐴𝑛 = 0. Since 𝐴1, . . . , 𝐴𝑛 are linearly independent,
each𝛼𝑖 is 0. That is,𝑢−𝑣 = 0.Conversely, if𝐴1, . . . , 𝐴𝑛 are linearly dependent,
then scalars 𝛽1, . . . , 𝛽𝑛 not all zero exist such that 𝛽1𝐴1 + · · · 𝛽𝑛𝐴𝑛 = 0. That is,
𝐴𝑣 = 0 with 𝑣 = (𝛽1, . . . , 𝛽𝑛)𝑇 . Then, 𝑢 and 𝑢 + 𝑣 are two solutions of 𝐴𝑥 = 𝑏.

(d) Let 𝐴 ∈ F𝑚×𝑛 .
If the system 𝐴𝑥 = 𝑏 has a unique solution, then it is a consistent system and
rank(𝐴) = 𝑛.

That is, rank(𝐴) = rank[𝐴|𝑏] and rank(𝐴) = 𝑛 = number of unknowns.
9. Let 𝐴 ∈ F𝑚×𝑛 have rank 𝑟 . Give reasons for the following:

(a) rank(𝐴) ≤ min{𝑚,𝑛}.
(b) If 𝑛 > 𝑚, then there exist 𝑥,𝑦 ∈ F𝑛×1 such that 𝑥 ≠ 𝑦 and 𝐴𝑥 = 𝐴𝑦.

(c) If 𝑛 < 𝑚, then there exists 𝑦 ∈ F𝑚×1 such that for no 𝑥 ∈ F𝑛×1, 𝐴𝑥 = 𝑦.

(d) If 𝑛 =𝑚, then the following statements are equivalent:
i. 𝐴𝑢 = 𝐴𝑣 implies 𝑢 = 𝑣 for all 𝑢, 𝑣 ∈ F𝑛×1.
ii. Corresponding to each 𝑦 ∈ F𝑛×1, there exists 𝑥 ∈ F𝑚×1 such that

𝑦 = 𝐴𝑥 .
(a) rank(𝐴) is the number of pivots in the RREF. So, it is less than or equal
to the number of rows, and also less than or equal to the number of columns.
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(b) Suppose 𝑛 > 𝑚. Then the RREF has at most 𝑚 pivots. And, there are
𝑛 −𝑚 ≥ 1 number of non-pivotal columns. These non-pivotal columns are
linear combinations of pivotal columns in𝐴. So, there exist scalars 𝛼1, . . . , 𝛼𝑛
not all zero such that 𝛼1𝐶1 + · · ·𝛼𝑛𝐶𝑛 = 0 where 𝐶𝑖 is the 𝑖th column of 𝐴.
Then (𝛼1, . . . , 𝛼𝑛) is a nonzero solution to 𝐴𝑥 = 0. Now, 𝐴0 = 0 and 𝐴𝑢 = 0,
where 𝑢 = (𝛼1, . . . , 𝛼𝑛) ≠ 0.
(c) Suppose 𝑛 < 𝑚. Let 𝐸𝐴 be the RREF of 𝐴. Consider the equation 𝐴𝑥 =

𝐸−1𝑒𝑛+1. This has the same solutions as the system 𝐸𝐴𝑥 = 𝑒𝑛+1. But [𝐸𝐴|𝑒𝑛+1]
has a pivot in the right most column, which has no solution.
(d) Suppose 𝑛 =𝑚.

Assume (i). Then 𝐴𝑥 = 0 has a unique solution. Then number of basic
variables is 𝑛. So RREF of 𝐴 is 𝐼 . That is, 𝐴 is invertible. Then 𝐴𝑥 = 𝑦 has a
solution for each 𝑦, namely, 𝑥 = 𝐴−1𝑦. This proves (ii).
Conversely, assume (ii). That is, for each 𝑦, 𝐴𝑥 = 𝑦 has a solution. In
particular, 𝐴𝑥 = 𝑒𝑖 has a solution for each 𝑖 . Thus, 𝐴 is invertible. Then
𝐴𝑥 = 𝐴𝑦 implies 𝑥 = 𝑦.

Matrix Eigenvalue Problem §5.7
1. Find the eigenvalues and the associated eigenvectors for the matrices given

below.

