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Notation

@ = the empty set.

N ={1,2,3,...}, the set of natural numbers.
Z=A...,-2,-1,0,1,2,...}, the set of integers.
Q= {’5’ :p € Z, q € N}, the set of rational numbers.
R = the set of real numbers.

R\ Q = the set of irrational numbers.
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Completeness
R satisfies the completeness property:

Every nonempty subset of R having an upper bound has a least upper
bound (lub) in R.

From this follows the Archimedean property of R :
If a > 0 and b > 0, then there exists an n € N such that na > b.
This allows the existence of the greatest integer function.

That is, corresponding to each x € R, there exists a unique integer n
such that n < x < n+ 1. We write this n as [x]; it is the greatest integer
less than or equal to x.

We visualize R as a straight line made of expansible rubber of no
thickness!
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Leta,beR, a <b.

[a,b] ={x eR:
(a,b] ={xeR:
[a,b) ={xeR:
(a,b) ={xeR:
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Notation Cont.
Leta,beR, a <b.
[a,b] = {x € R: a < x < b}, the closed interval [q, b].
(a,b] = {x e R: a < x < b}, the semi-open interval (a, b].
[a,b) = {x € R:a < x < b}, the semi-open interval [a, b).
(a,b) = {x e R: a < x < b}, the open interval (a, b).
(=00, b] = {x € R: x < b}, the closed infinite interval (—co, b].
(=00, b) = {x € R : x < b}, the open infinite interval (—co, b).
[a, o) = {x € R : x > a}, the closed infinite interval [a, co).
(a,0) = {x € R : x < b}, the open infinite interval (a, o).
(=00, 20) = R, both open and closed infinite interval.
(0, 00) = R, = the set of all positive real numbers.

(—00,0) = R_ = the set of all negative real numbers.



Absolute Value function

The absolute value of x € R is defined as

N \/— {xifoO
x| = Vx¢ =

-x ifx<0O.

The distance between x and y is |x — y|.

A neighbourhood of a point ¢ is an open interval (c — 6, ¢ + &) for
some 6 > 0.

It is the set of all points having distance from c less than ¢.



Absolute Value function

The absolute value of x € R is defined as

N \/— {xifoO
x| = Vx¢ =

-x ifx<0O.

The distance between x and y is |x — y|.

A neighbourhood of a point ¢ is an open interval (c — 6, ¢ + &) for
some 6 > 0.

It is the set of all points having distance from c less than ¢.
We often prove an equality through an inequality:

Leta, b € R.
1. If foreach e > 0, |a — b| < €, thena = b.
2. Ifforeache >0, 0 <a < e thena =0.

3. Ifforeache >0, a < b+¢,thena < b.



Infinite sums?
Question: We accept 1111.111 - - - as a real number.

But this is same as the infinite sum

1 1
1 1 1 1+ —+—+---
000 + 100 + 10 + +10+100+

Is this infinite sum a number?
We rather take the partial sums
1000, 1000 + 100, 1000 + 100 + 10, 1000 + 100 + 10 + 1,
1000 + 100+ 10+ 1 + 5, 1000+ 100+ 10+ 1 + 5 + g, -

which are numbers; and ask whether the sequence of these numbers
approximates certain real number?

We may approximate V2 by the usual division procedure, and get the
sequence

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, ...

Does it approximate V27
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The values of the function are f(1), f(2), f(3), ...
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Sequences

A sequence of real numbers is a function f : N — R.
The values of the function are f(1), f(2), f(3), ...
These are called the terms of the sequence.

With f(n) = x,, the nth term of the sequence, we write the sequence in
many ways such as

(Xn) = (xn)f;l = {xn}:lil = {xn} = (x1,x2,%3,...)

For example,

(n) is the sequence 1,2,3,4,...

(1/n) is the sequence 1, 3,3, .-

(1/n?%) is the sequence 1, }P %, .

(5) is the sequence 5,5,5,5, ... It is a constant sequence.



Convergence

A sequence (x,) converges to a real number « iff
corresponding to each € > (), there exists an m € N such thatif n > m
is any natural number, then |x, — a| < €.

Example 1 The sequence (1/n) converges to 0.



Convergence

A sequence (x,) converges to a real number « iff
corresponding to each € > (), there exists an m € N such thatif n > m
is any natural number, then |x, — a| < €.

Example 1 The sequence (1/n) converges to 0.

Reason: Let € > 0. Take m = [1/€].
That is, m is the natural number such that m < é <m+1.

1
Then — < e.
m

1 1
If n >m,then - < — < e.

n o m
That is, corresponding to each € > 0, there exists an m, (we have
defined it here) such that for every n > m, we see that |1/n — 0| < €.
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CO]’IVCI‘gCHt sequence

Convergence behaviour of a sequence does not change if first finite
number of terms are changed.
A sequence thus converges to a implies the following:

1. Each neighborhood of a contains a tail of the sequence.

2. Every tail of the sequence contains numbers arbitrarily close to a.
We say that a sequence (x;,) converges iff it converges to some a. A

sequence (x,) diverges iff it does not converge to any real number.

Let (x,) be a sequence. We say that (x,,) diverges to co iff
corresponding to each r > 0, there exists an m € N such thatif n > m
is any natural number, then x,, > r.

We say that (x,) diverges to —co iff
corresponding to each r > 0, there exists an m € N such thatif n > m
is any natural number, then x,, < —r.
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Divergence

Call an open interval (r, o0) a neighborhood of co.
Call an open interval (—oo, 5) a neighborhood of —co.
A sequence thus diverges to co means the following:

1. Each neighborhood of oo contains a tail of the sequence.

2. Every tail of the sequence contains arbitrarily large positive
numbers.

A sequence diverges to —co means the following:
1. Each neighborhood of —co contains a tail of the sequence.

2. Every tail of the sequence contains arbitrarily small negative
numbers.
When (x,,) converges to a, or when it diverges to oo, or when it
diverges to —oo, we write

lim x, = £ for € =a, oo, —co.
n—oo

We also write it as “x, — {asn — oo’ oras x;, — €.



Example 2

1. limvyn =
Reason: Let r > 0. Choose an m > r%. Let n > m.

Then Vn > Vm > r.

Therefore, lim Vn = oo.



Example 2

1. lim+vn = o

Reason: Let r > 0. Choose an m > r>. Let n > m.

Then Vn > Vm > r.

Therefore, lim Vn = oo.

2. limlog(1/n) = —co.

Reason: Let » > 0. Choose a natural number m > ¢". Let n > m.
Then1/n<1/m<e™.

Consequently, log(1/n) < loge™ = —r.

Therefore, log(1/n) — —oo.
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Bounded, Monotonic

We say that a sequence (x;) is bounded iff

there exists a positive real number k such that for each n € N, |x,| < k;
that is,

when the whole sequence is contained in an interval of finite length.

We also say that (x;,) is bounded below iff
there exists an m such that each x,, > m; and

the sequence (x,) is called bounded above iff
there exists an M such that each x,, < M.

Thus, a sequence is bounded iff it is both bounded below and bounded
above.

A sequence (x,) is called increasing iff x,, < x,, for each n.
Similarly, (x,) is called decreasing iff x,, > x,,.| for each n.

A sequence which is either increasing or decreasing is called a
monotonic sequence.
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Cauchy, Subsequence

A sequence (x,) is called a Cauchy sequence iff
for each € > 0, there exists an M € N such thatif n > m > M are in N,
then |x, — x| < €.

It follows that for all n > m, if lim |x,, — x,,| — O as both m — o and
n — oo, then (x,) is a Cauchy sequence.

Let (x,) be a sequence. Choose an increasing sequence of indices
ny <ny <nz <---.The sequence (x,,) fork=1,23,...,isa
subsequence of the sequence (x;).

For example, (1,4, 9, 16, .. .) is a subsequence of the sequence
1,2,3,4,....
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Helpful results

1. Limit of a sequence is unique.
2. Each convergent sequence is bounded.
3. Algebra of Limits: Suppose lim x;,, = a and lim y, = b. Then the
following are true:
3.1 Sum: lim(x, +y,)=a+Db
3.2 Difference: lim (x,, — y,) = a — b.
3.3 Constant Multiple: lim (¢x,) = ca for any real number c.
3.4 Product: lim (x, y,) = ab.
3.5 Division: lim (x,/y,) = a/b, provided no y, is 0 and b # 0.
3.6 Domination: If for each n, x,, < y,, thena < b.

4. Sandwich Theorem: Let (x,), (y,), and (z,) be sequences such
that x,, <y, < z, holds for all n greater than some m. If x, — ¢
and z, — ¢, theny, — £.

5. Weirstrass Criterion: A bounded monotonic sequence converges.

5.1 an increasing sequence bounded above converges to its [ub;
5.2 adecreasing sequence bounded below converges to its glb.
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Helpful results Cont.

6. Cauchy Criterion: A sequence (x,) converges iff it is a Cauchy
sequence.

7. Limits of functions to Limits of sequences: Let m € N. Let f(x) be
a function whose domain includes [m, o). Let (x;,) be a sequence
such that x,, = f(n) for all n > m. If nli)n‘}o f(n) = ¢, then

lim x, = ¢.
n—oo
8. Limits of sequences to Limits of functions: Leta < ¢ < b. Let
f : D — R be a function where D contains (a, c) U (c, b). Let

¢ € R. Then lim f(x) = ¢ iff for each non-constant sequence (x;,)
X—C

converging to ¢, the sequence of functional values (f(x,))
converges to £.
9. Subsequence Criterion: Let (x,) be a sequence.
0.1 If x,, — ¢, then every subsequence of (x,) converges to £.
0.2 If xp, — € and xp,,.1 — ¢, thenx,, — ¢.
10. Continuity: Let f(x) be a continuous real valued function whose
domain contains each term of a convergent sequence x, and also

its limit. Then lim f(x,) = f ( lim xn).
n—-o0o n—oo
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Example 3

Let (x,) be a sequence. Show that x, — 0 iff |x,| — 0.

Solution: Suppose x, — 0. Let € > 0. There is m € N such that for
each n > m, |x,| < €. Since | |x,| — 0] = |x,], we get: |x,| — O.

Suppose |x,| = 0. As —|x,| < x, < |x,], by Sandwich theorem, it
follows that x, — O.

In general, even if (|x,|) converges, (x,) may not converge.
For example, take x,, = (—1)".

However, if (x,) converges, say, to ¢, then (|x,|) converges to |£|.
It follows from the inequality | |x,| — |€] | < |x, — {|.
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Recall.

() a, :=2/(n* + 1) for n € N. Then a, — 0. Now

< 3 for all n € N.

nz+1 n+1 n?

2 ‘ 2

Choose ny € N such that ng > V2/+/e. For example, let
no = [V2/+e] + 1. Then |a, — 0| < € for all n > ny.

