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Limits of Functions of Two Variables

Recall limits of functions of a real variable:
Let D ⊂ R and let c ∈ R. Let f : D → R and let ℓ ∈ R.
Suppose the values of the function f are as close to the real number ℓ
as we like for all x close enough to c (on either side of c), except
possibly when x = c, then we say the the limit of f(x), as x
approaches c, is equal to ℓ ∈ R.

Figure: as x approaches c (from left)
then f(x) approaches f(c)

Figure: as x approaches c (from right)
then f(x) approaches f(c)

If we get different values from left and right (a "jump"), then the limit
does not exist!
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Recall the equivalent condition for the existence of a limit
Let D ⊂ R, f : D → R and c ∈ R be such that there is r > 0 with
(c− r,c)∪ (c,c+ r) ⊂ D.
Let ℓ ∈ R.
Then lim

x→c
f(x) = ℓ if and only if the following ϵ− δ condition holds.

For every ϵ > 0, there exists a δ > 0 such that for all x ∈ D with
0 < |x− c| < δ ⇒ |f(x)− ℓ| < ϵ.

If for no real number ℓ, the above happens, then limit of f at c does
not exist.
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Limits of Functions of Two Variables

Let D is a region in the plane and f : D → R be a function. Suppose
(a,b) ∈ R2 is such that B((a,b), r)\{(a,b)} ⊂ D for some r > 0 [or
suppose, more generally, that (a,b) is a limit point of D, which means
that every neighborhood of (a,b) contains a point of D other than
(a,b)].
The limit of f(x,y) as (x,y) approaches (a,b) is L if and only if the
following ϵ− δ condition holds.
For every ϵ > 0, there exists a δ > 0 such that for all (x,y) ∈ D with

0 <
√

(x−a)2 +(y − b)2 < δ ⇒ |f(x,y)−L| < ϵ.

In this case, we write lim
(x,y)→(a,b)

f(x,y) = L.

We also say that L is the limit of f at (a,b).
If for no real number L, the above happens, then limit of f at (a,b)
does not exist.
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The intuitive understanding of the notion of limit is as follows:
The distance between f(x,y) and L can be made arbitrarily small by
making the distance between (x,y) and (a,b) sufficiently small but
not necessarily zero.
It is often difficult to show that limit of a function does not exist at a
point. We will come back to this question soon.
When limit exists, we write it in many alternative ways:
The limit of f(x,y) as (x,y) approaches (a,b) is L or f(x,y) → L as
(x,y) → (a,b) or lim

(x,y)→(a,b)
f(x,y) = L or lim

x→a,y→b
f(x,y) = L.
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Example. Determine if lim
(x,y)→(0,0)

4xy2

x2+y2 exists.
Observations:

Suppose we have obtained a δ corresponding to some ϵ.
If we take ϵ1 which is larger than the earlier ϵ, then the same δ will
satisfy the requirement in the definition of the limit.
Thus while showing that the limit of a function is such and such at a
point, we are free to choose a pre-assigned upper bound for our ϵ.

Similarly
Suppose for some ϵ, we have already obtained a δ such that the limit
requirement is satisfied.
If we choose another δ, say δ1, which is smaller than δ, then the limit
requirement is also satisfied.
Thus, we are free to choose a pre-assigned upper bound for our δ
provided it is convenient to us and it works.

Example: Find limit at (0,0) of f(x,y) =
√

1−x2 −y2,
where D = {(x,y) : x2 +y2 ≤ 1}.
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Uniqueness of limit. Let f(x,y) be a real valued function defined on a
region D ⊆ R2. Let (a,b) ∈ D. If limit of f(x,y) as (x,y) approaches
(a,b) exists, then it is unique.

For a function of one variable, there are only two directions for
approaching a point; from left and from right.
Whereas for a function of two variables, there are infinitely many
directions, and infinite number of paths on which one can approach a
point.
The limit refers only to the distance between (x,y) and (a,b). It does
not refer to any specific direction of approach to (a,b).
If the limit exists, then f(x,y) must approach the same limit no
matter how (x,y) approaches (a,b).
Thus, if we can find two different paths of approach along which the
function f(x,y) has different limits, then it follows that limit of
f(x,y) as (x,y) approaches (a,b) does not exist.
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Theorem (Important): Suppose that f(x,y) → L1 as (x,y) → (a,b) along
a path C1 and f(x,y) → L2 as (x,y) → (a,b) along a path C2. If
L1 ̸= L2, then the limit of f(x,y) as (x,y) → (a,b) does not exist.
Examples:

Consider f(x,y) = x2−y2

x2+y2 for (x,y) ̸= (0,0). What is its limit at (0,0)?
Consider f(x,y) = xy

x2+y2 for (x,y) ̸= (0,0). What is its limit at (0,0)?

