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Functions of Several Variables

Vector Integrals



Line Integral

Line integrals are single integrals which are obtained by integrating a
function over a curve instead of integrating over an interval.

Let f (x, y, z) be a real valued function with region D. Let C be a curve
that lies in D given in parametric form as

⃗⃗r(t) = x(t) ŷ + y(t) ẑ + z(t) k̂, a ≤ t ≤ b.

The values of f on the curve C are given by the composite function
f (x(t), y(t), z(t)).We want to integrate this composite function on the
curve C.



How to proceed?

Partition C into n subarcs. Choose a point (xk, yk, zk) on the kth subarc.
Suppose the kth subarc has length Δsk. Form the Riemann sum

Sn =

n∑
k=1

f (xk, yk, zk)Δsk.

Suppose the partition is such that when n approaches∞, the length sk
approaches 0.
If lim

n→∞
Sn exists, then this limit is called the

line integral of f over the curve C.We write∫
C

f (x, y, z)ds = lim
n→∞

Sn.

Notice that the line integral is computed by parameterizing the curve
C.



How to Compute it?

Theorem 1: Let C : ⃗⃗r(t) = x(t) ŷ + y(t) ẑ + z(t) k̂, a ≤ t ≤ b be a
parametrization of the curve C lying in a region D ⊆ R3.
Let f : D→ R have continuous partial derivatives and let the
component functions x(t), y(t), z(t) have continuous derivatives.
Then the line integral of f over C exists, and it is given by∫

C
f (x, y, z)ds =

∫ b

a
f (x(t), y(t), z(t))

√(dx
dt

)2
+

(dy
dt

)2
+

(dz
dt

)2
dt.

We also write

ds = | ⃗⃗r ′(t) |dt =
√(dx

dt

)2
+

(dy
dt

)2
+

(dz
dt

)2
dt.



Examples

Example 1: Integrate f (x, y, z) = x − 3y2 + z over
the line segment from the origin to the point
(1, 1, 1).

Parametrize the curve C : ⃗⃗r(t) = t ŷ + t ẑ + t k̂, 0 ≤ t ≤ 1.

Then x(t) = y(t) = z(t) = t. So, | ⃗⃗r ′(t) | =
√
12 + 12 + 12 =

√
3.∫

C
fds =

∫ 1

0

(
x(t) − 3y2(t) + z(t)

)√
3dt =

∫ 1

0

(
t − 3t2 + t

)√
3dt = 0.

Example 2: Evaluate
∫
C (2 + x2y)ds, where C is the upper half of the

unit circle in the xy-plane.

Here, f = f (x, y) = 2 + x2y is a function of two variables.
Parametrize the curve. C : x(t) = cos t, y(t) = sin t, 0 ≤ t ≤ c.
Then∫

C
(2 + x2y)ds =

∫ c

0
(2 + cos2 t sin t)

√
(x′(t))2 + (y′(t))2dt = 2c + 2/3.



Piecewise Smooth Curve
If C is a piecewise smooth curve, i.e., it is a join of finite number of
smooth curves, written as C = C1 ∪ · · · ∪ Cm, then we define∫

C
f (x, y, z)ds =

∫
C1

f (x, y, z)ds + · · · +
∫

Cm

f (x, y, z)ds.

Example 3: Let C be the curve consisting of line segments joining
(0, 0, 0) to (1, 1, 0) and (1, 1, 0) to (1, 1, 1). Evaluate∫
C (x − 3y2 + z)ds.

Parametrize. The curve C is the join of C1
and C2, where
C1 : ⃗⃗r(t) = t ŷ + t ẑ , 0 ≤ t ≤ 1;
C2 : ⃗⃗r(t) = ŷ + ẑ + t k̂, 0 ≤ t ≤ 1.
Then On C1, |

⃗⃗r ′(t) | =
√
2 and

on C2, |
⃗⃗r ′(t) | = 1. Now,∫

C
(x − 3y2 + z)ds =

∫
C1

(x − 3y2 + z)ds +
∫

C2

(x − 3y2 + z)ds

=

∫ 1

0
(t − 3t2 + 0)

√
2dt +

∫ 1

0
(1 − 3 + t)dt =

−
√
2 − 3
2

.



Examples Contd.
Example 4: Evaluate

∫
C 2x ds, where C is the

arc of the parabola y = x2 from (0, 0) to (1, 1)
followed by the line segment joining (1, 1) to
(1, 2).
Here, C = C1 ∪ C2 with

C1 : x = t, y = t2, 0 ≤ t ≤ 1; C2 : x = 1, y = t, 1 ≤ t ≤ 2.

Then
∫
C 2x ds =

∫
C1

2x ds +
∫
C2

2x ds

=
∫ 1
0 2t

√
12 + (2t)2dx +

∫ 2
1 2
√
02 + 12dt = 5

√
5−1
6 + 2.

Example 5: Evaluate
∫
C y sin z ds, where C is the

circular helix given by
x(t) = cos t, y(t) = sin t, z(t) = t, 0 ≤ t ≤ 2c.

∫
C y sin z ds =

∫ 2c
0 sin2 t

√
sin2 t + cos2 t + 1 dt =

√
2c.



Line Integral on x-axis

If the curve C happens to be a line segment on the x-axis, then
ds = dx.
In that case, the line integral over the curve becomes∫

C
f (x, y, z) dx = lim

n→∞

n∑
k=1

f (xk, yk, zk)Δxk.

In this case, we see that∫
C

f (x, y, z) ds =
∫

C
f (x, y, z) dx =

∫ b

a
f (x(t), y(t), z(t))x′(t) dt.



Other Line Integrals

We generalize this observation and define the Line integrals of f over
C with respect to x, y, z, as follows:

∫
C

f (x, y, z) dx =

∫ b

a
f (x(t), y(t), z(t))x′(t) dt,∫

C
f (x, y, z) dy =

∫ b

a
f (x(t), y(t), z(t))y′(t) dt,∫

C
f (x, y, z) dz =

∫ b

a
f (x(t), y(t), z(t))z′(t) dt.

Notice that in order to be meaningful, we assume here that f (x, y, z)
has continuous first order partial derivatives and ⃗⃗r(t) is smooth, that
is, if C has parmeterization as x = x(t), y = y(t), z = z(t), a ≤ t ≤ b,
then dx/dt, dy/dt and dz/dt are continuous.



Example 6

Evaluate
∫
C ydx + zdy + xdz, where C is the curve

joining the line segments from (2, 0, 0) to
(3, 4, 5) to (3, 4, 0).
Parameterize: C = C1 ∪ C2, where
C1 : x = 2 + t, y = 4t, z = 5t, 0 ≤ t ≤ 1;
C2 : x = 3, y = 4, z = 5 − 5t, 0 ≤ t ≤ 1.
Then∫

C
ydx + zdy + xdz =

∫
C1

ydx + zdy + xdz +
∫

C2

ydx + xdz + zdx

=

∫ 1

0
(4t) dt + (5t)4 dt + (2+ t)5 dt +

∫ 1

0
3(−5) dt = 49/2− 15 = 9.5.



Vector Fields
We want to generalize line integrals to vector fields.
A vector field is a function defined on a region D in the plane or space
that assigns a vector to each point in D. If D is a region in space, a
vector field on D may be written as

F(x, y, z) = M(x, y, z) ŷ + N (x, y, z) ẑ + P(x, y, z) k̂.

Vectors in a gravitational field point toward the center of mass that
gives the source of the field.
The velocity vectors on a projectile’s motion make a vector field along
the trajectory.



Line Integral of Vector Fields
Let F(x, y, z) be a continuous vector field defined over a curve C given
by ⃗⃗r(t) = x(t) ŷ + y(t) ẑ + z(t) k̂ for a ≤ t ≤ b. The line integral of F
along C, also called the work done by moving a particle on C under
the force field F is∫

C
F · d ⃗⃗r =

∫
C

F( ⃗⃗r(t)) · ⃗⃗r ′(t) dt =
∫

C
F · T̂ ds,

where T̂ (t) =
⃗⃗
r ′ (t)
| ⃗⃗r ′ (t) | is the unit tangent vector at points on C.

Example 7: Evaluate the line integral of
the vector field F(x, y, z) = x2 ŷ − xy ẑ
along the first quarter unit circle in the
first quadrant.
The curve C is given by ⃗⃗r(t) = cos t ŷ + sin t ẑ , 0 ≤ t ≤ c/2. Then

F( ⃗⃗r(t)) = cos2 t ŷ − cos t sin t ẑ and ⃗⃗r ′ = − sin t ŷ + cos t ẑ .

The work done is
∫

C
F · d ⃗⃗r =

∫ c/2

0
F( ⃗⃗r) · ⃗⃗r ′ dt =

−2
3
.



Line Integrals - Vector fields and Scalar fields
Let the vector filed F be given by

F(x, y, z) = M(x, y, z) ŷ + N (x, y, z) ẑ + P(x, y, z) k̂.

Suppose the curve C is given by

C : ⃗⃗r(t) = x(t) ŷ + y(t) ẑ + z(t) k̂, a ≤ t ≤ b.

Then∫
C

F · d ⃗⃗r =

∫ b

a
F( ⃗⃗r(t)) · ⃗⃗r ′(t) dt

=

∫ b

a
[M(x(t), y(t), z(t)) x′(t) + N y′(t) + P z′(t)] dt

=

∫
C

Mdx + Ndy + Pdz.

This formula connects the line integral of a vector field to the line
integrals of the component scalar fields.



Example 8

Evaluate
∫
C F · d ⃗⃗r, where

F = xy ŷ + yz ẑ + zx k̂
and C is the twisted cube given by

x = t, y = t2, z = t3, 0 ≤ t ≤ 1.∫
C Mdx =

∫ 1
0 t t2 1 dt = 1/4,∫

C Ndy =
∫ 1
0 t2 t3 2t dt = 2/7,∫

C Pdz =
∫ 1
0 t3 t 3t2 dt = 3/7.

So,
∫
C F · d ⃗⃗r = 1/4 + 2/7 + 3/7 = 27/28.

Also, a direct computation shows∫
C

F · d ⃗⃗r =
∫ 1

0
[xyx′ + yzy′ + zxz′]dt =

∫ 1

0
[t3 + 2t6 + 3t6]dt = 27/28.



Gradient Field

The gradient field of a differentiable function f (x, y, z) is the field of
gradient vectors

grad f = ∇f =
mf
mx
ŷ + mf

my
ẑ + mf

mz
k̂.

The gradient field of the surface
f (x, y, z) = c may be drawn (typical) as:

At each point on the surface, we have a
vector, the gradient vector, which is
normal to the surface. And we draw it
there itself to show it.
For example, the gradient field of f (x, y, z) = xyz is

grad f = yz ŷ + zx ẑ + xy k̂.



