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Chapter 1

Differential Calculus

1.1 Regions in the plane

Let D be a subset of the plane R? and let (a, b) € R? be any point.
An e-disk around (a, b) is the set of all points (x, y) € R? whose distance from (a, b) is less than €.
(a, b) is an interior point of D iff some e-disk around (a, b) is contained in D.

(a, b) € D is an isolated point of D iff (a, b) is the only point of D that is contained in some e-disk
around (a, b).

(a, b) is a boundary point of D iff every e-disk around (a, b) contains points from D and points
not from D.

R is an open subset of R? iff all points of D are its interior points.
D is a closed subset of R iff it contains all its boundary points.
D = DU the set of boundary points of D; It is the closure of D.

D is a bounded subset of R? iff D is contained in some e-disk. (around some point)

{{x, v} | x4+ _1'3 < 1} {lx. ¥ x4 _\'l =1} {(x, 3 |.t‘3 + ‘.' =1}

R {xg. ¥o) \ R (xy, ."if'
/ ~ - ,\:
—

s

An interior point A boundary point



D is called a iff it contains all its interior points, possibly some of its boundary points, and satisfies
the property of connectedness that any two points in D can be joined by a polygonal line entirely

lying in D. A region is sometimes called a domain.

Let D be a region in the plane. Let f : D — R be a function.
The graph of fis {(x,y,z) € R*: z = f(x,y), (x,y) € D}.
The graph here is also called the surface z = f(x, y).

The domain of f is D.
The co-domain of f is R.

The range of fis {z € R: z = f(x,y) for some (x,y) € D}.

Sometimes, we do not fix the domain D of f but ask you to find it.

The function f(x,y) = \/)TXZ

has domain D = {(x, y) : x> < y}.

Its range is the set of all non-negative reals.
What is its graph?

Some examples of surfaces are here:
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{c) flx,y)=sinx +siny

1.2 Level curves and surfaces

Outside,
y—xt<

v

Interior points,
wherey — 2= 0

[
The parabola
y—x=0
is the boundary

(b) fix, v) = (x" + 3yTe ™

{d) flx.y)

sinx siny
Xy

Let f(x, y) be a function of two variables. That is, f : D — R, where D is a region in R?.

A contour curve of f is the curve of intersection of the surface z = f(x, y) and the plane z = ¢ for
some constant ¢ in the range of f. It is the curve f(x, y) = c for some constant c in the range of f.

The union of all contour curves is the surface z = f(x, y); it is also the graph of f.



A level curve of f is the set of points (x, y) in the domain of f for which f(x,y) = ¢ for some
constant c¢ in the range of f.

The level curve is the projection of the contour curve on the xy-plane (with same c).

Example 1.1. Consider the function f(x, y) = 100 — x> — y2.

Its domain is R2. Its range is the interval (—co, 100].
The level curve f(x,y) = 0is {(x, y) : x> + y*> = 100}.
The level curve f(x,y) = 51is {(x,y) : x> + y? = 49}.

The surface

100
/ z=flxy) 5
fle,yy=15 =100 — x* — 2

\ ! 18 the graph of f

flx, y) = 51
(a typical
—_ = ~level curve in
p ; N the function’s
domain)

fleyy=0

Similarly, for a function f(x, y, z) of three variables, the level surfaces are the sets of points (x, y, z)
such that f(x, y, z) = c for values c in the range of f.

Let f : D — R be a function, where D is a region in the plane. Let (a, b) € D.

The limit of f(x,y) as (x, y) approaches (a, b) is L iff corresponding to each € > 0, there exists
§ > 0 such that for all (x,y) € D with 0 < y/(x —a)2 + (y — b)? < &, we have |f(x,y) — L| < e.

In this case, we write  lim  f(x,y) = L.
(x,y)—=(a,b)

We also say that L is the limit of f at (a, b).

If for no real number L, the above happens, then limit of f at (a, b) does not exist.

L+ &
5 \\\R
' ’ e 5

D & %
- (a.b) f N Lte

i} x

L—& 0




The intuitive understanding of the notion of limit is as follows:

The distance between f(x, y) and L can be made arbitrarily small by making the distance between
(x,y) and (a, b) sufficiently small but not necessarily zero.

It is often difficult to show that limit of a function does not exist at a point. We will come back to
this question soon. When limit exists, we write it in many alternative ways:

The limit of f(x,y) as (x, y) approaches (a, b) is L.

f(x,y) = Las (x,y) — (a,b).

lim x,y) =1L.
(x,y)ﬁ(a,b)f( y)

lim f(x,y) =L.
y—b

2
exists.

Example 1.2. Determine if  lim
(x,y)—(0,0) x2 + yz

Observe that the region D of f is R%\ {(0,0)}. And £(0,y) = 0 for y # 0; f(x,0) = 0 for x # 0.
We guess that if the limit exists, it would be 0. To see that it is the case, we start with any € > 0.
We want to choose a ¢ > 0 such that the following sentence becomes true:

If 0<+/x2+y%2<d, then '4x—yz‘<e.
’ x2+y?

Since |y?| = y? < x2 + y? and |x?| = x? < x? + y?, we have

< 4|x] < 44fx% +y2.

So, we choose ¢ = €/4. Let us verify whether our choice is all right.

Assume that 0 < /x2 + y2 < 6. Then
<4\x?+y? <46 =e.

2

4xy2

x% +y2

4xy2

-0

x2 + y?
Hence

im T

(x)—(00) x2 + y?

Observation: Suppose we have obtained a ¢ corresponding to some €. If we take €; which is
larger than the earlier €, then the same ¢ will satisfy the requirement in the definition of the limit.
Thus while showing that the limit of a function is such and such at a point, we are free to choose a
pre-assigned upper bound for our €.

Similarly, suppose for some €, we have already obtained a ¢ such that the limit requirement is
satisfied. If we choose another 9, say 01, which is smaller than ¢, then the limit requirement is also
satisfied. Thus, we are free to choose a pre-assigned upper bound for our ¢ provided it is convenient
to us and it works.

Example 1.3. Consider f(x,y) =+/1 — x2 —y2 where D = {(x,y) : x> + y> < 1}.
We guess that limit f(x, y)is 1 as (x,y) — (0,0).

7



To show that the guess is right, let € > 0. Observe that 0 < f(x,y) < 1 on D.

Using our observation, assume that 0 < € < 1. Choose § = y/1 — (1 — €)2. Let |(x, y) — (0,0)| < 6.
Then0 < x> +y2<1-(1-€)’=21-x>-y*>(1-e)?= f(x,y) > 1 —¢.

Thatis, | f(x,y) — 1| =1 - f(x,y) < €. Therefore, f(x,y) — 1as (x,y) — (0,0).

Theorem 1.1. (Uniqueness of limit) Let f(x,y) be a real valued function defined on a region
D C R2. Let (a,b) € D. If limit of f(x,y) as (x, y) approaches (a, b) exists, then it is unique.

Proof: Suppose f(x,y) — € and also f(x,y) = mas (x,y) — (a,b). Let e > 0. For €/2, we have
01 > 0, 62 > 0 such that

0 < (x=a)*+(y=b)* < &7 = |f(x,y)=C] < €/2, 0< (x—a)*+(y=b)* < 63 = |f(x,y)-m| < €/2.

Choose a point (@, 8) so that both 0 < (@ — a)? + (B - b)? < 63, 0 < (@ — a)* + (B — b)* < &3
hold. Then
|f(a,B) =l <€/2 and |f(a,B)—m|<e€/2.

Now, [{ —m| < |€ — f(a, B)| + | f(a, B) —m| < €/2 + €/2 = €. That is, for each € > 0, we have
|€ — m| < €. Hence £ = m. O

For a function of one variable, there are only two directions for approaching a point; from left
and from right. Whereas for a function of two variables, there are infinitely many directions, and
infinite number of paths on which one can approach a point. The limit refers only to the distance
between (x, y) and (a, b). It does not refer to any specific direction of approach to (a, b). If the limit
exists, then f(x, y) must approach the same limit no matter how (x, y) approaches (a, b). Thus, if
we can find two different paths of approach along which the function f(x,y) has different limits,
then it follows that limit of f(x, y) as (x, y) approaches (a, b) does not exist.

Theorem 1.2. Suppose that f(x,y) — L as (x,y) — (a,b) along a path C| and f(x,y) — L,
as (x,y) — (a,b) along a path C,. If L # Lo, then the limit of f(x,y) as (x,y) — (a, b) does not
exist.

)
Example 1.4. Consider f(x,y) = = - > for (x,y) # (0,0). What is its limit at (0, 0)?
X2+y
x2
When y = 0, limit of f(x,y) as x — 0is lim - = lim(1) = 1.
x—0 Xx x—0
That is, f(x,y) — 1 as (x,y) — (0,0) along the x-axis.
2
When x = 0, limit of f(x, y) as y — 0 is hn%i2 = -1
y—=U 'y

That is, f(x,y) — —1 as (x,y) — (0,0) along the y-axis.

Hence lim (x, y) does not exist.
(x,y)—>(0,0)f Y



Example 1.5. Consider f(x,y) = 2x+y  for (x,y) # (0,0). What is its limit at (0,0)?
x2+y

Along the x-axis, y = 0; then limit of f(x, y) as (x,y) — (0,0) is 0.
Along the y-axis, x = 0; then limit of f(x, y) as (x,y) — (0,0) is 0.

Does it say that limit of f(x, y) as (x,y) — (0,0) is 0?
%2

Along the line y = x, limit of f(x,y) as (x,y) — Ois lim ——~= =1/2.

x=0 x% + x2

Hence lim (x, ¥) does not exist.
(xy)—(0,0) S

Example 1.6. Consider f(x,y) = zxi + for (x,y) # (0,0). What is its limit at (0,0)?
x2+y

2
If y = mx, for some m € R, then f(x,y) = o So, lim along all straight lines is O.

1 +m*x2 (x,5)—(0,0)

y4

If x = y% y # 0, then f(x,y) = ——— = 1/2. As (x,y) = (0,0) along x = y%, f(x,y) —= 1/2.

Hence( Im} 00) f(x,y) does not exist.
A question: are the following same?

lim X, lim lim f(x,y), lim lim f(x,
(xy)—>(ab)f( y) x—)ay—>bf( y) y—>bx—>af( y)

(y =2 +x)

Example 1.7. Let f(x,y) =
+x)(1+y)

forx+y#0,—-1 <x, y<1. Then

Y
hm hmf(x y) = lim ———
o0y (1 +y)
1
hm hmf(x y) = hrn M =-1.
x—0 y—> X

Alon hm f(x,y) = im xGm ~ DA + %) m
= mx, X, = )
& (x,y)—(0,0) Y x)—00 x(1+m)(1+mx) m+1

For different values of m, we get the last limit value different. So, limit of f(x, y) as (x,y) — (0,0)
does not exist. But the two iterated limits exist and they are not equal.

1 1
Example 1.8. Let f(x,y) = xsin— + ysin— for x # 0, y # 0. Then
y X

1 1
lim ysin — and lim x sin — do not exist.
x—0 X y—0 y

So, neither lim lim f (x,y) exists nor lim lim f (x,y) exists.

y—0x—0 x—0y—0

However, | f(x,y) — 0] < |x| + |y| = Va2 + /y? < 24/x2 + y2 = 2|(x, y)|. Take 6 = €/2. Now,
If |[(x,y) — (0,0)] < 6 =€/2,then |f(x,y) — 0| < €. Therefore,

lim X,y) =
(x,y)—(0,0) fxy) =

That is, the two iterated limits do not exist, but the limit exists.



Hence existence of the limit of f(x,y) as (x,y) — (a,b) and the two iterated limits have no
connection.

The usual operations of addition, multiplication etc have the expected effects as the following
theorem shows. Its proof is analogous to the single variable limits.

Theorem 1.3. Let L, M, c € R; %m% f(x,y) =1L; . hrr% g(x,y) = M. Then
(x,y)— a,b

1. Constant Multiple : lim cf(x,y) =cL.
(x,y)—(a,b)

2. Sum: lim (f(x,y)+g(x,y))=L+M.
(x.y)—(ab)

3. Product: hm (f(x y)g(x,y)) =

(x,y)—

4. Quotient: If M # 0 and g(x,y) # 0 in an open disk around the point (a, b), then

<xy%1m (f(x,y)/g(x,y)) =L/M

5. Power: If reR, L" e R and %1m f(x,y) =1L, then( 11m (f(x ) =L".
(x,y)— X,y

1.3 Continuity

Let f(x, y) be areal valued function defined on a subsets D of R2. We say that f(x, y) is continuous
at a point (a, b) € D iff for each € > 0, there exists 6 > 0 such that for all points (x, y) € D with
V(x —a)? + (y — b)2 < § we have | f(x,y) — f(a,b)| < €.

Observe that if (a, b) is an isolated point of D, then f is continuous at (@, b). When D is a region,
(a, b) is not an isolated point of D; and then f is continuous at (a, b) € D iff the following are
satisfied:

1. f(a,b) is well defined, that is, (a, b) € D;

2. lim x,y) exists; and
(Xy)—>(ab)f( Y)

3. (xy%l—r}% b)f(x y) = f(a,b).

The function f(x, y) is said to be continuous on a subset of D iff f(x, y) is continuous at all points
in the subset.

Therefore, constant multiples, sum, difference, product, quotient, and rational powers of continuous
functions are continuous whenever they are well defined.

Polynomials in two variables are continuous functions.

Rational functions, i.e., ratios of polynomials, are continuous functions provided they are well
defined.

3x%y .
f (x,y)# (0,0
Example 1.9. f(x,y) = w7 ! () # (0.0
0 if (x,y) =(0,0)

is continuous on RZ,

10



At any point other than the origin, f(x, y) is a rational function; therefore, it is continuous. To
see that f(x,y) is continuous at the origin, let € > O be given. Take & = €/3. Assume that

Vx% +y?2 < 6. Then

32 3 2+ 2
%—f(0,0)| < |(x—§2)y| <3y <3212 <35 =€

x? x2 +

DEDif (x,y) # (0,0)

Example 1.10. f(x,y) = x2+y? is continuous on R?. Why?
0 if (x,y) =(0,0)

Being a rational function, it is continuous at all nonzero points. For the point (0,0), let € > O be
given. Choose & = +/e. Notice that xy < x? + y? and x> — y* < x? + y2.
For all (x, y) with v/x2 + y2 < 6, we have

(x? + y?) (X +y?)

2 _
lf(x,y)=0] < 42 <6 =€
Hence lim x,y) =0= £(0,0).
(x,y)—>(0,0)f( y) £(0,0)
w2 _ 2
Example 1.11. f(x,y) = > is continuous on D = R2\ {(0,0)}.
X4y

f(x,y) is not continuous at (0, 0) since (0,0) ¢ D.
What about the function g(x, y), where

2

e
5= lf (-xa )’) F (070)

x2+y?

0 if (x,y)=(0,0)

g(x,y) =

By Example 1.4, lim
(xy)—

100) g(x,y) does not exist. Hence g(x, y) is not continuous at (0, 0).

As in the single variable case, composition of continuous functions is continuous:

Let f : D — R be continuous at (a, b) with f(a,b) = c. Let g : I — R be continuous
at ¢ € I for some interval I in R. Then g(f(x, y)) from D to R is continuous at (a, b).

Proof of this fact is left to you as an exercise.

For example,

e*™Y is continuous at all points in the plane.
ry

+ x2
At which points is tan~! (y/x) continuous?

cos - and In(1 + x? + y?) are continuous on R?.

Well, the function y/x is continuous everywhere except when x = 0.
The function tan~! is continuous everywhere on R.
So, tan~! (y/x) is continuous everywhere except when x = 0.

The function (x> + y% + z2 — 1)~! is continuous everywhere except on the sphere x> + y> + 7% = 1,
where it is not defined.

11



1.4 Partial Derivatives

Let f(x, y) be a real valued function defined on a region D C R?. Let (a, b) € D.