Consider f(x,y) = xy2

x2+y4 for (x,y) ̸= (0,0). What is its limit at (0,0)?
Question. Are the following same:
(a) lim

(x,y)→(a,b)
f(x,y); (b) lim

x→a
lim
y→b

f(x,y); (c) lim
y→b

lim
x→a

f(x,y).
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Example: Let f(x,y) = (y−x)(1+x)
(y+x)(1+y) for x+y ̸= 0,−1 < x,y < 1.

lim
y→0

lim
x→0

f(x,y) = lim
y→0

y
y(1+y) = 1.

lim
x→0

lim
y→0

f(x,y) = lim
x→0

−x(1+x)
x = −1.

Along y = mx, lim
(x,y)→(0,0)

f(x,y) = lim
(x,y)→(0,0)

x(m−1)(1+x)
x(1+m)(1+mx) = m−1

m+1 .

For different values of m, we get the last limit value different.
So, limit of f(x,y) as (x,y) → (0,0) does not exist. But the two iterated
limits exist and they are not equal.
Example: Let f(x,y) = xsin 1

y +y sin 1
x for x ̸= 0,y ̸= 0.

Then lim
y→0

xsin 1
y and lim

x→0
y sin 1

x do not exist. Hence neither
lim
x→0

lim
y→0

f(x,y) nor lim
y→0

lim
x→0

f(x,y) exists. However

|f(x,y)−0| ≤ |x|+ |y| =
√

x2 +
√

y2 ≤ 2
√

(x−0)2 +(y −0)2.

Take δ = ϵ/2.
Hence, if |(x,y)− (0,0)| < δ = ϵ/2, then |f(x,y)−0| < ϵ.

Therefore lim
(x,y)→(0,0)

f(x,y) = 0.

That is, the two iterated limits do not exist, but the limit exists.
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Limit theorems for functions of two real variables

Let ℓf , ℓg, c ∈ R. Suppose lim
(x,y)→(a,b)

f(x,y) = ℓf and
lim

(x,y)→(a,b)
g(x,y) = ℓg.

(i) lim
(x,y)→(a,b)

cf(x,y) = cℓf (constant multiple)

(ii) lim
(x,y)→(a,b)

(f ±g)(x,y) = ℓf ± ℓg resp. (sum/subtract)

(iii) lim
(x,y)→(a,b)

(f ·g)(x,y) = ℓf · ℓg (product)

(iv) If ℓg ̸= 0 and g(x,y) ̸= 0 in an open disk around the point (a,b), then

lim
(x,y)→(a,b)

(
f

g

)
(x,y) = ℓf

ℓg
(quotient)

(iv) If r ∈ R, ℓr
f ∈ R and lim

(x,y)→(a,b)
f(x,y) = ℓf , then

lim
(x,y)→(a,b)

(f(x,y))r = ℓr
f (power).
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Continuity

Let f(x,y) be a real valued function defined on a subset D of R2. We say
that f(x,y) is continuous at a point (a,b) ∈ D if and only if the following
ϵ− δ condition holds.
For every ϵ > 0, there exists a δ > 0 such that for all points (x,y) ∈ D with√

(x−a)2 +(y − b)2 < δ ⇒ |f(x,y)−L| < ϵ.

Observe that if (a,b) is an isolated point of D, then f is continuous
at (a,b).
When D is a region, (a,b) is not an isolated point of D; and then f is
continuous at (a,b) ∈ D iff the following are satisfied:

1 f(a,b) is well defined, that is, (a,b) ∈ D;
2 lim

(x,y)→(a,b)
f(x,y) exists; and

3 lim
(x,y)→(a,b)

f(x,y) = f(a,b).
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The function f(x,y) is said to be continuous on a subset of D iff
f(x,y) is continuous at all points in the subset.
Therefore, constant multiples, sum, difference, product, quotient, and
rational powers of continuous functions are continuous whenever they
are well defined.
Polynomials in two variables are continuous functions.
Rational functions, i.e., ratios of polynomials, are continuous
functions provided they are well defined.
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Examples.

1 Following two functions f(x,y) are continuous on R2. Take
f(0,0) = 0.

▶ f(x,y) = 3x2y
x2+y2 if (x,y) ̸= (0,0).

▶ f(x,y) = xy(x2−y2)
x2+y2 if (x,y) ̸= (0,0).