Conservative Fields

A vector field F is called conservative if there exists a scalar function
f such that F = grad f . In such a case, the scalar function f is called
the potential of the vector field F.

For example, the gravitational force field F = −mMG
|r |3
⃗⃗r or written in the

F(x, y, z) form:

F(x, y, z) = − mMG
(x2 + y2 + z2)3/2

[x ŷ + y ẑ + z k̂]

is a conservative field. Reason?

Define f (x, y, z) = mMG
(x2 + y2 + z2)1/2

. Then

grad f =
mf
mx
ŷ + mf

my
ẑ + mf

mz
k̂ = F.

Physically, the law of conservation of energy holds in every
conservative field.



Fundamental Theorem for Line Integrals
Recall:

∫ b
a f ′(t)dt = f (b) − f (a) for a function f (t). Gradient acts as a

sort of derivative.

Theorem 2: Let C be a smooth curve given by
⃗⃗r(t) = x(t) ŷ + y(t) ẑ + z(t) k̂ for a ≤ t ≤ b.

Suppose C joins points (x1, y1, z1) to (x2, y2, z2). That is,
⃗⃗r(a) = x1 ŷ + y1 ẑ + z1 k̂ and ⃗⃗r(b) = x2 ŷ + y2 ẑ + z2 k̂.

Let f (x, y, z) be a function whose gradient vector is continuous on a
region containing C. Then∫

C
∇f · d ⃗⃗r = f ( ⃗⃗r(b)) − f ( ⃗⃗r(a)) = f (x2, y2, z2) − f (x1, y1, z1).

Proof:
∫
C ∇f · d ⃗⃗r =

∫ b
a ∇f ( ⃗⃗r(t)) · ⃗⃗r ′(t) dt

=
∫ b
a [

mf
mx

dx
dt +

mf
my

dy
dt +

mf
mz

dz
dt ] dt

=
∫ b
a

d
dt f (
⃗⃗r(t)) dt = f ( ⃗⃗r(t))

��b
a = f ( ⃗⃗r(b)) − f ( ⃗⃗r(a)). �



Path Independence
Theorem 2 says that if F is a conservative vector field with potential f ,
then the line integral over any smooth curve joining points A to B can
be evaluated from the potential:

∫
C F · d ⃗⃗r = f (B) − f (A).

Observe that the line integral in such a case, is independent of path of
C; it only depends on the initial and end points of C.

We say that a line integral
∫
C F · d ⃗⃗r is independent of path if for any

curve C′ that is lying in the domain of F, and having the same initial
and end points as that of C, we have

∫
C F · d ⃗⃗r =

∫
C′ F · d

⃗⃗r .

The line integral
∫
C F · d ⃗⃗r is path independent if F is conservative.

Example 9: Find the line integral of the field F = yz ŷ + zx ẑ + xy k̂
along any smooth curve joining the points A(−1, 3, 9) to B(1, 6,−4).
Notice that F is conservative since F = grad (xyz). That is, with
f = xyz, we have F = ∇f . Let C be any smooth curve. Then∫

C
F · d ⃗⃗r =

∫ B

A
∇f · d ⃗⃗r = f (B) − f (A) = 3.



Path independence implies Conservative
As a corollary to Theorem 2, we have the following result:

Theorem 3: Let F be a continuous vector field defined on a region D.
Let C be any smooth curve lying in D. The line integral

∫
C F · d ⃗⃗r is

path independent iff
∫
C′ F · d

⃗⃗r = 0 for each closed curve C′ lying in D.

Note: A closed curve has same initial and end points.
In Theorems 2-3, “Smooth curve” may be replaced by “Piecewise
smooth curve.”
When C is a closed curve, we write∫

C
F · d ⃗⃗r as

∮
C

F · d ⃗⃗r .

Theorem 4: Let F be a continuous vector field defined on an open
connected region D. If

∫
C F · d ⃗⃗r is path independent for each smooth

curve C lying in D, then F is conservative.

We will not prove this theorem.



Checking Conservative

Consider a conservative vector field F = M(x, y) ŷ + N (x, y) ẑ in the
plane. We have a scalar function f (x, y) such that fx = M, fy = N .
Suppose My and Nx are continuous.
Using Clairaut’s theorem, we have fxy = My = fyx = Nx. That is,

If F = M ŷ + N ẑ is conservative, then My = Nx.

Similarly, in 3d, if F is a conservative vector field, then
F = M ŷ + N ẑ + P k̂ = ∇f for some scalar function f . We have

My = Nx, Nz = Py, Px = Mz.

Theorem 5: Let F(x, y, z) = M(x, y, z) ŷ + N (x, y, z) ẑ + P(x, y, z) k̂ be a
vector field, where the component functions have continuous partial
derivatives on a region D. If F is conservative, then on D, we have
My = Nx, Nz = Py, Px = Mz.



Converse of Theorem 5
The converse of Theorem 5 also holds provided the domain of F is a
simply connected region.
A simple curve is a curve which does not intersect itself.
A connected region D is said to be a simply connected region if every
simple closed curve lying in D encloses only points from D.

Theorem 6: Let F = M ŷ + N ẑ + P k̂ be a vector field on a simply
connected region D, where M,N,P have continuous partial
derivatives. If My = Nx, Nz = Py, Px = Mz hold on D, then F is
conservative.

Again, we omit the proof.
These equations help in determining the potential function of a
conservative field.



Example 10

Are the following vector fields conservative?
(a) F(x, y) = (x − y) ŷ + (x − 2) ẑ.
(b) F(x, y) = (3 + 2xy) ŷ + (x2 − 3y2) ẑ .
(c) F(x, y, z) = (2x − 3) ŷ + z ẑ + cos z k̂.

(a) F = M ŷ + N ẑ , where M = x − y, N = x − 2.
My = −1, Nx = 1. Since My ≠ Nx, it is not a conservative field.

(b) Here, M = 3 + 2xy, N = x2 − 3y2. My = 2x = Nx.

The vector filed is defined on R2, which is a simply connected region.
The partial derivatives of M and N are continuous. Therefore, F is a
conservative field.

(c) F = M ŷ + N ẑ + P k̂, where M = 2x − 3, N = z, P = cos z.
My = 0, Nx = 0, Nz = 1,Py = 0, Px = 0, Mz = 0.
Since Nz ≠ Py, the field F is not conservative.



Example 11
Find a potential for the vector field F = (3 + 2xy) ŷ + (x2 − 3y2) ẑ . Then
evaluate

∫
C F · d ⃗⃗r, where C is given by⃗⃗r(t) = et sin t ŷ + et cos t ẑ , 0 ≤ t ≤ c.

To determine the scalar function f (x, y, z) such that F = grad f , we take

fx = 3 + 2xy, fy = x2 − 3y2.

Integrate the first one with respect to x and integrate the second with
respect to y to obtain:

f (x, y) = 3x + x2y + g(y), f (x, y) = x2y − y3 + h(x).

Taking g(y) = −y3 + const. and h(x) = 3x + const., we have

f (x, y) = 3x + x2y − y3 + k for any constant k.

Next,
∫
C F · d ⃗⃗r = f (x(c), y(c)) − f (x(0), y(0)) = e3c + 1.



Example 12
Find a potential for the vector field F = y2 ŷ + (2xy + e3z) ẑ + 3ye3z k̂.

Denote the potential by f (x, y, z). Then

fx = y2, fy = 2xy + e3z, fz = 3ye3z.

Integrate with respect to suitable variables:

f = xy2 + g(y, z), f = xy2 + ye3z + h(x, z), f = ye3z + q(x, y).

Sometimes matching may not be obvious. So, differentiate the first:

fy = 2xy + gy(y, z) = 2xy + e3z.

Thus, gy(y, z) = e3z. Integrate: g(y, z) = ye3z + k(z). Then

f = xy2 + ye3z + k(z).

This gives fz = 3ye3z + k ′(z) = 3ye3z. Thus, k(z) = k, a const.
Therefore,

f (x, y, z) = xy2 + ye3z + k.



Example 13
Show that the following vector field is conservative by finding a
potential for it:
F = (ex cos y + yz) ŷ + (xz − ex sin y) ẑ + (xy + z) k̂
Let the potential be f (x, y, z). Then

fx = ex cos y + yz, fy = xz − ex sin y, fz = xy + z.

Integrate the first w.r.t. x to get

f = ex cos y + xyz + g(y, z).

Differentiate w.r.t. y to get

fy = −ex sin y + xz + gy(y, z) = xz − ex sin y⇒ gy(y, z) = 0.

Thus g(y, z) = h(z). And then f = ex cos y + xyz + h(z). Differentiate
w.r.t. z to obtain

fz = xy + h′(z) = xy + z⇒ h′(z) = z⇒ h(z) = z2/2 + k.

Then f (x, y, z) = ex cos y + xyz + z2/2 + k.



Exact Differential Forms
If M,N,P are functions of x, y, z, on a region D in space, then the
expression

M(x, y, z)dx + N (x, y, z)dy + P(x, y, z)dz

Is called a differential form. The differential form is called exact if
there exists a function f (x, y, z) such that

M(x, y, z) = mf
mx
, N (x, y, z) = mf

my
, P(x, y, z) = mf

mz
.

Notice that if the differential form is exact, then

M(x, y, z)dx + N (x, y, z)dy + P(x, y, z)dz = df ,

which is an exact differential. In that case, if C is any curve joining
points A to B in the region D, then∫

C
[Mdx + Ndy + Pdz] =

∫
C
∇f · d ⃗⃗r =

∫ B

A
df = f (B) − f (A).

Therefore, the differential form is exact iff F = M ŷ + N ẑ + P k̂ is
conservative. Then the f is the potential of the field F.



Example 14
Show that the differential form ydx + xdy + 4dz is exact.
Evaluate the integral

∫
C (ydx + xdy + 4dz) over the line segment C

joining the points (1, 1, 1) to (2, 3,−1).
M = y, N = x, P = 4. Then

My = 1 = Nx, Nz = 0 = Py, Px = 0 = Mz.

Therefore, the differential form is exact. Notice that
ydx + xdy + 4dz = d(xy + 4z + k). Hence it is exact.
In case, f is not obvious, we can determine it as earlier by
differentiating and integrating etc. Next,∫

C
(ydx + xdy + 4dz) =

∫ (2,3,−1)

(1,1,1)
d(xy + 4z + k)

= (xy + 4z + k)
���(2,3,−1)
(1,1,1)

= −3.



Green’s Theorem
Let C be a simple closed curve in the plane. The positive orientation
of C refers to a single counter-clockwise traversal of C. If C is given
by ⃗⃗r(t), a ≤ t ≤ b, then its positive orientation refers to a traversal of
C keeping the region D bounded by the curve to the left.