Vertical axis in
" the plane vy = v

Plxg. yo. flxg o))

z=flx,y)
The curve z = f(x, y,) ’

in the plane y = vy

Tangent line \
A\ L

/ (xg. yo)
(xg+ f, ¥y)

Horizontal '.llxi.k in the plane y = vy,
If C is the curve of intersection of the surface z = f(x, y) with the plane y = b, then the slope of
the tangent line to C at (a, b, f(a, b)) is the partial derivative of f(x, y) with respect to x at (a, b).
In the figure take xo = a, yo = b. A formal definition of the partial derivative follows.

The partial derivative of f(x, y) with respect to x at the point (q, b) is

of _df(x,b) ~ lim fla+hb)— f(a,b)

b) = — =
fx(a.b) Ox l(a.b) dx lx=a p—0 h

provided this limit exists. Notice that f(x, b) must be continuous at x = a.
The partial derivative of f(x, y) with respect to y at the point (q, ) is

af :df(a,y)| - lim fla,b+k)— f(a,b)
dy l(ab) dy y=b k50 k ’

fy(a,b) =

provided this limit exists. Again, f(a, y) must be continuous at y = b.
Example 1.12. Find £, (1, 1) where f(x,y) = 4 — x> — 2y?.

. @-(+h?-2)-(4-1-2)  -2h-h* _
fx(1,1) = lim - = lim —— =

That is, treat y as a constant and differentiate with respect to x.

=2.

Fx(L D) = feCo )y = =2x] 0y = =2

_T_’ z=4—x1=2

12



The vertical plane y = 1 crosses the paraboloid in the curve C; : z = 2 — x%,y = 1. The slope
of the tangent line to this parabola at the point (1, 1, 1) (which corresponds to (x,y) = (1,1)) is

fx(1, 1) = -2.
Example 1.13. Find f, and f,, where f(x, y) = ysin(xy).

Treating y as a constant and differentiating with respect to x, we get f. Similarly, f,.

fx(x,y) = ycos(xy)y, fy(x,y) = yxcos(xy) +sin(xy).
Example 1.14. Find dz/dx and dz/0y where z = f(x, y) is defined by x> + y* + 73 — 6xyz = 1.
Differentiate x> + y> + z° — 6xyz — 1 = 0 with respect to x treating y as a constant:

0 9
3x2+0+312£—6y(z+x£)—0:0.

Solving this for dz/dx, we have
(9Z 2 2 .
6_(3Z —6xy) + (3x“—6yz) =0, thatis,
X

0z x*—2yz

dx  22-2xy
Similarly,

0z y? —2xz

dy 2 -2xy
Example 1.15. The plane x = | intersects the surface z = x> + y? in a parabola. Find the slope of
the tangent to the parabola at the point (1,2, 5).

The asked slope is dz/dy at (1,2). Itis

A(x% + y?)
T (L) = 2)(L2) = 4

y
Alternatively, the parabola is z = X2+ yz, x=10R,z=1+ yz. So, the slope at (1,2,5) is

dZ| _ d(l

2
+y7)
_— = = 2 — :4‘
dy'y=2 dy )y=2 @)=

For a function f(x, y), partial derivatives of second order are:

foo = (Fo= ;—xg_ﬁ _ %
Foo = (Fo)y = ‘Zf; _ ;_y% _ aayzgx_
foo = U= 22 ;_xz_fy‘ _ ;:gy_
fir = (f)y = j—yZ_J; _ ZZTJZ”

13



Similarly, higher order partial derivatives are defined. For example,

b0 oy
Ay dx 0x  Oydxox’

fxxy =

Observe that f,(a, b) is not the same as  lim  f,(x, y). To see this, let

(xy)—(ab)
Fxy) 1 if x>0
X, y) =
Y 0 if x<O.
Then f,(x,y) = 0 for all x > 0. Also, fy(x,y) = 0 for all x < 0. Now, ( 1)111}00) fx(x,y) = 0. But
%)= (0,
fx(0,0) does not exist. Reason?
h,0) — £(0,0 _ lor0 .
fx(0,0) = }llirr(l) F(h0) = /0.0 = lim _or does not exist

h h—0

On the other hand, f,(a, b) can exist though lim f, does not.
(x.y)—(ab)
However, if f\(x, y) is continuous at (a, b), then

X a’b = llm X x, .
Jx(a.5) (x,y)ﬁ(a,b)f( Y)

Similarly, f,, need not be equal to f),. See the following example.

xy(x? = y?)

Example 1.16. Consider f(x,y) = T for (x,y) # (0,0), and £(0,0) =0.
X=ry

f(x,0) = £(0,y)= f(0,0)=0.
fx(x0) = f,(0,y) = f1x(0,0) = f},(0,0) = 0.

f(h,}’)_f((),)’) _

fx(O,y) = lim = -y, fy(X,O):]lciH(l) f(x’k)_f(X,O) —

h—0 h k
o AOK) - 0.0 k=0
fry(0,0) = lim . = lim —— = 1.
o ARO = £0.0)  h-0
fyx(o’o) = }lll_l)% h —}lll_l'%T—l

That is, fyy # fyx.
But continuity of both of f, and f,, implies their equality.

Theorem 1.4. (Clairaut) Let D be a region in R%. Let the function f : D — R have continuous
first and second order partial derivatives on D. Then fy, = fy.

Proof. Let (a,b) € D. Let h # 0. Write g(x) = f(x,b+ h) — f(x,b). Then

¢(f) =gla+h)-g(a)=[f(a+hb+h)—fla+hb)]-[f(ab+h)-f(ab)]
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By MVT, we have ¢ between a and a + & such that
¢(f) =g (c)h = hlfx(c,b+ h) = fr(c, b)].
Again, by MVT (on f, with the second variable), we have d between b and b + h such that
$(f) = h-h- fry(c.d) = B fry(c,d).

Due to continuity of fy,, we have

. o(f) .
lim ——== 1 xy(c,d) = fxy(a,b).
ey h2 (c,d)l—I}}a,b)f y(6d) = frylab)

Write
¢(f)=[fa+hb+h)- flab+h)]-[f(a+hDb) - f(ab)]
and apply MVT twice as above to get fy(a, b) = lim,_, %{) But the two limits with
qb(f)/h2 are equal. So, fxy(a,b) = fyx(a, D). O

In one variable, f’(¢) exists att = a implies that f(¢) is continuous at # = a. We have seen similarly
that existence of f,(a, b) and f)(a, b) guarantees continuity of f(x,b) and of f(a,y) at (a, D).
But for f(x,y), even both f,(x,y) and f,(x,y) exist at (a, b), the function f(x, y) need not be
continuous at (a, b). See the following example.

S i (ny) # (0,0
Example 1.17. Let f(x,y) = x2+y? (x,y) #(0,0)

0 if (x,y) = (0,0).
Here, f(x,0) = 0 = £(0,¥). So, f1(0,0) = 0 = £,,(0,0). And limit of f(x,y) as (x,y) — (0,0)
does not exist. Hence f(x, y) is not continuous at (0, 0).

Further, we find that f,,(x,0) = 0 = f,,(0, y). What about f,(0,0)?

f)=fOY) _ .y ]

h S0 R4+ y2 Yy

fx(0,y) = lim

fx(0, y) is not continuous at y = 0.

Notice that the second partial derivatives f,(0,0) and f,(0,0) do not exist.

1.5 Increment Theorem

In order to see the connection between continuity of a function and the partial derivatives, the
associated geometry may help.

Let § be the surface z = f(x, y), where f,, f, are continuous on the region D, the domain of f. Let
(a,b) € D. Let Cy and C; be the curves of intersection of the planes x = a and of y = b with S.
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Let 71 and 7, be tangent lines to the curves C; and C; at the point P(a, b, f(a, b)). The tangent
plane to the surface S at P is the plane containing 77 and 7>.

The tangent plane to S at P consists of all possible tangent lines at P to the curves C that lie on §
and pass through P. This plane approximates S at P most closely.

Write the z-coordinate of P as ¢. Then P = (a, b, ¢). Equation of any plane passing through P is
z—c=A(x—a)+ B(y—>b). When y = b, the tangent plane represents the tangent to the intersected
curve at P. Thus, A = f.(a,b), the slope of the tangent line. Similarly, B = f,(a, b). Hence
equation of the tangent plane to the surface z = f(x, y) at the point P(a, b,c) on § is

z—c = fx(a,b)(x —a) + fy(a,b)(y — b)
provided that f,, f, are continuous at (a, b).

Example 1.18. Find the equation of the tangent plane to the elliptic paraboloid z = 2x* + y? at
(1,1,3).

Here, z, = 4x,zy, = 2y. So, z,(1,1) = 4,z,(1,1) = 2. Then the equation of the tangent plane is
z=3=4(x—-1)+2(y - 1). It simplifies to z = 4x + 2y — 3.

The tangent plane gives a linear approximation to the surface at that point. Why?
Write the equation as f(x,y) — f(a,b) = fx(a,b)(x —a) + fy(a,b)(y — D). Then

fx,y) = f(a,b) + fx(a,b)(x —a) + fy(a,b)(y — D).

This formula holds true for all points (x,y, f(x,y)) on the tangent plane at (a, b, f(a, b)). For
approximating f(x, y) for (x, y) close to (a, b), we may take

fx,y) = f(a,b) + fr(a,b)(x —a) + fy(a,b)(y = b).

The RHS is called the standard linear approximation of f(x,y, 7).
Writing in the increment form,

fla+hb+k)=~ f(a,b)+ fr(a,b)h + f,(a,b)k.

This gives rise to the total increment f(a + h, b+ k) — f(a, b).

The total increment can be written in a more suggestive form. Towards this, write
Af:=fla+hb+k)- f(a+hb)+ f(a+ hb) - f(a,b).
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By MVT, there exist ¢ € [a,a + h] and d € [b, b + k] such that

fla+hb) - f(a,b)
fla+hb+k)—f(a+hb)

hlfx(c,b) = fx(a, D)] + hfi(a, b)
k[fy(a+h,d) - fy(a,b)] + k fy(a, b)

Write €1 = fx(d,b) — fx(a,b) and €; = f\(a + h,c) — fy(a,b). When both h — 0,k — 0, we see
that c — a and d — b. Since f, and f) are assumed to be continuous, we have €; — O and €, — 0.
Then the total increment can be written as

Af =fla+hb+k)- f(a,b)=hf(ab)+kfy(ab)+ e h+ ek,

where €; > 0and e - 0asbothh — 0,k — 0.
We also write the increments £, k in x, y as Ax, Ay respectively.

From the above rewriting of Af it is also clear that f(x, y) is a continuous function. Let us note
down what we have proved.

Theorem 1.5. (Increment Theorem) Let D be a region in R?. Let the function f : D — R have
continuous first order partial derivatives on D. Then f(x,y) is continuous on D and the total
increment Af = f(a+ Ax,b+ Ay) — f(a,b) at (a, b) € D can be written as

Af = fx(a,b)Ax + fyAy + €1Ax + €Ay,
where €1 — 0 and €y — 0 as both Ax — 0 and Ay — 0.

Recall that for a function g of one variable, its differential is defined as dg = g’(¢)dr.
Let f(x, y) be a given function. The differential of f, also called the total differential, is

df = fx(x,y)dx + fy(x, y)dy.

Here, dx = Ax and dy = Ay are the increments in x and y, respectively. Then df is a linear
approximation to the total increment Af .

Example 1.19. The dimensions of a rectangular box are measured to be 75cm, 60cm, and 40 cm,
and each measurement is correct to within 0.2cm. Use differentials to estimate the largest possible
error when the volume of the box is calculated from these measurements.

The volume of the box is V = xyz. So,

ov ov ov
dV = —dx + —dy + —dz.
ox T ay y* 0z ¢

Given that |Ax|, |Ay|, |Az| < 0.2cm, the largest error in cubic cm is
IAV]| = |dV]| =60%x40%x0.2+40%x 75 % 0.2+ 75 % 60 x 0.2 = 1980.

Notice that the relative error is 1980/(75 x 60 x 40) which is about 1%.
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Remark: Let D be a region in R%. A function f : D — R is called differentiable at a point
(a, b) € D if the total increment Az = f(a + Ax,b+ Ay) — f(a, b) in f with respect to increments
Ax, Ay in x, y, can be written as

Az = fy(a,b)Ax + fy(a,b)Ay + €1Ax + €Ay

where €; — 0 and € — 0 as both Ax —» 0and Ay — 0.

The following statements give some connections between differentiability, continuity and the partial
derivatives.

* Let D be a region in R%. Let f : D — R be such that both f, and fy existon D and at least
one of them is continuous at (a, b) € D. Then f is differentiable at (a, b).

* Let D be aregioninR%. Let f : D — R be differentiable at (a, b) € D. Then f is continuous
at (a, b).

Notice that the first statement strengthens the increment theorem. Instead of increasing the load
on terminology, we will continue with the increment theorem. Note that whenever we assume
that f, and f, are continuous, you may replace this with the weaker assumption: “ f(x,y) is
differentiable”.

Remember that we formulate and discuss our results for a function f(x,y) of two variables.
Analogously, all the notions and the results can be formulated for a function f(xi,...,x,) of n
variables for n > 2.

1.6 Chain Rules

We apply the increment theorem to partially differentiate composite functions.

Theorem 1.6. (Chain Rule 1) Let x(t) and y(t) be differentiable functions. Let f(x,y) have
continuous first order partial derivatives. Then

df _ofdx dfdy
dt  dxdt dydt

Proof: Using the increment theorem (Theorem 1.5) at a point P we obtain

AF _0fAr afAy  Ax Ay

= +el—+e—.
At 0x At 0y At AT
As At — 0, we have Ax — 0,Ay — 0,e; — 0, e, — 0. Then the result follows. O
For example, if z = xy and x = sint, y = cost, then
d 0 0
d—j = 8—ix’(t) + a—j}y’(r) = cos’t — sin’ 1.

Check: z(t) = sintcost = %sin 2t. S0, 7/(t) = cos 2t = cos? t — sin?¢.

18



Theorem 1.7. (Chain Rule 2) Let f(x, y) have continuous first order partial derivatives. Suppose
x = x(s,t) and y = y(s,t) are functions such that x, x;, ys and y; are also continuous. Then

of _ofox 9fdy 9f _ofox 9fdy

ds Oxds dyds Ot 0xot Oy ot

Proof of this follows a similar line to that of Chain Rule - 1. The pattern is clearer if you use the
subscript notation:

fs = fxxs+ fyyse  Sfo = fxxo + fyyr

Example 1.20. Let z = e*siny, x = st2, y = s’¢. Then

0
0—Z = (e*sin y)t* + (¢ cos y)2st = 1" (¢ sin(s%t) + 25 cos(s21)).
s

0
a—f = (e sin y)2st + (e* cos y)s® = se”2(2t sin(s%r) + s cos(s%1)).

Substitute expressions for x and y to get z = z(s, ) and then check that the results are correct.

Example 1.21. Given that z = f(x, y) has continuous second order partial derivatives and that
x=r?+s2 y = 2rs, find z,,.

We have x, = 2r, y, = 2s. Then

r = 2rzx +2szy.
Zar = ZoxXr t ZuyVr = 28 Zox + 2824y,
Zyr = ZyxXr + ZyyYr = 2rZyx + 2852y,
0z, 0
Iy = = —2rzy +2sz7y) = 22, + 2rzy + 252y,
or  Or

= 22 +2r(2rzye +282xy) + 25(2rzyy + 252yy)

= 2z, + 4r2zxx +8rszyy + 4s2zyy.
Functions can be differentiated implicitly. If F is defined within a sphere S containing a point
(a,b,c), where F(a,b,c) = 0, F,(a,b,c) # 0, and F,, F,, F, are continuous inside the sphere,
then the equation F(x, y, z) = 0 defines a function z = f(x, y) in a sphere containing (a, b, ¢) and

contained in the sphere S. Moreover, the function z = f(x, y) can now be differentiated partially
with z, = -F\/F,, z, = =F,/F,.