2 The function f(x,y) = x2−y2

x2+y2 if (x,y) ̸= (0,0) and f(0,0) = 0, is not
continuous at (0,0).
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Composition.

As in the single variable case, composition of continuous functions is
continuous.
Let f : D → R be continuous at (a,b) with f(a,b) = c. Let g : I → R be
continuous at c ∈ I for some interval I in R. Then g(f(x,y)) from D to R
is continuous at (a,b).
Example: cos xy

1+x2 and log(1+x2 +y2) are continuous on R2.
At what points are tan−1(y/x) continuous?

▶ the function y/x is continuous everywhere except when x = 0.
▶ The function tan−1 is continuous everywhere on R.
▶ Hence, tan−1(y/x) is continuous everywhere except when x = 0.

The function 1
x2+y2+z2−1 is continuous everywhere except on the sphere

x2 +y2 +z2 = 1, where it is not defined.
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Partial Differentiation (Partial Derivatives)
Recall: Let D ⊂ R, and let c be an interior point of D. A function
f : D → R is said to have a derivative at c if lim

h→0

f(c+h)−f(c)
h

exists,
and then it is denoted by f ′(c).
Let f(x,y) be a real valued function defined on a region D ⊆ R2. Let
(x0,y0) ∈ D.

If C is the curve of intersection of the surface z = f(x,y) with the plane
y = y0, then the slope of the tangent line to C at (x0,y0,f(x0,y0)) is the
partial derivative of f(x,y) with respect to x at (x0,y0).
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More formally, we can define:

Definition
A function f : D → R is said to have a partial derivative with respect to
x at the point (x0,y0) if

lim
h→0

f(x0 +h,y0)−f(x0,y0)
h

exists, and then it is denoted by fx(x0,y0) or ∂f

∂x

∣∣∣∣
(x0,y0)

or df(x,y0)
dx

∣∣∣∣
x=x0

.

Note: f(x,y0) must be continuous at x = x0.
Similarly, a function f : D → R is said to have a partial derivative with
respect to y at (x0,y0) if

lim
k→0

f(x0,y0 +k)−f(x0,y0)
k

exists, and then it is denoted by fy(x0,y0) or ∂f

∂y

∣∣∣∣
(x0,y0)

or df(x0,y)
dy

∣∣∣∣
y=y0

.

Again, f(x0,y) must be continuous at y = y0.
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Geometric interpretation
Let C denote the curve obtained by intersecting the graph of f by the
horizontal plane y = y0. The partial derivative of f with respect to x at
(x0,y0) equals the slope of the tangent to the curve C at (x0,y0). It can
be interpreted as the rate of change in f along the x-axis at (x0,y0).
Computationally, fx(x0,y0) is obtained by differentiating f with respect to
x at x0, treating y as the constant y0.

Partial derivatives of sums, products, quotients and compositions of
functions of two variables can be found in exactly the same manner as the
derivatives of a function of one variable.
Definition
If the partial derivatives of fx(x0,y0) and fy(x0,y0) of f exist at (x0,y0),
then

grad f |(x0,y0) = (∇f)(x0,y0) := (fx(x0,y0),fy(x0,y0)) ∈ R2

is called the gradient of f at (x0,y0).
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Examples.

Find fx and fy, where f(x,y) = y sin(xy).
Solution. Treating y as a constant and differentiating with respect to
x, we get fx. Similarly fy.

fx(x,y) = y cos(xy)y, fy(x,y) = yxcos(xy)+sin(xy).

Find out ∂z/∂x and ∂z/∂y where z = f(x,y) is defined by
x3 +y3 +z3 −6xyz = 1.
The plane x = 1 intersects the surface z = x2 +y2 in a parabola. Find
the slope of the tangent to the parabola at the point (1,2,5).

Hint: The asked slope is ∂z/∂y at (1,2). It is ∂(x2+y2)
∂y

∣∣∣∣
(1,2)

= 4.

Anuj Jakhar, IIT Madras MA1101, Functions of Several Variables, Lecture 1 18 / 50



Partial Differentiation: Examples

Let f(x,y) :=
√

x2 +y2 for (x,y) ∈ R2. Let (x0,y0) ̸= (0,0). Then

fx(x0,y0) = x0√
x2

0 +y2
0

and fy(x0,y0) = y0√
x2

0 +y2
0

.

But f does not have either partial derivative at (0,0) since lim
h→0

|h|/h

does not exist. Note: f is continuous at (0,0).
Let f(x,y) := xy/(x2 +y2) if (x,y) ̸= (0,0), and f(0,0) = 0. It is
easy to see that fx(0,0) = 0 = fy(0,0). We have already seen that f
is not continuous at (0,0).