Theorem 7: (Green’s) Let C be a positively oriented simple piecewise
smooth curve in the plane. Let D be the region with boundary as C.
(That is, C = mD.) If M(x, y) and N (x, y) have continuous partial
derivatives on an open region containing D, then

1.
∮

C (Mdx + Ndy) =
∬

D

(
mN
mx −

mM
my

)
dA.

2.
∮

C (Mdy − Ndx) =
∬

D

(
mM
mx +

mN
my

)
dA.



Proof
Green’s theorem helps in evaluating an
integral of the type

∫ b
a F · ⃗⃗r in a

non-conservative vector field F. It gives a
relationship between a line integral
around a simple closed curve C and the
double integral over the plane region D
bounded by this closed curve.
We only prove for a special kind of regions to give an idea of how it is
proved.
Consider the region D = {(x, y) : a ≤ x ≤ b, f (x) ≤ y ≤ g(x)}.
Assume that f , g are continuous functions. Then∬

D

mM
my

dA =
∫ b

a

∫ g(x)

f (x)
Mydydx =

∫ b

a
[M(x, g(x)) −M(x, f (x))]dx.

Now we compute
∫
C Mdx by breaking C into four parts C1,C2,C3 and

C4.



Proof Contd.
The curve C1 is given by x = x, y = f (x), a ≤ x ≤ b. Thus∫

C1

Mdx =
∫ b

a
M(x, f (x))dx.

On C2 and also on C4, the variable x is a single point. So,∫
C2

Mdx =
∫

C4

Mdx = 0.

As x increases, C3 is traversed backward. That is, −C3 is given by
x = x, y = g(x), a ≤ x ≤ b. So,∫

C3

Mdx = −
∫
−C3

Mdx = −
∫ b

a
M(x, g(x))dx.

Therefore,
∬

D
mM
my dA = −

∫
C Mdx. Similarly, express D using the

variable of integration as y. Then we have
∬

D
mN
mx dA =

∫
C Ndy.

Next, add the two results obtained to get∫
C
(Mdx + Ndy) =

∬
D

( mN
mx
− mM
my

)
dA.

The second form follows similarly.



Example 15

Verify Green’s theorem for the field F = (x − y) ŷ + x ẑ , where C is the
unit circle oriented positively.

Here, we have C : ⃗⃗r(t) = x ŷ + y ẑ = cos t ŷ + sin t ẑ , 0 ≤ t ≤ 2c.
The region D is the unit disk.

M = cos t − sin t, N = cos t.

dx = − sin t dt, dy = cos t dt.

Mx = 1, My = −1, Nx = 1, Ny = 0. Now,∮
C (Mdy − Ndx) =

∫ 2c
0 [(cos t − sin t) cos t − cos t(− sin t)]dt = c.∬

D(Mx + Ny)dA =
∬

D(1 + 0)dA = Area of D = c.

Similarly,∮
C (Mdx + Ndy) =

∫ 2c
0 [(cos t − sin t) (− sin t) + cos2 t]dt = 2c.∬

D(Nx −My)dA =
∬

D(1 − (−1))dA = 2 × Area of D = 2c.



Examples

Example 16: Evaluate the integral I =
∮

C xy dy + y2 dx, where C is the
square cut from the first quadrant by the lines x = 1 and y = 1, with
positive orientation.

Take M = y2, N = xy, D as the region bounded by C. Then

I =
∮

C (Mdx + Ndy) =
∬

D(Nx −My)dA =
∫ 1
0

∫ 1
0 (y − 2y)dxdy = −1/2.

Also, taking M(x, y) = xy, N (x, y) = −y2 we have

I =
∮

C (Mdy − Ndx) =
∬

D(Mx + Ny)dA =
∫ 1
0

∫ 1
0 (y − 2y)dxdy = −1/2.

Example 17: Evaluate the integral
I =

∮
C (3y − esin x)dx + (7x +

√
1 + y4)dy, where C is the positively

oriented circle x2 + y2 = 9.

Take D as the disk x2 + y2 ≤ 9. Then by Green’s theorem,

I =
∬

D [(7x +
√
1 + y4)x − (3y − esin x)y]dA =

∬
D(7 − 3)dA = 36c.



Examples Contd.

Example 18: Evaluate
I =

∮
C x4 dx + xy dy, where C is the

triangle with vertices at (0, 0), (0, 1) and
(1, 0); its orientation being from (0, 0) to
(1, 0) to (0, 1) to (0, 0).
The triangle is positively oriented. Let D be the region bounded by the
triangle. Take M = x4, N = xy. Then

I =
∬

D [(xy)x − (x4)y]dA =
∫ 1
0

∫ 1−x
0 y dy dx = 1

2

∫ 1
0 (1 − x2)dx = 1

6 .

Example 19: Evaluate
∫
C (xdy − y2dx), where C is the positively

oriented square bounded by the lines x = ±1 and y = ±1.
Here, M = x, N = y2, and D as the region bounded by C.

By Green’s theorem,∮
C (Mdy − Ndx) =

∬
D(Mx + Ny)dA =

∫ 1
−1

∫ 1
−1(1 + 2y)dxdy = 4.



Area and Green’s Theorem

Consider the formula
∬

D(Nx −My)dA =
∮

C (Mdx + Ndy).
1. M = 0, N = x⇒ Nx −My = 1. So,

Area of D =

∬
D
(Nx −My)dA =

∮
C
(Mdx + Ndy) =

∮
C

xdy.

2. M = −y, N = 0⇒ Nx −My = 1. Then

Area of D =

∬
D
(Nx −My)dA =

∮
C
(Mdx + Ndy) = −

∮
C

ydx.

3. Combine both to get Area of D =
1
2

∮
C
(x dy − y dx).

For example, area enclosed by the ellipse C : x2
a2 +

y2
b2 = 1 is

(Note: C is x = a cos t, y = b sin t, 0 ≤ t ≤ 2c.)
1
2

∮
C
(x dy − y dx) = 1

2

∫ 2c

0
[(a cos t b cos t) − (b sin t (−b sin t))]dt

=
1
2

∫ 2c

0
ab dt = c ab.



A Different Region

Example 20: Evaluate
∮

C (y
2 dx + xy dy),

where C is the boundary of the semi-
annular region between the semicircles
x2 + y2 = 1 and x2 + y2 = 4 in the upper
half plane.
Write, in polar co-ordinates, D = {(r, \) : 1 ≤ r ≤ 2, 0 ≤ \ ≤ c}.
Then∮

C
(y2 dx + xy dy) =

∬
D

[ m
mx
(xy) − m

my
(y2)

]
dA = −

∬
D

y dA

= −
∫ 2

1

∫ c

0
r sin \r dr d\ = −

∫ 2

1
r2dr

∫ c

0
sin \ d\ = −14

3
.

In fact, Green’s theorem can be applied to regions having holes,
provided the region can be divided into simply connected regions.



Regions with holes
The boundary C of the region D consists
of two simple closed curves C1 (Outer)
and C2 (inner). Assume that these
boundary curves are oriented so that the
region D is always on the left as the curve
C is traversed.

Thus the positive direction is counterclockwise for the outer curve C1
but clockwise for the inner curve C2. Divide D into two regions D′
and D′′ as shown in the figure. Green’s theorem on D′ and D′′ gives∬

D
(Nx −My)dA =

∬
D′
(Nx −My)dA +

∬
D′′
(Nx −My)dA

=

∫
mD′
(Mdx + Ndy) +

∫
mD′′
(Mdx + Ndy) =

∫
C
(Mdx + Ndy).

This is the general version of Green’s Theorem.



Example 21

Let C be any positively oriented simple closed curve that encloses the

origin. Show that
∮

C

−y
x2 + y2

dx + x
x2 + y2

dy = 2c.

Take a positively oriented circle C′, of
radius a, around origin that lies entirely in
the region bounded by C. Let D be the
annular region bounded by C and C′.
Take F(x, y) = (−y ŷ + x ẑ)/(x2 + y2). Then the positively oriented
boundary of D is mD = C ∪ (−C′).
Here, F = M ŷ + N ẑ gives Nx = My = (y2 − x2)/(x2 + y2)2.
Green’s theorem on D gives∮

C (Mdx + Ndy) +
∮
−C′ (Mdx + Ndy) =

∬
D(Nx −My)dA = 0

Then
∮

C (Mdx + Ndy) =
∮

C′ (Mdx + Ndy).
But C′ is parameterized by x(t) = a cos t, y(t) = a sin t, 0 ≤ t ≤ 2c.
So,

∫
C′ (Mdx + Ndy) =

∫ 2c
0 (a cos t ŷ + a sin t ẑ) · (a cos t ŷ + a sin t ẑ) ′dt = 2c.



Curl of a vector field
If F = M ŷ + N ẑ + P k̂ is a vector field in R3, where the partial
derivatives of the component functions exist, then curl F is a vector
field given by

curl F =
(mP
my
− mN
mz

)
ŷ +

(mM
mz
− mP
mx

)
ẑ +

(mN
mx
− mM
my

)
k̂.

Writing in operator notation, recall that

grad = ∇ = ŷ
m

mx
+ ẑ m

my
+ k̂

m

mz
.

Then curl F = ∇ × F =

������
ŷ ẑ k̂
m
mx

m
my

m
mz

M N P

������ .
For example, if F = zx ŷ + xyz ẑ − y2 k̂, then

curl F = −y(2 + x) ŷ + x ẑ + yz k̂.



Curl of a Conservative Field
Theorem 8: Let F be a vector field defined over a simply connected
region D whose component functions have continuous partial
derivatives. Then F is conservative iff curl F = 0.

Proof of⇒: Let f be any scalar function defined on D. Now,

curl ∇f = ∇ × (∇f ) =

������
ŷ ẑ k̂
m
mx

m
my

m
mz

fx fy fz

������
= (fyz − fzy) ŷ + (fzx − fxz) ẑ + (fxy − fyx) k̂ = 0.

if F is conservative, then F = ∇f for some f . Thus, curl F = 0.

The converse follows from Stokes’ theorem, which we will discuss
later. �

Remember: The curl of gradient of any scalar function is zero:

curl grad f = 0.



Examples

Example 22: Is the vector field F = zx ŷ + xyz ẑ − y2 k̂ conservative?

Here, curl F = −y(2 + x) ŷ + x ẑ + yz k̂ ≠ 0. So, F is not conservative.

Example 23: Is the vector field F = y2z3 ŷ + 2xyz3 ẑ + 3xy2z2 k̂
conservative?

Here, F is defined on R2 and

curl F =

������
ŷ ẑ k̂
m
mx

m
my

m
mz

y2z3 2xyz3 3xy2z2

������ =
(6xy2z2 − 6xy2z2) ŷ
−(3y2z2 − 3y2z2) ẑ
+(2yz3 − 2yz3) k̂

= 0.