It is easier to differentiate implicitly than remembering the formula.
Example 1.22. Find z, and z,, if By + 2 +6xyz=1.

We differentiate ‘the equation’ with respect to x and y as follows:

2
+2
3x% + 3z2zx +6y(z+x2,)=0= 2z = _M.
7+ 2xy
(y* + 2x2)
3y% +37%z, + 6x(z + =0 gy = -7
y 27Zy + 6x(z + x2y) Zy 2+ 21y
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d
Example 1.23. Find d_y if y = y(x)is givenby y? = x? + sin(xy).
X

dy dy dy 2x+ ycos(xy)
2y2 _ox- T =0=00 '
yo- = 2x cos(xy)(y xdx) = I 2y — xcos(xy)

Example 1.24. Find w, if w = x>+ y?>+ 7% and z = x> + y°.

As it looks,

ow
— =2x.
ox o

However, since z = x2 + y%, we have w = x2 + y> + (x> + y*)2. Then

v _ 2x +4x° + 4xy2.
0x

Notice that, here we take z as the dependent variable and x, y as independent variables. But suppose
we know that x and z are the independent variables and y is the dependent variable. Then the
second equation says that y> = z — x>. Then w = x> + (z — x?) + z°> = z + z2. Thus

ow

Ir 0.

The correct procedure to get dw/0x is :
1. w must be dependent variable and x must be independent variable.
2. Decide which of the other variables are dependent or independent.
3. Eliminate the dependent variables from w using the constraints.

4. Then take the partial derivative dw/0x.

Example 1.25. Given that w = x> + y? + z% and z(x, y) satisfies z°> — xy + yz + y> = 1, evaluate
ow/dx at (2,-1,1).

It is now clear that z, w are dependent variables and x, y are independent variables. So,

ow 0z 202 0z
=2x+2z—, 372 = -—y+ 0.
ox T 0x Ttex T8k T
These two together glve =2x+ +3 5. Evaluating it at (2,1, 1) gives 6”’ (2,-1,1) = 3.

A function f(x,y) is called homogeneous of degree 7 in a region D C R? if for all (x, y) € D,
and for each positive A, f(Ax, 1y) = A" f(x,y).

-4/3

For example, f(x,y) = x!3y tan~!(y/x) is homogeneous of degree —1 in the region D, which

is any quadrant without the axes.

f(x,y) = (1/x2 + y2)? is homogeneous of degree 3 in the whole plane.

Theorem 1.8. (Euler) Let D be a region in R?. Let f : D — R have continuous first order partial
derivatives. Then f is a homogeneous function of degree n iff xfx +yf, =nf.
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Proof: Differentiate f(Ax, 1y) — 1" f(x,y) = 0 partially with respect to A to obtain:
X fe(Ax, Ay) + ¥ fr(Ax, Ay) = n A" f(x, y).

Then set 2 = 1to get xfr(x,y) + yfy(x,y) =nf(x,y).
Conversely, let (a, b) € D. Define ¢(1) = f(Aa, Ab). Differentiate with respect to A to get

A () = afy(Aa, Ab) + bfy(1a, D).
However,
nf(da, Ab) = af(da, Ab) + bf,(da, Ab) = Adaf(da, Ab) + Abf,(Aa, Ab).
That is,
A4 (1) = ng(Q).
Now, differentiate A7"¢(A) with respect to A to obtain
[¢()AT"] = ¢' (DA™ = ng()A™" = 0.
Therefore, ¢(1)A1™" = ¢ for some constant c. Set 4 = 1 to get ¢ = f(a, b). Then
f(da, Ab) = A" f(a, b).
Since (a, b) is any arbitrary point in D, we have f(Ax, 1y) = A" f(x, y). m|
For our earlier examples, you can check that

xa[x1/3y‘4/3 tan”'(y/0)]  Olx!Py™ tan”l (y/x)]
ox Y dy

2 23\3 2 233
x@[(«/xﬁ:y )] ”awxa;y i ST I

+ )c1/3y_4/3 tan_l(y/x) =0.

1.7 Directional Derivative

Recall that if f(x, y) is a function, then f(xq, yo) is the rate of change in f with respect to change
in x, at (xo, yo), that is, in the direction 7. Similarly, f,(xo, yo) is the rate of change at (xo, yo) in
the direction j. How do we find the rate of change of f(x, y) at (xo, yo) in the direction of any unit
vector 1?7

¢ P'lag, ¥ 0) D

i S
hb e

/ . 0'fx, 3.0)
Az
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Consider the surface S with the equation z = f(x, y). Let zo = f(x0, yo). The point P(xo, yo, z0)
lies on S. The vertical plane that passes through P in the direction of # (containing i) intersects S
in a curve C. The slope of the tangent line 7 to the curve C at the point P is the rate of change of z
in the direction of 4.

Let f(x,y) be a function defined in a region D. Let (xq, yg) € D. The directional derivative of
f(x,y) in the direction of a unit vector & = ai + bj at (xg, yo) is given by

d
(Duf)(x0,y0) = (—f)

= lim f(xo + ha, yo + hb) — f(x0, y0)
(x0,50)  h—0 h '

ds

Example 1.26. Find the derivative of z = x2 + y? at (1, 2) in the direction & = (1/V2)7 + (1/V2)].

FO+RN22+0N2) = f(L2) L 2hN2+2-20)V2 _ 6

D,z(1,2) = 1i
2(1,2) hlg(l) h h—0 h

sl

Notice that f,(1,2)(1/¥2) + £,(1,2)(1/V2) = 2+ 2(2)) - (1/V2) = 6/V2.

Theorem 1.9. Let f(x,y) have continuous first order partial derivatives. Then f(x,y) has a
directional derivative at (x, y) in any direction il = ai + bjJ; and it is given by

D, f(x,y) = fx(x,y)a + fy(x, y)b.

Proof: Let (xo, yo) be a point in the domain of definition of f(x,y). Define the function g(-) by
g(h) = f(xo + ah, yo + bh). Then g(h) is a continuously differentiable function of /4. Now,

, dx dy
g (h) :fx%"'fy% :fxa"‘fyb'
Then g’(0) = fi(x0, y0) a + fy(x0, yo) b. Also,

h) —9(0
¢ = lim P ZEQ _ pr, yy).

Hence D, f (xo, yo) = g'(0) = fx(x0, yo)a + fy(x0, yo)b. O

Example 1.27. Find the directional derivative of f(x,y) = x> — 3xy + 4y? in the direction of the
line that makes an angle of /6 with the x-axis.

3.1
Here, the direction is given by the unit vector &I = cos(mr/6)i + sin(r/6)] = gi + Ej. Thus
3 1 3 1 1
D, f(x,y) = gfx +5fy = §(3x2 = 3y) + 5 (Bx +8y) = 5[3\/§x2 —3x+ (8- 3\/§)y].

The formula for the directional derivative in the direction of the unit vector i = ai + bj can be
written as

D,f = fxa+ fyb= (fil+ fy]) - (ai + bj).
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0 0
The vector operator V := a—i + (9_j is called the gradient and the gradient of f(x, y) is
X y

Therefore, D, f = grad f - . That is, at (xq, yo), the directional derivative is given by

Duf|(x0,y0) = grad fl(xo,yo) 4.

For example, for the function f(x,y) = xe” + cos(xy), grad f|20) = 7 + 2j. Thus, the directional
derivative of f in the direction of 37 — 4jis grad f|12) - ((3/5)1— (4/5))) = —1.

Caution: To apply this formula, we have assumed that f, f, are continuous at (xo, yo), and i is a
unit vector.

Example 1.28. How much the value of y sin x + 2yz change if the point (x, y, z) moves 0.1 units
from (0, 1, 0) toward (2,2, -2)?

Let f(x,y,7) = ysinx +2yz. P(0,1,0), 0(2,2,-2). V = PQ = 2i+ j— 2k. The unit vector in the
direction of V' is &t = $7. We find D, at P which requires grad f.

grad f = (ycosx)i+ (sinx +2z)j+ 2y k.

Then ,
D,(P) = grad f,1,0) =0+ 21%) ‘0= 3

The change df in the direction of % in moving ds = 0.1 units is approximately
2 .
df =~ D,(P)ds = -3 (0.1) = —0.067 units.

Theorem 1.10. Let f(x, y) have continuous first order partial derivatives. The maximum value of
the directional derivative D, f(x,y) is |grad f| and it is achieved when the unit vector ii has the
same direction as that of grad f.

This is obvious since D, f = grad f - ii says that the directional derivative is the scalar projection
of the gradient in the direction of .

Proof: D, f = grad f -ii = |grad f| || cos @ = |grad f|cos 6, where 6 is the angle between grad f
and 1. Since maximum of cos @ is 1, maximum of D, f is |grad f|. The maximum is achieved when
0 = 0, that is, when the directions of grad f and 7 coincide. O

This also says the following:
f(x,y) increases most rapidly in the direction of its gradient.
f(x,y) decreases most rapidly in the opposite direction of its gradient.
f(x,y) remains constant in any direction orthogonal to its gradient.
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/ Zero change
Most rapad ~ —"in f
decrease in f ! '
Muost rapid -~ Yf=1+j

increase in f

Example 1.29. Find the directions in which the function f(x, y) = (x> +y?)/2 changes most, least,
and not at all, at the point (1, 1).

Note: When we ask for a direction, we mean a unit vector.

grad f = fii+ fyj=xi+yj. (grad f)(1,1) =7+ ].

Thus the function f(x, y) increases most at (1, 1) in the direction (7 + j)/ V2. 1t decreases most at
(1, 1) in the direction —(7 + j)/ V2. And it does not change at (1, 1) in the directions +(7 — j)/ V2.

1.8 Normal to Level Curve and Tangent Planes

Let z = f(x,y) be a given surface. Assume that f, and f, are continuous. Recall that a level
curve to this surface is a curve in the plane where f(x, y) is a constant. Fix some constant ¢ in
the range of f. On the corresponding level curve, f(x,y) takes the constant value c¢. Suppose
7(t) = x(t)7 + y(¢)j is a parametrization of this level curve.

Differentiating, we have % f(x(),y()) =0.0r,

dr (1) _
dr

dx dy
feom+ fy 2 = grad f -

Since d7/dt is the tangent to the curve, grad f is the normal to the level curve. That is,

Let f(x,y) have continuous first order partial derivatives. At any point (xo, yo) in the domain of
f(x,y), its gradient grad f is the normal to the level curve that passes through (x¢, yo), provided
grad f is nonzero at (xg, o).

In higher dimensions, if f(xy,..., x,) is a function of n independent variables defined on D C R",
then its gradient at any point is

af aof
d =
grad f = ((9x1 axn)
The directional derivative at any point ¥ in the direction of a unit vector & = (uy, . . ., u,) is
—>+ hil) — —
Df—}l Of(x I/;L) f(x):gradf'ﬁ:fxlul+"'+fxnun'
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The algebraic rules for the gradient are as follows:

1. Constant multiple: grad (kf) = k(grad f) for k € R.
. Sum: grad (f + g) = grad f + grad g.
. Difference: grad (f — g) = grad f — grad g.

2
3
4. Product: grad (fg) = f(grad g) + g(grad f).
5

. Quotient: grad (f/g) = g(grad f)g—zf(grad g).

In R3, let 7(¢) = x(1)7 + y()j+ z(t)lAc be a smooth curve on the level surface f(x, y, z) = c. Then
f(x(2),y(t), z(t)) = c for all . Differentiating this we get

grad f-7'(t) = 0.

Look at all such smooth curves that pass through a point P on the level surface. The velocity
vectors 7 ’(t) to all these smooth curves are orthogonal to the gradient at P.

Let f(x, y, z) have continuous partial derivatives fy, fy, and f,. The tangent plane at P(xo, yo, Z0)
on the level surface f(x,y,z) = c is the plane through P which is orthogonal to grad f at P. Its
equation is

fx(x0, Y0, 20) (x — x0) + fy(x0, Y0, 20) (¥ = yo) + fz(x0, Y0, 20)(z — 20) = 0.

The normal line to the level surface f(x, y, z) = c at P(xo, yo, zo) is the line through P parallel to
grad f. Its parametric equation is

x = x0 + fx(X0, Y0, 20) £, ¥ = Yo + fy(x0, Y0, 20) &, 2= 20 + [z (X0, Y0, 20) I

The equation of the tangent plane to the surface z = f(x, y) at (a, b) can be obtained as follows:

Write the surface as F(x, y, z) = 0, where F(x,y,z) = f(x,y)—z. Then F, = f,, F, = f,, F, = 1.
Then the equation of the tangent plane is

fx(a,b)(x —a) + f,(a,b)(y = b) = (z = f(a, b)) = 0.

Example 1.30. Find the tangent plane and the normal line of the surface x> + y> + z —9 = 0 at the
point (1,2,4).

First, check that the point (1,2,4) lies on the surface. Next, f,(1,2,4) = 2, f,(1,2,4) = 4 and
fz(1,2,4) = 1. The tangent plane is given by

2x-1D+4(y-2)+(z—4)=0.
The normal line at (1,2,4) is given by
x=1+2t, y=2+4t, z=4+1.
Example 1.31. Find the tangent plane to the surface z = x cos y — ye* at the origin.
fx(0,0) =1, f,(0,0) = —1. The tangent plane is
x—y—z=0.
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Example 1.32. Find the tangent line to the curve of intersection of the surfaces
fx,y,2) =x>+y>=2=0and g(x,y,2) := x + z — 4 = 0 at the point (1, 1, 3).

The plane

‘-!

8 The ellipse E
{15 14:3)

: l/ The .L'}'_Iindcr

xpyi-2=0
ol A
flx.y.2)

The tangent line is orthogonal to both grad f and grad g at (1, 1, 3). So, it is parallel to
grad f x grad g = (20 +2)) x (I + k) = 21 — 2] - 2k.

Thus the tangent lineis x=1+2t, y=1-2¢, 7 =3-2¢.

1.9 Taylor’s Theorem

For a function of one variable, a polynomial approximation is given by the Taylor’s formula.
Observe that it is a generalization of the Mean value theorem.

Theorem 1.11. (Taylor’s Formula for one variable) Let n € N. Suppose that f" (x) is continuous
on [a, b] and is differentiable on (a, b). Then there exists a point c € (a, b) such that

" (n) (n+1)
S@ e  LO@ (i T©

n+l
21 Y a9

f(x) = f(a)+ f(a)(x —a) +
Proof: For x = a, the formula holds. So, let x € (a, b]. For any ¢ € [a, x], let

1 (n)
f@ g I@

2! n!

p(®) = fa) + f(a)(t —a) + (t—a)".

Here, we treat x as a certain point, not a variable; and ¢ as a variable. Write

f(x) - px)

(x ~ a)n+1 (l, _ a)n-f-l.

gt) = f(t) —pt) -

We see that g(a) =0, g'(a) =0, g”(a) =0, ...,g"™(a) =0, and g(x) =0.

By Rolle’s theorem, there exists ¢; € (a, x) such that g’(c;) = 0. Since g(a) = 0, apply Rolle’s
theorem once more to get a ¢; € (a, ¢1) such that g”(¢c2) = 0.

Continuing this way, we get a ¢,+1 € (a, ¢,) such that g("+1)(cn+1) =0.
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Since p(t) is a polynomial of degree at most n, p(”“)(t) = 0. Then

J(x) = px)

(n+1) _ p(n+l) _
g = S0 -

(n+ 1.
J(x) = p(x)

(x _ a)n+1

FO) =p@) _ f" D)
(x —a)r*l (n+ 1!~
(n+1)
Consequently, g(¢) = f(t) — p(t) — S ) (t —a)™.
(n+1)!
Evaluating it at r = x and using the fact that g(x) = 0, we get

Evaluating at t = ¢,;+; we have f(”+1)(c,,+1) - (n+1)! =0. That is,

_ f(n+l)(cn+l) n+1
f(x)—P(X)+—(n+l)! (x—a)"".
Since x is an arbitrary point in (a, b], this completes the proof. O

We have a similar result for functions of several variables.