Note that it is still true in higher dimensions that differentiability at a
point implies continuity.
What last example suggests that we need a stronger requirement for
differentiability in higher dimensions than the mere existence of the partial
derivatives.
After few slides, we shall define differentiability for functions of two
variables and its connectivity with continuity.
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Higher Order Partial Derivatives
Let D ⊂ R2, and f : D → R. Suppose fx(x0,y0) exists for every
(x0,y0) ∈ D. If the function fx : D → R has a partial derivative with
respect to x at (x0,y0), then it is denoted by fxx(x0,y0) or (fx)x(x0,y0)

or ∂2f

∂x2 (x0,y0) or ∂

∂x

∂f

∂x
(x0,y0).

Also, if fx : D → R has a partial derivative with respect to y at (x0,y0),
then it is denoted by fxy(x0,y0) or (fx)y(x0,y0) or ∂fx

∂y
(x0,y0) or

∂2f

∂y∂x
(x0,y0) or ∂

∂y

∂f

∂x
(x0,y0).

Similarly, we define fyy(x0,y0) and fyx(x0,y0), or ∂2f

∂y2 (x0,y0) and
∂2f

∂x∂y
(x0,y0).

In general, the mixed partial derivatives fxy(x0,y0) and fyx(x0,y0) may
not be equal.
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Mixed Partials

Example: Let f(x,y) := xy
x2 −y2

x2 +y2 if (x,y) ̸= (0,0), and f(0,0) := 0.
Then fx(0,y0) = −y0 for y0 ∈ R, and fy(x0,0) = x0 for x0 ∈ R. Hence
fxy(0,0) = −1 and fyx(0,0) = 1.

Theorem (Mixed Partials Theorem/ Mixed Derivative Theorem)
Let D be a region in R2. Let the function f : D → R have continuous first
and second order partial derivatives on D. Then fxy = fyx.

Example. Find ∂2w/∂x∂y if w = xy + ey

y2+1 .

The symbol ∂2w/∂x∂y tells us to differentiate first with respect to y
and then with respect to x. However, we interchange the order of
differentiation and differentiate first w.r.t. x, we get answer quickly.
In two steps: ∂w

∂x = y and ∂2w
∂y∂x = 1.

If we differentiate first w.r.t. y, then also we obtain same result as the
conditions of above theorem hold for w al all points (x0,y0).
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Still Higher Order.

Although we will deal mostly with first and second-order partial
derivatives, because these appear the most frequently in applications,
there is no theoretical limit to how many times we can differentiate a
function as long as the derivatives involved exist.
Thus, we get third- and fourth-order derivatives denoted by symbols
like fxxy = ∂

∂y
∂

∂x
∂f
∂x = ∂3f

∂y∂x∂x .

Example: Find fyxyz if f(x,y,z) = 1−2xy2z +x2y.
Solution. fy = −4xyz +x2; fyx = −4yz +2x;
fyxy = −4z; fyxyz = −4.
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Increment Theorem.
In order to see the connection between continuity of a function and the
partial derivatives, the following geometry may help.

Let S be the surface z = f(x,y), where fx, fy are continuous on the
region D, the domain of f .
Let (a,b) ∈ D. Let C1 and C2 be the curves of intersection of the
planes x = a and of y = b with S.

Let T1 and T2 be tangent lines to the curves C1 and C2 at the point
P (a,b,f(a,b)).
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The tangent plane to the surface S at P is the plane containing T1
and T2.

The tangent plane to S at P consists of all possible tangent lines at
P to the curves C that lie on S and pass through P.

This plane approximates S at P most closely.
Write the z-coordinate of P as c. Then P = (a,b,c).
Equation of any plane passing through P is
z − c = A(x−a)+B(y − b).
When y = b, the tangent plane represents the tangent to the
intersected curve at P .
Thus, A = fx(a,b), the slope of the tangent line. Similarly,
B = fy(a,b).
Hence, the equation of the tangent plane to the surface z = f(x,y) at
the point P (a,b,c) on S is

z − c = fx(a,b)(x−a)+fy(a,b)(y − b)

provided that fx, fy are continuous at (a,b).
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If we take g(x,y,z) = f(x,y)−z = 0, then equation of the tangent plane
is given by

∇g · u⃗ = 0

where ∇g = (fx,fy,−1) is a gradient vector and u is the vector from
(x,y,z) to (a,b,c), i.e., (x−a,y − b,z − c).
Example. Find the equation of the tangent plane to the elliptic paraboloid
z = 2x2 +y2 at (1,1,3).
Solution: Here zx = 4x,zy = 2y. So, zx(1,1) = 4,zy(1,1) = 2. The the
equation of the tangent plane is z −3 = 4(x−1)+2(y −1)
⇒ z = 4x+2y −3.