Hence F is conservative.

In fact, F = grad f , where f (x, y, z) = xy2z3.

The name game: curl F measures how quickly a tiny peddle
(at a point) in some fluid in a vector field moves around itself.
If curl F = 0, then there is no rotation of such a tiny peddle.



Divergence

If F = M ŷ + N ẑ + P k̂ is a vector field defined on a region, where its
component functions have first order partial derivatives, then

div F = ∇ · F = mM
mx
+ mN
my
+ mP
mz
.

The divergence is also called flux density.

For example, if F = zx ŷ + xyz ẑ − y2 k̂, then div F = z + xz.

The divergence of the vector field F = (x2 − y) ŷ + (xy − y2) ẑ is
m(x2−y)

mx + m(xy−y2)
my = 3x − 2y.

Intuitively, div F measures the tendency of the fluid to diverge from
the point (a, b).When the gas (fluid) is expanding, divergence is
positive; and when it is compressing, the divergence is negative.
If div F = 0, then the fluid is said to be incompressible.



Divergence of Curl

Theorem 9: Let F = M ŷ + N ẑ + P k̂ be a vector field defined on a
simply connected region D ⊆ R3, where M,N,P have continuous
second order partial derivatives. Then div curl F = 0.

Proof: div curl F = ∇ · (∇ × F)

= m
mx

(
mP
my −

mN
mz

)
+ m

my

(
mM
mz −

mP
mx

)
+ m

mz

(
mN
mx −

mM
my

)
= 0 due to Clairaut’s Theorem. �

Example 24: Does there exist a vector field G such that
F = zx ŷ + xyz ẑ − y2 k̂ = curl G?

div F = z + xz ≠ 0. Hence there is no such G.

Divergence of grad f is the Laplacian of a scalar function f since

div grad f = ∇ · (∇f ) = m2f
mx2 +

m2f
my2 +

m2f
mz2 := ∇2f .



Green’s Theorem - Tangent form
Let D be a simply connected region whose boundary is the simple
closed curve C. Let F = M ŷ + N ẑ be a vector field defined on D.
Let C be parameterized by ⃗⃗r(t) = x(t) ŷ + y(t) ẑ.
Let T̂ be the unit tangent vector to C at the point (x(t), y(t)). Then

F · T̂ (t)ds = F · d ⃗⃗r = Mdx + Ndy.

The line integral of F over C is∮
F · T̂ (t)ds =

∮
C

F · d ⃗⃗r =
∮

C
(M dx + N dy).

Consider F as a vector field on R3 with P = 0. Then

curl F = (Nx −My) k̂⇒ curl F · k̂ = Nx −My.

Thus Green’s theorem takes the form∮
C

F · T̂ (t) ds =
∮

C
F · d ⃗⃗r =

∬
D
(curl F · k̂) dA.



Green’s Theorem - Normal form

Let C be given by ⃗⃗r(t) = x(t) ŷ + y(t) ẑ .
Let n̂ be the unit normal to C at the point (x(t), y(t)). Then

T̂ =
x′(t)
| ⃗⃗r ′(t) | ŷ +

y′(t)
| ⃗⃗r ′(t) | ẑ , n̂(t) = y′(t)

| ⃗⃗r ′(t) | ŷ −
x′(t)
| ⃗⃗r ′(t) | ẑ .

Then
⃗⃗ ⃗
F ·n̂ = [M y′(t) − N x′(t)]/| ⃗⃗r ′(t) |.

Now,
∮

C F · n̂ ds =
∫ b
a

⃗⃗ ⃗
F · n̂ | ⃗⃗r ′(t) | dt =

∮
C (Mdy − Ndx).

Also,
∬

D div F dA =
∬

D(Mx + Ny)dA.

Hence the second form of Green’s theorem takes the form∮
C

⃗⃗ ⃗
F · n̂ ds =

∬
D
div F dA.

Both the tangent-form and the normal-form are called vector forms of
Green’s theorem.



Surface area of Revolution

Consider a smooth curve y = f (x), f (x) ≥ 0. Its arc when a ≤ x ≤ b
is revolved about the x-axis to generate a solid. How do we compute
the area of the surface of this solid?

It is similar to computing the volume of revolution.
Partition [a, b] into n subintervals [xk−1, xk] .When each Δxk is small,
the surface area corresponding to this subinterval is approximately
same as the area on the frustum of a right circular cone.



Area of Frustum
Suppose a circular cone has base radius R and slant height ℓ.
Its surface area is cRℓ. So, the area of the frustum is

A = cr2(ℓ1 + ℓ) − cr1ℓ1 = c[(r2 − r1)ℓ1 + r2ℓ] .

Using similarity of triangles,
ℓ1
r1
=
ℓ1 + ℓ

r2
.

So, r2ℓ1 = r1ℓ1 + r1ℓ ⇒ (r2 − r1)ℓ1 = r1ℓ. Therefore,

A = c(r1ℓ + r2ℓ) = 2c r ℓ, where r =
r1 + r2

2
.

The slant height ℓ is approximated by
√
(Δxk)2 + (Δyk)2, where

Δxk = xk − xk−1 and Δyk = f (xk) − f (xk−1).

the average radius r =
r1 + r2

2
=

f (xk−1) + f (xk)
2

.

Thus the area of the frustum is

Ak = 2c
f (xk−1) + f (xk)

2

√
(Δxk)2 + (Δyk)2.



Approximating the area

Due to MVT, we have ck ∈ [xk−1, xk] such that

Δyk = f (xk) − f (xk−1) = f ′(ck) (xk − xk−1) = f ′(ck)Δxk.

So,
√
(Δxk)2 + (Δyk)2 =

√
1 + (f ′(ck))2 Δxk.

The surface of revolution is approximated by

n∑
k=1

Ak = 2c
n∑

k=1

f (xk−1) + f (xk)
2

√
1 + (f ′(ck))2 Δxk.

Its limit as n→∞ is the Riemann sum of an integral, which is the
required area:

S =
∫ b

a
2c y

√
1 + (f ′(x))2 dx =

∫ b

a
2cf (x)

√
1 + (f ′(x))2dx.



In summary
1. If the arc of the curve y = f (x) for a ≤ x ≤ b is revolved about the
x-axis, then write ds =

√
1 + (f ′(x))2 dx. The area of the surface of the

solid of revolution is given by

S =
∫

2cy ds =
∫ b

a
2cy

√
1 + (f ′(x))2 dx.

2. If the arc of the curve x = g(y) for c ≤ y ≤ d is revolved about the
y-axis, then write ds =

√
1 + (g′(y))2 dy. The area of the surface of the

solid of revolution is given by

S =
∫

2cx ds =
∫ d

c
2cx

√
1 + (g′(y))2 dy.



Particular cases

Suppose the curve is parameterized by x = x(t), y = y(t) for a ≤ t ≤ b;
it is traversed exactly once while t increases from a to b.

Then ds =
√
(x′(t))2 + (y′(t))2 dt.

The surface area S of the solid generated by revolving the curve
about the coordinate axes are as follows:

1. If the revolution is about the x-axis, then

S =
∫ b

a
2c y(t)

√
(x′(t))2 + (y′(t))2 dt.

2. If the revolution is about the y-axis, then

S =
∫ b

a
2c x(t)

√
(x′(t))2 + (y′(t))2 dt.



Examples
Example 25: Find the surface area of the solid obtained by revolving
about x-axis, the arc of the curve y = 2

√
x, 1 ≤ x ≤ 2.

Since y = 2
√

x, y′ = 1/
√

x,
√
1 + (y′)2 =

√
1 + 1/x. Then

S =
∫ 2

1
2cy

(
1+[y′]2

)1/2
dx =

∫ 2

1
2c 2
√

x
√
1 + 1

x
dx =

8c
3
(3
√
3−2
√
2).

Example 26: The arc of the parabola y = x2, 1 ≤ x ≤ 2 is revolved
about the y-axis. Find the surface area of revolution.
Since x = √y, 1 ≤ y ≤ 4, the surface area is

S =

∫ 2

1
2c x

√
1 + (x′)2 dy = 2c

∫ 4

1

√
y
√
1 + 1/(4y) dy

= c

∫ 4

1

√
1 + 4y dy =

c

4

∫ 4

1

√
1 + 4y d(1 + 4y) = c

4
· 2
3

[
(1 + 4y)3/2

]4
1

=
c

6
(
173/2 − 53/2

)



Example 27

The circle of radius 1 centered at (0, 1) is
revolved about the x-axis. Find the surface area
of the solid so generated.

The circle can be parameterized as

x = cos t, y = 1 + sin t, 0 ≤ t ≤ 2c.

Then (x′(t))2 + (y′(t))2 = 1. Thus the area is

S =
∫ 2c

0
2c (1 + sin t) dt = 4c2.



Surface area in General
Let S be a surface given by z = f (x, y). For simplicity, assume that
f (x, y) ≥ 0 over the region D, which is rectangular.

Divide D into smaller rectangles Rij with area Δ(Rij) = ΔxΔy. For the
corner (xi, yj) in Rij, closest to the origin, let Pij be the point
(xi, yj, f (xi, yj)) on the surface. The tangent plane to S at Pij is an
approximation to S near Pij . The area Tij of the portion of the tangent
plane that lies above Rij approximates the area of Sij, the portion of S
that is directly above Rij . Therefore, we define the area of the surface
S as

Δ(S) = lim
m→∞

lim
n→∞

m∑
i=1

n∑
j=1

Tij .



Surface Area - Formula

Let ⃗⃗a and
⃗⃗
b be the vectors that start at Pij and lie along the sides of the

parallelogram whose area is Tij . Then Tij =
⃗⃗a×
⃗⃗
b . However, fx(xi, yj)

and fy(xi, yj) are the slopes of the tangent lines through Pij in the
directions of ⃗⃗a and

⃗⃗
b, respectively. Therefore,

⃗⃗a = Δx ŷ + fx(xi, yj)Δx k̂,
⃗⃗
b = Δy ẑ + fy(xi, yj)Δy k̂.

Tij = |
⃗⃗a×
⃗⃗
b | = | − fx(xi, yj) ŷ − fy(xi, yj) ẑ + k| Δ(Rij)

=

√
f 2x (xi, yj) + f 2y (xi, yj) + 1ΔA.

Summing over these Tij and taking the limit, we obtain:

Δ(S) =
∬

D

√
f 2x + f 2y + 1 dA.



Example 28

Find the surface area of the part of the surface z = x2 + 2y that lies
above the triangular region in the xy-plane with vertices (0, 0), (1, 0)
and (1, 1).

T = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}, f (x, y) = x2 + 2y.

The required surface area is∬
T

√
(2x)2 + 22 + 1 dA =

∫ 1

0

∫ x

0

√
4x2 + 5 dydx =

1
12
(27 − 5

√
5).