(ii) a, :=5/(Bn+ 1) for n € N. Then a,, — 0. Now

5 5
el < I for all n € N.

Choose ng € N such that ny > 5/3¢. For example, let
no :=[5/3€] + 1. Then |a, — 0| < € for all n > ny.
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(iii) ay := (=1)" for all n € N. Then the sequence (a;,) is divergent,
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(iii) ay := (=1)" for all n € N. Then the sequence (a;,) is divergent,
that is, it is not convergent.

Suppose (a,,) is convergent. Then there is a real number a such
that a,, — a. Let € := 1/2. Find ny € N such that

1
[(-1)" —a| < 3 for all n > ny.



(iii) ay := (=1)" for all n € N. Then the sequence (a;,) is divergent,
that is, it is not convergent.

Suppose (a,,) is convergent. Then there is a real number a such
that a,, — a. Let € := 1/2. Find ny € N such that

1
[(-1)" —a| < 3 for all n > ng.

Since (=1) =1 and (=1)>0+! = —1,

2 = (=)0 — (=1)Pt
< (=1 —a| + |a— (=1)**
< ! + ! =1
2 2 7

which is a contradiction.
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Recall: Uniqueness of limit

Theorem
A convergent sequence has a unique limit.

Proof: Let (a,) be a sequence. Assume for a moment that @, — a and
a, — b, wherea # b. Lete :=|a—b|/2 > 0.

Let nyp € Nbe suchthatn > ng = |a, —a| < €, and let my € N be
such that n > my = |a, — b| < €. Consider n := max{ng, mo}. Then

la—b| <la-ay| +|a,—b| < e+e€=|a-Db|,

which is a contradiction. Hence a = b. ]
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Recall:a useful result

Theorem
Every convergent sequence is bounded.

Proof: Suppose a, — a. Let € := 1. There is ny € N such that

la, —a| < 1 for all n > nyg.

Hence

lan| < |a, —al +|a| <1+ |a| forall n > ng.
Define a := max {|a1|, oo langl, lal + 1}. Then |a,| < a foralln € N,
Hence (a,) is bounded. ]

> A bounded sequence need not be convergent.
Example: a, := (—1)" forn € N.

» Ifa, := (=1)'nfor n € N, then (a,) is divergent since it is not
bounded.
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clearly increasing.



Example: Monotonic Bounded

Leta, := 1+ (1/2%) + --- + (1/n?) for n € N. The sequence (ay,) is
clearly increasing. Further, since
< 1+ ! + ! +-o !
n = 1.2 2.3 (n—1)-n

()l

we see that a,, < 2 — (1/n) < 2. Thus (a,) is bounded. Hence by the
result discussed in a previous slide, (a,) is convergent.
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Examples

5n% +2n+7
Example 4. Does lim MTRT L oxist?
n—eo p2 — 11n +
S +2m+7 . S+:+L 5
im —— = lim ——— == =5.
n—oop?—1ln+5 n—)ool_ﬁ_i_% 1
n n
. - cosn 1 . . .
Example 5. Since — < < —, Sandwich theorem implies that
n n n
cosn
n

Example 6. Asn < Vn2 + 1 +n,

1 1
O<Vm+l-on= ——— < -

n+1+n 1

By Sandwich theorem, lim Vn2+1—-n=0.

n—oo
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Examples Cont.

Example 7. Let p > 0. Show that lim (1/r”) = 0.

Solution: Let € > 0. Using Archimedean Property, take m € N so that
(1/€)'/? < m. Now, 1/€ < mP; s0 1/mP < €. If n > m, then

Example 8. Show that if |x| < 1, then limx" = 0.

for some r > 0. By the Binomial theorem,

A+r)*>1+nr>nr. So,0< |x|" = 1+1r,, %
By Sandwich theorem, lim |x|" = 0. Now, —|x|" < x* < |x|".

Again, by Sandwich theorem, limx" = 0.

1
Solution: Write |x| = T
r
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Example 9. Show that lim(n'/") = 1.

Solution: Let x,, = n'/" — 1. We see that x,, > 0. Using Binomial
theorem for n > 2,

nn-1)
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HencenZ%xﬁ:Oans \/’%

Apply Sandwich theorem to conclude that lim x,, = 0.



Examples Cont.

Example 9. Show that lim(n'/") = 1.

Solution: Let x,, = n'/" — 1. We see that x,, > 0. Using Binomial
theorem for n > 2,

nn-1)

xn+1:n1/”:n:(xn+l)"21+nxn+ > x,%.
-1 2
HencenZ%xﬁ:Oans \/’%

Apply Sandwich theorem to conclude that lim x,, = 0.
Example 10. Show that if x > 0, then lim(x'/") = 1.

Solution: The function f(¢) = x' is continuous for ¢ € [0, 1]. All terms
of the sequence (1/n) and its limit belong to the interval [0, 1].

Therefore,
mel/n — xlim(l/n) — xO =1.
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1
Example 11. Show that lim —2 = 0.

n—oo

n
Solution: log x is defined on [1, c0). Using L Hospital’s rule,

] 1
lim 2% = fim = = 0.

X—00 X X—00 X
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1
Example 11. Show that lim ﬂ =0.

n—oo

Solution: log x is defined on [1, oo) Using L Hospital’s rule,

1 1
lim 22 = lim - = 0.
xX—o0 X X—00 X
. logn . logx
Therefore, lim = lim —— =0.
n—oo n xX—oo X

Example 12. Show that lim n'/" = 1.

n—oo
Solution: lim n'/" = lim x'* = lim erlogx — plimee = _ 0
X—00 X—00

P
Exercise 13. Show that lim n_n =0forx>1.

n—oo x
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Series

A series is an infinite sum.

Consider the series Z;’l": | Xn, Which abbreviates x| +x +x3 + -+ .
Its partial sum is the sequence s, = x| +xp + - - - + X;,.

We say that the series }; x, converges to ¢ iff the sequence (s,)
converges to £.

That is, when for each € > 0, there exists an m € N such that for each
n>m, |27 xx — | < e.In this case, we write } x, = £.
The series is said to be divergent iff it is not convergent.

The series ) x,, diverges to o iff for each r > 0, there exists m € N
such that for each n > m, 3)}_, xx > r. We write it as ), x, = co.

Similarly, the series ) x,, diverges to —co iff for each r > 0, there
exists m € N such that for each n > m, 3} _, xx < —r. We write it as

an = —00.
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1. The series
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n=1

Loy

o converges to 1. Reason?

i -
L2k T2 1-1/2
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(o8]

1. The series Z o converges to 1. Reason?

n=1

1 1 1-(1/2)n 1
=y —==—-—"17 1 — 1.
: ,;216 2 1212 »

2. The Harmonic series 1 + % + % + JT + - -+ diverges to co. Reason?

Write s, = ZZ:I % Let r > 0. Choose m = 2%, where k € N, k > 2r. Then

US| 1 1 1
= —=l+=-+=-+: -+ =
o1 1y /1111 2
= l+-+(z+- —+—-+=-+-|+ ( -
3 G GrgrTs) 2
Jj=2k141
o1 1y 1 1 11 2
= 1+—+<—+—)+<—+—+—+— +--~+( —)
2 \4 4 8 8 8 8) Z 2k
Jj=2k141

1 1 1 k
= 1+§+§+---+§=1+5>r.lfn>m, thens, > s, > r.
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1. The series—1-2-3-4—..-—n—--- diverges to —co.

2. The Alternating series 1 — 1+ 1 — 1+ --- diverges. Reason?
The sequence of partial sums 1,0,1,0,1,0, 1, .. ..
It neither diverges to co nor to —oo.



Example 15
1. The series—1-2-3-4—..-—n—--- diverges to —co.

2. The Alternating series 1 — 1+ 1 — 1+ --- diverges. Reason?
The sequence of partial sums 1,0,1,0,1,0, 1, .. ..
It neither diverges to co nor to —oo.

3. Leta # 0. Consider the geometric series

[ee)
Z:arn_l =a+ar+ar+ar +--- .
n=1

a(l —r")
1—-r
(a) If |[r] < 1, then * — 0. The geometric series converges to

sp=a+ar+arr+ar +---ar! =

lim s, = .
n—o0 —-r

(b) If || > 1, then " diverges; so the geometric series diverges.
If » = £1, the geometric series clearly diverges.
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Proof: Lets, = Y;_, ax. Then a,, = s, — 5,_1.
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It follows that lima,, = 0. O

3. (Cauchy Criterion) A series }; a, converges iff for each € > 0,
there exists a k € N such that | Z]’.‘:m aj| < eforalln > m > k.
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Helpful results

1. If a series sums to ¢, then ¢ is unique.

It follows from the uniqueness of limit of a sequence.
Of course, £ € R U {00, —c0}.

2. (n-th term) If a series Y, a, converges, then the sequence (a;,)

converges to 0.

Proof: Lets, = Y;_, ax. Then a,, = s, — 5,_1.

If the series converges, say, to £, then lim s, = £ = lims,,_;.

It follows that lima,, = 0. O

3. (Cauchy Criterion) A series }; a, converges iff for each € > 0,
there exists a k € N such that | Z]’.‘:m aj| < eforalln > m > k.

4. (Weirstrass Criterion) Let ) a, be a series of non-negative
terms. Suppose there exists ¢ € R such that each partial sum of
the series is less than ¢, i.e., for each n, Z]’.’:] a; < c. Then ] a, is
convergent.

Examples: The series )} 525 diverges because lim 575 = —% #0.

The series }.(—1)" diverges because lim(—1)" does not exist.
The harmonic series diverges even though lim % =0.



Algebra with sums

1. If )’ a, converges to a and }’ b, sums to b, then
the series ) (a, + b,) sums to a + b;
>.(a, — b,) sums to a — b; and
> kb, sums to kb; where k is any real number.
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Algebra with sums

1. If )’ a, converges to a and }’ b, sums to b, then
the series ) (a, + b,) sums to a + b;
>.(a, — b,) sums to a — b; and
> kb, sums to kb; where k is any real number.

2. If ) a, converges and )’ b, diverges, then
>.(an + by) and Y (a, — b,) diverge.

3. If ) a, diverges and k # 0O, then )’ ka, diverges.

Here, if £ € R, then £ + 00 = o0, £ — 00 = —00.

If £ > 0, then € - (xo0) = +oo.

If £ <0, then £ - (£c0) = Foo.

Also, 00 4+ 00 = 00, —00 — 00 = —00, 00 + +00 = 00, —00 - +00 = F00.

Whereas 0 - 200, 0o — 00, +00/00 etc. are indeterminate.
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at least one of a or b is +oo, or

the value of f(x) is oo for some x € [a, b], or f(x) is not continuous at
some points in (a, b)

then the integral is called an improper integral.