(a)
[
3 0
8 −1

]
(b)

[
3 2
−1 0

]
(c)

[
−2 −1

5 2

]
(d)


−2 0 3
−2 3 0

0 0 5

 .
(d) Call the matrix 𝐴. Its characteristic polynomial is −(2 + 𝑡) (3 − 𝑡) (5 − 𝑡).
So, the eigenvalues are 𝜆 = −2, 3, 5.
For 𝜆 = −2, 𝐴(𝑎, 𝑏, 𝑐)𝑇 = −2(𝑎, 𝑏, 𝑐)𝑇 ⇒ −2𝑎 + 3𝑐 = −2𝑎, −2𝑎 + 3𝑏 =

−2𝑏, 5𝑐 = −2𝑐.
One of the solutions for (𝑎, 𝑏, 𝑐)𝑇 is (5, 2, 0)𝑇 . It is an eigenvector for 𝜆 = −2.
For 𝜆 = 3, 𝐴(𝑎, 𝑏, 𝑐)𝑇 = 3(𝑎, 𝑏, 𝑐)𝑇 ⇒ −2𝑎 + 3𝑐 = 3𝑎, −2𝑎 + 3𝑏 = 3𝑏, 5𝑐 = 3𝑐.
One of the solutions for (𝑎, 𝑏, 𝑐)𝑇 is (0, 1, 0)𝑇 . It is an eigenvector for 𝜆 = 3.
For 𝜆 = 5, 𝐴(𝑎, 𝑏, 𝑐)𝑇 = 5(𝑎, 𝑏, 𝑐)𝑇 ⇒ −2𝑎 + 3𝑐 = 5𝑎, −2𝑎 + 3𝑏 = 5𝑏, 5𝑐 = 5𝑐.
One of the solutions for (𝑎, 𝑏, 𝑐)𝑇 is (3,−3, 7)𝑇 . It is an eigenvector for 𝜆 = 5.
Similarly, solve others.

2. Let𝐴 be an 𝑛×𝑛 matrix and 𝛼 be a scalar such that each row (or each column)
sums to 𝛼. Show that 𝛼 is an eigenvalue of 𝐴.
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If each row sums to 𝛼, then 𝐴(1, 1, . . . , 1)𝑇 = 𝛼 (1, 1, . . . , 1)𝑇 . Thus 𝛼 is an
eignevlaue with an eigenvector as (1, 1, . . . , 1)𝑇 .
If each column sums to 𝛼, then each row sums to 𝛼 in 𝐴𝑇 . Thus 𝐴𝑇 has an
eigenvalue as 𝛼. However, 𝐴𝑇 and 𝐴 have the same eigenvalues. Thus 𝛼 is
also an eigenvalue of 𝐴.

3. Let 𝐴 ∈ C𝑛×𝑛 be invertible. Show that 𝜆 ∈ C is an eigenvalue of 𝐴 if and only
if 𝜆−1 is an eigenvalue of 𝐴−1.

Since 𝐴 is invertible, its determinant is nonzero. As det(𝐴) is the product of
eigenvalues of 𝐴, no eigenvalue of 𝐴 is 0.
Also, for any nonzero 𝜆, 𝐴𝑣 = 𝜆𝑣 iff 𝜆−1𝐴−1𝐴𝑣 = 𝜆−1𝐴−1𝜆𝑣 iff 𝜆−1𝑣 = 𝐴−1𝑣 .

This shows that 𝜆 is an eigenvalue of 𝐴 iff 𝜆−1 is an eigenvlaue of 𝐴−1.

4. The vectors 𝑢1 = (1, 2, 2), 𝑢2 = (−1, 0, 2), 𝑢3 = (0, 0, 1) are linearly indepen-
dent in F3. Apply Gram-Schmidt Orthogonalization.
𝑣1 = (1, 2, 2).
𝑣2 = 𝑢2 −

⟨𝑢2, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1 = (−1, 0, 2) − (−1, 0, 2) · (1, 2, 2)
(1, 2, 2, ) · (1, 2, 2) (1, 2, 2) =

(
− 4/3,−2/3, 4/3

)
.