Surface Area - A generalized form
Recall that for a surface S given by f (x, y) = z, the surface area is∬

D

√
f 2x + f 2y + 1 dA. Here, D is the rectangle on the xy-plane obtained

by projecting S onto the plane.
Look at this surface as f (x, y) − z = 0. Then ∇f = fx ŷ + fy ẑ − 1 k̂.
If ⃗⃗p is the unit normal to the projected rectangle, then ⃗⃗p = k̂. Then

|∇f |
|∇f · ⃗⃗p | =

√
f 2x +f 2y +1
12 , which is the integrand in the surface area formula.

A derivation similar to the surface area formula gives the following:

Let the surface S be given by f (x, y, z) = c. Let R be a closed bounded
region which is obtained by projecting the surface to a plane whose
unit normal is ⃗⃗p . Suppose that ∇f is continuous on R and ∇f · ⃗⃗p ≠ 0
on R. Then

The surface area of S =
∬

R

|∇f |
|∇f · ⃗⃗p | dA.

Of course, whenever possible, we project onto the co-ordinate planes.



Example 29

Find the area of the surface cut from the bottom of the paraboloid
x2 + y2 = z by the plane z = 4.

Surface S is given by
f (x, y, z) = x2 + y2 − z = 0. Project it onto
xy-plane to get the region R as
x2 + y2 ≤ 4. Then ∇f = 2x ŷ + 2y ẑ − k̂.
|∇f | =

√
1 + 4x2 + 4y2.⃗⃗p = k̂. |∇f · ⃗⃗p | = 1.

R is given by x = r cos \, y = r sin \, 0 ≤ \ ≤ 2c, 0 ≤ r ≤ 2.
So, the surface area is∬

R

√
1 + 4x2 + 4y2 dA =

∫ 2c

0

∫ 2

0

√
1 + 4r2 r drd\ =

c

6
(17
√
17 − 1).



Example 30

Find the surface area of the cap cut from
the hemisphere x2 + y2 + z2 = 2, z ≥ 0 by
the cylinder x2 + y2 = 1.

The surface projected on xy-plane gives R as the disk x2 + y2 ≤ 1. The
surface is f (x, y, z) = 2, where f (x, y, z) = x2 + y2 + z2.
∇f = 2x ŷ + 2y ẑ + 2z k̂. |∇f | = 2

√
x2 + y2 + z2 = 2

√
2. ⃗⃗p = k.

|∇f · ⃗⃗p | = |2z| = 2z. Thus the surface area is

S =
∬

R

2
√
2

2z
dA =

√
2
∬

R
z−1 dA =

√
2
∬

R
(2 − x2 − y2)−1/2 dA.

R is given by x = r cos \, y = r sin \, 0 ≤ \ ≤ 2c, 0 ≤ r ≤ 1. So,

S =
√
2
∫ 2c

0

∫ 1

0

r dr d\
√
2 − r2

= 2c(2 −
√
2).



Integrating over a surface

Suppose a function g(x, y, z) is defined over a
surface S given by f (x, y, z) = c. To compute the
integral of g, as area elements are taken over the
surface, we look at the region R on which this
surface is defined as a function.

Divide the region R into smaller rectangles ΔAk. Consider the
corresponding surface areas Δfk. Then

Δfk ≈
( |∇f |
|∇f · ⃗⃗p |

)
k
.

Assuming that g is nearly constant on the smaller surface fragment
fk, we form the sum∑

k
g(xk, yk, zk)Δfk ≈

∑
k

g(xk, yk, zk)
( |∇f |
|∇f · ⃗⃗p |

)
k
.

If this sum converges, then we define that limit as the integral of g
over the surface S.



In Summary

We summarize:

Let S be a surface given by f (x, y, z) = c.
Let the projection of S onto a plane with unit normal ⃗⃗p be
the region R.
Let g(x, y, z) be defined over S.
Then the surface integral of g over S is∬

S
g df =

∬
R

g(x, y, z) |∇f |
|∇f · ⃗⃗p | dA.

Also, we say df =
|∇f |
|∇f · ⃗⃗p | dA.



Linearity

If the surface S can be represented as a union of non-overlapping
smooth surfaces S1, . . . , Sn, then∬

S
g df =

∬
S1

g df + · · · +
∬

Sn

g df.

If g(x, y, z) = g1(x, y, z) + · · · + gm(x, y, z) over the surface S, then∬
S

g df =
∬

S
g1 df + · · · +

∬
S

gm df.

Similarly, if g(x, y, z) = k h(x, y, z) holds for a constant k, over S, then∬
S

g(x, y, z) df = k
∬

S
h(x, y, z) df.



Example 31

Integrate g(x, y, z) = xyz over the
surface of the cube cut from the first
octant by the planes x = 1, y = 1, and
z = 1.

We integrate g over the six surfaces and add the results. As g = xyz is
zero on the co-ordinate planes, we need integrals on sides A,B and C.
Side A is the surface defined on the region RA : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
on the xy-plane. For this surface and the region,
⃗⃗p = k̂, ∇f = k̂, |∇f | = 1, |∇f · ⃗⃗p | = | k̂ · k̂| = 1, g(x, y, z) = xyz

��
z=1 = xy.

Therefore,∬
A

g(x, y, z) df =
∬

R1

xy
|∇f |
|∇f · ⃗⃗p | dA =

∫ 1

0

∫ 1

0
xydxdy =

∫ 1

0

y
2
=
1
4
.

Similarly,
∬

B g(x, y, z) df = 1
4 =

∬
C g(x, y, z) df.

Thus,
∬

S
g df =

3
4
.



Example 32

Evaluate the surface integral of g(x, y, z) = x2 over the unit sphere.

It can be divided into the upper hemisphere and the lower hemisphere.
Let S be the upper hemisphere f (x, y, z) := x2 + y2 + z2 = 1, z ≥ 0.
Its projection on the xy-plane is the region

R : x = r cos \, y = r sin \, 0 ≤ r ≤ 1, 0 ≤ \ ≤ 2c.

Here, ⃗⃗p = k̂, |∇f | = 2
√

x2 + y2 + z2 = 2,

|∇f · ⃗⃗p | = 2|z| = 2
√
1 − (x2 + y2) = 2

√
1 − r2.

Hence
∬

S x2 df =
∬

R x2 |∇f |
|∇f · ⃗⃗p | dA =

∬
R

x2√
1−r2

dA

=
∫ 2c
0

∫ 1
0

r2 cos2 \√
1−r2

r dr d\ =
∫ 2c
0 cos2 \ d\

∫ 1
0

r3√
1−r2

dr = 2c
3 .

Since the integral of x2 on the upper hemisphere is equal to that on the
lower hemisphere, the required integral is 2 × 2c

3 = 4c
3 .



A simplification
Recall that when ⃗⃗p = k̂, that is, when the region R is obtained by
projecting the surface S onto the xy-plane, |∇f |

|∇f · ⃗⃗p | =
√
1 + z2x + z2y .

Now, if the surface f (x, y, z) = c can be written explicitly by
z = h(x, y), then the surface integral takes the form∬

S
g(x, y, z) df =

∬
R

g(x, y, h(x, y))
√
1 + h2x + h2y dx dy.

Similarly, if the surface can be written as y = h(x, z) and R is obtained
by projecting S onto the xz-plane, then∬

S
g(x, y, z) df =

∬
R

g(x, h(x, z), z)
√
1 + h2x + h2z dx dz.

If the surface can be written as x = h(y, z) and R is obtained by
projecting S onto the yz-plane, then∬

S
g(x, y, z) df =

∬
R

g(h(y, z), y, z)
√
1 + h2y + h2z dy dz.



Example 33

Evaluate
∬

S y df, where S is the surface z = x + y2, where 0 ≤ x ≤ 1
and 0 ≤ y ≤ 2.

Projecting the surface to xy-plane, we obtain the region R as the
rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.
Here, the surface is given by z = h(x, y) = x + y2. So,∬

S
y df =

∬
R

y
√
1 + 1 + (2y)2 dA =

∫ 1

0

∫ 2

0

√
2y

√
(1 + 2y2) dy dx =

13
√
2

3
.



Another Formulation

Suppose the surface S is given in a parameterized form:
⃗⃗r(u, v) = x(u, v) ŷ + y(u, v) ẑ + z(u, v) k̂,

where (u, v) ranges over the region D in the uv-plane. Here, a change
of variable happens. Then

df = | ⃗⃗r u ×
⃗⃗r v | du dv,

where ⃗⃗r u = xu ŷ + yu ẑ + zu k̂ and ⃗⃗r v = xv ŷ + yv ẑ + zv k̂.

Then ∬
S

f (x, y, z) df =
∬

D
f ( ⃗⃗r(u, v)) | ⃗⃗r u ×

⃗⃗r v | du dv.



Example 34

Evaluate
∬

S z df, where S is the surface whose sides S1, S2, S3 are:
S1 is given by the cylinder x2 + y2 = 1,
bottom S2 is the disk x2 + y2 ≤ 1, z = 0, and
whose top S3 is part of the plane z = 1 + x that lies above S2.

S1 is given by
⃗⃗r = x ŷ + y ẑ + z k̂ with x = cos \, y = sin \, z = z,

where D is given by 0 ≤ \ ≤ 2c and 0 ≤ z ≤ 1 + x = 1 + cos \.
Then | ⃗⃗r \ ×

⃗⃗r z | = | cos \ ŷ + sin \ ẑ | = 1. So,



Example 34 Contd.∬
S1

z df =
∬

D
z | ⃗⃗r \ ×

⃗⃗r z | dz d\ =
∫ 2c

0

∫ 1+cos \

0
z dz d\ =

3c
2
.

S2 lies in the plane z = 0. Hence,∬
S2

z df = 0.

S3 lies above the unit disk and lies in the plane z = 1 + x. So,∬
S3

z df =

∬
D
(1 + x)

√
1 + z2x + z2y dA

=

∫ 2c

0

∫ 1

0
(1 + r cos \)

√
1 + 1 + 0 r dr d\ =

√
2c.

Hence,∬
S

z df =
∬

S1
z df +

∬
S2

z df +
∬

S3
z df =

3c
2
+ 0 +

√
2c.



Oriented Surface
A smooth surface is called orientable if it is possible to define a vector
field of unit normal vectors n̂ to the surface which varies continuously
with position. Once such normal vectors are chosen, the surface is
considered an oriented surface.

If the surface S is given by z = f (x, y), then we take its orientation by
considering the unit normal vectors n̂ = −fx ŷ−fy ẑ+ k̂√

1+f 2x +f 2y
.

If S is a part of a level surface g(x, y, z) = c, then we may take
n̂ = ∇g

|∇g | .