Improper Integral

In the definite integral fa b f(x)dx, if

at least one of a or b is +oo, or

the value of f(x) is oo for some x € [a, b], or f(x) is not continuous at
some points in (a, b)

then the integral is called an improper integral.

But the area under the curve may still remain bounded.
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b
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Convergence

The improper integral fooo f(x)dx converges provided the limit

b
lim / f(x)dx
b—)oo 0
exists. It means the limit must be a real number, NOT +oo.

Then we say that the value of the improper integral is this limit. That

is,
) b
/0 fde = lim /0 FOd

The improper integral diverges iff the limit above does not exist.



Possible types of improper integrals

o0 b
1. If f(x) is continuous on [a, o), then / f(x)dx = blim / f(x)dx.

b b
2. If f(x) is continuous on (—oo, b], then / f(x)dx = lim / f(x)dx.
oo a—- J,

3. If f(x) is continuous on (—oo, c0), then

‘[wf(x)dx=lc f(x)dx+/oof(x)dx, for any ¢ € R.



Possible types of improper integrals

o0 b
1. If f(x) is continuous on [a, o), then / f(x)dx = blim / f(x)dx.
a — Ja

b b
2. If f(x) is continuous on (—oo, b], then / f(x)dx = lim / f(x)dx.
oo a—- J,

3. If f(x) is continuous on (—oo, c0), then

‘[wf(x)dx='/f f(x)dx+/oof(x)dx, for any ¢ € R.

4. If f(x) is continuous on (a, b] and discontinuous at x = g, then

b b
[ rewas= im [ roas.

5. If f(x) is continuous on [a, b) and discontinuous at x = b, then

[ o= i [ s

6. If f(x) is continuous on [a, ¢) U (¢, b] and discontinuous at x = ¢, then

/a ’ f@)dx = / Cr@dr+ / ’ f@)dx.

Also, when improper integral diverges to oo, we take its value to be that.
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For what values of p € R, the improper integral / —;C converges?
1 X

What is its value, when it converges?

Case 1: p=1. fbdx :fb‘i" =loghb —log1 =logb.
Since bhm log b = oo, the improper integral diverges to co.

x—p+l b
-p+1

Case2: p < 1. /1 &=

=0T =

Since lim b'™” = o, the improper integral diverges to co.

b— oo



Example 16
“ dx
For what values of p € R, the improper integral / - converges?
1 X
What is its value, when it converges?

Case 1: p=1. fbdx :fb‘i" =loghb —log1 =logb.
Since bhm log b = oo, the improper integral diverges to co.

~p+1 b 1 _

Case 2: p < 1. /1 & =2 = ()}
Since bhm b'™P = oo, the improper integral diverges to co.

— 1 (pl- _ 11
Case 3: p > 1. /1 &= L p_l)_ﬁ(m_l)'

1
Since lim — = 0, we have
b—oo P~ 1

_ _ 1 _ 1
f x,, = hm /1 7 11_>rn Tp(bp_-l_l) =50

[ee)



Example 16

(9
x
For what values of p € R, the improper integral / - converges?
1 X
What is its value, when it converges?

Case 1: p=1. fbdx :fb‘i" =loghb —log1 =logb.
Since bhm log b = oo, the improper integral diverges to co.

b
x—p+l

Case 2: p < 1. /1 o= = #(bl—p ~1).

Since lim b'™” = o, the improper integral diverges to co.

b— oo
Case 3: p > 1. /1 & = #(bl—p -1 = ﬁ(# - 1),
1
Since lim —— = 0, we have
b—oo hP~ 1

[ = pim = tim b (k1) = o

< dx
Hence, the improper integral / —, converges to
1 X

1
I for p > 1 and

diverges to co forp < 1.



Example 17

d
For what values of p € R, the improper integral / —;f converges?
0 X

Case 1: p=1. /0 & = limg_04 fal % = lim,_,+[log1 —loga] =
Therefore, the improper integral diverges to oo.

14
= limg_0+ L =1

Case2: p < 1. /0 % = limg04 , xp =

Therefore, the improper integral converges to 1/(1 — p).
1

llap = hma_>0+ 1 (apl—l - 1) = o0,

Hence the improper integral diverges to co.

Case 3: p > 1. /0 & = limg 04

1
d. 1
The improper integral / = converges to forp < 1 and
0o X l-p

diverges to co forp > 1.



Convergence tests

Theorem: (Comparison Test) Let f(x) and g(x) be continuous
functions on [a, o). Suppose that 0 < f(x) < g(x) forall x > a.

1. If fa * g(x)dx converges, then fa * f(x)dx converges.
2. If /a ® F(x) dx diverges to oo, then fa * g(x) dx diverges to oo.
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Convergence tests

Theorem: (Comparison Test) Let f(x) and g(x) be continuous
functions on [a, c0). Suppose that 0 < f(x) < g(x) for all x > a.

1. If fa * g(x) dx converges, then fa ® F(x) dx converges.

2. If /a ® F(x) dx diverges to oo, then /a * g(x) dx diverges to oo.

Theorem: (Limit Comparison) Let f(x) and g(x) be positive

()

continuous functions on [a, o). If lim =L, where 0 < L < oo,

i g(x)
then fa * f(x)dx and fa * g(x)dx either both converge, or both diverge.
Theorem: (Absolute Convergence) Let f(x) be a continuous function
on [a, b), for b € R or b = 0. If the improper integral /a b lf(x)| dx

converges, then the improper integral fa b f(x) dx also converges.
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® sin? x
1. 5— dx converges. Reason?
1 X

) 00
sinx 1 dx
—— < — forall x>1 and / — converges.
X x X



Example 18

co .2
sin” x
1. / 5 dx converges. Reason?
1 X

sin? x 1

[ee)
dx
—— < — forall x>1 and / — converges.
X x X

© X
2. / diverges to co. Reason?
2 Vx2-1

1 1 “d
> — forall x>2 and/ al
x2—-1 X 2

— diverges to oco.
by



Example 19

© d
X .
/ converges or diverges?
1

1 +x2
. . 11 X - .
Since lim / — [ = lim = 1, the limit comparison test
xooo | 1422 x2|  x—oeo |+ x2

2
X
diverge together. The latter converges, so does the former.

“d
says that the given improper integral and / = both converge or
1



Example 19

© d
X .
/ converges or diverges?
1

1 +x2
. . 11 X - .
Since lim / — [ = lim = 1, the limit comparison test
xooo | 1422 x2|  x—oeo |+ x2

2
X
diverge together. The latter converges, so does the former.

“d
says that the given improper integral and / = both converge or
1

However, they may converge to different values.

* dx V4
—— =lim[tan'b—tan™' 1] = =
,[ 1+ x2 b1—>oo[an an ] 2

* dx . -1 -1
—=lm|—-—]=1.
L2 bbel\ b1



Example 20

o0 1010d
Does the improper integral . ex lx converge?
1010 /1 10'0¢*
[ = lim =10,
o eX + 1/ ¥ x>0 ef + 1

Also, e > 2 implies that forall x > 1, ¢* > x2.So, e < x72.

(o]

) dx

Since —2 converges,
1 X

[ee)
dx
— also converges.
e

By limit comparison test, the given improper integral converges.



Gamma function

Example 21: Show that I'(x) = / e”'r*"! dr converges for x > 0.
0

Fix x > 0. Since lim e '#**! = 0, there exists to > 1 such that

t—00

0<e ! < 1fort> ty. Then
O0<e '™l <12? for 1>1.

Since /100 72 dt is convergent, ft :o 172 dt is also convergent. By the
comparison test,

(o]
/ e”'r"dr is convergent.
]

The integral /1!0 e~'t*~! dt exists and is not an improper integral.



Gamma function

Example 21: Show that I'(x) = / e”'r*"! dr converges for x > 0.
0

Fix x > 0. Since lim e '#**! = 0, there exists to > 1 such that

t—00

0<e ! < 1fort> ty. Then
O0<e '™l <12? for 1>1.

Since /100 72 dt is convergent, ft :o 172 dt is also convergent. By the
comparison test,

(o]
/ e”'r"dr is convergent.
]

The integral /1!0 e~'t*~! dt exists and is not an improper integral.

. . . | P
Next, we consider the improper integral /0 e 'rlar.



Gamma function Cont.

LetO<a<1.Fora<t<1 wehave0 < e ! <! Sincex > 0,

! |
1-4d* 1
/e"tx‘ldt</ = T <2
a a X X

Taking the limit as a — 0+, we see that the

1
/ e~ 'tV dr is convergent,
0

and its value is less than or equal to 1/x. Therefore,

00 1 to 00
/ e 'rldr = / e dr + / et dr + / e dr
0 0 1 10

is convergent.



Gamma function Cont.

LetO<a<1.Fora<t<1 wehave0 < e ! <! Sincex > 0,

! |
1-4d* 1
/e‘ttx‘ldt</ = T <2
a a X X

Taking the limit as a — 0+, we see that the

1
/ e~ 'tV dr is convergent,
0
and its value is less than or equal to 1/x. Therefore,

o0 1 to 00
/ e 'rldr = / e dr + / et dr + / e dr
0 0 1 10

is convergent.
The function I'(x) is defined on (0, o).

For x > 0, using integration by parts,

IFx+1)= ‘/000 e ldt = [ - txe_t]: - ‘/000 xt N =e) dt = xT(x).

It thus follows that I'(n + 1) = n! for any non-negative integer #:



Example 22

2
Test the convergence of f_ 0; e dr.



Example 22

Test the convergence of f_ O:O e dt.

t

. 2. . 1 _p .
Since e”" is continuous on [—1, 1], /_1 e~" dt exists.



Example 22

Test the convergence of f_ O; e dt.

Since e~*

2, . 1 _p .
is continuous on [-1, 1], /_1 e~" dt exists.
2
Forz> 1, wehave r < 2. S0,0 < e < e".

. 4. . o _p2 .
Since fl e~" dt is convergent, by the comparison test, fl e " dtis
convergent.



Example 22

Test the convergence of f_ O; e dt.

t

. 2. . 1 _p .
Since e”" is continuous on [—1, 1], /_1 e~" dt exists.

2
Forz> 1, wehave r < 2. S0,0 < e < e".

. —t gu . 2 .
Since floo e~" dt is convergent, by the comparison test, flm e " dtis
convergent.

Now, [/t = [ e Pa(-n) = [P,

. o -1 _ . .
Taking limit as a — oo, we see that /_ o€ ™ dt is convergent and its

o 2
value is equal to f] e " dt.



Example 22

Test the convergence of f_ O:O e dt.

t

. 2. . 1 _p .
Since e”" is continuous on [—1, 1], /_1 e~" dt exists.