Theorem 1.12. (Taylor) Let D C R? be a region. Let (a,b) be an interior point of D. Let
f : D — R have continuous partial derivatives of order up to n + 1 in some open disk D centered
at (a, b) and contained in D. Then for any (a + h, b + k) € Dy, there exists 6 € [0, 1] such that

0

n 1 6 m
fla+hb+k) = f(a,b)+n;%(ha+k8—y) f(a,b)

1 g g, n+l1
(n+1)»(ha+k5) f(a+6h,b+06k).

For example, m = 2 on the right gives zl!(hzfxx +2hk fry + szyy).
Proof: Let ¢(t) = f(a+th,b+tk). Foranyt € [0, 1],
¢'(t) = fxla+thb+tk)h+ fy(a+thb+tk)k = (hg—x + kg—y)f(a +th, b+ tk).

¢ (1) = (fuxh + froy)h + (fyeh + fryk)k = (hd- + kg—y)zf(a +th b+ tk).
By induction, it follows that

o™ (1) = (ha— + ka—)mf(a +th, b+ tk).
0x oy

Using Taylor’s formula for the single variable function ¢(#), we have

o B0) gD ()
¢(1) = ¢(0) + + for some 6 € [0, 1].
mzzl m! (n+1)!

Substituting the expressions for ¢(1), ¢(0), (;S(’”)(O) and qb(”“) (8), we get the required result. O
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Example 1.33. Let f(x,y) = x> +xy—y% a=1, b= -2.
Here, f(1,-2) = =5, fx(1,=2) =0, fy(1,=2) =5, fux =2, fxy =1, fyy = 2. Then

1
fry)==5+5(+2)+[2(x - D2 +2(x = 1)(y+2)—2(y +2)%].
This becomes exact, since third (and more) order derivatives are 0.

Recall that the standard linearization (linear approximation) of f(x, y) at (a, b) is

L(x,y) = f(a,b) + fx(a,b)(x — a) + fy(a,D)(y - D).

The error in the standard linearization at (a, b) can now be written as

1
E(xr,y) = f(0y) = Lx.Y) = 57 ((x = @) fax + 200 = @)(y = D) fay + (0 = B2 fy)]|
where c =a+6(x —a), d = b+ 0(y — b) for some 0 € [0, 1].

Theorem 1.13. Let D C R? be a region. Let f : D — R have continuous first and second order

partial derivatives. Let R be a rectangle centered at (a, b) and contained in D. Suppose there exists
an M € R such that | fyx|, | fxyl, | fyy| £ M for all points in R. Then

1
EGoy)l < 5M(lx—al +1y - bl)>.

Proof: Taylor’s formula says that f(x,y) = L(x,y) + E(x,y), where

1
E(xy) = 5| = @ fur(e d) +2x = @)y = b) fuy(e.d) + (v = D) fry (e, )]

for some c in between x and a, and some d in between y and b. Since |frc| < M, |fry| < M, and
| fyyl < M for all points in R,

M M
ECoy)l < 1 - a)* +2(x —a)(y - b) + (y - b)*| < S (G —al+1y- bl)?. O

Example 1.34. Find the standard linearization of f(x,y) = x> — xy + y2/2 + 3 at (3, 2). Also find
an upper bound of the error in the linearization in the rectangle |x — 3| < 0.1, |y — 2| < 0.1.

The standard linearization (linear approximation) of f(x, y) at (a, b) is
L(x,y) = f(a,b) + fx(a,b)(x — a) + fy(a,D)(y - D).
Now, f(3,2) =8, fx(3,2) = 2x — y)I32) =4 and f,(3,2) = (—=x + y)|;32) = —1. Thus
L(x,y)=8+4(x-3)-(y—-2)=4x—-y-2.
The error in this linearization is
E(x,y) = f(x,y) = L(x,y) :xz—xy+y2/2+3—4x+y+2.

The rectangleis R: |x —3| < 0.1,]y —2| < 0.1. Here, fox =2, fry=-1, f), = 1.
So, we take M = 2 as an upper bound for their absolute values. Then

IE(x, y)| < |x =317+ |y =2]*> < (0.1+0.1)% = 0.04.
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Example 1.35. Find the linearization and the maximum error incurred for the function
f(x,y,2) = x> — xy + 2sinz at P(2,1,0) in the cuboid |x — 2| < 0.01, |y — 1] < 0.02, |z| < 0.01.

fP) = f(2,1,10) =4 -2 =2, fu(P) = 2x - y)leio =3, f/H(P) = (-0)l210 = -2 and
f:(P) =(2cosz2)|(2,1,0) = 2. Thus

L(x,y,2) = f(P) + fx(P)(x =2) + fy(P)(y = 1) + fz(P)z = 3x =2y + 2z - 2.

All double derivatives are bounded above by 2. So,

2
E(x,y,2)|p < E(Ix —2/+ |y - 1]+ |z])* < 0.0016.

1.10 Extreme Values

We extend the notions of local maxima and local minima to a function of two variables.
Let D be a region in R2, (a, b) be an interior point of D, and let f : D — R.

We say that f(x, y) has alocal maximum at (a, b) iff f(x,y) < f(a, b) forall (x,y) € Dnear (a, b).
That is, for all (x, y) in some open disk centered at (a, b) and contained in D, f(x,y) < f(a,b).
The number f(a, b) is then called a local maximum value of f(x, y); and the point (a, ) is called
a point of local maximum of f(x, y).

We say that f has an absolute maximum at (a, b) € D iff for all (x,y) € D, f(x,y) < f(a,b).
The number f(a, b) is called the absolute maximum value of f; and the point (a, b) is called a
point of absolute maximum of f(x, y).

absolute
a MaAXimum

local
maximum

Replace all < by > in the above definitions; and call all those minimum instead of maximum.

Let D be a region in R?; f: D — R. Let (a, b) € D. The function f(x, y) has a local extremum
at (a, b) iff f(x,y) has alocal maximum or a local minimum at (a, b).

Notice that a local extremum point must be an interior point whereas an absolute extremum point
need not be an interior point; it is allowed to be any point from D.

An interior point (a, b) of D is a critical point of f(x,y) iff either f\(a,b) = 0 = f,(a,b) or at
least one of f\(a,b), fy(a,b) does not exist.

Theorem 1.14. Let D be a region in R*; f : D — R. Let (a,b) be an interior point of D.
If f(x,y) has a local extremum at (a, b), then (a, b) is a critical point of f(x,y).

Proof: Suppose f has a local maximum at an interior point (a, b) of D. Suppose fy(a, b) exists.
The function g(x) = f(x, b) has a local maximum at x = a. Then g’(a) = 0. That is, fy(a,b) = 0.
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Similarly, consider h(y) = f(a, y) and conclude that f,(a, b) = 0. Give similar argument if f has
a local minimum at (a, b). O

Geometrically, it says that if at an interior point (a, b), there exists a tangent plane to the surface
z = f(x,y), and if this point (a, b) happens to be an extremum point, then there exists a horizontal
tangent plane to the surface at (a, b).

Let D be aregion in R%. Let f : D — R have continuous partial derivatives f, and fy-Let (a, b) be
a critical point of f(x, y). The point (a, b, f(a, b)) on the surface is called a saddle point of f(x, y)
if in every open disk centered at (a, b) and contained in D, there are points (x1, y1), (x2, y2) such
that f(x1,y1) < f(a,b) < f(x2, y2).

At a saddle point, the function has neither a local maximum nor a local minimum; the surface
crosses its tangent plane.

For a function f(x, y), its Hessian is defined by

f xx f Xy
Ty fyy
Suppose that the function f(x, y) has second order continuous partial derivatives in an open disk
centered at a point (a, b) inside its domain of definition. If H(f)(a,b) > 0, then the surface
z = f(x,y) curves the same way in all directions near (a, b).

H(f) :=

= faxfyy _f)%y'

We will not prove this geometrical fact. We rather prove one of its corollaries which will help us
in determining the local maxima and local minima.

Theorem 1.15. Let f : D — R have continuous first and second order partial derivatives in an
open disk centered at (a,b) € D. Suppose (a, b) is a critical point of f(x,y).

1. If H(f)(a,b) > 0and fyy(a,b) <0, then f(x,y) has a local maximum at (a, b).
2. If H(f)(a,b) > 0 and f..(a,b) > 0, then f(x,y) has a local minimum at (a, b).
3. If H(f)(a,b) < O then f(x,y) has a saddle point at (a, b).

4. If H(f)(a, b) = 0, then nothing can be said, in general.

Proof: Let (a + h,b + k) be in an open disk centered at (a, b) and contained in D. By Taylor’s
formula,

fla+hb+k)= (f+hfx+kfy)| +%(h2fxx+2hkfxy+k2fyy)

(a,b) (a+0h,b+0k)
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Since (a, b) is a critical point of f, fy(a,b) = 0 = fy(a, b). Then

fla+hb+k)— f(a,b) = %(hzfxx + 20k fry + K2 fyy) (1.1)

(a+0h,b+0k)

(1) Let H(f)(a,b) > 0 and fy,(a,b) < 0. Multiply both sides of Equation 1.1 by 2f,,, add and
subtract ( fxy)zkz, and rearrange to get (All of fy,, fxy, fyy are evaluated at (a + 6h, b + 0k).)

2falf(@+hb+k) = f(a,b)] = (hfsx + kfa)* + (Faxfyy = (Fry) K2

By continuity of functions involved, f.x(a + 6h, b + 6k) < 0. The RHS is positive. Therefore,
fla+h b+ k)— f(a b) <0. Thatis, (a, b) is a local maximum point.

(2) Let H(f)(a,b) > 0 and fy.(a, b) > 0, By continuity again, fy.(a + 68h,b + 6k) > 0. So,
fla+h b+ k)— f(a,b) > 0. Thatis, (a, b) is a local minimum point.

(3) Let H(f)(a,b) < 0. We want to show that f(a + h,b + k) — f(a, b) has opposite signs at
different points in any small disk around (a, b). We break this case into three sub-cases:

BA) fiux(a,b) #0.  (BB) fyy(a,b) #0, (3C) fix(a,b) = fyy(a,b) =0.

(BA)Let H(f)(a,b) < 0and fyy(a,b) #0.

First, set h = t, k = 0 in Equation 1.1 and evaluate the following limit:

. f(a+h,b+k)_f(a’b) tzfxx(a+tab) fxx(a’b)
m = .

li = lim
t—0 t2 t—0 2t2 2

Next, set h = —t fyy(a, D), k =t fxx(a, b). Use Equation (1.1) to obtain

. fla+hb+k)- f(ab)
lim =
t—0 t2

1 (@, b
lim 272, e = 23+ Pt = PO by by,

Since H(f)(a, b) < 0, these two limits have opposite signs. Due to continuity,
f(a+ h,b+ k) — f(a, b) will have opposite signs in any neighborhood of (a, b).

(3B) Let H(f)(a,b) < 0 and fyy(a,b) # 0. This is similar to (3A).
(BC) Let H(f)(a,b) <0 and fy (a,b) = fyy(a,b) =0.
First, set h = k = t. Use Equation (1.1) to get

. (a+hb+k)-— f(a b) 1
}1_1)% / 2 / = }1_{% E(fxx + 2fxy + fyy)l(a+t,b+t) = fxy(a, D).

Next, set h = t, k = —t. Using Equation (1.1) again, we have

. a+hb+k)- f(a b) o1
tim KL 22 R TR i 2 (Fax = 2o+ fow)asaien = =@ D).

Asin (3A), f(a + h,b + k) — f(a, b) will have opposite signs in any neighborhood of (a,b). O

Notice that the case H(f)(a, b) > 0 and fy.(a, b) = 0 is not possible. Moreover, Under the condi-
tion that H(f)(a, b) > 0, both f,(a, b) and f,,(a, b) have the same sign. Thus, in Theorem 1.15,
the sign condition on fy.(a, b) can be replaced by the corresponding sign condition on f),(a, b).
It also says that if fy.(a, b) and fy,(a, b) have the opposite signs, then the critical point (a, b) is a
saddle point of f(x, y).
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Example 1.36. Find the extreme values of f(x,y) = xy — x% — y> = 2x — 2y + 4.

Domain of f is R? having no boundary points. The first and second order partial derivatives of f
are continuous. Its extreme values are all local extrema. The critical points are those where both
fx and f, vanish. Now,
fe=y—-2x-2, fy=x-2y-2.
The critical points satisfy f, =0 = f,. Thatis, x =y = -2.
fxx(_za _2) = _2a fxy(_za _2) = L fyy(_za _2) =-2.
Then H(f)(-2,-2) =3 >0, fix <O0.
Thus, f has local maximum at (-2, -2).

Here also f has absolute maximum and the maximum value is f(-2,-2) = 8.
Example 1.37. Investigate f(x, y) = x* + y* — 4xy + 1 for extreme values.

The function has continuous first and second partial derivatives everywhere.

The critical points are at (x, y) where fy = 4x> —4y =0 = fy= 4y3 — 4x.

That is, when x> = y and y3 = x. Giving x? = x which has solutions x = 0,1,—1 in R. The
corresponding y values are 0, 1, —1.

Now, fix = 12x% fyy = =4, fyy = 12y Thus H(f) = 144x%y? — 16.

Atx =0,y =0, H(f) = —16. Thus f has a saddle point at (0, 0).

Atx=1y=1 H(f) >0, fix > 0. Thus f has alocal minimum at (1, 1).

Atx=-1,y=—-1, H(f) >0, fyr > 0. Thus f has a local minimum at (-1, —1).

The local minimum values are f(1,1) = —1 and f(—1,—1) = —1. Both are absolute minima.

Example 1.38. Find absolute extrema of f(x,y) = 2 + 2x + 2y — x> — y? defined on the triangular
region bounded by the straight lines x =0, y =0,and x + y = 9.

1. The critical points are solutions of fy =2—-2x =0= f, =2 -2y. Thatis,x =1,y = 1.
This accounts for the interior points of the region.

2. Draw the picture. The vertices of the triangle are A(0,0), B(0,9), C(9,0). These are possible
extremum points. This accounts for the vertices which are on the boundary.

3. Next, we should consider the boundary in detail.
3(a). On the line segment AB, f is given by (x = 0):

g(y) = f(0,y) =2+2y—y*for0 <y <9.Theng’(y) =0 =y = L.
Thus, a possible extremum point is (0, 1).

3(b). Similarly, on the line segment AC, f is given by (y = 0):

g(x) = f(x,0) =2+2x —x*for0 < x <9.Now, g’(x) =0 = x = I.

Thus (1, 0) is a possible extremum point.

3(c). On the line segment BC, f is given by (x +y = 9):

g(xX) = f(x,9-x)=2+2x+209—x) — x> = (9—x)?> = 61 + 18x —2x> for 0 < x < 9.
gx)=0=>18-4x=0=x=9/2, y=9-x=9/2.
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Thus (9/2,9/2) is a possible extremum point.
The values at these possible extrema are

f(1,1) =4,£(0,0) =2, f(0,9) = -61, £(9,0) = -61, f(1,0) = 3, f(0,1) =3, f(9/2,9/2) = —41/2.
Therefore, f(x, y) has absolute minimum at (0, 9) and (9, 0) and its minimum value is —61.

It has absolute maximum at (1, 1) and its maximum value is 4.

Example 1.39. Maximize the volume of a box of length x, width y and height z subject to the
condition that x + 2y + 2z = 108.