If S is given parametrically as ⃗⃗r(u, v) = x(u, v) ŷ + y(u, v) ẑ + z(u, v) k̂,
then n̂ =

⃗⃗
r u×
⃗⃗
r v

| ⃗⃗r u×
⃗⃗
r v | .

Sometimes we may take negative sign if it is preferred.
Conventionally, the outward direction is taken as the positive direction.



Examples of Parametrization

1. The cone z =
√

x2 + y2, 0 ≤ z ≤ 1 can be parametrized by
x = r cos \, y = r sin \, z = r, where 0 ≤ r ≤ 1 and 0 ≤ \ ≤ 2c. Then
its vector form is

⃗⃗r(r, \) = r cos \ ŷ + r sin \ ẑ + r k̂.

2. The sphere x2 + y2 + z2 = a2 can be parametrized by
x = a cos \ sin q, y = a sin \ sin q, z = a cos q. Here, 0 ≤ \ ≤ 2c and
0 ≤ q ≤ c. In vector form the parametrization is

⃗⃗r(\, q) = a cos \ sin q ŷ + a sin \ sin q ẑ + a cos q k̂.

3. The cylinder x2 + y2 = a2, 0 ≤ z ≤ 5 can be parametrized by
⃗⃗r(\, z) = a cos \ ŷ + a sin \ ẑ + z k̂.



Surface Integral of a Vector Field
Let F be a continuous vector field defined over an oriented surface S
with unit normal n̂. The surface integral of F over S, also called, the
flux of F across S is ∬

S
F · n̂ df.

The flux is the integral of the scalar component of F along the unit
normal to the surface. Thus in a flow, the flux is the net rate at which
the fluid is crossing the surface S in the chosen positive direction.

If S is part of a level surface g(x, y, z) = c, which is defined over the
region D, then df = |∇g |

|∇g.
⃗⃗
p | . So, the flux across S is∬

S
F · n̂ df =

∬
S

F · ±∇g
|∇g| df =

∬
D

F · ±∇g
|∇g · ⃗⃗p |dA.

If S is parametrized by ⃗⃗r(u, v), where D is the region in uv-plane, then
df = | ⃗⃗r u ×

⃗⃗ ⃗⃗rv | dA. So, flux across S is∬
S

F · n̂ df =
∬

S
F ·
⃗⃗r u ×

⃗⃗ ⃗⃗rv

| ⃗⃗r u ×
⃗⃗ ⃗⃗rv |

df =
∬

D
F( ⃗⃗r(u, v)) · ( ⃗⃗r u ×

⃗⃗ ⃗⃗rv) dA.



Example 35

Find the flux of F = yz ẑ + z2 k̂ outward
through the surface S which is cut from
the cylinder y2 + z2 = 1, z ≥ 0 by the
planes x = 0 and x = 1.

S is given by g(x, y, z) := y2 + z2 − 1 = 0, defined over the rectangle
R = Rxy as in the figure.

The outward unit normal is n̂ = + ∇g
|∇g | = y ẑ + z k̂.

Here, ⃗⃗p = k̂. So, df = |∇g |
|∇g·k̂ |dA = 1

2z dA.

Therefore, outward flux through S is∬
S

F · n̂ df =
∬

S
z df =

∬
R

z
1
2z

dA = 1
2Area of R = 1.



Example 36

Find the flux of the vector field F = z ŷ + y ẑ + x k̂ across the unit sphere.

If no direction of the normal vector is given and the surface is a closed
surface, we take n̂ in the positive direction, which is directed outward.

Using the spherical co-ordinates, the unit sphere S is parametrized by
⃗⃗r(q, \) = sin q cos \ ŷ + sin q sin \ ẑ + cos q k̂,

where 0 ≤ q ≤ c and 0 ≤ \ ≤ 2c give the region D. Then
⃗⃗ ⃗
F( ⃗⃗r(q, \)) = cos q ŷ + sin q sin \ ẑ + sin q cos \ k̂.⃗⃗r q ×

⃗⃗r \ = sin2 q cos \ ŷ + sin2 q sin \ ẑ + sin q cos q k̂.∬
S

⃗⃗ ⃗
F · ⃗⃗n df =

∬
D

⃗⃗ ⃗
F ·( ⃗⃗r q ×

⃗⃗r \ ) dq d\
=

∫ 2c
0

∫ c

0 (2 sin2 q cos q cos \ + sin3 q sin2 \) dq d\
= 2

∫ c

0 sin2 q cos q dq
∫ 2c
0 cos \ d\ +

∫ c

0 sin3 q dq
∫ 2c
0 sin2 \ d\

= 0 +
∫ c

0 sin3 q dq
∫ 2c
0 sin2 \ d\ = 4c

3 .



Example 37

Find the surface integral of
F = yz ŷ + x ẑ − z2 k̂ over the portion of the
parabolic cylinder
y = x2, 0 ≤ x ≤ 1, 0 ≤ z ≤ 4.

We assume the positive direction of the normal n̂.

On the surface, we have x = x, y = x2, z = z giving the
parametrization as ⃗⃗r(x, z) = x ŷ + x2 ẑ + z k̂,

whereas D is given by 0 ≤ x ≤ 1, 0 ≤ z ≤ 4.

Again, on the surface, F = x2z ŷ + x ẑ − z2 k̂. So,∬
S F · n̂ df =

∬
D F · ( ⃗⃗r x ×

⃗⃗r z) dxdz

=
∬

D(x
2z ŷ + x ẑ − z2 k̂) · (2x ŷ − ẑ)dxdz

=
∫ 4
0

∫ 1
0 (2x3z − x) dx dz =

∫ 4
0 (z − 1)/2 dz = 2.



A Simplification
If S is given by z = f (x, y), then think of x, y as the parameters u and v.
We have

F = M(x, y) ŷ + N (x, y) ẑ + P(x, y) k̂ and ⃗⃗r = x ŷ + y ẑ + f (x, y) k̂.
Then ⃗⃗r x ×

⃗⃗r y = ( ŷ + fx k̂) × ( ẑ + fy k̂) = −fx ŷ − fy ẑ + k̂.

Therefore, the flux is∬
S

F · n̂ df =
∬

D
F · ( ⃗⃗r x ×

⃗⃗r y) dxdy =
∬

D
(−Mfx − Nfy + P) dxdy.

Example 38: Evaluate
∬

S F · n̂ df, where
F = y ŷ + x ẑ + z k̂ and S is the boundary of
the solid enclosed by the paraboloid
z = 1 − x2 − y2 and the plane z = 0.

The surface S has two parts: the top portion S1 and the base S2. Since
S is a closed surface, we consider its outward normal n̂. Projections of
both S1 and S2 on xy-plane are D, the unit disk.



Example 38 Contd.
By the simplified formula for the flux, we have∬

S1
F · n̂ df =

∬
D(−Mfx − Nfy + P)dxdy

=
∬

D [−y(−2x) − x(−2y) + 1 − x2 − y2]dxdy

=
∫ 2c
0

∫ 1
0 (1 + 4r2 cos \ sin \ − r2) r dr d\

=
∫ 2c
0 (

1
4 + cos \ sin \) d\ = c

2 .

The disk S2 has positive direction, when n̂ = − k̂. Thus∬
S2

F · n̂ df =
∬

S2
(−F · k̂) df =

∬
D
(−z)dxdy = 0

since on D = S2, z = 0. Then∬
S

F · n̂ df =
∬

S1
F · n̂ df +

∬
S2

F · n̂ df =
c

2
.



Boundary of an Oriented Surface

Consider an oriented surface with a
normal vector n̂. Call the boundary curve
of S as C. The orientation of S induces a
positive orientation of the boundary of S.

If you walk in the positive direction of C keeping your head pointing
towards n̂, then S will be to your left.
Recall that Green’s theorem relates a double integral in the plane to a
line integral over its boundary.
We will have a generalization of this to 3 dimensions.
Write the boundary curve of a given smooth surface as mS.
The boundary is assumed to be a closed curve, positively oriented
unless specified otherwise.



Stokes’ Theorem

Theorem 10: Let S be an oriented piecewise-smooth surface that is
bounded by a simple, closed, piecewise-smooth boundary curve mS
with positive orientation. Let F = M ŷ + N ẑ + P k̂ be a vector field
with M,N,P having continuous partial derivatives on an open region
in space that contains S. Then∮

mS
F · d ⃗⃗r =

∬
S
curl F · n̂ df.

In particular, if S is a bounded region D in the xy-plane, mS = C, the
smooth boundary of D, then n̂ = k̂ and df = dA.We obtain∮

C
F · d ⃗⃗r =

∬
D
curl F · k̂ dA =

∫ y=d

y=c

∫ x=b

x=a
(Nx −My) dx dy.

This is Green’s theorem. We omit the proof of Stoke’s theorem.



Example 39
Consider S as the hemisphere x2 + y2 + z2 = 9, z ≥ 0. Let
F( ⃗⃗r) = y ŷ − x ẑ . The bounding curve for S is in the xy-plane;
it is mS given by x2 + y2 = 9, z = 0.
Its parameterization is ⃗⃗r(\) = 3 cos \ ŷ + 3 sin \ ẑ for 0 ≤ \ ≤ 2c.∮
mS F ·d ⃗⃗r =

∫ 2c
0 [(3 sin \) ŷ− (3 cos \) ẑ] · [(−3 sin \) ŷ+ (3 cos \) ẑ] d\

= −
∫ 2c
0 [9 sin2 \ + 9 cos2 \] d\ = −18c.

This is the line integral in Stokes’ theorem.
For the surface integral, we have
curl F = (Py − Nz) ŷ + (Mz − Px) ẑ + (Nx −My) k̂ = −2 k̂.
On the surface g := x2 + y2 + z2 = 9, we have
n̂ = (∇g)/|∇g| = 1

3 (x ŷ + y ẑ + z k̂), ⃗⃗p = k̂,
df = |∇g|/|∇g · ⃗⃗p | dA = 2×3

2z dA = 3
z dA,

where dA is the differential in the projected area D : x2 + y2 ≤ 9.∬
S curl F · n̂ df =

∬
S
−2z
3 df =

∬
D
−2z
3

3
z dA =

∬
D(−2) dA = −18c.



Example 40

Evaluate
∮

C ((x
2 − y) ŷ + 4z ẑ + x2 k̂) · d ⃗⃗r,

where C is the intersection of the plane
z = 2 and the cone z =

√
x2 + y2.

Parameterize the cone as⃗⃗r(r, \) = r cos \ ŷ + r sin \ ẑ + r k̂,
for 0 ≤ r ≤ 2, 0 ≤ \ ≤ 2c.