2
Forz> 1, wehave r < 2. S0,0 < e < e".

. 4. . o _p2 .
Since fl e~" dt is convergent, by the comparison test, fl e " dtis
convergent.

-1 _p _rl _p _ra _p2
Now, [ e di= [ ed(-1)= ["e"dt.
. o -1 _ . .
Taking limit as a — oo, we see that /_ o€ ™ dt is convergent and its

. o _2
value is equal to f] e " dt.

. . o _p
Combining the three integrals above, we conclude that f_ e ar
converges.



Other forms of I'(x)

The Gamma function takes other forms by substitution of the variable
of integration. Substituting ¢ by r¢ we have

I(x) = 1’“/ e'rtdr for 0<r, 0<x.
0



Other forms of I'(x)

The Gamma function takes other forms by substitution of the variable
of integration. Substituting ¢ by r¢ we have

[(x) = 1’“/ e'rtdr for 0<r, 0<x.
0
Substituting ¢ by #2, we have

I(x) =2 / e N dr for 0 < x.
0



[(3) = Vr

F(%) = fooo e x 12 dx = 2/0OO e dt (x =17

To evaluate this integral, consider the double in-
2_2 .
tegral of e ™ over two circular sectors D and e
D>, and the square S as indicated. Since the inte- N
D D:

grand is positive, we have ffD1 < ffs < fsz. _ L



[(3) = Vr

F(%) = fooo e x 12 dx = 2/000 e dt (x =17

To evaluate this integral, consider the double in-
—x2—y? .

tegral of e ™ over two circular sectors D and

D>, and the square S as indicated. Since the inte- N

(R.R)

grand is positive, we have ffD1 < ffs < fsz . y m:’ -
Now, evaluate these integrals by converting them to iterated integrals
as follows \/_
R 7r/2 _ _ R —r 7r/2
Jo e rdr [0 do < /0  dx /0 Y dy < rdr [ d6

So, a2 —eR )< (/0 e x) < %(1 _e—sz)

Take the limit as R — oo to obtain

(e a) =3
0 4



[(3) = Vr

( ) [ Pax=2 [Tedt (x=P)

To evaluate this integral, consider the double in-
—x2—y? .

tegral of e ™ over two circular sectors D and

D>, and the square S as indicated. Since the inte- N

(R.R)

grand is positive, we have ffl)1 < ffs < fsz . y (R:’ -
Now, evaluate these integrals by converting them to iterated integrals
as follows \/_
R 7r/2 _ _ R —r 7r/2
Jo e rdr [0 do < /0  dx /0 Y dy < rdr [ d6

So, Z(1 - e‘Rz) < (/0 e x) < %(1 - e_ZRZ)

Take the limit as R — oo to obtain

(fewas) =5

That is, [F( )P =4Z = 7. As F( ) > 0, we get the required result.



Example 23
Show that B(x, y) = fol = 1(1 — t)’~! dt converges for x > 0,y > 0.



Example 23
Show that B(x, y) = f()] = 1(1 — t)’~! dt converges for x > 0,y > 0.
Write the integral as a sum of two integrals:
1/2 1
B(x,y) = - e+ / - ar
0 1/2
Setting u = 1 — ¢, the second integral looks like
1 1/2
-y dr = / W1 = u)y " du
1/2 0

Therefore, it is enough to show that the first integral converges.



Example 23
Show that B(x, y) = /0] = 1(1 — t)’~! dt converges for x > 0,y > 0.
Write the integral as a sum of two integrals:

1/2 1
B(x,y) = A -y dr + / A -ty ar
0 1/2
Setting u = 1 — ¢, the second integral looks like
1 1/2
1 —t)y_ldt:/ W1 = u)y " du
1/2 0

Therefore, it is enough to show that the first integral converges.Notice
that here, 0 < r < 1/2.



Example 23
Show that B(x, y) = /0] = 1(1 — t)’~! dt converges for x > 0,y > 0.
Write the integral as a sum of two integrals:

1/2

1
B(x,y) = =Y dr + / =Y dr
0 1/2

Setting u = 1 — ¢, the second integral looks like
1 1/2
-y dr = / W1 = u)y " du
1/2 0

Therefore, it is enough to show that the first integral converges.Notice
that here, 0 < r < 1/2.

Case 1: x > 1.

For0 <t <1/2,1—1t>0.Forall y > 0, the function (1 — £y~ ! is well
defined, continuous, and bounded on [0, 1/2]. So is the function .
Therefore, the integral fol/z ~1(1 — ry~! dr exists and is not an
improper integral.



Beta function Cont.

Case2: 0 <x < 1.

The function (1 — 7)*~! is well defined and continuous on 0 < ¢ < 1/2.
So, let ¢ be an upper bound of it.

Then for 0 <7< 1/2, # 11 -1~ <!,

The function ¢ #~! is well defined and continuous on (0, 1/2].

As done earlier, the integral fol/z c t*~! dt converges.

Therefore, fol/ 2 pe (1 — £y~! dt converges.



Beta function Cont.

Case2: 0 <x < 1.

The function (1 — 7)*~! is well defined and continuous on 0 < ¢ < 1/2.
So, let ¢ be an upper bound of it.

Then for 0 <7< 1/2, # 11 -1~ <!,

The function ¢ #~! is well defined and continuous on (0, 1/2].

As done earlier, the integral fol/z c t*~! dt converges.

Therefore, fol/ 2 pe (1 — £y~! dt converges.
Other forms of the beta function:

By setting # as 1 — ¢, we see that B(x, y) = B(y, x).



Beta function Cont.

Case2: 0 <x < 1.

The function (1 — 7)*~! is well defined and continuous on 0 < ¢ < 1/2.
So, let ¢ be an upper bound of it.

Then for 0 <7< 1/2, # 11 -1~ <!,

The function ¢ #~! is well defined and continuous on (0, 1/2].

As done earlier, the integral fol/z c t*~! dt converges.

Therefore, fol/ 2 pe (1 — £y~! dt converges.

Other forms of the beta function:

By setting # as 1 — ¢, we see that B(x, y) = B(y, x).

Substituting ¢ with sin? #, Beta function can be written as
2, . _ —
B(x,y) = 2/0”/ (sint)* (cost)? ' dt, for x>0, y>0.



Beta function Cont.

Case2: 0 <x < 1.

The function (1 — 7)*~! is well defined and continuous on 0 < ¢ < 1/2.
So, let ¢ be an upper bound of it.

Then for 0 <7< 1/2, # 11 -1~ <!,

The function ¢ #~! is well defined and continuous on (0, 1/2].

As done earlier, the integral fol/z c t*~! dt converges.

Therefore, fol/ 2 pe (1 — £y~! dt converges.
Other forms of the beta function:
By setting # as 1 — ¢, we see that B(x, y) = B(y, x).
Substituting ¢ with sin? #, Beta function can be written as
B(x,y) =2 fon/z(sin > cost)®» 'dr, for x>0, y>0.
Changing the variable ¢ to t/(1 + 1), Beta function can be written as
B(x,y) = fooo (l%;ﬁydt for x>0, y>0.



Beta function Cont.

Case2: 0 <x < 1.

The function (1 — 7)*~! is well defined and continuous on 0 < ¢ < 1/2.

So, let ¢ be an upper bound of it.

Then for 0 <7< 1/2, # 11 -1~ <!,

The function ¢ #~! is well defined and continuous on (0, 1/2].

As done earlier, the integral fol/z c t*~! dt converges.

Therefore, fol/ 2 pe (1 — £y~! dt converges.

Other forms of the beta function:

By setting # as 1 — ¢, we see that B(x, y) = B(y, x).

Substituting ¢ with sin? #, Beta function can be written as

B(x,y) =2 fon/z(sin > cost)®» 'dr, for x>0, y>0.

Changing the variable ¢ to t/(1 + 1), Beta function can be written as
B(xy) = [~ (l%;ﬁydt for x>0, y > 0.

Using multiple integrals it can be shown that

LT
B(x,y) = I%?Jrgy)) for x>0, y> 0.




Integral test for series

Let ’ a, be a series of positive terms. Let f : [1,00) — R be a
continuous, positive and non-increasing function such that a,, = f(n)
for eachn € N.

1. If floo f(t)dt is convergent, then }; a, is convergent.
2. If /100 f(#)dt diverges to oo, then ) a, diverges to co.



Integral test for series

Let ’ a, be a series of positive terms. Let f : [1,00) — R be a
continuous, positive and non-increasing function such that a,, = f(n)
for eachn € N.

1. If floo f(t)dt is convergent, then }; a, is convergent.
2. If /100 f(#)dt diverges to oo, then ) a, diverges to co.

Proof: Since f is a positive and non-increasing, the integrals and the
partial sums have a certain relation.

n+l1 n
/ f@Odt < ag+ay+---+ay Sa1+/f(f)df-
1 1

If /loo f(¢) dt is finite, then ) a, is convergent.
If floo f(#)dt = oo, then Y a, diverges to .



Example 24

o 1
Show that Z — converges for p > 1 and diverges for p < 1.
n
n=1



Example 24

o 1
Show that Z — converges for p > 1 and diverges for p < 1.
n
n=1

For p = 1, the series is the harmonic series; and it diverges to oo.



Example 24

o 1
Show that Z — converges for p > 1 and diverges for p < 1.
n
n=1
For p = 1, the series is the harmonic series; and it diverges to oo.
Suppose p # 1. Consider the function f(¢) = 1/ from [1, o) to R.
This is a continuous, positive and decreasing function.

00 ] 1 L ifp>1
/ —dt = lim lim ( —1) ={r-l P
L b—oo —p + 111 1—pb—>oo b1 o ifp <.

Then the Integral test proves the statement.

For p > 1, the sum of the series Y, n” need not be equal to (p — 1)



Comparison Test

Theorem: Let ) a, and }; b, be series of non-negative terms.
Suppose there exists k£ > 0 such that O < a,, < kb, for each n greater
than some natural number m.

1. If ) b, converges, then ) a, converges.

2. If Y a, diverges to oo, then )’ b, diverges to co.



Comparison Test

Theorem: Let ) a, and }; b, be series of non-negative terms.
Suppose there exists k£ > 0 such that O < a,, < kb, for each n greater
than some natural number m.

1. If ) b, converges, then ) a, converges.
2. If Y a, diverges to oo, then )’ b, diverges to co.

Proof: (1) Consider all partial sums of the series having more than m
terms.

n
ai+-taptap+otap<ar+o+apt+k Z b;.

J=m+1

: n
Since b, converges, so does Zj:m+1 b;.
By Weirstrass criterion, ), a, converges.