𝑣3 = 𝑢3 −
⟨𝑢3, 𝑣1⟩
⟨𝑣1, 𝑣1⟩

𝑣1 −
⟨𝑢3, 𝑣2⟩
⟨𝑣2, 𝑣2⟩

𝑣2

= (0, 0, 1) − (0, 0, 1) · (1, 2, 2)(1, 2, 2, ) · (1, 2, 2) (1, 2, 2) −
(0, 0, 1) · (−4/3,−2/3, 4/3)

(−4/3,−2/3, 4/3) · (−4/3,−2/3, 4/3) (−
4/3,−2/3, 4/3)

=
(
2/9,−2/9, 1/9

)
.

The set
{
(1, 2, 2),

(
− 4/3,−2/3, 4/3

)
,
(
2/9,−2/9, 1/9

)}
is orthogonal.

5. Let𝐴 ∈ R3×3 have the first two columns as (1/
√

3, 1/
√

3, 1/
√

3)𝑇 and (1/
√

2, 0,−1/
√

2)𝑇 .
Determine the third column of 𝐴 so that 𝐴 is an orthogonal matrix.
Notice that the first two columns of 𝐴 have norm 1, and are orthogonal to
each other. You can start with the third as (0, 0, 1)𝑇 and use Gram-Schmidt
process. And then normalize the third vector.
Aliter: Let the third column be (𝑎, 𝑏, 𝑐)𝑇 . Then the first two are orthogonal to
the third implies 𝑎 + 𝑏 + 𝑐 = 0, 𝑎 − 𝑐 = 0. This gives (𝑎, 𝑏, 𝑐)𝑇 = (𝑎,−2𝑎, 𝑎)𝑇 .
Now, the third column has norm 1 implies that 1 = 𝑎2 + 4𝑎2 + 𝑎2 = 6𝑎2 ⇒
𝑎 = ±1/

√
6. Thus the third column of 𝐴 is ±(1/

√
6,−2/

√
6, 1/
√

6)𝑇 .
6. Show that eigenvectors corresponding to distinct eigenvalues of a unitary (or

orthogonal) matrix are orthogonal to each other.

Let 𝛼 and 𝛽 be distinct eigenvalues of a unitary matrix 𝐴 with corresponding
eigenvectors 𝑥 and 𝑦. That is, we have: 𝐴∗𝐴 = 𝐴𝐴∗ = 𝐼 , 𝐴𝑥 = 𝛼𝑥 , 𝐴𝑦 = 𝛼𝑦,
𝑥 ≠ 0, 𝑦 ≠ 0 and 𝛼 ≠ 𝛽. We need to show that 𝑥 ⊥ 𝑦. Now,
(𝐴𝑥)∗(𝐴𝑦) = (𝛼𝑥)∗(𝛽𝑦) ⇒ 𝑥∗𝐴∗𝐴𝑦 = 𝛼𝛽𝑥∗𝑦 ⇒

(
𝛼𝛽 − 1

)
𝑥∗𝑦 = 0.

Since 𝐴 is unitary, any eigenvalue of 𝐴 has absolute value 1.



152 MA1102 Classnotes

So, |𝛼 |2 = 1⇒ 𝛼 𝛼 = 1⇒ 𝛼 = 1/𝛼.
Then

(
𝛼𝛽 − 1

)
𝑥∗𝑦 = 0⇒

(
𝛽/𝛼 − 1

)
𝑥∗𝑦 = 0⇒ (𝛽 − 𝛼)𝑥∗𝑦 = 0.

Since 𝛼 ≠ 𝛽, we get 𝑥∗𝑦 = 0. That is, 𝑥 ⊥ 𝑦.

7. Give an example of an 𝑛 × 𝑛 matrix that cannot be diagonalized.

Take 𝐴 = [𝑎𝑖 𝑗 ] ∈ C𝑛×𝑛 with 𝑎12 = 1 and all other entries as 0. Its eigenvalue
is 0 with algebraic multiplicity as 𝑛. If 𝐴 is diagonalizable, then 𝐴 is similar
to the zero matrix. But the only matrix similar to the zero matrix is the zero
matrix!