V =xyz=(108 -2y —2z7)yz. Take f(y,z) = (108 —2y —2z)yz. Then

fy =08 =4y —2z7)z, f,= (108 -2y —4z)y.
The equations f, = 0 = f, imply that

(z=0or 108 -4y —-2z=0) and (y=0 or 108 -2y —-4z=0)

We have four possibilities:
(@)z=0, y=0.
(b)z=0,108-2y-4z=0=7=0, y =54.
(c)108-4y—-27z=0,y=0=>z=54, y=0.
(d) 108 —4y —2z =0, 108 — 2y — 4z = 0. Subtracting, -2y +2z=0=>y=z=z=18, y =18.
Therefore, the critical points (y, z) are (0,0), (0,54), (54,0) and (18, 18).

At the first three points, f(y, z) is 0, which is clearly not the maximum value of f(y, z). The only
possibility is (18, 18). To see that this a point where f(y, z) is maximum, consider

foy = =42, fyo = 108 —dy — 2z — 2z = 108 — 4y — 4z, f,, = —4y.

At (18,18), fyy < 0,and H(f) = fyyfor — 2 = 16 X 18 x 18 — 16(=9)* > 0.

Hence the volume of the box is maximum when its length is 108 — 36 — 36 = 36, width is 18 and
height is 18 units. The maximum volume is 11664 cubic units.

Example 1.40. Find the points closest to the origin on the hyperbolic cylinder x> — z> = 1.
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We seek a point (x, y, z) that minimizes f(x, y,z) = x> + y? + z% subject to x> — z2 = 1.
As earlier, taking 72 = x2 = 1, we seek (x, y) that minimizes

g(x,y) = f(x,y,i\/xz— 1) =x2+y? 4t -1=2x"+y" -1
Now, g, = 4x, g, = 2y. Equating them to zero gives x = 0 and y = 0. But x = 0 does not
correspond to any point on the surface x> — z2 = 1. So, the method fails!
Instead of eliminating z, suppose we eliminate x. In that case, we seek to minimize
g0 2) = f(EVl+ 23,20 = 1+ 22 +y* + 22 = y? + 227 + 1.
Then g, = 0 = g, implies that 2y = 0 = 4z. The point so obtained is y = 0, z = 0. This corresponds
to the points (x1, 0, 0) on the surface.
Now, of course, we can proceed as earlier for minimizing g(y, z).
Here, g,y =2, gy, =0, g,; = 4.
Aty =0,z =0, we have H(g)(0,0) = gy,8:: — g5, = 8 > 0.
Since g,,(0,0) > 0, we conclude that g(y, z) has a local minimum at (0, 0).
These points (1, 0, 0) of local minima give the minimum value of the distance f(x, y, z) as 1.
But how do we know eliminating which variable would result in a solution?

We would rather look for alternative ways of solving extremum problems with constraints.

1.11 Lagrange Multipliers

Our requirement is to minimize or maximize a certain function f(x, y, z) subject to the constraint
g(x,y,z) = 0. The constraint represents a surface in three dimensional space. Let S be a surface
given by g(x, y,z) = 0. Let f(x,y, z) have an extreme value at P(x, yo, zo) on the surface S. Let
C be a curve given by 7 (¢) = x(y)i + y(t)] + z(t)l% that lies on S and passes through P. Suppose
for t = to, we get the point P, that is, P = 7 (tg).

The composite function h(¢) = f o g = f(x(¢), y(¢), z(t)) represents the values that f takes on C.
Since f has an extreme value at P(¢ = tg), the function h(z) has an extreme value at t = ¢y. Then
h'(tg) = 0. That is,

0= H(to) = fx(P)x'(t0) + fy(P)Y (t0) + f(P)Z'(to) = (grad f)(P) - 7' (t0).

For every such curve C, (grad g)(P) is orthogonal to 7 ’(to). Thus, (grad f)(P) is parallel to
(grad g)(P). If (grad g)(P) # 0, then

(grad f + A grad g)(x0, yo, z0) = 0 for some 4 € R.

Breaking into components, we have, at (xo, yo, 20)

fr+tAdg =0, f, +g,=0, f,+1g,=0, g =0.

We mention the result as our next theorem.
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Theorem 1.16. Let D C R? be a region. Let f,g : D — R? have continuous first order partial
derivatives. Ifg)% + g% > 0 forall (x,y) € D, then each point (a, b) on the curve g(x,y) = 0, where
f(x,y) has maxima or minima corresponds to a solution (a, b, 1) of the system of equations

fx(a,b) + Agx(a,b) =0, fy(a,b)+ Agy,(a,b) =0, g(a,b)=0.

Similar equations hold when there are more than one constraint.

Example 1.40 Contd.: We see that
fryz)=x*+y"+2% gay.2)=x> -7 1.
The necessary equations at a possible extremum point (xg, yo, zg) are
fitAdgx=2x+A2x=0, f,+4g,=2y=0,

fo+Ag,=22-222=0, g=x>-z2-1=0.
It givesxo =0ord =-1;y0=0;z0=0o0r 4 = 1.

From these options, xo = 0 is not possible for any z since x> — z> = 1. 1 = 1 gives x = 0, which is
again not possible. We are left with 1 = -1, yp = 0, zo = 0. Now, x% - z(z) — 1 =0 gives xg = 1.
The corresponding points are (+1,0,0). f(x,y, z) at these extremum points has value 1. Since
f(x,y, z) is unbounded above, it does not have a maximum. Therefore, f(x, y, z) at these points is
minimum. Thus the points closest to the origin on the cylinder are (+1, 0, 0).

Notice that if we set F(x, y,z, 4) := f(x,y,2) + 1g(x,y,z) = 0, then
Fro=fi+dg:=0 F,=f,+1g,=0, F, = f, + A1g. = 0.

Moreover, g(x,y, z) = 0 also comes from F; = 0.
We can now formulate the method of solving a constrained optimization problem.

Requirement: Find extrema of the function f(xy,..., x,) subject to the conditions
g1(xt,...,x) =0, -+, gu(xy,...,xp) =0.
Method: Set the auxiliary function:

F(xla"'axna&b"'a/lm) = f(-XI""’xn) +/llgl(x17"'5xn) +"'/lmgm(x1a-~-,xn)-

Equate to zero the partial derivatives of F with respect to x1, ..., x,, A1,...,d,. ltresultsinm+n
equations in x,..., Xy, A1, ..., Ay

Determine xi, ..., x, A4y,..., 4, from these equations.

The required extremum points may be found from among these values of x, ..., x,, A1, ..., Ap.

Remember that the method succeeds under the condition that such extreme values exist where
grad g; # O for any j. Further, the points of extremum thus obtained are only possible points
of extremum. They need not be points of extremum. Other considerations may be required to
determine whether any of such points is an actual maximum or minimum of f(x, y) while (x, y)
varies over the curve g(x, y) = 0.
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Example 1.41. Find the maximum value of f(x,y,z) = x + 2y + 3z on the curve of intersection of
the plane g(x, y,z) := x — y + z — 1 = 0 and the cylinder A(x, y,z) := x>+ y2 =1 =0.

The auxiliary function is
Fu,y,z A, pu) = f+Ag+ph=x+2y+3z+ A(x—y+z— 1)+ px*+y* - 1).
Setting Fy = Fy, = F, = F, = F,, = 0, for (xo, yo, z0), we have
1+ A+2x0u=0,2-A+2y0u=0,3+1=0, xo—yo+20—1=0, xj+y3 - 1=0.

We obtain: A = -3, xo = 1/u, yo = —=5/Qu), 1/p?> +25/(4u?) = 1. That is, u> = 29/4. Then the
possible extreme points are

xXg = iZ/@, yo = :LS/@, z0=1 i7/@.

The corresponding values of f(xo, yo, zo) show that the maximum value of f is 3 + V29.

Notice that if 4 = 0, then 1 + 1 = 0 = 2 — A leads to inconsistency. Also the conditions that
grad g # 0 and grad h # 0 are satisfied automatically for the given constraints.

1.12 Review Problems

Probelm 1: Where is the function f(x,y) = xﬁg > continuous? What are the limits of f at the

points of discontinuity?

f(x,y) is defined everywhere in the plane except at the origin. When (x, y) # (0, 0), the functions
g(x) = 2xy and A(x, y) = x* + y? are continuous. Hence f(x, y) is continuous everywhere except
at the origin.
The only point of discontinuity is possibly the origin. We show that as (x, y) — (0,0), f(x, y) has
no limit. On the contrary, suppose f(x, y) has the limit L at (0,0). Then

2

2x
L= 1l =lim— =1
A S =l 5

and also ,

= -1

L= i = i
y=—£cr,§1—>0f(x’ y) xl—r>I(l) 2x2

It is a contradiction.

Problem 2: Find the total increment Az and the total differential dz of the function z = xy at (2, 3)
for Ax =0.1, Ay =0.2.

At (2,3) with Ax = 0.1, Ay = 0.2, we have
Az =(x+Ax)(y +Ay) —xy = yAx + xAy + AxAy =3x0.1 +2x0.2+0.1 0.2 =0.72.

dz = zydx + zydy = ydx + xdy = yAx + xAy. =3x0.1+2x0.2=0.7.

Problem 3: It is known that in computing the coordinates of a point (x, y, z, t) certain (small) errors
such as Ax, Ay, Az, At might have been committed. Find the maximum absolute error so committed
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when we evaluate a function f(x, y, z,t) at that point.

Let Au = f(x + Ax,y + Ay, z + Az, t + At) — f(x,y,z,t). We want to find max Au. By Taylor’s
formula,
Au = (fXAx + fyAy + fZAZ + flAt)(a5 b’ ¢, d)

where (a, b, ¢, d) lies on the line segment joining (x, y, z,¢) to (x + Ax,y + Ay, z + Az, t + At).
Therefore,
|Au| < | fxl 1Ax| + | fyl [Ay] + [ fz] |Az] + | f7 IAtI-

Problem 4: Determine the directions in which the function f(x, y) =
£(0,0) = 0 has directional derivatives at (0, 0).

Consider a unit vector &t = ai + bj. At (0,0), the directional derivative of f(x,y) is

i @b~ £0,00 _ ab? b*/a fora +0
1 _—
h—0 h h—>0 a’ + bh2 0 fora =0.

Hence directional derivatives of f(x, y) at (0,0) exist in all directions.

Notice that grad f|0,0) = 07 + 0j. If you use the formula for the directional derivative at (0, 0)
blindly, then it would give the wrong result that in every direction, the directional derivative of
f(x,y) is 0. What is the reason for this anomaly?

Problem 5: The hypotenuse ¢ and the side a of a right angled triangle ABC determined with
maximum absolute errors |Ac| = 0.2, |Aa| = 0.1 are, respectively, c = 75, a = 32. Determine the
angle A and determine the maximum absolute error AA in the calculation of the angle A.

0A 1 0A —
A(a,c) = sin™! 4 gives — = ——, — = —a' Then
c

da  2_g2 dc N2

A < —L %01+ —32_ x0.2 =0.00273.
A4l < V(75)2-(32)? 75v(75)2(32)2

Therefore sin~! 22 — 0.00273 < A < sin™! 22 + 0.00273.
Problem 6: Let f(x,y,z) = x> + y* + z°. Flnd( ) (1 1, 1), where Vv = 20 + j + 3k.

— 1 37 :
The unit vector in the direction of V is @i = \/—l + \/_ Jj+ \/ﬁk' The gradient of f at (1,1, 1) is

grad f(1,1,1) = (fif + fo] + f-k)(1,1,1) = 20 + 2} + 2k. Then
( ) (1L,1,1) = (grad £ - 2)(1,1,1) =

Problem 7: Find a point in the plane where the function f(x,y) = % — sin(x? + y2) has a local
maximum.

We see that at (0, 0), the function has a maximum value of % To prove this, consider the neighbor-
hood B = {(x,y) : x> + y* < n/9} of (0,0). Now, for any point (a, b) € B other than (0, 0), we
have

f(a,b) = % —sin(a® + b?) < % = £(0,0).

Problem 8: Decompose a given positive number a into three parts to make their product maximum.
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Leta=x+y+(a—-x—-y),forO < x,y,a—x—y < a. Then x and y can take values from the
region D bounded by the straight lines x = 0, y = 0 and x + y = a. The function to be maximized is

fx,y)=xyla-x-1y)

defined from D to R. The partial derivatives of f are continuous everywhere on D. They are

fr=yla-2x-y), fy=x(a—x-2y).
The critical points satisfy y(a —2x —y) =0, x(a — x —2y) = 0.

The solutions of these equations give:
a a
Pl = (0’0)9 P2 = (O’a)’ P3 = (a’o)’ P4 = (5’ g)-

Of these, the points Py, P,, P3 are on the boundary of D, where the value of f(x,y) is zero. The

only interior point is P4, where the value of f(x,y) = %, which is the maximum value of f(x, y, z).

Comparing f(P1), f(P2), f(P3), f(Ps), we get the required decompositionof a asa = § + 5 + 5.
Problem 9: Test for maxima-minima the function z = x> + y> — 3xy.

Here, z, and z, are continuous. Thus the critical points are obtained by solving
_ 2.2 _ _ 24,2 —
2y =3x"-3y=0,z,=3y"-3x=0.

These are P; = (1,1) and P, = (0,0).
The second derivatives are zy = 6x, zyy = =3, zy, = 6y.

For P, H(P1) = (ZxxZyy — Z,zcy)(Pl) =36—-9=27>0, z,x(P1) =6 > 0. Thus, P, is a minimum
point and z,,,;, = —1.

For Py, H(P2) = (ZxxZyy — ziy)(Pz) = -9 < 0. Hence P; is a saddle point.

Problem 10: Find the maximum of w = xyz given that xy + zx + yz = a for a given positive
number a, and x >0, y > 0, z > 0.

The auxiliary function is
F(x,y,2,1) = xyz+ A(xy + zx + yz — a).
Equating its partial derivatives to zero, we have
vZ+A(y+2) =0, xz2+A(x+2)=0, xy+ A(x+y) =0.
Multiply the first by x, the second by y, and subtract to obtain:
Ax(y+z2)—Ay(x+2)=0= Az(x—y) =0.

If A =0,thenxy+A(x+y) =0wouldimply x =0ory =0.Butx > 0and y > 0. So, 1 # 0. Also,
z > 0. Therefore, x = y. Similarly, using the second and third equations, we get y = z. Therefore,
x =y = z. Then

Xy +zx+yz =a gives x:y:z:m.
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The corresponding value of w cannot be minimum, since by reducing x, y close to 0, and taking z
close to a so that xy + zx + yz = a is satisfied, w can be made as small as possible. Hence w has a
maximum at (\a/3, Va/3, Va/3). The maximum value of w is (a/3)3.

Problem 11: Determine the maximum value of z = (x; - - - x,) /" provided that x; + - - - + x,, = q,
where a is a given positive number.
Maximizing z is equivalent to maximizing f(xi,...,x,) = 2" = x1x2 - - - x,,. Set up the auxiliary
function

F(xy,...,xp ) =x1x2- Xy, + A(x1 +--- X, — a).

Equate the partial derivatives Fy, to zero to obtain
X1 Xi—1Xie1 X, +A=0for i =1,2,...,n.

Notice that 4 # 0. Then multiplying by x;, we see that Ax; = xjx,---x, for each i. Therefore,
X1 =Xxp =+ = Xx, = a/n. In that case, f = (a/n)" and z = a/n. This value is not a minimum
value of z since z can be made arbitrarily small by choosing x; close to 0. Thus, the maximum of
zis a/n.

This gives an alternative proof that the geometric mean of n positive numbers is no more than the
arithmetic mean of those numbers.
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Chapter 2

Multiple Integrals

2.1 Volume of a solid of revolution

The solid obtained by rotating a plane region about a straight line in the same plane is called a solid
of revolution. The line is called the axis of revolution

0 | X 4 g

Suppose the region is bounded above by the curve y = f(x) and below by the x-axis, where
a < x < b. To find the volume of the solid so generated, we divide the interval [a, b] into n equal
parts. Let the partition be

a=x9g <X <+ <Xp_1<x,=>b.