(2) Similar to (1). |



Ratio Comparison Test

Theorem: Let ) a, and }’ b, be series of non-negative terms.
Suppose there exists m € N such that for each n > m, a,, > 0, b, > 0,
a b
and I’l_+1 S I’l_+1‘
an b,
1. If ) b, converges, then }; a, converges.

2. If } a, diverges to oo, then }’ b, diverges to co.



Ratio Comparison Test

Theorem: Let ) a, and }’ b, be series of non-negative terms.
Suppose there exists m € N such that for each n > m, a,, > 0, b, > 0,
and G+l < %
an b,
1. If ) b, converges, then }; a, converges.
2. If } a, diverges to oo, then }’ b, diverges to co.

Proof. Forn > m,
dp  dp-1 o Am+2 b, by b2 am+1

am+1 < Ams1 = — by.
dp—-1 Ap-2 Am+1 by—1 by b1 b1

a, =

By the Comparison test, if }; b, converges, then )’ a, converges. This
proves (1).

And, (2) follows from (1) by contradiction. O



Limit Comparison Test

Theorem: Let )’ a, and } b, be series of non-negative terms. Suppose that
there exists m € N such that for each n > m, a,, > 0, b,, > 0, and that

lim & = k.

n—o0 n
1. If k> Othen } b, and ) a, converge or diverge to oo, together.
2. If k=0and } b, converges, then Y a, converges.

3. If k =coand } b, diverges to co then ), a, diverges to co.



Limit Comparison Test

Theorem: Let )’ a, and } b, be series of non-negative terms. Suppose that
there exists m € N such that for each n > m, a,, > 0, b,, > 0, and that

lim & = k.

n—o0 n
1. If k> Othen } b, and ) a, converge or diverge to oo, together.
2. If k=0and } b, converges, then Y a, converges.
3. If k =coand } b, diverges to co then ), a, diverges to co.

Proof: (1) k > 0. Let € = k/2. The limit condition implies that there exists

m € N such that X 3k
—<%<— for each n > m.
2 b, 2

By the Comparison test, the conclusion is obtained.

(2) k = 0. Let € = 1. The limit condition implies that there exists m € N such
that

-1< n <1 foreach n > m.
by

Using the right hand inequality and the Comparison test we conclude that
convergence of ). b, implies the convergence of )’ aj,.

(3) k = oo0. Then lim(b,/a,) = 0. Use (2).



Example 25

1 1
For each n € N, n! > 2. That is, — <
n!

on=1"

. S S .
Since Z} o= is convergent, Z:‘ ] is convergent. Therefore, adding
n= n=
1 to it, the series
1 1 1
1+1+2—!+§+--~+H+-~-

is convergent.



Example 25

1
For each n € N, n! > 2! Thatis, — < —.
n! = 2n-1
. S S .
Since Z o= is convergent, Z ] is convergent. Therefore, adding

n=1 n=1
1 to it, the series

141 1 1 1
+ +2_!+§+”.+H+”.
is convergent.
In fact, this series converges to e. Consider
1 1 1\n
Sp=14+1+—=4+---4+— tn:(1+—).
2! n! n
By the Binomial theorem,
1 1 1 1 2 n-1
—1+1 —(1——) ---+—[1—— 1=3) (1= ]s :
In " +2! n i n! ( n)( n) ( n ) Sn

Thus taking limit as n — oo, we have

e = lim ¢, < lim s,.

n—oo n—o0o



Example 25 Cntd.

Also, for n > m, where m is any fixed natural number,

1 2 m—l)]

> (1+%)m= 1+1+%(1_%)+'”+%[(1_2)(1_Z)”'(1_ ;

Taking limit as n — oo we have

e= lim ¢, > s,.

n—oo

Since m is arbitrary, taking the limit as m — oo, we have

e > lim s,,.

m—oo

Therefore, lim s, = e. That is,

m—00



Example 26

n+7

nn+3)Vn+5

(o]
Determine when the series Z converges.

n=1



Example 26

Determine when the series i _n*7 converges
onn+3)Vn+5 '
n+7 1
Leta, = ———— —— and b, = ——=. Then
" n(n+3)Vn+5 "o
an _ Vn(n +7)

— lasn — oo.

bn  (n+3)Vn+5

(o8]
Since Z —= is convergent,
n3/2

n=1
Limit comparison test says that the given series is convergent.



Example 26

Determine when the series i _n*7 converges
onn+3)Vn+5 '
n+7 1
Leta, = ———— —— and b, = ——=. Then
" n(n+3)Vn+5 "o
an _ Vn(n +7)

— lasn — oo.

bn  (n+3)Vn+5

(o8]
Since Z —= is convergent,
n3/2
n=1
Limit comparison test says that the given series is convergent.

We will next use some properties of integrals with infinite limits.



Cauchy’s Root test

Let ) a, be a series of positive terms. Suppose lim (an)l/ "=
n—oo
1. If £ < 1, then }’ a, converges.

2. If £>1or{ = oo, then };a, diverges to co.

3. If ¢ =1, then no conclusion is obtained.



Cauchy’s Root test

Let ) a, be a series of positive terms. Suppose nh_)rglo (an)l/ "=
1. If £ < 1, then }’ a, converges.
2. If £>1or{ = oo, then };a, diverges to co.
3. If ¢ =1, then no conclusion is obtained.
Proof: (1) Suppose £ < 1. Choose ¢ such that £ < ¢ < 1.
Due to the limit condition, there exists an m € N such that for each

n>m, (a,,)l/” < ¢. Thatis, a, < ¢". Since 0 < § < 1, 3 6" converges.
By Comparison test, )’ a,, converges.

(2) Given that £ > 1 or £ = co, we see that (a,)'/” > 1 for infinitely
many values of n. That is, the sequence ((a,,)l/ ") does not converge to
0. Therefore, ) a, is divergent. It diverges to oo since it is a series of
positive terms.

(3) Once again, for both the series Y.(1/n) and Y (1/n%), we see that
(a,)"/" has the limit 1. But one is divergent, the other is convergent. O



Root to Ratio

Theorem Let (a,) be a sequence of positive terms.

If lim & — ¢ € R, then £ = lim o'/

n—o  d, n—oo




Root to Ratio

Theorem Let (a,) be a sequence of positive terms.
If lim 2L = ¢ € R, then ¢ = lim a./".

n—o  d, n—oo

Proof: Let lim dnel _ g, Suppose £ € R. Let € > 0. Then we have an

n—eo

meNsuchthatforalln>m€—e< Let+e Use the right
a
side inequality first. Let n > m. Then !

ap  dp-1 Am+2 n—m—-1
a, = : “amy1 < (L +€) Am+1-

ap—-1 dap-2 Am+1
(a)'" C+e)(+e) " ap)/" > t+e as n— co.

IA

By Weirstrass criterion, the sequence (a,,)'/” converges, and
lim(a,)'/" < € + € for every € > 0. That is, lim(a,)'/" < ¢.

Similarly, the left side inequality gives lim(a,)!/" > ¢.

This shows that lim(a,)!/" = ¢. O



D’ Alembert’s Ratio test

. . . dntl
Let Y a, be a series of positive terms. Suppose lim —— = ¢.
n—oo  a,

1. If ¢ < 1, then ) a, converges.
2. If £>1or¢ = oo, then ) a, diverges to co.

3. If ¢ =1, then no conclusion is obtained.



D’ Alembert’s Ratio test

a
Let }’ a, be a series of positive terms. Suppose lim el — g,

n—oo an
1. If ¢ < 1, then ) a, converges.
2. If £>1or¢ = oo, then ) a, diverges to co.
3. If ¢ =1, then no conclusion is obtained.

Proof: When ¢ € R, the conclusions follow from Cauchy’s root test
and the last theorem.
an+l

an

If £ = oo, then there exists m € N such that > 1.

0 . . . . .
Then 3" ., a,is a series of positive and increasing terms.
Therefore, it diverges to oo.

The series ), | a, diverges to co.



Example 27

[Se]
. n!
Does the series Z — converge?
n

n=1

Write a, = n!/(n"). Then

any1 _ (n+ D" _( n

n 1
= = ) — —<lasn— oo,
an  (m+ D! \n+1 e

By D’ Alembert’s ratio test, the series converges.
n!

Then it follows that the sequence (—n) converges to 0.
n



Example 28

)n+l 1

1
Does the series Z 2EUT T — 0 4 — 4 — 4+ ... converge?

n=1



Example 28

n+ 1 1 1
M s o —+

Does the series Z 2! 42716

n=1

Let a, = 20D""'=" Then

2 if n odd.

Ay

Qnsl {1/8 if n even

Clearly, its limit does not exist. But

(an)l/" _ 21/1"_11 if n even
2-1/n- if n odd

This has limit 1/2 < 1.
Therefore, by Root test, the series converges.

-+ converge?



Alternating Series

(Leibniz) Let (a,) be a sequence of positive terms decreasing to 0;
that is, for each n, a,, > a,+1 > 0, and lim a, = 0. Then the series
- n—oo

Z(—l)"“an converges, and its sum lies between a; — a; and a;.

n=1



Alternating Series

(Leibniz) Let (a,) be a sequence of positive terms decreasing to 0;

that is, for each n, a,, > a,+1 > 0, and lim a, = 0. Then the series
00 e

Z(—l)"“an converges, and its sum lies between a; — a; and a;.
n=1

Proof: Let s, be the partial sum upto n terms. Then

(a1 —az) +(az —as) + - - + (azu-1 — a24)

ai — [(a2 —az) + - + (azn-2 — azn-1)| — azn.

S$2n

For each n € N, s7,, is a sum of n positive terms bounded above by a;
and below by a; — as.
By Weirstrass criterion, 11_)11(3o Son = 8, where a; —ar < s < ajy.
Now, S2,41 = Son + a2n+lrf It follows that li_>m Sonel = S.
Therefore, lim s, = s. o
n—oo

That is, the series sums to some s with a; —a> < s < ay.



Absolute Convergence

+ % + - -- is convergent to some s with 1/2 < s < 1.

1,1 o
+ 7+ 5+ isdivergent to co.

e}

[

=
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+
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Absolute Convergence

1—%+%—%+%+--- is convergent to some s with 1/2 < s < 1.
1,1

Butl+1+1+2+1+... isdivergentto co.
We say that the series ) a, is absolutely convergent iff the series
> |ay| is convergent.



Absolute Convergence

1—%+%—%+%+--- is convergent to some s with 1/2 < s < 1.

1,1,1,1 -
Butl+ 5+ 3+ 7+ 35+ isdivergent to co.
We say that the series ) a, is absolutely convergent iff the series
> |ay| is convergent.

An alternating series )’ a, is said to be conditionally convergent iff it
is convergent but it is not absolutely convergent.



Absolute Convergence

1—%+%—%+%+--- is convergent to some s with 1/2 < s < 1.