The tangent plane gives a linear approximation to the surface at that
point. Why?
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Write the equation f(x,y)−f(a,b) = fx(a,b)(x−a)+fy(a,b)(y − b).
Then

f(x,y) = f(a,b)+fx(a,b)(x−a)+fy(a,b)(y − b).

This formula holds true for all points (x,y,f(x,y)) on the tangent plane at
(a,b,f(a,b)).
For approximating f(x,y) for (x,y) close to (a,b), we may take

f(x,y) ≈ f(a,b)+fx(a,b)(x−a)+fy(a,b)(y − b).

The RHS is called the standard linear approximation of f(x,y,z). By
considering x = a+∆x, y = b+∆y and using Mean value theorem, we
obtain:
Increment Theorem. Let D be a region in R2. Let the function f : D → R
have continuous first order partial derivatives on D. Then f(x,y) is
continuous on D and the total increment
∆f = f(a+∆x,b+∆y)−f(a,b) can be written as

∆f = fx(a,b)∆x+fy(a,b)∆y + ϵ1∆x+ ϵ2∆y,

where ϵ1 → 0 and ϵ2 → 0 as both ∆x → 0 and ∆y → 0.
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Recall that for a function g of one variable, its differential is defined as
dg = g′(t)dt.
Let f(x,y) be a given function. The differential of f , also called the total
differential, is

df = fx(x,y)dx+fy(x,y)dy.

Here, dx = ∆x and dy = ∆y are the increments in x and y, respectively.
Then df is a linear approximation to the total increment ∆f .
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Example. The dimensions of a rectangular box are measured to be 75cm,
60cm, and 40 cm, and each measurement is correct to within 0.2cm. Use
differentials to estimate the largest possible error when the volume of the
box is calculated from these measurements.

The volume of the box is V = xyz with x = 75,y = 60,z = 40
So, dV = Vx(x,y,z)dx+Vy(x,y,z)dy +Vz(x,y,z)dz.

Note that Vx = yz,Vy = xz,Vz = xy.

Given that |∆x|, |∆y|, |∆z| ≤ 0.2cm.
Hence the largest error in cubic cm is

|∆V | ≈ |dV | = 60×40×0.2+40×75×0.2+75×60×0.2 = 1980.

Notice that the relative error is 1980/(75×60×40) which is about
1.1%.
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Differentiable.

Let D be a region in R2. A function f : D → R is called differentiable at a
point (a,b) ∈ D if the total increment ∆z = f(a+∆x,b+∆y)−f(a,b) in
f with respect to increments ∆x, ∆y in x,y, can be written as

∆f = fx(a,b)∆x+fy(a,b)∆y + ϵ1∆x+ ϵ2∆y,

where ϵ1 → 0 and ϵ2 → 0 as both ∆x → 0 and ∆y → 0.
The following statements give some connections between differentiability,
continuity and the partial derivatives.

Let D be a region in R2. Let f : D → R be such that both fx and fy

exist on D and at least one of them is continuous at (a,b) ∈ D. Then
f is differentiable at (a,b).
Let D be a region in R2. Let f : D → R be differentiable at
(a,b) ∈ D. Then f is continuous at (a,b).
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Differentiable.

Note that the first statement strengthens the increment theorem. Instead
of increasing the load on terminology, we will continue with the increment
theorem. Note that whenever we assume that fx and fy are continuous, you
may replace this with the weaker assumption: “f(x,y) is differentiable".
Other way Definition. Let D be a region in R2. Let the function
f : D → R. Then we say that f is differentiable at (x0,y0) if there is
(α,β) ∈ R2 such that

lim
(h,k)→(0,0)

f(x0 +h,y0 +k)−f(x0,y0)−αh−βk√
h2 +k2

= 0.

In this case, the pair (α,β) ∈ R2 is called the total derivative of f at
(x0,y0). By letting (h,k) → (0,0) along the x-axis and y-axis, we obtain
α = fx(x0,y0) and β = fy(x0,y0).
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Examples.

Let f(x,y) := xy/(x2 +y2) for (x,y) ̸= (0,0), and f(0,0) = 0. Then,
check that f is discontinuous at (0,0). Hence f is not differentiable
at (0,0).
Let f(x,y) := x2 +y2 for (x,y) ∈ R2. Let (x0,y0) ∈ R2.
Since fx and fy exist on R2 and fx is continuous at (x0,y0), f is
differentiable at (x0,y0).