On the ith subinterval we approximate the slice of the solid by n[f (x;‘)]z(x,- — x;—1) for a point
x: € [xi-1, x;]. Reason: the slice is a portion of a cylinder whose cross section with a plane vertical
to its axis is a circle. Then the volume of the solid of revolution is approximated by the sum

n

D Al FGDP (= xim).

i=1

Then the volume of the solid of revolution is the limit of the above sum where n — oco. Observe
that the cross sectional area for x € [a, b] is A(x) = n(f (x))%. If A(x) is a continuous function of
x, then the limit of the above sum is the required volume; that is,

b b
V:f A(x)dx:f xlf(x)]? dx.

a

If the axis of revolution is a straight line other than the x-axis, similar formulas can be obtained for
the volume.
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Example 2.1. The region between the curve y = v/x, 0 < x < 4 and the x-axis is revolved around
x-axis. Find the volume of the solid of revolution.

As shown in the above figure, the required volume is

2

4 4 x“14
V:f ﬂ(\/})zdx:f ﬂxdx:ﬂ[—] = 8.
0 0

7 1o

2

Example 2.2. Find the volume of the sphere x> + y? + z> = a%, a > 0.

We think of the sphere as the solid of revolution of the region bounded by the upper semi-circle
x2+y?> =a% y > 0.Here, —a < x < a. The curve is thus y = Va2 — x2. Then the volume of the
sphere is

3 3

a 3.a 4
V:f ﬂ(\/az—xz)zdx:f ﬂ(az—xz)dx:ﬂ[azx—x—]_a:—ﬂas.
—a

—-a
Example 2.3. Find the volume of the solid obtained by revolving the region bounded by y = +/x
and the lines y = 1, x = 4 about the line y = 1.

R(x) = Vx—1

{x, Vix)

o

T 7
o T~ ‘A

(x; 1) fvi_ﬁ_h
b =

X/ ;
x
4 x

]

The required volume is
4 4 4 T
V= f n[R(x)])? dx = f r(Vx - 1) dx = f a(x =2Vx+ 1) dx = <
1 1 1

Example 2.4. Find the volume of the solid generated by revolving the region between the y-axis
and the curve xy = 2, 1 <y < 4, about the y-axis.

Riyv) =

The volume is

4 4 4
V= f 7T[R(y)]2 dy = JTf — dy =3m.
1 1y

41



Example 2.5. Find the volume of the solid generated by revolving the region between the parabola
x = y*> + 1 and the line x = 3 about the line x = 3.

YV ORM=3-(y+1) o Ry=ty

.7 2
=7 _ 3?2 o~ 2
o "\.- Y3 _ o "..\ x=73
V2 N (3, V2) V2l
J A ; =
Y 3 - p——
i
£ L [ 1 Ly
0 1 3 5 ] L 3 5
.’"’; :
| ox=y2ens = = x =yt
A2 : 3, =V W ) |

Notice that the cross sections are perpendicular to the axis of revolution: x = 3.

V2 V2
V= f r[R(y)Pdy = f n[2 - y*Pdy = 647”/5.
2 v

If the region which revolves does not border the axis of revolution, then there are holes in the solid.

The volume is

¥

(x, Rx))
VAL
- ‘f/\ 0 - T
¥y = R(x) P
Ji—l ? e
4~ &
\—rt\l c y
/

Washer

In this case, we subtract the volume of the hole to obtain the volume of the solid of revolution.
Look at the figure. In this case, the volume of the the solid of revolution is given by

b b
V:f A(x)dx:f 7[(R(x))? = (r(x))*] dx.

Example 2.6. The region bounded by the curve y = x? + 1 and the line x + y = 3 is revolved about
the x-axis to generate a solid. Find the volume of the solid.

inner radius is 7(x) = x? + 1. The limits of integration are

The outer radius of the washer is R(x) = —x + 3 and the ,l

obtained by finding the points of intersection of the given SRR W

Curves: J@

P+l=-x+3=2>x=-21. :i\
|

The required volume is /
1 \
117 /
V:f Al(-x +3)% = (X2 + 1)2] dx = 5”.
-2

Example 2.7. Find the volume of the solid obtained by revolving the region bounded by the curves
y = x? and y = 2x, about the y-axis.
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¥
A

€3

R(v) = V¥

4+

Interval of integration
Il

] 2

The given curves intersect at y = 0 and y = 4. The required volume is

4 4

8

V= f A[(R()? = (r(y))*1dy = f (V) = (/27 dy = =

0 0

Example 2.8. Find the volume of the solid generated by revolving about the x-axis the region

bounded by the curve y = 4/(x*> + 4) and the linesx =0, x =2, y = 0.

16
n——7 dx.
(x2 +4)2
Substitute x = 2tant. dx = 2sec®t dt, (x*> +4)? = 16sec*t for 0 <t < n/4. So,

/4 2 2t /4 1
V= f 167 See dt = f 2mcos?tdt = n(z + —).
0 16sec* ¢t 0 4 2

2
The volume is V = f
0

Example 2.9.

In the figure is shown a solid with a circular base
of radius 1. Parallel cross sections perpendicular

to the base are equilateral triangles. Find the
volume of the solid.

A
“J“t"“{\\“\“

/ ll\u*."--

Take the base of the solid as the disk x>+ y* < 1.
The solid, its base, and a typical triangle at a
distance x from the origin are shown in the figure
below.

il

The point B lies on the circle y = V1 — x2. So, the length of AB is 2V1 — x2. Since the triangle is
equilateral, its height is V3V1 — x2. The cross sectional area is

A(x):%2\/1—x2\/§\/1—x2=\/§(1—x2).
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Thus, the volume of the solid is

1 1
4
v:f A(x)dx:f V31 -x})dx = —.
-1 -1 V3
Example 2.10.

A wedge is cut out of a circular cylinder of radius 4 by
two planes. One plane is perpendicular to the axis of the
cylinder. The other intersects the first at an angle of 30°
along a diameter of the cylinder. Find the volume of the
wedge.

If we place the x-axis along the diameter where the planes
meet, then the base of the solid is the semicircle with

equation

y=vV16-x2, —-4<x<4.
A cross-section perpendicular to the x-axis at a distance x from the origin is the triangle ABC,
whose base is y = V16 — x2;its heightis |[BC| = y tan30° = V16 — xz/\/g. Thus the cross sectional
area is

1 Vi6e—x2 16 — x2
A(x) = =V16 — x2 = i
2 V3 243

Then the required volume of the wedge is

4 4 2
16 — 128

V:fA(x)dx: xdx:—.
-4 4 2V3 33

2.2 The Cylindrical Shell Method

Let S be a solid obtained by revolving about the y-axis the region bounded by y = f(x) and the
lines y =0, x =a, x = b, where f(x) >0,0<a <b.

¥y y
y=flx) 1 y = fix)
| :
|
|

We can approximate the volume of the solid by slicing into cylindrical shells. And finally, when

the width of the cylindrical shells approach zero, as in the Riemann sums, we would obtain the

¥ ¥
y=Flx) : x y=flx)
f
|
|
I

volume as a limit.
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The volume of each cylindrical shell may be obtained eas-
ily. Look at the figure.

V=V, = Vi =ar;h—nrih = 2arhAr

where r = (ri +rp)/2and Ar = rp — ry.

Now, for computing the volume of the solid, we divide the
interval [a, b] into n subintervals [x;_1, x;] of equal width

Ax and take x; as the mid-point of the subinterval. If the rectangle with base [x;_1, x;] and height
f(x;) is revolved about the y-axis, the result is a cylindrical shell with average radius X;, height
f(x;) and thickness Ax. Thus the volume of the shell is V; = (2x%;) f(x;) Ax. Therefore, the
approximation to the volume V is given by

1= Y enw) £ o
i=1 i=1

1=
By taking n approach co, we get the required volume as

n

b

V = lim V; :f 2rxf(x)dx.
n—>o00

i=1 a

Instead of taking the axis of revolution as the y-axis, we may take the vertical line x = ¢. In that
case, the shell radius will be x — ¢ instead of x = x — 0. With the assumptions used, we may state
the result as follows:

The volume of the solid generated by revolving the region between the x-axis and the
graph of a continuous function y = f(x) with f(x) > 0and £ < a < x < b, about a
vertical line x = £ is

b b
V= f 2n(x = O) f(x)dx = f 2n(shell radius) (shell height) dx.
a a

Example 2.11. Find the volume of the solid generated by revolving the region bounded by the
parabola y = 3x — x2 and the x-axis, about the line x = —1.

Axis of Axis of
revolution 2= revolution
x=-1 r=-1

The parabola intersects the x-axis at x = 0 and x = 3. The required volume is

3 5 S, 3 457
V:f 27r(x+1)(3x—x)dx:27rf 2x +3x—x)dx:T.
0 0
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Example 2.12. The region bounded by the x-axis, the line x = 4, and the curve y = v/x is revolved
about the x-axis. Find the volume of the solid of revolution.

Shell height

4—y?
Shell height

(4,2)

integration

Interval of

had r=y
’ 3 Shell radius 2 Shell
) v'\'_, i radius
0 ‘ 4 ol

Here, the shell thickness variable is y. The limits of integration are y = 0 and y = 2. The shell
radius is y and the shell height is 4 — y2. Thus the volume of the solid of revolution is

4

2
_ 2 _ 2 Y12 _
V_fo 2m y(4 - y?) dy = 2r |2y —Z]O_sn.

2.3 Approximating Volume

We now consider solids which are not necessarily solids of revolution. First, we take a typical
simpler case, when a given solid has all plane faces except one, which is a portion of a surface
given by a function f(x, y).

Let f(x, y) be defined on the rectangle R: a < x < b, c <y <d.

For simplicity, take f(x,y) > 0. The graph of f is the surface z = f(x, y). We approximate the
volume of the solid

Sy, (xy) €R 0<z< fxy)
by partitioning R and then adding up the volumes of the solid rods:

i =

So, consider a partition of R as
P: Rij=[xi-1,x]]x[yj-1,yj] for 1 <i<m, 1 <j<n a=xp b=xpy c=yy d=y,.

Denote by A(R;;) the area of the rectangle R;;; Denote by ||P|| = max A(R;;), the norm of P.

Choose sample points (x’, y;'f) € R;;. An approximation to the volume of S is the Riemann sum

S

Sun = ), D SO YDAR;).

~
Il

—_
~
Il

—_
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If limit of S, exists as [|P|| — O, then this limit is called the double integral of f(x,y). It is
denoted by f fR f(x,y)dA. Whenever the integral exists, it is also enough to consider uniform
partitions, that is, x; — x;_1 = (b—a)/m = Ax and y; — yj_1 = (d — c¢)/n = Ay. In this case, we
write A(R;;) = AA = AxAy. Then

m n
,V)dA = i Sun = 1 li LY AXAY.
fﬁf(x y) ||P1||n_1>o " mlfo‘ongﬂlozzf(xz y]) XAY

i=1 j=1
Since f(x,y) > 0, the value of this integral is the volume of the solid S bounded by the rectangle
R and the surface z = f(x, y).
When the integral of f(x, y) exists, we say that f is Riemann integrable or just integrable.

Riemann sum is well defined even if f is not a positive function. However, the double integral
computes the signed volume. Analogous to the single variable case, we have the following result;
we omit its proof.

Theorem 2.1. Each continuous function defined on a closed bounded rectangle is integrable.

Volumes of solids can also be calculated by using iterated integrals. For example, to find the
volume V of the solid raised over the rectangle R : [0,2] X [0, 1] and bounded above by the plane
z =4 — x —y, we proceed as follows (similar to solids of revolution):

I

v =1
x Alx) = r (4 —x— yidy
Jy=0 o

Suppose A(x) is the cross sectional are at x. Then V = foz A(x)dx. Now, A(x) = fol (4—-x—-y)dy.
Thus, V = foz fol (4 — x — y)dydx. Therefore,

2 1
ﬂ(4—x—y)dA:f f (4 —x—y)dydx.
R 0 0

The expression on the left is a double integral and on the right is an iterated integral.

Theorem 2.2. (Fubini) Let R be the rectangle [a,b] X [c,d]. Let f : R — R be a continuous

function. Then
b d d b
f fR Fx,y)dA = f f Fx,y)dydx = f f Fx,y)dxdy.
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Example 2.13. Evaluate [[,(1 — 6x%y)dA, where R = [0,2] x [-1,1].

1 2 1
ff(l — 6x°y)dA = f f (1 - 6x%y)dxdy = f (2 - 16y)dy = 4.
R -1Jo -1

Also, reversing the order of integration, we have

2 1 2
ff(l — 6x%y)dA :f f (1 - 6x°y)dydx :f 2dx = 4.
R 0 -1 0

Example 2.14. Evaluate [, ysin(xy)dA, where R = [1,2] x [0, 7].

ffR ysin(xy)dA = fon flz ysin(xy) dxdy = foﬂ(— cos2y +cosy)dy = 0.

The volume of the solid above R and below the surface z = ysin(xy) is the same as the volume
below R and above the surface. Therefore, the net volume is zero.

Example 2.15. Find the volume of the solid bounded by the elliptic paraboloid x> + 2y + z = 16,
planes x = 2 and y = 2, and the three coordinate planes.

Let R be the rectangle [0,2] x [0,2]. The solid is above R and below the surface defined by
z = f(x,y) = 16 — x?> — 2y?, where f is defined on R.

o
Eat Al
SRS
2

2 2
V= ff(m —x?=2y*)dA = f f (16 — x* = 2y*)dxdy = 48.
R 0 0

The double integrals can be extended to functions defined on non-rectangular regions. Essentially,
the approach is the same as earlier. We partition the region into smaller rectangles, form the
Riemann sum, take its limit as the norm of the partition goes to zero.

e I e l
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The double integral of f over such a bounded region R can also be evaluated using iterated integrals.
Look at R bounded by two continuous functions g;(x) and g>(x); or, as a region bounded by two
continuous functions /1 (y) and h(y).

Y=gl

y=gix)

Theorem 2.3. Let f(x,y) be a continuous real valued function on a region R.

1. If Ris given by a < x < b, g1(x) <y < g(x), where g1,82 : [a,b] — R are continuous,

then
b rga(x)
([ rwmas=[" [ renasa
R a Jgi(x)

2. IfRisgivenbyc <y <d, hj(y) < x < hy(y), where hy, hy : [c,d] — R are continuous,

then
ha (y)
fff(x y)dA = ff f(x,y)dxdy.
hi(y)

Example 2.16. Find the volume of the prism whose base is the triangle in the xy-plane bounded
by the lines y = 0, x = 1 and y = x, and whose top lies in the plane z = 3 — x — y.

[ X x=1
(0.0, 3)

(1,0,2) ¥ | 0 o= o

i y=x
(1,1, 1)

\\

— !
(L,0,0 7~ (L, 1,0)
'/_/_ )
L T xom] R
x b e

1 X 1

:f f (3—x—y)dydx:f(3x—3x2/2)dx=1.
0 0 0

ff(?) x —y)dxdy = f(5/2 4y+3y [2)dy = 1.

Example 2.17. Suppose R is the region bounded by the line x + y = 1 and the portion of the circle
x? + y% = 1 in the first quadrant. We require to evaluate f fR f(x,y)dA.

Also,
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Sketch it, find the limits, and then write the appropriate integrals. :
v Leaves at Largesty ¥
Sy = -\ﬁ isy =1 Enters at
e . i x=1-y

1 s /
R _ Enters at i
s ’. y=1-—x )

¥

] o

Smallest y : ]—Lt|\"L.‘~.dl _

isy=10 x=W1-y
s )

x 0 1 !

Smallest x Largest x
isx=10 isx =1

1 Vi-x2 1 V12
f f Fx,y)dA = f f Fx y)dydx = f f Fxy)dxdy.
R 0 1-x 0 1-y

For evaluating a double integral as an iterated integral, choose some order: first x, next y. If it does
not work, or if it is complicated, you may have to choose the reverse order.