1
3

1

Butl+1+1+2+1+... isdivergentto co.

We say that the series ) a, is absolutely convergent iff the series
> |ay| is convergent.

An alternating series )’ a, is said to be conditionally convergent iff it
is convergent but it is not absolutely convergent.

Thus, the alternating harmonic series is conditionally convergent.
The series 1 — 2% + 3% - 4% + - -+ is absolutely convergent.

It is also convergent. Why?



Abs. Conv. = Conv.

Theorem: An absolutely convergent series is convergent.



Abs. Conv. = Conv.

Theorem: An absolutely convergent series is convergent.

Proof: Let ) a, be an absolutely convergent series.
Then ), |a,| is convergent.

Let € > 0. By Cauchy criterion, there exists an ny € N such that for all
n > m > ng, we have

lam| + |amsr] + -+ + |ay| < €.
Now,
|am +am+1 t - +an| < |am| + |am+1| t+---t |an| <E€.

Again, by Cauchy criterion, the series )| a, is convergent. O



Example 29

1. The series ), zin converges.

Therefore, the series 3> (- 1y=*1.L
it converges.

5 converges absolutely; hence



Example 29

1. The series ), zin converges.

Therefore, the series 3> (- 1y=*1.L
it converges.

5 converges absolutely; hence

2. |C°s"| <= andZ converges.
COSVL
By comparlson test Tt 25
converges.

converges absolutely; and hence it



Example 29

1. The series ), zin converges.

Therefore, the series 3> (- 1y=*1.L
it converges.

5 converges absolutely; hence

2. |C°s"| <= L and ) 4 -3 converges.
COSVL
By comparlson test Tt 25
converges.

converges absolutely; and hence it

(71)n+1
npP

3. For p > 1, the series ), n™? converges. Therefore, 3,
converges absolutely for p > 1.

For 0 < p < 1, by Leibniz test, the series converges.
But > n™? does not converge.
Therefore, the given series converges conditionally for 0 < p < 1.

(1)

For p < 0, lim i 0. Therefore, the given series diverges.



Example 30

1 1 1 1
- b —— ... ?
Does the series 1 171 6 9 s 4 9 converge’



Example 30

1 1 1 1
- F— 4+ — + — — ... converge?
Does the series 1 TR 5 converge’

Solution: Here, the series has been made up from the terms 1/n? by
taking first one term, next two negative terms of squares of next even
numbers, then three positive terms which are squares of next three odd
numbers, and so on. This is a rearrangement of the series

1 1 1 1 1

=gt gte gt

which is absolutely convergent (since Y(1/n?) is convergent).

Therefore, the given series is convergent and its sum is the same as
that of the alternating series Y(—1)"*!(1/n?).



Power series

Let a € R. A power series about x = a is a series of the form

o
Zan(x—a)” =ap+a(x—a)+ay(x—a) + -
n=0

The point a is called the center of the power series and the real
numbers ag, ay, - - - ,ay, - - - are its co-efficients.

If the power series converges to f(x) for all x € D, for some subset D
of R, then we say that the power series sums to the function f(x),
whose domain is D.

In such a case, we also say that the power series represents the
function f(x).



Example 1

Show that the following power series converges for 0 < x < 4.

l——(x—2)+-(x—2) -+ (_l)n(x—2)"—|----

n

It is a geometric series with the ratio as r = (—1/2)(x — 2).
Thus it converges for |(—1/2)(x —2)| < 1.
Simplifying we get the constraint as 0 < x < 4.

The power series sums to

1 1

I—r 14+1x-2) x

Thus, the power series gives a series expansion of the function % for
0<x<4.
Truncating the series to n terms give us polynomial approximations of

the function ;2?



Convergence of Power series

Theorem: (1) If the power series z;’;o a,x" converges for x = ¢ for
some ¢ > 0, then it converges absolutely for all x with |x| < c.

(2) If the power series y _~  a,x" diverges for x = d for some d > 0,
then the it diverges for all x with |x| > d.



Convergence of Power series

Theorem: (1) If the power series 2210 a,x" converges for x = ¢ for
some ¢ > 0, then it converges absolutely for all x with |x| < c.

(2) If the power series y _~  a,x" diverges for x = d for some d > 0,
then the it diverges for all x with |x| > d.

Proof: (1) Suppose the power series » _ a,x" converges for x = ¢ for
some ¢ > 0. Then the series > a,c" converges. Thus lim a,c" = 0.
n—o00

Then we have an m € N such that for all n > m, |a,c"| < 1.
Let x € R be such that |x| < c¢. Write t = |%|. For eachn > m, we
have

@] = lane”] 5" < |2]" = 1.

[e.e]

As 0 <t < 1, the geometric series )~ " converges. By
comparison test, for any x with |x| < ¢, the series Y |anx|"
converges. That is, the power series ) .~ ; a,x" converges absolutely
for all x with |x| < c.

(2) If the power series converges for some « with |«| > d, then by
(1), it must converge for x = d, a contradiction. ]



Radius & Interval of Convergence

For the power series y . a,(x — a)", the real number
R =lub{c > 0 : the power series converges for all x with [x—a| < ¢}

is called the radius of convergence of the power series.



Radius & Interval of Convergence

For the power series y . a,(x — a)", the real number
R =lub{c > 0 : the power series converges for all x with [x—a| < ¢}

is called the radius of convergence of the power series.

That is, R is such non-negative number that the power series converges
for all x with |x — a| < R and it diverges for all x with |x — a| > R.



Radius & Interval of Convergence

For the power series y . a,(x — a)", the real number
R =lub{c > 0 : the power series converges for all x with [x—a| < ¢}

is called the radius of convergence of the power series.

That is, R is such non-negative number that the power series converges
for all x with |x — a| < R and it diverges for all x with |x — a| > R.

If the radius of convergence of the power series > a,(x — a)" is R,
then the interval of convergence of the power series is

[a — R,a+ R] if it converges at x = a — R and converges at x = a + R.
[a — R,a + R) if it converges at x = a — R and diverges at x = a + R.
(a — R,a + R] if it diverges at x = a — R and converges at x = a + R.
(

a — R,a+ R) if it diverges at bothx = a — Rand x = a + R.



Determining R
Theorem: Let R be the radius of convergence of the power series
Yol an(x —a)". Then
()R = lim |a,|”"/" if this limit is in R U {co}.

n—00 an

2)R = lim

n—o0

’ if this limit is in R U {oo}.
An+1



Determining R
Theorem: Let R be the radius of convergence of the power series
Yol an(x —a)". Then
()R = lim |a,|”"/" if this limit is in R U {co}.
n—00

(27

2)R = lim

n—o0

’ if this limit is in R U {oo}.
ap+1
Proof: (1A) Let r = lim,_, » |ay| 1/nWe consider two cases.

(a) Let |x| < L. Then lim |a,2"|"/" = [x| lim |a,|'"/" = x| - 1 < 1.
n—oo n—o0

By the root test, the series ) _ a,x” is absolutely convergent, and

hence, convergent.



Determining R
Theorem: Let R be the radius of convergence of the power series
Yol an(x —a)". Then
()R = lim |a,|”"/" if this limit is in R U {co}.
n—00

()R = lim ‘ n ’ifthis limit is in R U {oo}.

n—00 | @y
Proof: (1A) Let r = lim,_, » |ay| 1/n_We consider two cases.
(a) Let [x| < L. Then lim |a,x"|"/" = |x| lim |a,|"" = |x|- 1 < 1.

n—oo n—o0

By the root test, the series ) _ a,x” is absolutely convergent, and
hence, convergent.
(b) Let |x| > L. Choose o such that 1 < a < |x|. If the power series
converges for x, then by the convergence theorem for power series,
the series Y |a,a”| converges. However,

1

"= ol lim |a,|'" = |a] - = > 1.
n—o00 r

lim |a,o
n— o0
By the root test, Y _ |a,”| diverges. This is a contradiction.
Therefore, The power series Y a,x" diverges when [x| > 1.
From (a) and (b), we conclude that R = %



Determining R Cont.

(1B) Let r = oco. Then for any x # a,
lim |a,(x — a)"| = lim |x — a||a,|"/" = .

By Root test, Y a,(x — a)" diverges for each x # a. Thus, R = 0.



Determining R Cont.

(1B) Let r = oco. Then for any x # a,
lim |a,(x — a)"| = lim |x — a||a,|"/" = .
By Root test, Y a,(x — a)" diverges for each x # a. Thus, R = 0.
(1C) Let r = 0. Then for any x € R,
lim |a, (x — a)"|"/" = |x — a| lim |a,|"/" = 0.
By Root test, the series converges for each x € R. So, R = oo.
This proves (1).

For (2), use Ratio test instead of Root test.



Special Property

[e.e] [e.e]
Theorem: E a,x" and E |a,|x" have equal radii of convergence.



Special Property

[e.e] [e.e]
Theorem: Z a,x" and Z |a,|x"* have equal radii of convergence.
n=0 n=0
Proof: Let R be the radius of convergence of ) |a,|x", and let r be the
radius of convergence of > a,x".
Suppose R € R. If > |a,|x" converges for x = ¢, then ) a,c" is
absolutely convergent; therefore, > a,x" converges for x = c.
So,R<r.



Special Property

[e.e] [e.e]
Theorem: Z a,x" and Z |a,|x"* have equal radii of convergence.
n=0 n=0
Proof: Let R be the radius of convergence of ) |a,|x", and let r be the
radius of convergence of > a,x".
Suppose R € R. If > |a,|x" converges for x = ¢, then ) a,c" is
absolutely convergent; therefore, > a,x" converges for x = c.
So,R<r.
Now, if R < r, then choose 3 such that R < 8 < r. Now, Y _ |a,|5"
diverges. By the convergence theorem for power series, »  a,3"
converges absolutely. This is a contradiction. Therefore, R = r.
When R = oo, then the power series Y _ a,x" is absolutely convergent
for every x € R. Therefore,  a,x" converges for every x € R.
That is, r = oco. O



Example 2

For what values of x, do the following power series converge?

(a) ;n!xn (b) z:(:)%

— i @ | — i e —
a, = n!. Thus lim }an+1 } = lim T = 0.
Hence R = 0.
That is, the series is only convergent for x = 0.

(b) @, = 1/n!. Thus lim | %

Ap41

= lim(n+ 1) = oo.

Hence R = oo. That is, the series is convergent for all x € R.



Example 3

. . 2n+1
Consider the power series % o(—1)"5, 7.

Think of it as

2 4

A(1-F+5+ )—xz

Then a, = (—1)"/(2n + 1). lim |a, /@, 1] = lim 325 = 1.

for t = x°

Hence R = 1. That is, for || = x> < 1, the series converges. For
|t| = x> > 1, the series diverges.