Then n̂ =
⃗⃗
r r×
⃗⃗
r \

| ⃗⃗r r×
⃗⃗
r \ | =

1√
2

(
− cos \ ŷ − sin \ ẑ + k̂

)
.

curl F = (Py −Nz) ŷ + (Mz −Px) ẑ + (Nx −My) k̂ = −4 ŷ − 2r cos \ ẑ + k̂.

curl F · n̂ = 1√
2
(4 cos \ + r sin(2\) + 1) and df = r

√
2 dr d\.

By Stokes’ theorem,∮
C F · d ⃗⃗r =

∬
S curl F · n̂ df

=
∫ 2c
0

∫ 2
0

1√
2
(4 cos \ + r sin(2\) + 1)r

√
2 dr d\ = 4c.



Example 41

Evaluate
∮

C (−y2 ŷ + x ẑ + z2 k̂) · d ⃗⃗r, where C is
the curve of intersection of the plane y + z = 2
and the cylinder x2 + y2 = 1, oriented
counter-clock-wise when looked from above.

F = M ŷ + N ẑ + P k̂, where M = −y2, N = x, P = z2.

curl F = (Py − Nz) ŷ + (Mz − Px) ẑ + (Nx −My) k̂ = (1 + 2y) k̂.
Here, there are many surfaces with boundary C.
We choose a convenient one:
the surface S on the plane y + z = 2 with boundary as C.
Its projection on the xy-plane is the disc D : x2 + y2 ≤ 1.
Thus, with z = g(x, y) = 2 − y, Stokes’ theorem gives∮

C F · d ⃗⃗r =
∬

S curl F · n̂ df =
∬

D(1 + 2y) dA

=
∫ 2c
0

∫ 1
0 (1 + 2r sin \) r dr d\ =

∫ 2c
0 (

1
2 +

2
3 sin \) d\ = c.



Example 42
Compute

∬
S curl F · n̂ df, where

F = xz ŷ + yz ẑ + xy k̂ and S is the part of
the sphere x2 + y2 + z2 = 4 that lies inside
the cylinder x2 + y2 = 1 and above the
xy-plane.
The boundary curve C is obtained by solving the two equations to get
z2 = 3. Since z > 0, we have the curve C as x2 + y2 = 1, z =

√
3. In

vector parametric form,

C : ⃗⃗r(\) = cos \ ŷ + sin \ ẑ +
√
3 k̂ for 0 ≤ \ ≤ 2c.

Then F( ⃗⃗r(\)) =
√
3 cos \ ŷ +

√
3 sin \ ẑ + cos \ sin \ k̂.

By Stokes’ theorem,∬
S curl F · n̂ df =

∮
C F · d ⃗⃗r =

∫ 2c
0 F · ⃗⃗r ′(\) d\

=
∫ 2c
0 (−

√
3 cos \ sin \ +

√
3 sin \ cos \) d\ = 0.



Conservative Field Again
Stokes’ theorem can be generalized to piecewise smooth surfaces like
union of sides of a polyhedra.
Here, we take the integral over the sides as the sum of integrals over
each individual side.

Similarly, Stokes’ theorem can be generalized to surfaces with holes.
The line integrals are to be taken over all the curves which form the
boundaries of the holes.
The surface integral over S of the normal component of curl F equals
the sum of the line integrals around all the boundary curves of the
tangential component of F, where the curves are to be traced in the
direction induced by the orientation of S.
Recall that in a conservative field curl F = 0.
Then by Stokes’ theorem, it follows that

∮
C F · d ⃗⃗r = 0.

Theorem 11: If curl F = 0 at each point of an open simply connected
region D in space, then on any piecewise smooth closed path C lying
in D,

∮
C F · d ⃗⃗r = 0.



Unification

We have seen how to relate an integral of a function over a region with
the integral of possibly some other related function over the boundary
of the region.

For definite integrals on intervals:
∫ b
a f ′(t) dt = f (b) − f (a).

For a path from a point P to a point Q in R3 :
∫
C ∇f · ds = f (Q) − f (P).

For a region D in R2 :
∬

D(Nx −My) dA =
∫
mD F · d ⃗⃗r .

For a surface S in R3 :
∬

S curl F · n̂ df =
∫
C F · d ⃗⃗r .

It suggests a unification; and we use the divergence of a vector field
for this purpose.



Gauss’ Divergence Theorem

Recall that div F = ∇ · F. That is, the divergence of a vector field
F = M(x, y, z) ŷ + N (x, y, z) ẑ + P(x, y, z) k̂ is the scalar function
div F = Mx + Ny + Pz.

Our generalization is
∭

D div F dV =
∬

S F · n̂ df.

Theorem 12: Let S be a piecewise smooth simple closed bounded
surface that encloses a solid region D in R3. Suppose S has been
oriented positively by its outward normals. Let F be a vector field
whose component functions have continuous partial derivatives on an
open region that contains D. Then∬

S
F · n̂ df =

∭
D
div F dV .

Again, we omit its proof.



Example 43
Consider the field F = x ŷ + y ẑ + z k̂ over the sphere
S : x2 + y2 + z2 = a2.

The outer unit normal to S computed from ∇f , where

f = x2 + y2 + z2 − a2, n̂ =
2(x ŷ + y ẑ + z k̂)√
4(x2 + y2 + z2)

=
1
a
(x ŷ + y ẑ + z k̂).

On the given surface, F · n̂ df =
1
a
(x2 + y2 + z2) df = a df.

Therefore,
∬

S
F · n̂ df =

∬
S

a df = a × Area of S = 4ca3.

Now, div F = Mx + Ny + Pz =
mx
mx
+ my
my
+ mz
mz
= 3.

Therefore, with D as the ball bounded by S,∭
D
div F dV =

∭
D
3 dV = 3 × Volume of D = 4ca3.



Example 44

Find the outward flux of the vector field xy ŷ + yz ẑ + zx k̂ through the
surface cut from the first octant by the planes x = 1, y = 1 and z = 1.

The solid D is a cube having six faces. Call the surface of the cube as
S. Instead of computing the surface integral, we use Divergence
theorem.

With F = xy ŷ + yz ẑ + zx k̂, we have

div F =
m (xy)
mx
+ m (yz)

my
+ m (zx)

mz
= y + z + x.

Therefore the required flux is∬
S

F · n̂ df =
∭

D
div F dV =

∫ 1

0

∫ 1

0

∫ 1

0
(y + z + x) dxdydz =

3
2
.



Example 45
Evaluate

∬
S F · n̂ df, where S is the

surface of the solid D bounded by the
parabolic cylinder z = 1 − x2, and the
planes y = 0, z = 0, and y + z = 2; and
F = xy ŷ + y2 + exz2 ẑ + sin(xy) k̂.

S has four sides. Instead of computing the surface integrals, we use
Divergence theorem. We have

div F = (xy)x + (y2 + exz2)y + (sin(xy))z = 3y.

And D is given by −1 ≤ x ≤ 1, 0 ≤ z ≤ 1 − x2, 0 ≤ y ≤ 2 − z.

Therefore,∬
S F · n̂ df =

∭
D div F dV =

∭
D 3y dV

=
∫ 1
−1

∫ 1−x2

0

∫ 2−z
0 3y dy dz dx =

∫ 1
−1

∫ 1−x2

0
(2−z)2

2 dz dx

= − 1
2

∫ 1
−1 [(x

2 + 1)3 − 8] dx = 184
35 .



Example 46
Find the outward flux of the vector field
F = (x ŷ + y ẑ + z k̂)/(x2 + y2 + z2)3/2
across the boundary of the solid
D : 0 < a2 ≤ x2 + y2 + z2 ≤ b2.

Write d =
√

x2 + y2 + z2. Then
dd
dx

=
x
d
. With F = M ŷ + N ẑ + P k̂, we

have Mx =
m (xd−3)
mx

= d−3 − 3xd−4
md

mx
=

1
d3
− 3x2

d5
.

Similarly, Ny =
1
d3
− 3y2

d5
and Pz =

1
d3
− 3z2

d5
.

Then div F =
3
d3
− 3x2 + 3y2 + 3z2

d5
= 0.

Thus the required flux is
∭

D div F dV = 0.

In fact, flux through the inner surface and flux through the outer
surface are in opposite directions.



Example 47
Consider the same vector field F = (x ŷ + y ẑ + z k̂)/(x2 + y2 + z2)3/2 of
Example 46. Let S be any sphere centered at the origin. Show that the
flux through S is a constant.

We compute the flux directly. Let S be the sphere x2 + y2 + z2 = a2 for
any a > 0. The gradient computed from f = x2 + y2 + z2 − a2 gives the
outward unit normal to S as

n̂ =
2x ŷ + 2y ẑ + 2z k̂√
4x2 + 4y2 + 4z2

=
x ŷ + y ẑ + z k̂

a
.

Therefore, on the sphere S,

F · n̂ = x2 + y2 + z2

a4
=

1
a2
.

Then ∬
S

F · n̂ df =
∬

S

1
a2

df =
1
a2
× Area of S = 4c.



Review Problems
Problem 1: Compute the line integral of the vector function

x3 ŷ + 3zy2 ẑ − x2y k̂

along the straight line segment L from the point (3, 2, 1) to (0, 0, 0).
The parametric equation of the line segment joining these points is

x = −3t, y = −2t, z = −t for − 1 ≤ t ≤ 0.

The derivatives of these with respect to t are

xt = −3, yt = −2, zt = −1.

Then the required line integral is∫
L

x3 dx + 3zy2 dy − x2y dz

=

∫ 0

−1
[(−3t)3(−3) + 3(−t) (−2t)2(−2) − (−3t)2(−2t) (−1)] dt =

−87
4
.



Problem 2

Let C be the portion of the curve y = x3 from (1, 1) to (2, 8). Compute∫
C
(6x2y dx + 10xy2 dy).

C has the parametrization: x = t, y = t3, 1 ≤ t ≤ 2.

Then xt = 1, yt = 3t2.

The line integral is∫
C
(6x2y dx + 10xy2 dy) =

∫ 2

1
(6t5 · 1 + 10t7 · 3t2) dt = 3132.



Problem 3

Let a closed smooth surface S be such that any straight line parallel to
the z-axis cuts it in no more than two points. Let n3 denote the
z-component of the unit outward normal ⃗⃗n to the surface S. Then what
is

∬
S zn3 df?

In this case, S has an upper part and a lower part.

Suppose they are given, respectively, by the equations

z = fu(x, y), z = fb(x, y).

Let D be the projection of S on the xy-plane. Then∬
S

z n3 df =
∬

D
fu(x, y) df −

∬
D

fb(x, y) df.



Problem 4
Prove that the integral of the Laplacian over a planar region is the
same as the integral, over the boundary curve, of the directional
derivative in the direction of the unit normal to the boundary curve.