Remember that we formulate and discuss our results for a function f(x,y)
of two variables. Analogously, all the notions and the results can be
formulated for a function f(x1, · · · ,xn) of n variables for n ≥ 2.
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Chain Rules.

Recall that The Chain Rule for functions of a single variable says that
when w = f(x) is a differentiable function of x and x = g(t) is a
differentiable function of t, then w is a differential function of t and dw

dt
can be calculate by the following formula

dw

dt
= dw

dx

dx

dt
.

For this composite function w(t) = f(g(t)), we can think of t as the
independent variable and x = g(t) as the “intermediate variable", because
t determines the value of x which in turn gives the value of w from the
function f .
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For functions of several variables the Chain Rule has more than one
form, which depends on how many independent and intermediate
variables are involved.
However, once the variables are taken into account, the Chain Rule
works in the same way we just discussed.
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Figure: two intermediate, one
independent variable

Figure: three intermediate, one
independent variable

Figure: three intermediate, two independent variables
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Chain rule For Functions of one Independent Variable and Two
Intermediate Variables: If w = f(x,y) is differentiable and if
x = x(t),y = y(t) are differentiable functions of t, then the composite
w = f(x(t),y(t)) is a differentiable function of t and

dw

dt
= fx(x(t),y(t)) · dx

dt
+fy(x(t),y(t)) · dy

dt
.

or dw
dt = ∂f

∂x
dx
dt + ∂f

∂y
dy
dt .

Chain rule for functions of one independent Variable and three
intermediate Variables: If w = ƒ(x, y, z) is differentiable and x, y, and
z are differentiable functions of t, then w is a differentiable function of
t and

dw

dt
= ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt
+ ∂f

∂z

dz

dt
.
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Chain rule for two independent Variables and three intermediate
Variables: Suppose that w = f(x,y,z),x = g(r,s),y = h(r,s), and
z = k(r,s). If all four functions are differentiable, then w has partial
derivatives with respect to r and s, given by the formulas

∂w

∂r
= ∂w

∂x

∂x

∂r
+ ∂w

∂y

∂y

∂r
+ ∂w

∂z

∂z

∂r
;

∂w

∂s
= ∂w

∂x

∂x

∂s
+ ∂w

∂y

∂y

∂s
+ ∂w

∂z

∂z

∂s
.
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Examples:

Using chain rule, find the derivative of w = xy with respect to t along
the path x = cos t and y = sin t. What is the derivative’s value at
t = π/2.
Solution. dw

dt = ∂f
∂x

dx
dt + ∂f

∂y
dy
dt = y(−sin t)+x(cos t) =

−sin2 t+cos2 t = cos2t. Value at t = π/2 is −1.

Express ∂w/∂r and ∂w/∂s in terms of r and s if
w = x2 +y2,x = r −s,y = r +s.
Solution. ∂w/∂r = (∂w/∂x)(∂x/∂r)+(∂w/∂y)(∂y/∂r) = 4r.
∂w/∂s = (∂w/∂x)(∂x/∂s)+(∂w/∂y)(∂y/∂s) = 4s.

Given that w = x2 +y2 +z2 and z(x,y) satisfies
z3 −xy +yz +y3 = 1, evaluate ∂w/∂x at (2,−1,1).
Solution. It is now clear that z,w are dependent variables and x,y are
independent variables.
∂w/∂x = 2x+2z∂z/∂x, 3z2∂z/∂x−y +y∂z/∂x = 0. These two
together give ∂w/∂x = 2x+ 2yz

y+3z2 . Evaluating it at (2,−1,1) gives
(∂w/∂x)(2,−1,1) = 3.
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The correct procedure to get ∂w
∂x is:

w must be dependent variable and x must be independent variable.
Decide which of the other variables are dependent or independent.
Eliminate the dependent variables from w using the constraints.
Then take the partial derivative ∂w

∂x .
A formula for implicit Differentiation: Suppose that F (x,y) is
differentiable and that the equation F (x,y) = 0 defines y as a
differentiable function of x. Then at any point where Fy ̸= 0,

dy

dx
= −Fx

Fy
.
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Directional Derivatives

Recall that if f(x,y) is a function, then fx(x0,y0) is the rate of
change in f with respect to change in x, at (x0,y0), that is, in the
direction î.
Similarly, fy(x0,y0) is the rate of change at (x0,y0) in the direction ĵ.
How do we find the rate of change of f(x,y) at (x0,y0) in the
direction of any unit vector û?
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Consider the surface S with the equation z = f(x,y).
Let z0 = f(x0,y0). The point P (x0,y0,z0) lies on S.