Notice that |t| = x> < 1 means —1 < x < 1.

For x = —1, the (original) power series is an alternating series; it
converges due to Leibniz. Similarly, for x = 1, the alternating series
also converges.

Hence the interval of convergence for the original power series (in x)
is [—1,1].



Operations with power series

Theorem: Let the power series Y - ; a,(x — a)" have radius of
convergence R > 0. Then the power series defines a function
f:(a—R,a+ R) — R. Further, f’(x) and [ f(x)dx exist as functions
from (a — R,a + R) to R and these are given by

x—a"‘“
+C

f()c):Zan(x—a)"7 flx) = Znan(x—a /f(x)dx Za,,

n=0
where all the three power series converge for all x € (a — R,a + R).

Theorem: Let the power series Y | a,x" and » | b,x" have the same
radius of convergence R > 0. Then their multiplication has the same
radius of convergence R. Moreover, the functions they define satisfy
the following: If f(x) = > ax”, g(x) = > b,x", then

f(x)g(x) => cpx® fora—R<x<a+R

where ¢, = Y ;o arbp—ik = aob, + aib,—1 + - - - + ay_1b1 + aybo.



Example 4

2
(a) Determine power series expansions of (a) ———= (b)

(x—1)3
tan—! x.

1
(@ For—1<x<1, — =14x4+24+x+ -

1 —x
Differentiating term by term, we have
1
=14+ 2+3 a3+
(1—-x)?
Differentiating once more, we get
2 o
s =246x+120+ =) n(n—1)x"? for —1 <x< L.
<1 N X) n=2
1
(b) = 1= +x* =2+ — for (P < 1.
Integrating term by term and evaluating at x = 0, we have
3 5 7
tan_lx:x—x—+x——x—+--~ for —1<x<1.

35 7



Taylor’s Formula
For a function f(x), the Taylor’s polynomial is
"(q () (q
fz(‘)(x_a)2+"‘ f ()

Theorem: Let n € N. Suppose that £ (x) is continuous on [a, b] and
differentiable on (a, b). Then there exists ¢ € (a, b) such that

f(nH)(C) n+1
(n+ 1) -

Integral Form: Let f(x) be an (n + 1)-times continuously differen-
tiable function on an open interval / containing a. Let x € I. Then

X AL
76 = p)+ [ e
An estimate for the error R,(x) = f(x) — p(x) is given by
n+1 n+1
mx < Ry(x) < M x ’
(n+1)! (n+1)!
withm < f"H(x) < M forx € I.

p(x) =f(a) +f'(a)(x —a) +

f(x) = px) +

n!




Taylor Series
You have seen the proof of the differential form in MA1010. The
integral form is proved by using induction on n. The basis case is
fundamental theorem of calculus. The induction step is proved using
integration by parts.

When f(x) is infinitely differentiable and the error R, (x) — 0 as
n — oo, the function f(x) is represented by a power series, called
Taylor series at x = a:

f//
100 = Fla) £ (@) —a) +
Conversely, if a function f(x) has a power series expansion about
x = a, then the power series is same as the Taylor series. Reason?

(x—a)*+-- -+

) (g
fn—'()(x_a)"+. ..

Take the power series. Differentiate repeatedly and evaluate at x = a.

You get the co-efficients of the power series as (“) When x = 0,
we get the Maclaurin Series:

11 (n)
2! n!

fx) =f(0) +f(0)x +




Example 5

Find the Taylor series expansion of the function f(x) = 1/x atx = 2.
In which interval around x = 2, the series converges?

£ =7 f(2) = 5 () = (1)l 0,0 (2) = (1)t 04,

Hence the Taylor series for f(x) = 1/x is

1 x—2 (x—2)? L (x=2)"
5_ > o5 _...+(_]) TS + ...
It is a geometric series with ratio r = —(x — 2)/2. It converges

absolutely for
Irl <1, ie., [x—2/<2 ie, 0<x<4
Does this convergent series converge to the given function?
For any c, x in an interval around x = 2,
Rl = [F2) e - |62
(n+1)! 2
Here, c lies between x and 2. If x is near 2, then |R,| — 0.
Hence the Taylor series represents the function near x= 2.



Example 6
Consider the function f(x) = ¢*. We find that

f(()) = l,f/(()) =1, 7f(n)<0) =

Hence its Taylor series is

2 X"
1+x+2‘+ +H+~'
By the ratio test, this power series has the radius of convergence
1)!
R = lim = lim (n+ ):oo
n—00 (y4 1 n—o00 n!

Therefore, for every x € R the above series converges. Using the
integral form of the remainder,

IRn(x |_’/ ForD dt )/ Cetdi] 50 as n— oo,

Hence, for each x € R,
2 B

e—1+x+ +ot+ =+

2! n!



Example 7

o ( —1 )n x2n
Similarly, Taylor series for cos x is % W
The absolute value of the remainder in the differential form is

‘x‘2"+1

|Ron ()| = ;>0 as n— oo

(2n+1)!

for any x € R. Hence the series represents cos x for each x € R.

e (_l)nxln
CoSXx = Z W for each x € R.
n=0

Taylor polynomials approximating cosx for 0 < n <9 are

‘

\ L/ ;\

¥ = cosx

L §

\u
P \Pis




Example 8
Let m € R. Consider the function f(x) = (1 + x)™. The derivatives
are

f)=0+x)" fO0) =mm—1)--(m—n+1)x""
Show that the series converges for —1 < x < 1. Also, the remainder

term in the Maclaurin series expansion goes to 0 as n — co. So, for
-l <x<1,

(14x)" +Z( ) X", where ('::) - m(m_l)”’;!(m_wrl).

The series so obtained is called a binomial series expansion of
(1 4+x)™.
For example, with m = 1/2, we have

2 X

1+ =142 -4+ —... for —1 1.
(1+x) +Z >~ %716 or <x<
When m € N, the binomial series terminates to give a polynomial and

it represents (1 4 x)™ for each x € R.



Trigonometric Series

In the power series sinx = x — x> /3! + - - - , the periodicity of sin x is
not obvious. Recall: A function f(x) is 2/-periodic for ¢ > 0 iff
f(x+20) =f(x) forall x € R.

For the time being, we consider 27-periodic functions.

. L 1 = .
A trigonometric series is of the form 540 + Z(an cosnx + b, sin nx).

n=1
If it converges to f(x), then f(x) is also 27-periodic.
How to get the coefficients a, and b,?

multiply f(7) by cos mt and integrate to obtain:

™ 1 ™ s ™
f(t)cosmtdt = 540 / cosmt dt + E a, / cos nt cos mt dt
- —7

- n=1

o0
+ Z b, / sin nt cos mt dt.
n=1

T
—T



Coefficients in a Trigonometric series
Form,n=0,1,2,3,...,
- 0 ifn#m -
/ cosntcosmtdt =qn if n=m>0 and / sinntcosmtdt = 0.

—T —Tr

2 if n=m=0
Thus, we obtain
f(t) cosmt dt = ma,,, forall m=0,1,23,---

Similarly, by multiplying f(¢) by sin mf and integrating, and using

the fact that
. 0 ifn#m
/ sinntsinmtdt =<7 if n=m>0
o 0 ifn=m=0
we obtain

/f(t)sinmtdt:7rbm7 forall m=1,2,3, -

—T



Fourier Series

Letf : R — R be a 27-periodic function integrable on [—m, 7].

1 s
Leta, = — f(t)cosntdt forn=0,1,2.3,,...,
m —T

1 s

and b, = — f(t)sinntdt forn =1,2,3,....
m —T

Then the trigonometric series

1 = ,
740 + Z(an cos nx + by, sin nx)

n=1

is called the Fourier series of f(x).



Notation and Terminology

Letf : R — R be a function.
> Atany point ¢ € R,
flet) = lim fle+h), fle=)= lim flc—h)
» f(x) has a finite jump at x = c iff
f(c+) exists, f(c—) exists, f(c+) # f(c—).

> f(x) is piecewise continuous iff on any finite interval f(x) is
continuous except for at most a finite number of finite jumps.

> Atany point ¢ € R, the right hand slope of f(x) is equal to

iy Fleth) —flet)
h—0+ h




Convergence of Fourier series

> At any point ¢ € R, the left hand slope of f(x) is equal to

iy L€ =) —fle=)

h—0+4 h

> f(x) is piecewise smooth iff f(x) is piecewise continuous and
f(x) has both left hand slope and right hand slope at every point.

Theorem Let f : R — R be a 27-periodic piecewise smooth function.
Then the Fourier series of f(x) converges at each x € R. Further, the
sum of the Fourier series s(c) at any point ¢ € R is as follows:

1. if f(x) is continuous at ¢, then s(c) = f(c); and

2. if f(x) is not continuous at c, then s(c) = 1[f(c+) + f(c—)].
Fourier series can represent functions which cannot be represented by

a Taylor series, or a conventional power series; for example, a step
function.



Example 9

Consider the function f(x) given by the following which is extended

to R with the periodicity 27

1 ifo<x<m T ———
flx) = . A —
2 if n<x<2m

0 ™ 27

Due to periodic extension, rewrite the function f(x) on [—, 7) as

2 if —7<x<0
f(x)_{l f0<x<m

The coefficients of the Fourier series are

1 /0 1 [
ag = — f(t)dt+—/ f(t)dt =3.
s — ™ 0
1 /0 1 [
a, = — 2cosntdt + — cosntdt = 0.
™ Jo

m —T
y-1

10 1" -1
bn:f/ 2sinntdt+f/ sinnrdr = =1
T Jo nw



Example 9 Cntd.
Here, b, = —%, b, =0, b3 = —%, by = 0,.... Therefore, for all
X € [—m,m) exceptatx = 0,
3 2/, sin3x  sinSx
flx) = 3 ;(smx—&— 3 + 3 —i—)
And the Fourier series sums to 3/2 at x = 0.
Write the mth partial sum of the series as
1

Ju(x) = 540 + Z(an cos nx + b, sin nx).

n=1

The approximations fi (x), f3(x), f5(x),fo(x) and fis(x) to f(x) are

2t f 2k f
) ﬁ ) jh
! !

- 2 * 0 - E23 : 0 k3
@ ® ©
of roab /

h LI«V\M : j

! !




Example 10

Consider the function f(x) = x* defined on[0, 27) and extended to R
with periodicity 2. Here, we take f(27) = f(0) = 0. Then
f=m) = f(=m +2m) = f(m) = 7%,
F(om/2) = f(=r/2+2m) = £(37/2) = (37/2)%
Thus the function f(x) on [—, ) is defined by
(x+27r)2 if —7m<x<0
f) =195 :
X if 0<x<m.