8. Find the matrix 𝐴 ∈ R3×3 that satisfies the given condition. Diagonalize it if
possible.

(a) 𝐴(𝑎, 𝑏, 𝑐)𝑇 = (𝑎 + 𝑏 + 𝑐, 𝑎 + 𝑏 − 𝑐, 𝑎 − 𝑏 + 𝑐)𝑇 for all 𝑎, 𝑏, 𝑐 ∈ R.
(b) 𝐴𝑒1 = 0, 𝐴𝑒2 = 𝑒1, 𝐴𝑒3 = 𝑒2.

(c) 𝐴𝑒1 = 𝑒2, 𝐴𝑒2 = 𝑒3, 𝐴𝑒3 = 0.
(d) 𝐴𝑒1 = 𝑒3, 𝐴𝑒2 = 𝑒2, 𝐴𝑒3 = 𝑒1.

(a) 𝐴 =


1 1 1
1 1 −1
1 −1 1

 . Its characteristic polynomial is −(𝑡 + 1) (𝑡 − 2)2.

So, eigenvalues are −1 and 2. Solving 𝐴(𝑎, 𝑏, 𝑐)𝑇 = 𝜆(𝑎, 𝑏, 𝑐)𝑇 for 𝜆 = −1, 2,
we have
𝜆 = −1 : 𝑎 + 𝑏 + 𝑐 = −𝑎, 𝑎 + 𝑏 − 𝑐 = −𝑏, 𝑎 − 𝑏 + 𝑐 = −𝑐 ⇒ 𝑎 = −𝑐, 𝑏 = 𝑐.

Thus a corresponding eigenvector is (−1, 1, 1)𝑇 .
𝜆 = 2 : 𝑎 + 𝑏 + 𝑐 = 2𝑎, 𝑎 + 𝑏 − 𝑐 = 2𝑏, 𝑎 − 𝑏 + 𝑐 = 2𝑐 ⇒ 𝑎 = 𝑏 + 𝑐.
Thus two linearly independent corresponding eigenvectors are (1, 1, 0)𝑇 and
(1, 0, 1)𝑇 .

Take the matrix 𝑃 =


−1 1 1
1 1 0
1 0 1

 . Then verify that 𝑃−1𝐴𝑃 = 𝑑𝑖𝑎𝑔(−1, 2, 2).

(b) The eigenvalue 0 has algebraic multiplicity 3. If it is diagonalizable, then it
is similar to 0.But the only matrix similar to 0, is 0. So,𝐴 is not diagonalizable.

(c) Similar to (b).

(d) Proceed as in (a) to get 𝑃 =


1 1 0
0 0 1
−1 1 0

 and verify 𝑃−1𝐴𝑃 = 𝑑𝑖𝑎𝑔(−1, 1, 1).

9. Which of the following matrices is/are diagonalizable? If one is diagonaliz-
able, then diagonalize it.



Matrix Eigenvalue Problem 153

(a)

1 1 1
1 −1 1
1 1 −1

 (b)

1 1 1
0 1 1
0 0 1

 (c)

1 0 1
1 1 0
0 1 1

 (d)

0 1 1
1 0 1
1 1 0

 .
(a) It is a real symmetric matrix; so diagonalizable. Its eigenvalues are
−2,−1, 2. Also since the 3 × 3 matrix has three distinct eigenvalues, it is
diagonalizable.
Proceed like 6(a).

(b) 1 is an eigenvalue with algebraic multipliity 3. If it is diagonalizable,
then it is similar to 𝐼 . But the only matrix similar to 𝐼 is 𝐼 . Hence, it is not
diagonalizable.

(c) Its eigenvalues are 2, (1 ±
√

3 𝑖)/2. Since three distinct eigenvalues; it is
diagonalizable. Here, 𝑃 will be a complex matrix. Proceed as in 6(a).

(d) (1, 0,−1)𝑇 and (1,−1, 0)𝑇 are two linearly independent eigenvectors asso-
ciated with the eigenvalue −1.
(1, 1, 1)𝑇 is an eigenvector for the eigenvalue 2.

Hence taking 𝑃 =


1 1 1
0 −1 1
−1 0 1

 , we have 𝑃−1𝐴𝑃 = 𝑑𝑖𝑎𝑔(−1,−1, 2).
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