The vertical plane that passes through P in the direction of û
(containing û) intersects S in a curve C.
The slope of the tangent line T to the curve C at the point P is the
rate of change of z in the direction of û.
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Let f(x,y) be a function defined in a region D.
Let (x0,y0) ∈ D.

The directional derivative of f(x,y) in the direction of a unit vector
û = aû+ bĵ at (x0,y0) is given by (if following limit exists)

(Duf)(x0,y0) =
(

df

ds

)
u

∣∣∣∣
(x0,y0)

= lim
h→0

f(x0 +ha,y0 +hb)−f(x0,y0)
h

.

Example. Find the derivative of z = x2 +y2 at (1,2) in the direction of
û = (1/

√
2)̂i+(1/

√
2)ĵ.

Solution.
(Duz)(1,2) = lim

h→0
z(1+h/

√
2,2+h/

√
2)−z(1,2)

h = lim
h→0

2h/
√

2+2·2h/
√

2
h = 6√

2 .

Note that: zx(1,2)(1/
√

2)+zy(1,2)(1/
√

2) = 6√
2 .
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Result: Let f(x,y) have continuous first order partial derivatives. Then
f(x,y) has a directional derivative at (x,y) in any direction û = aî+ bĵ;
and it is given by

(Duf)(x,y) = fx(x,y)a+fy(x,y)b = ∇f · û.

That is, at (x0,y0), the directional derivative is given by

(Duf)(x0,y0) = Duf |(x0,y0) = ∇f |(x0,y0) · û = gradf |(x0,y0) · û.

Find the directional derivative of f(x,y) = x3 −3xy +4y2 in the
direction of the line that makes an angle of π/6 with the x-axis.
Solution. Here,the direction is given by the unit vector
û = cos(π/6)̂i+sin(π/6)ĵ =

√
3

2 î+ 1
2 ĵ.

Thus Duf(x,y) =
√

3
2 fx + 1

2fy = 1
2 [3

√
3x2 −3x+(8−3

√
3)y].
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How much the value of y sinx+2yz change if the point (x,y,z) moves 0.1
units from (0,1,0) toward (2,2,−2)?

Let f(x,y,z) = ysinx+2yz.

If P := (0,1,0),Q := (2,2,−2). Then v⃗ = P⃗Q = 2̂i+ ĵ −2k̂.

The unit vector in the direction of v⃗ is û = 1
3 v⃗.
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Examples of directional derivatives

Examples:
(i) Let f(x,y) := x2 +y2 for (x,y) ∈ R2.
Let (x0,y0) ∈ R2 and uuu := (u1,u2) be a unit vector. For t ̸= 0,

f(x0 + tu1,y0 + tu2)−f(x0,y0)
t

= (x0 + tu1)2 +(y0 + tu2)2 −x2
0 −y2

0
t

= 2x0u1 +2y0u2 + t.

Letting t → 0, we obtain
(DDDuuuf)(x0,y0) = 2x0u1 +2y0u2.

Note: (DDDuuuf)(x0,y0) = (∇f)(x0,y0) ·uuu for every unit vector uuu.
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(ii) Let f(x,y) :=
√

x2 +y2 for (x,y) ∈ R2.
Let (x0,y0) ∈ R2 and uuu := (u1,u2) be a unit vector. For t ̸= 0,

f(x0 + tu1,y0 + tu2)−f(x0,y0)
t

=
√

(x0 + tu1)2 +(y0 + tu2)2 −
√

x2
0 +y2

0

t

= 2x0u1 +2y0u2 + t√
(x0 + tu1)2 +(y0 + tu2)2 +

√
x2

0 +y2
0

.

Hence if (x0,y0) ̸= (0,0), then

(DDDuuuf)(x0,y0) = x0u1 +y0u2√
x2

0 +y2
0

= (∇f)(x0,y0) ·uuu.

But (DDDuuuf)(0,0) does not exist since lim
t→0

t/|t| does not exist.
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(iii) Let f(x,y) := xy/(x2 +y2) if (x,y) ̸= (0,0), and f(0,0) := 0.
For a unit vector uuu := (u1,u2) and t ̸= 0,

f(0+ tu1,0+ tu2)−f(0,0)
t

= u1u2
t

.

Hence (DDDuuuf)(0,0) exists ⇐⇒ u1 = 0 or u2 = 0.