Notice that f(x) is neither odd nor even. The coefficients of the
Fourier series for f(x) are

1 [ 1 [ 872
== )dt = — Pdt=—.
o W/_ﬂf() 7r/0 3
1

i 4
an:—/ tzcosntdt:—z.
T n

— T

1 /7 4
bn:f/ Psinntdt = — -
n

—T



Example 10 Cntd.

Hence

4n2 N4 4
f(x):%+nzl<pcosnx—7ﬂsinnx).

Due to the periodic extension, in the interval (2k7,2(k + 1)),
f(x) = (x — 2km)>.

It has discontinuities at the points x = 0, £27, +4m, ...

At such a point x = 2km, the series converges to the average value of
the left and right side limits, i.e., the series when evaluated at 2k
yields the value

1 . .
S| tm f)+ lim S

I 2 . 2] 5 2
= 3 [xﬁhzrkr}ri(x 2km) +xiérg;+(x 2(k+ 1)m)*| =2n".
Notice that since f(x) is extended by periodicity, whether we take the
basic interval as [—m, 7| or as [0, 27] does not matter in the
calculation of coefficients.



Odd and even functions
If f(x) and f/(x) are continuous on [—, 7r) with period 27 and if f(x)
is an odd function on (—m, 7), i.e., f(—x) = —f(x), then for
n=0,1,2,3,...,

1 ™
an=— [ f(t)cosntdt =0
—

[e.e]
= an sinnx forall x € R.

=1
-
with b, = — f(t)sinntdt = / f(t)sinntdt.
™ —Tr

If f(x) and f’(x) are continuous on [—m, 7r) with period 27 and if f(x)
is an even function, i.e., f(—x) = f(x), then

[0.9]
a
flx) = 70 +Zancosnx forall x € R

n=1

2 ™
with an:—/ f(t)cosntdt for n=0,1,2,3,...
T Jo



Example 11
Consider f(x) = x? for —7 < x < 7. Its periodic extension to R is not
the function f(x) = x2. For example, in the interval [r, 37], its
extension looks like f(x) = (x — 27)2. Notice that f(x) is an even
function. The coefficients of the cosine series are as follows:

2 (7 2
ap = —/ Zdt = Zr.
™ 0 3

2 [T, 4
ay = —/0 t“cosntdt = E(—l)”.

o
, T , COSNX
=x=—44 -1 forall x € [—m, 7.
flx)=x + ,;1( ) " orall x € [—m,7]
In particular, by taking x = 0 and x = 7, we have

& (_1>n+1 2 o 1 2

T v
> T et

n=1 n=1



Example 12

1 o0 .
Show that for 0 < x < 2, 5(7’[‘ —x) = Z S

n=1
Let f(x) = x for 0 < x < 2. Extend f(x) to R by taking the
periodicity as 27 and with the condition that f(27) = £(0).

Here, f(x) is not an odd function;
fl=n/2) = f(3n/2) = 3n/2 # f(x/2) = /2.

The coefficients of the Fourier series for f(x) are as follows:

1 27 1 27
aoz—/ tdt =2m, an:—/ tcosntdt = 0.
0 0

T T

1 [ . 1 r—ncosnty2r 1 2 2
b,,:—/ tsmm‘dt:—{i} + — cosntdt = —=.
T Jo T n 0 nt Jo n

By the convergence theorem, x =7 — 2% 2, % for 0 < x < 2m,
which yields the required result.



Functions on [0, 7]
Suppose a function f : [0, 7] — R is given. To find its Fourier series,
we need to extend it to R so that the extended function is 27-periodic
Such an extension can be done in many ways.

1. Odd Extension:

First, extend f(x) from [0, 7) to [—m, 7| by requiring that f(x) is an
odd function. This requirement forces f(—x) = —f(x) for each

x € [—m, 7). In particular, the extended function f(x) will satisfy
f(=m) = —f(w) = f(r) leading to f(—7) = f(m) = 0. Next, we
extend this f(x) which has now been defined on [—, 7] to R with
periodicity 27. Then the Fourier series will represent the function on
[0, 7). Notice that if f(7) is already O, then the Fourier series will
represent f(x) on [0, 7.

The Fourier series expansion of this extended f(x) is a sine series:
oo 2 T

flx) = ansinnx, b, = —/ f(t)sinntdt, n=1,2,3,..., xeR.
n=1 T Jo

We say that this Fourier series is a sine series expansion of f(x).



Functions on [0, 7] Cont.

2. Even Extension:

First, extend f(x) to [—, 7] by requiring that f(x) is an even function.
This requirement forces f(—x) = f(x) for each x € [—m, 7].

Next, we extend this f(x) which has now been defined on [—7, 7] to R
with periodicity 27.

The Fourier series expansion of this extended f(x) is a cosine series:
ay ~— 2 (7
flx)= 704-21&” CcoSnx, a, = ;/0 f(t)cosntdt, n=0,1,2,3,...
n—

In this case, we say that the Fourier series is a cosine series
expansion of f(x).



Example 13

if 0<x<m/2
Find the Fourier series for f(x) .
—x if 7/2<x<m.
1. With an odd extension, the Fourier coefficients are given by
w/2 2 ™
b, = / f(t)sinntdt = / tsinntdt—i——/ (m —t)sinnt dt
0 T Jr/2
1 T2 2rt— | 7?
= —[——cosnt—k—smnt] +—[ cosnt——zsmm‘}
T n ml n n /2
2( m n7r+1 _n7r>+2<7r 27r+1 ,n7r>
= —| —=—cos— + —sin — — | = cos — + — sin —
T 2n 2 n? 2 T \2n n  n? 2
_ AT A (=1)=D/2 podd
n? 2 0 n even.

sinx  sin3x L sin Sx

4
Thusf(x):;( 2 3 2 --), forx € [0, 7).



Example 13 Cntd.

2. With an even extension, the Fourier coefficients are given by
2 iy
ay = — / f(t) cosntdt
™ Jo
2 71'/2

2 s
= —/ tcosntdt+—/ (m —t) cosnt dt
0

7T 7T 71'/2
/4 n=0

= 0 n=4dk, k>1
—2 n#dk k> 1.

2 rcos2x cosbx  cos10x
— ( + +

P 2 = + --), forx € [0, 7.



Sine expansion of cosine in [0, 7]
Find the Fourier sine expansion of cosx in [0, 7].
We work with the odd extension of cos x with period 27 to R.
The Fourier coefficients a,, are 0, and b, are given by

2 s
by = —/ costsintdt = 0.
0

s

2 (7 . 0 for n odd
b, = — / costsinntdt = n
0 (

T —— for n even.
w(n?—1)

n sin(2nx)

71 forx € [0, 7).

8 [e.e]
Therefore, = —
erefore, cosx = — Z

2 4 K cos(2nx)
Similarly, you can find out that sinx = — — — Z ———— for
T

™
n=

x € [0, ]. This is cosine expansion of sinx in [0, 7].



Scaling Approach
There is a third approach in extending the function from [0, 7] to R
keeping periodicity as 2.

3. Scaling to length 27:

We define a bijection g : [—m, w] — [0, 7r|. Then consider the
composition 2 = (f o g) : [—7, 7] — R. We find the Fourier series for
h(y) and substitute y = g~!(x) for obtaining Fourier series for f (x).
Notice that in computing the Fourier series for 4(y), we must extend
h(y) to R using 27-periodicity.

We consider Example 13 once again to illustrate this method of
scaling. There, we had

X it 0<x<m/2
fx) = .
m—x if 7/2 <x<m.
To scale the interval [0, 7] to [—, 7], we define a bijection

g: [—m,m — [0,7] given by g(y) = %(y +m), g 'x)=2x—m.



Example 13 with scaling

i ) if —7 0
-t w-s(5) {07 475
2 <y<m.

Notice that the function 4(y) happens to be an even function here.
Thus b, = 0 and other Fourier coefficients are as follows:

1 /% ¢
aoz_/ ﬂd_’_ /_d
7T -
1 (% t+n 1 (7 —1t 2. if n odd
a, = — cosntdt + — cosntdt = ™
T ) . 2 T Jo 0

if n even.
. . . T 2
Then the Fourier series for A(y) is given by 1 + % -7 cos ny.
n o

Using y = g~ !(x) = 2x — m, we have

flx) = % + %2(2;1——1&—1)2(305 (2n+1)(2x—)) forxe [—m, 7]

n=1

In general, such a series obtained by scaling need neither be a sine
series nor a cosine series.



Half-Range expansion

Suppose a real valued function f(x) is only defined on an interval
(0,¢). Then all the three approaches are applicable.

» We take an odd extension of f(x), with the domain as (—¢, ¢).
Then we scale (—¢,¢) to (—m, 7); extend it to R using
2m-periodicity. Finally construct the Fourier series of this
extended function. This is called the half range sine expansion.

» We take an even extension of f(x), with the domain as (—/, ¢).
Then we scale (—/,¢) to (—m, 7); extend it to R using
2m-periodicity. Finally construct the Fourier series of this
extended function. This is called the half range cosine
expansion.

» We scale (0,¢) to (—m, ); extend it to R using 27-periodicity.
Finally construct the Fourier series of this extended function.
This is the scaling approach.

We may also use the interval [—/, /] directly in the integrals while
evaluating the Fourier coefficients instead of first scaling to [, 7]
and then constructing the Fourier series.



n[—/¢, /(]

In case, our function is defined on (—/, £), having period as 2¢, we
consider g(x) = f(¢x/7m). Now, g : [—m, 7] — R is 2m-periodic. It
has the Fourier series

(o)
a2—0 + Z (an cosnx + by sin nx)7

n=1
where the Fourier coefficients are given by
1 [ /L 1 [T /¢
an = — f<—5> cosnsds, b, = — f(—s) cosnsds.
T J)_\m T\

Substituting t = %s, ds = %dt, we have

an—%/_if(t)cos (nTirt) dt, bn—%/_if(t)sin (nTzrt>d

And the Fourier series for f(x) is then obtained by substituting x with
7x/{ in the above Fourier series. It is,

nmw
+ Z (an cos x + b, sin Tx)



Example 14

Construct the Fourier series for f(x) = |x| for x € [/, ¢] for some
¢>0.

We extend the given function to f : R — R with period 2¢. Here, f(x)
is not |x| on R; it is |x| on [—¢, £]. Due to its period as 2/, it is |x — 2/
on [¢,3/] etc.

It is an even function. Thus all b,, are 0. The Fourier coefficients a,, are

1 [t 2 [*
aOZZ/g‘SdS:Z/() sds =1,

2 [t nrws 0 if n even
Cln:Z A scos(T)ds: 4 odd

n2m?

Fourier series for f(x) in [, (] is

L u [cos(w/ﬂ)x N cos(3m/0)x g cos((2n+ 1) /€)x N

M =32 1 32 (2n+1)2