We rephrase: Let f (x, y) be a function defined over a simply connected
region D in the xy-plane. Let C be the boundary curve of D. Denote
by Dnf (x, y) the directional derivative of f in the direction of the unit
outer normal n̂ to C. Show that

∬
D(fxx + fyy)dA =

∫
C Dnf ds.

Let \ be the angle between n̂ and ŷ, the x-axis. Then
n̂ = cos \ ŷ + sin \ ẑ . If U is the angle between the tangent line to C
and the x-axis, then cosU = − sin \ and sinU = cos \. Then

dx = cosU ds = − sin \ ds and dy = sinU ds = cos \ ds.
Consequently, the directional derivative Dnf is given by

Dnf (x, y) = (fx ŷ + fy ẑ) · n̂ = fx cos \ + fy sin \.
For the vector function F = fx ŷ + fy ẑ , by Green’s theorem, we obtain∬

D(fxx + fyy)dA =
∫
C fxdy − fydx =

∫
C (fx cos \ + fy sin \)ds =

∫
C Dnf ds.



Problem 5

Let f and g be functions with continuous partial derivatives up to
second order on a region D in space, which has a smooth boundary
mD. Denote by Δf and Δg their Laplacians. Prove the Green’s
formula:

∭
D(gΔf − fΔg)dV =

∬
mD

(
g mf
m n̂ − f mg

m n̂

)
df.

Let F = M ŷ + N ẑ + P k̂. Gauss’ divergence theorem says that∭
D div F dV =

∬
S F · n̂ df.

Suppose the unit normal n̂ has the components a, b, c in the
x, y, z-directions. Then∭

D(Mx + Ny + Pz) dV =
∬

D(aM + bN + cP) df.
Substitute M = gfx − fgx, N = gfy − fgy, P = gfz − fgz. Then

Mx + Ny + Pz = g(fxx + fyy + fzz) − f (gxx + gyy + gzz) = gΔf − fΔg.
aM + bN + cP = g(afx + bfy + cfz) − f (agx + bgy + cgz) = g mf

m n̂ − f mg
m n̂ .

Now Green’s formula follows from Gauss’ divergence theorem.



Problem 6

Evaluate
∫
C (−y ŷ − xy ẑ) · d ⃗⃗r, where C is the circular arc joining (1, 0)

to (0, 1) of a circle centered at the origin.
Prameterize C by ⃗⃗r(\) = cos \ ŷ + sin \ ẑ, for 0 ≤ \ ≤ c/2.
Thus x(\) = cos \, y(\) = sin \. Then∫

C
F · d ⃗⃗r =

∫ c/2

0
F( ⃗⃗r(\)) · ⃗⃗r ′(\) d\

=

∫ c/2

0
(− sin \ ŷ − cos \ sin \ ẑ) · (− sin \ ŷ + cos \ ẑ) d\

=

∫ c/2

0
(sin2 \ − cos2 \ sin \) d\ = c

4
− 1
3
.



Problem 7

Let F = 5z ŷ + xy ẑ + x2z k̂. Is
∫
C F · d ⃗⃗r the same if C is a curve from

(0, 0, 0) to (1, 1, 1), given by
(a) ⃗⃗r(t) = t ŷ + t ẑ + t k̂ for 0 ≤ t ≤ 1;
(b) ⃗⃗r(t) = t ŷ + t ẑ + t2 k̂ for 0 ≤ t ≤ 1?

(a) F( ⃗⃗r(t)) = 5t ŷ + t2 ẑ + t3 k̂. d ⃗⃗r(t) = ŷ + ẑ + k̂. Thus∫
C

F · d ⃗⃗r =
∫ 1

0
(5t + t2 + t3)dt =

37
12
.

(b) F( ⃗⃗r(t)) = 5t ŷ + t2 ẑ + t3 k̂. d ⃗⃗r(t) = ŷ + ẑ + 2t k̂. Thus∫
C

F · d ⃗⃗r =
∫ 1

0
(5t + t2 + 2t5)dt =

28
12
.



Review Problems Contd.

Problem 8: Let D be a simply connected region containing a smooth
curve C from (0, 0, 0) to (2, 2, 2). Evaluate

∫
C (2xdx + 2ydy + 4zdz).

F = 2x ŷ + 2y ẑ + 4z k̂ = grad f , where f = x2 + y2 + 2z2.

Therefore, the line integral is independent of path C.

Hence its value is f (2, 2, 2) − f (0, 0, 0) = 16.

Problem 9: Evaluate I =
∬

S (7x ŷ − z k̂) · n̂ df over the surface
S : x2 + y2 + z2 = 4.

div F = div
(
7x ŷ − z k̂

)
= 7 − 1 = 6.

So, I = 6 × volume of S = 64c.



Problem 10

Evaluate I =
∫
C (3x2 dx + 2yz dy + y2 dz), where C is a smooth curve

from (0, 1, 2) to (1,−1, 7) by showing that F here is a potential.

In order that F = grad f , we should have

fx = M = 3x2, fy = N = 2yz, fz = P = y2.

To obtain such a possible f , we use integration and differentiation:

f = x3 + g(y, z), fy = gy = 2yz, g = y2z + h(z),

fz = y2 + h′(z) = y2, h′(z) = 0, h(z) = constant.

Then f = x3 + y2z.We verify that F = grad f . Therefore,

I = F(1,−1, 7) − f (0, 1, 2) = 6.



Problem 11
Determine whether the following integral is independent of Path:

I =
∫

C
(2xyz2 dx + (x2z2 + z cos(yz)) dy + (2x2yz + y cos(yz) dz)

and then evaluate it for a line segment joining (0, 0, 1) to (1, c/4, 2).
Here, M = 2xyz2, N = x2z2 + z cos(yz), P = 2x2yz + y cos(yz). Then

My = 2xz2 = Nx, Nz = 2x2z+cos(yz)−yz sin(yz) = Py, Px = 4xyz = Mz.

Hence the line integral is independent of path.

We find f such that F = grad f . Now,

f =
∫

Ndy = x2z2y + sin(yz) + g(x, z), fx = 2xz2y + gx = M = 2xyz2.

gx = 0, g = h(z), fz = 2x2yz+y cos(yz)+h′(z) = P = 2x2yz+y cos(yz), h′(z) = 0.

Taking h(z) = 0, we get f (x, y, z) = x2yz2 + sin(yz) as a possible
potential. Then I = f (1, c/4, 2) − f (0, 0, 1) = c + 1.



Problem 12
Use Green’s theorem to compute the area of the region
(a) bounded by the ellipse x2/a2 + y2/b2 = 1.
(b) bounded by the cardioid r = a(1 − cos \) for 0 ≤ \ ≤ 2c.

(a) Recall: Green’s theorem gave Area of D = 1
2

∮
mD(x dy − y dx).

The ellipse x2/a2 + y2/b2 = 1 has the parameterization
x(t) = a cos t, y = b sin t for 0 ≤ t ≤ 2c. Then its area is

1
2

∫ 2c

0
(xy′ − yx′) dt =

1
2

∫ 2c

0
(ab cos2 t − (−ab sin2 t)) dt = cab.

(b) In polar form, x = r cos \, y = r sin \. Then
dx = cos \ dr − r sin \ d\ and dy = sin \ dr + r cos \ d\.
Consequently the area is equal to 1

2

∮
mD r2 d\. Thus the area of the

region bounded by the cardioid r = a(1 − cos \) for 0 ≤ \ ≤ 2c, is

a2

2

∫ 2c

0
(1 − cos \)2 d\ =

3c
2

a2.



Problem 13
Compute the flux of the water through the parabolic cylinder
S : y = x2, 0 ≤ x ≤ 2, 0 ≤ z ≤ 3 if the velocity vector
v = F = 3z2 ŷ + 6 ẑ + 6zx k̂, speed being measured in m/sec.
Write x = u, z = v.We have y = x2 = u2. The surface is

S : ⃗⃗r = u ŷ + u2 ẑ + v k̂, for 0 ≤ u ≤ 2, 0 ≤ v ≤ 3.

Then ⃗⃗n = ⃗⃗r u ×
⃗⃗r v = ( ŷ + 2 u ẑ) × k̂ = 2u ŷ − ẑ .

On S,
F( ⃗⃗r(u, v)) = 3v2 ŷ + 6 ẑ + 6uv k̂.

Hence F( ⃗⃗r(u, v)) · ⃗⃗n = 6uv2 − 6. Consequently the flux is∬
S

F· ⃗⃗n dA =
∫ 3

0

∫ 2

0
(6uv2−6) du dv =

∫ 3

0
(12v2−12) dv = 72m3/sec.



Problem 14
A torus is generated by rotating a circle C about a straight line L in
space so that C does not intersect or touch L. If L is the z-axis and C
has radius b and its centre has distance a (> b) from L, then compute
the surface area of the torus.

The surface S of the torus is represented by
⃗⃗r(u, v) = (a + b cos v) cos u ŷ + (a + b cos v) sin u ẑ + b sin v k̂.

Here, v is the angle in describing the circle and u is the angle of
rotation. Thus 0 ≤ u, v ≤ 2c. And

⃗⃗r u = −(a + b cos v) sin u ŷ + (a + b cos v) cos u ẑ
⃗⃗r v = −b sin v cos u ŷ − b sin v sin u ẑ + b cos v k̂

⃗⃗r u ×
⃗⃗r v = b(a + b cos v) (cos u cos v ŷ + sin u cos v ẑ + sin v k̂)

Hence | ⃗⃗r u ×
⃗⃗r v | = b(a + b cos v) and the area is∬

C
| ⃗⃗r u ×

⃗⃗r v | du dv =
∫ 2c

0

∫ 2c

0
b(a + b cos v) du dv = 4c2ab.



Problem 15

Let S be the closed surface consisting of the cylinder
x2 + y2 = a2, 0 ≤ z ≤ b and the circular disks x2 + y2 ≤ a2 one with
z = 0 and the other with z = b. By transforming to a triple integral
evaluate

I =
∬

S
(x3 dy dz + x2y dz dx + x2z dx dy).

F = M ŷ + N ẑ + P k̂, where M = x3, N = x2y, P = x2z.

Then div F = 5x2.

Let D be the solid bounded by S. In cylindrical co-ordinates, using
Gauss’ divergence theorem,

I =
∭

D
5x2dV = 5

∫ b

0

∫ a

0

∫ 2c

0
r2 cos2 \ r dr d\ dz =

5
4
ca4b.



Problem 16

Compute the flux of the vector field
F = (z2+xy2) ŷ+cos(x+ z) ẑ + (e−y− zy2) k̂
through the boundary of the surface given
in the figure:

div (F) = m

mx
(z2 + xy2) + m

my
cos(x + z) + m

mz
(e−y − zy2) = 0.

Let D be the region enclosed by S. By the Divergence theorem,

Flux through S =
∭

D
div F dV = 0.