Example 2.18. Evaluate f fR S dA, where R is the triangle in the xy-plane bounded by the lines
y=0,x=1,and y = x.

Here, the triangular region R can be expressed as {(x,y) :0 <y <1,y <x < 1}.

x=1 y x=1

So,

ffsmx flflsmxdxdy
R y X

We are stuck. No way to proceed further.
On the other hand, we express the same R in a different way: {(x,y) : 0 <y < x,0 < x < 1}. Then

1 o x 1
f s1ndi f f Smxdydx _ f (wf dy)dx = f sin xdx = —cos(1) + 1.

Example 2.19. Evaluate the iterated integral fol fx ! sin(y?)dydx.

Write D: 0<x <1, x <y < 1. We plan to change the order of integration.

v=1
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1l
ffsin(yz)dydx = ff sin(y?)dA

0 X D

L ry
ffsin(yz)dxdy
0 Jo

1

= f ysin(yz)dyzl(l—cos(l).
0 2

Properties of double integrals with respect to addition, multiplication etc. are as follows.

Theorem 2.4. Let f(x,y) and g(x, y) be continuous on a region D. Let ¢ be a constant.

1. (Constant Multiple): [[, c¢f(x, y)dA = c [[,, f(x,y)dA.
2. (Sum-Difference): [[,[f(x,y) = g(x,y)dA = [[, f(x,y)dA £ [[, g(x, y)dA.

3. (Additivity): [[, o f(x. ) dA =[] f(x, »)dA+ [[, f(x, y)dA,
provided f(x,y) is continuous on a region R also, and D and R are non-overlapping.

4. (Domination): If f(x,y) < g(x,y) in D, then ffD f(x,y)dA < fng(x,y)dA.
5. (Area): [[,1dA = A(D) = Area of D.

6. (Boundedness): If m < f(x,y) < M in D, then mA(D) < ffD f(x,y)dA < MA(D).

2.4 Riemann Sum in Polar coordinates
Suppose R is one of the following regions in the plane:

x?+yi=1 ¥+yi=4

o] To. . ¥
x>+ y'=1 !

@ R={r.0)|0=r=10=0#=27} b)R={(r.H|1=r=2,0sf=m7}

It is easy to describe such regions in polar coordinates. Using polar coordinates, we define a polar
rectangle as a region given in the form:

R={(r,0):a<r<b a<0<p,B-ac<2n}

We can divide a polar rectangle into polar subrectangles as in the following:

=0
\ =86,

0=p

/ M.
BT é/&aé -
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Rij=1{(r,0) :riy <7 <ri, 0j1 <6 <0)).

Suppose f is a real valued function defined on a polar rectangle R. Let P be a partition of R into
smaller polar rectangles R;;. The area of R;; is

1
A(Ri) = 507 =10 = 0j-1)-

Take a uniform grid dividing r into m equal parts and 6 into n equal parts. Write r; —r;i—; = Ar

and 0; — 61 = Af. Also write the mid-point of r,_; and r; as r] = %(r,- + ri—1), similarly,
9;? = %(9 i—1 + 6;). Then the Riemann sum for f(r, ) can be written as

m n m n

S= Y D FELODAR) = >N Fri, 097 ArAo.

i=1 1

i=1 j=1 i=1 j=

Therefore, if f(r, 6) is continuous on the polar rectangle R, then

fff(r,@)dA:fff(r,H)rdrdG
R R

If f(x,y), in Cartesian coordinates, is continuous on the polar rectangle R, then converting this
into polar form, we have

B b
fff(x,y)dA:f f f(rcos@,rsin@)rdrdo.
R a a

The double integral in polar form can be generalized to functions defined on regions other than
polar rectangles. Let f be a continuous function defined over a region bounded by the rays

6 = a, 6 = B and the continuous curves r = g1(60), r = g2(6).

Then

B g0
fff(r,e)dA:f f f(r,0) rdrdo.
R a g1(6)

Caution: Do not forget the r on the right hand side.

Example 2.20. Find the limits of integration for integrating f(r, 8) over the region R that lies
inside the cardioid r = 1 + cos # and outside the circle x* + y? = 1.

52



Better write the circle as r = 1. Now, R is the region:

T
{J=?\

Enters  Leaves at
at r=1+cost

/2 1+cos 8
ﬂf(r, 0)dA = f f f(r,0)rdr de.
R /2 J1

Example 2.21. Evaluate 7 = [' [V (x* + y?)dyadx.

The limits of integration say that the region is the quarter of the unit disk in the first quadrant:

¥

0 : 1
The region in polar coordinatesis R: 0<r <1, 0<6 < n/2.
Changing to polar coordinates, we have x = r cos 6, y = r sin 8 and then

1 /2 71/21 P
I:f f rzrdrdH:f —-do = —.
o Jo o 4 8

V1=x2
Example 2.22. Evaluate ] = f_ll fo o ex2+y2dydx.
The region is the upper semi-unit-disk, whose polar description is

R={(r,0):0<r<1,0<6<mn}.

¥

y=V1-42
i—\\s'=l
/ o
0| «’)/i”‘“ :
1 0 1 :

Then I = e+’ dA. Using integration in polar form,
I g g p

b8 1 Vg b/d
2 1 2q1 e—1 b4
sz f e’rdrd@zf e’ d@:f g = S (e~ 1).
0 Jo 0 [2 ]0 o 2 2

Example 2.23. Evaluate f fR(3x + 4y?)dA, where R is the region in the upper half plane bounded
by the circles x* + y? = 1 and x? + y? = 4.
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of T, X

R={(r0):1<r <2 0<86 < nr}. Therefore,

T 2
f f (3x +4y*)dA = f f (3r cos 0 + 4r? sin” O)r dr df
R 0 1

"3 4 . 2,12 a .2 157
= [r cos @ + r” sin H]IdQ: (7cos@ + 15sin- 0) df =
0 0

2
Example 2.24. Find the area enclosed by one of the four leaves of the curve r = cos(26).

The regionis R = {(r,0) : —n/4 < 0 < /4, 0 < r < cos(26)}.

Then the required area is

/4 cos(26) /4 2 _ /4 _
f f dA = f f rdrdf = f cos7(20) =1 4y _ f cos@h) =1 jp_ T
R —n4 Jo /4 2 _n/4 4 8

Example 2.25. Find the volume of the solid that lies under the paraboloid z = x? + y?, above the
xy-plane, and inside the cylinder x* + y? = 2x.

The solid lies above the disk D whose boundary has equation x> + y* = 2x, or in polar coordinates,
r2 =2rcosf,orr =2cosé.

(x=1+y'=1
(or r=2co56)

R
AT

S H IR

The disk D = {(r,0) : —n/2 <60 <7m/2, 0 <r <2cosb}.

Then the required volume V is given by

/2 2cos @ /2 /2 3
V= f f (x> +y*)dA = f f rrrdrdo = f 4cos*0do = f (3+cos 40+4 cos 20) do = —.
D —r/2 Jo -n/2 72 2

54



2.5 Triple Integral

Let f(x, v, z) be a real valued function defined on a bounded region D in R3. As earlier we divide
the region into smaller cubes enclosed by planes parallel to the coordinate planes. The set of these
smaller cubes is called a partition P. The norm of the partition is the maximum volume enclosed
by any smaller cube. Then form the Riemann sum S and take its limit as the cubes become smaller
and smaller. If the limit exists, we say that the limit is the triple integral of the function over the
region D.

ffD f(x,y,2)dV = lim Zf(xf, Yi» 20 (xi = xim1) (¥ = ¥j-1) 2k = 2k-1),

IPII—0
where (x7, y;.‘, z;) is a point in the (i, j, k)-th cube in the partition.
As earlier, Fubuni’s theorem says that for continuous functions, if the region D can be written as

D={(xy.2)ra<x<b gi(x) <y <gx) hi(x,y) <z < ha(x,y)},

then the triple integral can be written as an iterated integral:

b g(x) ha(x,y)
f f f Flxy.)dV = f f f F(x, v, 2)dz dy d.
D a Jgi(x) Jhi(xy)

To find the limits of integration, we first sketch the region D along with its shadow on the xy-plane.
Next, we find the z-limits, then y-limits and then x-limits.

. I=flny)

__,_._:'_"__,. Enters at

z=filx. ) Enters at <
—_
o —
y=zilx) o —

,‘ z=filx.y)

‘/ T I # o=
X : 1
. G,
vy = gilx) / _"‘/——0-_7/
a7 . .V :/{_‘.:_‘.,.._', =
\ g = 2 L-—"'/
b =i f,_..// Y R
" : (_R_,__- ‘\; 568} " = gaix) Leaves at
J 2 v = galx)

Observe that the volume of D is f f fD 1dV.

All properties for double integrals hold analogously for triple integrals.

Example 2.26. Find the volume of the solid enclosed by the surfaces z = x? + 3y? and
7=8—x2—y2
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(2,0.4)
Enters at
1=x 4 _i_\"‘ ——

Enters at ;
y=-Vi -2 —

2,0, 0)

(2,0,00 %

el

Leaves at #

v =V -5

Eliminating z from the two equations, we get the projection of the solid on the xy-plane, which
is x> + 2y% = 4. This gives the limits of integration for y as ++/(4 — x2)/2. Clearly, =2 < x < 2.

Therefore,
(4- x2)/ 8—x2—y?
f f f dv = f f dzdydx
V(@d-x2)/2 J x2+3y?

f f V-2 ) )
(8 —2x"—4y°)dydx
V(éd-x2)/2

4 3 y:\/m
fz[(s 20y =39 e

4-x232 8,4—x%\32
[ -3 o
2
?f (4 — x2)32 dx = 87V2.
-2

Notice that changing the order of integration involves expressing the region by choosing different

<
Il

order of the limits of values in the axes.

Example 2.27. Write the integral of f(x, y, z) over a tetrahedron with vertices at (0,0, 0), (1, 1,0),
(0,1,0), and (0, 1, 1) as an iterated integral.

First, sketch the region D to see the limits geometrically. The right hand side bounding surface of
D lies in the plane y = 1. The left hand side bounding surface lies in the plane y = z + x. The
projection of D on the zx-plane is R. The upper boundary of R is the line z = 1 — x. The lower
boundary of R is the line z = 0.

To find the y-limits for D, we consider a typical point (x, z) in R and a line through this point
parallel to y-axis. Itenters D at y = x + z and leaves at y = 1.

To find the z-limits for D, we find that the line L through (x, z) parallel to z-axis enters R at z = 0
and leaves Ratz = 1 — x.
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- 0 1, 1)

—y=1

(0, 1,0)
-V

A
™,
.
i
/

Leaves at

M

/ ] 3 y=1
/ Enters at .

y=x+z

/"__ ______ (1,1,0)

X

Finally, as L sweeps across R the value of x varies from x = 0to x = 1.
Therefore, D = {(x,y,2) :0<x<1,0<z<1-x,x+z<y<1}.

Thus the triple integral of a function f(x, y, z) over D is given by

1 1-x 1
fff f(x,y7 Z) dv = f f f f(x,y, Z) dydzdx
b 0 0 X+zZ

If we interchange the orders of y and z, then first we consider limits for z and then of y. In this case,
we project D on the xy-plane. A line parallel to z-axis through (x, y) in the xy-plane enters D at
z = 0 and leaves D through the upper plane z = y — x.

For the y-limits, on the xy-plane, where z = 0, the sloped side of D crosses the plane along the line
y = x. A line through (x, y) parallel to y-axis enters the xy-plane at y = x and leaves at y = 1.
The x-limits are as earlier.

Therefore D = {(x,y,2) :0<x<1L,x<y<1,0<z<y-x}

The same triple integral is rewritten as the following iterated integral:

1 1 y—x
ff f(x,y,z)dV:f f f(x,y,2)dz dy dx.
D 0 X 0

Example 2.28. Evaluate fol foz ny e dx dy dz by changing the order of integration.

Here, the region is D = {(x,y,z) : 0 < z £ 1,0 <y < 7,0 < x < y}. Sketch the region. Its
projection on the yz-plane is the triangle bounded by the lines y = 0,z = 1 and z = y. That is, the
projection is {(y,z) : 0 <z < 1,0 < y < z}. Its projection on the xy-plane is the triangle bounded
by the lines x = 0,y = 1 and y = x, which is also expressed as {(x,y) : 0 <y < 1,0 < x < y}.
Its projection on the zx-plane is the triangle bounded by the lines z = 0, x = 1 and x = gz, that is,
{(zx):0<x<Lx<z< 1L

We plan to change the order of integration from dxdydz to dzdydx. All of x, y, z take values from
[0, 1], so the x-limits are O and 1. Next, x < y says that the y-limits are x and 1. Since y < z, the
z-limits are y and 1.

Therefore, D = {(x,y,2) :0<x<lLx<y<1ly<z<I1}L
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L rz oy 3 1 1 pl ,
f f f e dx dy dz = f f f 1" dz dy dx
0 0 0 0 X y
1 1 1 2
1 —
= f f (1- y)e(l_x)3 dydx = f —( *) =97 gx
0o Jx 0 2
0 el 3
= — —dt = . Wltht:(l—X)
‘f(‘]_o),ﬁ 6 6

2.6 Triple Integral in Cylindrical coordinates

Cylindrical coordinates express a point P in space as a triple (7, 6, z), where (r, 6) is the polar
representation of the projection of P on the xy-plane.

Pir. 8, z)

If P has Cartesian representation (x, y, z) and cylindrical representation (r, 6, z), then

2

x=rcosb, y=rsinf, z=12z,r =x2+y2, tanf = y/x.

In cylindrical coordinates,

r = a describes a cylinder with axis as z-axis.
0 = a describes a plane containing the z-axis.
z = b describes a plane perpendicular to z-axis.

The Riemann sum of f(r, 6, z) uses a partition of D into cylindrical wedges:

rAr A#
r ﬂ:n’l ;
.,\._ : / : _T_
kD I
{————J'————?‘t——ﬂ.."——-‘r

The volume element dV = r dr dfdz. Thus the triple integral is

ff f(i’,Q,Z)dV=ff f(r,0,2)rdrdodz.
D D

Its conversion to iterated integrals uses a similar technique of determining the limits of integration.

Example 2.29. Find the limits of integration in cylindrical coordinates for integrating a function
f(r, 0, z) over the region D bounded below by the plane z = 0, laterally by the circular cylinder
x? + (y — 1)? = 1, and above by the paraboloid z = x* + y?.

58



Top )
Cartesian: z = x~ + y~
Cylindrical: £ = r=

M D

7 2
?\h-‘-'-"""'u
R e
Cartesian: x2 + (v — 1)7 =1

£ Polar: r=2sin#

The projection of D onto the xy-plane gives the disk R enclosed by the circle x> + (y — 1)? = 1. It
simplifies to x> + y? = 2y. Its polar form is 7> = 2rsin or, r = 2sin 6.

A line through a point (7, 0) € R enters D at z = 0 and leaves D at z = x> + y? = r?.

A line in the (r, 8)-plane through the origin enters R at r = 0 and leaves R at r = 2sin 6.

As this line sweeps through R it enters R at 6 = 0 and leaves at 6 = . Hence

bg 2sin 6 r?
ff f(F,Q,Z)dV=f f f f(r,0,2)rdz dr de.
0 0 0
4—
4—

2 V4—x2 2
Example 2.30. Evaluate / = f f f (x* + y*) dz dy dx.
—2 JVAT2 JAfx24y2

The z-limits show that the solid is bounded below by the cone z = y/x2 + y2 and above bythe plane
z = 2. Its projection on the xy-plane is the disk x> + y> = 4. The limits for y also confirm this. A
sketch of the solid looks as follows:

Since the projection of the solid on the xy-plane is a disk; cylindrical coordinates will be easier.