(iv) Let f(x,y) := x2y/(x4 +y2) if (x,y) ̸= (0,0), and f(0,0) := 0.
For a unit vector uuu := (u1,u2) and t ̸= 0,

f(0+ tu1,0+ tu2)−f(0,0)
t

= u2
1u2

t2u4
1 +u2

2
.

Hence (DDDuuuf)(0,0) = 0 if u2 = 0, and (DDDuuuf)(0,0) = u2
1/u2 if u2 ̸= 0. In

particular, (∇f)(0,0) = (fx(0,0),fy(0,0)) = (0,0).

Thus (DDDuuuf)(0,0) ̸= (∇f)(0,0) ·uuu unless u1 = 0 or u2 = 0.

Anuj Jakhar, IIT Madras MA1101, Functions of Several Variables, Lecture 1 46 / 50



(v) Let f(x,y) := x3y/(x4 +y2) if (x,y) ̸= (0,0), and f(0,0) := 0.
For a unit vector uuu := (u1,u2) and t ̸= 0,

f(0+ tu1,0+ tu2)−f(0,0)
t

= tu3
1u2

t2u4
1 +u2

2
.

Hence (DDDuuuf)(0,0) = 0 if u2 = 0 and also if u2 ̸= 0. In particular,
(∇f)(0,0) = (fx(0,0),fy(0,0)) = (0,0)

Thus (DDDuuuf)(0,0) = (∇f)(0,0) ·uuu for every unit vector uuu.
—————————————————————–
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Tangent Line

Recall the one variable situation:
Let a < b and x0 ∈ (a,b). Let a function f : (a,b) → R be differentiable at
x0. Then the equation of the tangent line to the curve y = f(x) in R2 at
(x0,f(x0)) is given by

y −f(x0) = f ′(x0)(x−x0).
More generally, suppose D ⊂ R2 and P0 := (x0,y0) is an interior point of
D. Let a function F : D → R have partial derivatives at P0, and let
(∇F )(P0) ̸= (0,0). Suppose F defines a curve C in R2 (implicitly) by the
equation F (x,y) = 0 for (x,y) ∈ D, and P0 lies on C. Then the equation
of the tangent line to C at P0 is given by

Fx(P0)(x−x0)+Fy(P0)(y −y0) = 0.
Note: If D := (a,b)×R, f : (a,b) → R, and for (x,y) ∈ D,
F (x,y) := y −f(x), then y0 = f(x0), Fx(P0) = −f ′(x0) and Fy(P0) = 1.
We recover the earlier equation of the tangent line.
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Tangent Plane

Let us turn to the two variable situation:
Let D ⊂ R2, (x0,y0) be an interior point of D, and let a function
f : D → R be differentiable at (x0,y0). Then the equation of the tangent
plane to the surface z = f(x,y) in R3 at (x0,y0,f(x0,y0)) is given by

z −f(x0,y0) = fx(x0,y0)(x−x0)+fy(x0,y0)(y −y0).
More generally, suppose E ⊂ R3 and P0 := (x0,y0,z0) is an interior point
of E. Let a function F : E → R have partial derivatives at P0, and let
(∇F )(P0) ̸= (0,0,0). Suppose F (implicitly) defines a surface S in R3 by
the equation F (x,y,z) = 0 for (x,y,z) ∈ E, and P0 lies on S. Then the
equation of the tangent plane to S at P0 is given by

Fx(P0)(x−x0)+Fy(P0)(y −y0)+Fz(P0)(z −z0) = 0.
Note: As before, if we let F (x,y,z) := z −f(x,y), then we recover the
earlier equation of the tangent plane.
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Normal Line
Now (∇F )(P0) · (x−x0,y −y0,z −z0) = 0 for all (x,y,z) on the tangent
plane to the surface S, that is, (∇F )(P0) is perpendicular to the tangent
plane. The line passing through P0 = (x0,y0,z0) and parallel to the
nonzero vector (∇F )(P0) = (Fx(P0),Fy(P0),Fz(P0)) is called the normal
line to the surface defined by F (x,y,z)=0 at P0. The parametric
equations of this normal line are

x = x0 +Fx(P0)t, y = y0 +Fy(P0)t, z = z0 +Fz(P0)t, t ∈ R.

If all Fx(P0),Fy(P0),Fz(P0) are nonzero, then the equations are
x−x0
Fx(P0) = y −y0

Fy(P0) = z −z0
Fz(P0) .

Also, the parametric equations of the normal line to the surface defined by
z −f(x,y) = 0 at (x0,y0,z0) are

x = x0 −fx(x0,y0)t, y = y0 −fy(x0,y0)t, z = f(x0,y0)+ t, t ∈ R.
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