The projected disk gives the limits as 0 < 6 < 27, 0 < r < 2 whereas \/x2 + y2 = r < z < 2. Thus

2n 2 2
fff(x2+y2)dV:f f f r*rdzdrd
D 0 0 r

2r 2 2r 4 5 2r
PAR) 8 16
3
2— = 2——— = — = —7T.
fo fo(r( r) dr df fo ( 7 5)d9 fo cdo=—<n

~
Il
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2.7 Triple Integral in Spherical coordinates

Spherical coordinates express a point P in space as a triple (p, ¢, 6), where p is the distance of P
from the origin O, ¢ is the angle between z-axis and the line OP, and 6 is the angle between the
projected line of OP on the xy-plane and the x-axis. This 6 is the same as the ‘cylindrical’ 6.
Moreover, p >0, 0 < ¢ < m,and 0 < 6 < 2x. If P(x, Yy, z) has spherical representation (p, ¢, 6),

then
x = psingcos, y=psingsing, z=pcos¢, r = psing, p = /x2 + y? + z2.

& = g, whereas p
and # vary
5 ==

i

= Pla, dy, ty)

Y.
i
—— p = a. whereas ¢ /
and # vary

=4, whereas p
and ¢ vary

In spherical coordinates,

p = a describes a sphere centered at origin.

¢ = ¢¢ describes a cone with axis as z-axis.

0 = 0y describes the plane containing z-axis and OP.

When computing triple integrals over a region D in spherical coordinates, we partition the region
into n spherical wedges. The size of the kth spherical wedge, which contains a point (pg, @x, %),
is given by the changes Apy, Agy, AGx in p, §, 6.

Such a spherical wedge has one edge a circular arc of length p;A¢y, another edge a circular arc of
length pi sin ¢ A6y and thickness Apy. The volume of such a spherical wedge is approximately a
rectangular box with dimensions px, px X A¢y (arc of a circle with radius p; and angle ¢, and
Pk sin ¢y X Afy, (arc of a circle with radius py sin ¢, and angle ;). Thus

AV, = pi sin g Apr AP Aby.

r, A= p,sind, Af
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The corresponding Riemann sum is § = Z’Zzl f(oks Prs Hk)pi sin ¢ Apr A Aby. Accordingly,

f f | fo00av - f f | F(p.000p% s dpdo do.

The procedure in computing a triple integral in spherical coordinates is similar to that in cylindrical
coordinates:

Sketch the region D and its projection on the xy-plane. Then find the p limit, ¢ limit and 8 limit.

p= g, #)

B o-max gr(60) )
f f (0. 6.0)dV = f f f £(0.6.0)p sin ¢ dp do de.
D @ —min g1(9,0

Example 2.31. Find the volume of the solid D cut from the ball p < 1 by the cone ¢ = 7/3.

Draw aray M through D from the origin making an angle ¢ with the z-axis. Draw also its projection
L on the xy-plane. The line L makes an angle 6 with the x-axis. Let R be the projected region of
D in the xy-plane.

.

D | Sphere p = 1

%

3 T
¥ —Cone ¢ = 3

.‘R J':\\‘

M enters D at p = 0 and leaves D at p = 1.
Angle ¢ runs through O to 7r/3, since D is bounded by the cone ¢ = 7/3.
L sweeps through R as 6 varies from O to 27. Thus

2 /3 1
fffpzsinqde:f f f p?sing dpde do
D 0 0 0

o rEf3 o _cosgqn3 1 n
L L §sm¢dq§d9:~fO [ 3 ]0 :627T:§.
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1 V1-x2 \/1—)62—y2 2, 2., 2:32
Example 2.32. Evaluate I = f f f eYF T dz dy dx.
-1 J-V1-x2 —\/1—)62—)12

dV, where D is the unit ball.

2)3/2

Notice that 1 = ][, oYz

Writing in spherical coordinates, I = f f fD e’ dV. Then converting to iterated integral,

1 Fis 2n 3
I:f f f P p*sin ¢ dp d¢ do.
0o Jo Jo

Since the integrand is a product of separate functions of p, of ¢, of 6,

pe

1—[1 P prd fﬂ' d fznde—[e—]l[— e _ e
_Oepposm¢¢0 =151 cos¢>0(7r)—3(e ).

2.8 Change of Variables

The change of coordinate system from Cartesian to Cylindrical or to Spherical are examples of
change of variables. Let us consider what happens when a different type of change of variables
occurs.

Suppose f maps a region D in R? onto a region R in R? in a one-one manner. For convenience,
we say that D is a region in the uv-plane and R is a region in the xy-plane; and f maps (i, v) to
(x,y). Then f can be thought of as a pair of maps: (fi, f>). Thatis, x = fi(u,v) and y = fo(u, v).
We often show this dependence implicitly by writing

x=xu,v), y=yuv).

Example 2.33. What is the image of D = {(#,v) : 0 < u < 1,0 < v < 1} under the the map given

2

by x = u? —v?, y =2uv?

Let us see the boundaries of the square D : 0 <u < 1,0 <v < 1.

The lower boundary is the line segment O < u < 1,v = 0. It is transformed to the line segment
x = u? y = 0 or in the xy-plane it is the line segment 0 < x < 1,y = 0.

The left boundary of D is the line segment u = 0,0 < v < 1. It is transformed to x = —v?, y = 0.
This is the line segment joining (0, 0) to (=1, 0) in the xy-plane.

The upper boundary line of D is the line segment 0 < u < 1,v = 1. This is transformed to

2
x = u? — 1,y = 2u. Eliminating u from these equations, we get the arc of the curve x = yT -

joining the points (-1, 0) to (0, 2) in the xy-plane.

The right hand side boundary of D is the line segment # = 1 and v varying from 1 to 0. This is

transformed to x = 1 —v?, y = 2v. Eliminating v from these equations we have the arc of the curve
2

x =1 — - joining the points (0, 2) to (1,0).

The interior of D is mapped onto the interior of the so obtained region R in the xy-plane whose
boundary are the line segments and the arcs. This transformation is shown is the picture below.
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(0, 1) et (L, 1) x=7g-14

0 < ;]_Itlu u b |
: =T 0 o x

If (u,v) = (x,y), then how does area of a small rectangle change?

A typical small rectangle with sides Au and Av has corners at the points
Ay =(a,b), Ay =(a+Au,b), A3 = (a,b+ Av), Ay = (a + Au, b+ Av).

Let the images of Ay under (u,v) — (x,y) be By = (ax, by) for k = 1,2,3,4. Then

a; = x(a, b)

ar» = x(a+ Au, b) = x(a, b) + x,Au

az = x(a,b+ Av) = x(a, b) + x,Av

ag = x(a+Au, b+ Av) = x(a,b) + x,Au + x,Av

Here, x, = x,(a, b) and x,, = x,,(a, b). Similar approximations hold for b, by, b3, b4.

Now, Area of the image of the rectangle AjA>A3A4 is approximately equal to the area of the
parallelogram By B, B3 B, in xy-plane, which is twice the area of the triangle BB, B4 and is

Xy X
|(ag — a1)(bs — b2) — (a4 — az)(by — by)| = |det [ “ v] (a, b)Aulv.
u v
This determinant is called the Jacobian of the map (u, v) — (x, y);andisdenoted by J(x(u, v), y(u,v)).
a(x,
The Jacobian is also written as J = J(x(u, v), y(u,v)) = GEX y;.
u,v

We write this as Area of image of a rectangle with one corner at (a, b) and sides of length Au and
Av is approximately |J(x(u, v), y(u, v)|AuAv, where the Jacobian J (-, -) is evaluated at (a, b).

In deriving this approximation, we have assumed that x,, x,, y,, y, are continuous.

Assume that x = x(u,v) and y = y(u, v) have continuous partial derivatives with respect to u and
v. Assume also that a region D in the uv-plane is in one-one correspondence with a region R in
the xy-plane by the map (u,v) — (x,y). Let f(x, y) be a real valued continuous function on the
region R. Then we have the map f(u, v) = f(x(u,v), y(u,v)).

To see how the integrals of f over R and integral of f over D are related, divide D in the uv-plane
into smaller rectangles. Now, the images of the smaller rectangles are related by

A(x,y)
o(u,v)

Area of R = |J|Area0fD:| |AreaofD.

By forming the Riemann sum and taking the limit, we obtain:

i . a(x,
fff(x,y)dA:ff f(u,v)|J(x(u,v),y(u,v)|dA=ff f(u,v)|a(x y)|dA.
R D D (M,V)
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For example, in the case of polar coordinates, we have
x=x(r,0) =rcosf,y =y(r,0) =rsinf.
Thus, the Jacobian is
J(x(r,0),y(r,0)) = x,y9 — X9y, = cos0(rcos ) — (—rsinf)sinf =r.

Therefore, the double integral in polar coordinates for a function f(x, y) takes the form
fff(x,y)dA:f f(rcos@,rsind) rdA.
R D

For x = x(u,v,w), y = y(u,v,w), z = z(u, v, w), we write the Jacobian as

as we had seen earlier.

Xu Xy Xy
=det|{y, y» Yw|-
Zu Xy Zw

a(x,y,2)

J=Jxv,w), yu,v,w), z(u, v, w)) = A(u, v, w)

If R is the region in R on which f has been defined and D is the region in the uvw-space so that
the functions x, y, z map D onto R in a one-one manner, then

a(x,y,
[ rnom= [ s g3

In the case of cylindrical coordinates, x = rcosf, y = rsin, z = z. The absolute value of the
Jacobian is

dudvdw.

JEES 3] O A
a(r’e’z) yr y0 yZ *
o 29 2z

ff f(x,y,z)dV:ff f(rcosO,rsiné, z) rdrdfdz.
R D

For the spherical coordinates, we see that
x = psingcosh, y = psingsinb, z = pcosg.

The triple integral looks like

ff f(x,y,z)dV:ff f(psin g cos b, psin ¢ sin b, p cos ¢)p* sin ¢ dp de d6.
R D

We had already derived these results independently.

These formulas help us in evaluating double and triple integrals in x, y, z as integrals in u, v, w by
choosing a transformation (u, v, w) + (x, y, z) suitably.

Example 2.34. Evaluate the double integral f fR(y — x)dA, where R is the region bounded by the
linesy—x=1,y-x=-3,3y+x=7 3y+x=15.
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Takeu =y —x, v=3y + x. Thatis,x:}t(v—3u),y:‘—ll(u+v).Then
={(u,v):-3<u<l 7<v<15}.

The Jacobian is
J = Xy = xyyu = (=3/4)(1/4) = (1/4)(1/4) = ~1/4,

Therefore,

1 1 151 11
ff(y—x)dA:ffulJldA:ffu—dA:f f —ududv:f —(152 = 7%) dv = 88.
R D p 4 3J7 4 338

1+y/2 5
Example 2.35. Evaluate f f 2 Y x dy by using the transformation

u=x-y/2, v=y/2.

|

_\';EJ
Notice that x = u + v, y = 2v. The regions R in the xy-plane and G in the uv-plane are
={(x,y):0<y<4y/2<x<1+y/2}, G={(u,v):0<u<1,0<v <2}

-)
2

l+y/22 2
ff Al yddy ff VA= fqudA ff2ududv—f12dv—2
0

Caution: The change of variables formula turns an xy-integral into a uv-integral. But the map

And f(x,y) = =u, [J(x@,v), y(, v)| = |xuyy = xyyul = [(1)(2) = (0)(1)| = 2. So,

that changes the variables goes from uv-region onto xy-region. This map must be one-one on the
interior of the uv-region. Sometimes it is easier to get such a map from xy-region to uv-region.
Then we will be tackling with the inverse of such an easy map. Here the fact that

the Jacobian of the inverse map is the inverse of the Jacobian of the original map

helps us. This may be expressed as

axy)  (duv)\
A, v)  \d(xy)

Similarly, triple integrals undergo change of variables by using the inverse of the Jacobian.

Example 2.36. Integrate f(x, y) = xy(x? + y?) over the region

R: -3<x?-y?><3, 1<xy<4
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2

There is a simple map that goes in the wrong direction: u = x> — y%, v = xy. Then the image of R,

which we denote as D in the uv-plane is the rectangle
D: -3<u<3 1<v<4.

We have F : D — Rdefined by F(x,y) = (u,v) = (x?> —y% xy). And its inverse is G = F~!, where
G:R—> D.

We need not compute the map G. Instead, we go for the Jacobian.

) _
W) _ ey [ux uy] = det [Zx Zy] =2(x% + y%).
o(x,y) Ve Vy y X

a(x,y) 1
O, v)  2(x2+y?2)

ff xy(x? +y?) dA = ff [xy(x2 +y%) ] dA.
R D

Notice that the integral on the right side is in the uv-plane and the bracketed term inside [ - ] is a

Therefore, . Then

1
2(x% +y2)

function of (u,v). Since the bracketed term simplifies to xy/2 which is equal to v/2, we have the
integral as

v 1 3 1 (34212 15 45
—A:— = — = — — (— = —.
fszd 2f_3f1 v du 2[3 R

2.9 Review Problems

Problem 1: Find the area of the region bounded by the curves y = x and y = 2 — x°.

The points of intersection of the curves satisfy y = x and x = 2 — x2. The last equation is same as
(x +2)(x — 1) = 0. Thus the points of intersection are (-2, —2) and (1, 1). Hence the area is

L 1 3 2 9
[ i [ o -5 1L

Since the significant portion of the curve y = 2 — x? lies above the portion of the line y = x, there
is no need to take the absolute value. The calculation also confirms this.

Problem 2: Evaluate I = f fD (4 — x> — y?) dA if D is the region bounded by the straight lines
x=0,x=1, y=0and y = 3/2.
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32 pl 3/2 ) 3211 35
I= f f (4 — x* = y?)dxdy :f [4x — x*/3 — y*x]ody = f (——yz) dy = —.
o Jo 0 o 3 8

Problem 3: Evaluate the double integral of f(x,y) = 1 + x + y over the region bounded by the
lines y = —x, y = 2 and the parabola x = 4/y.

Draw the region. The integral is equal to
2

2w 2 y y
ff (1+X+y)dxdy=f(\/§+—+\/§y—(—y+——y2)dy
0 Joy 0 2 2
2 2
3 3y y (232,352,352 1312 1
_fo (\/§+7+y\/§+?)dy—[§y 5 oy ]0_5(13+44\/§).

Problem 4: Change the order of integration in fol fx v f(x,y)dydx.

The region D of integration is bounded by the straight line y = x and the parabola y = +/x. Every
straight line parallel to x-axis cuts the boundary of D in no more than two points, and it remains in
between y? to y. Also, y lies between 0 and 1. Hence

1 px L pry
[ remavae= [ [ reendray
0 Jx 0 Jy?

Problem 5: Evaluate f f ¢”/* dA, where D is a triangle bounded by the straight lines y = x, y = 0,
D
and x = 1.

In D, the variable x remains in between 0 and 1, and y lies between 0 and x. Hence

1 X 1 e—1
ff erA:f f ey/xdydx:f x(e -1 dx = .
D 0o Jo 0 2

Problem 6: Find 7 = f fD e**Y dA, where D is the annular region bounded by two squares of sides
2 and 4, each having center at (0, 0) and sides parallel to the axes.

Draw the picture. D is not a simply connected region. Divide D into four simply connected regions
by drawing lines x = —1 and x = 1. Let D; be the rectangle to the left of the inner square; D;
be the square on top of the inner square; D3 be the square below the inner square; and D4 be the
rectangle to the right of the inner square; so that D is the disjoint union of Dy, D;, D3, D4. Then

I:ff ex+ydA+ff ex+ydA+ff ex+ydA+ff eV dA.
D, D> Ds Dy

Converting each integral to an iterated integral, we have

1 2 1 p2
I:f f ex+ydydx+f f e dydx
2 J-2 -1 J1
1 -l 2 2
+f f ex+ydydx+f f e Vdydx = et —e? —e? + 74
1J-2 1 J2

Problem 7: Evaluate ||, (x> + y*)™2 dA, where D is the shaded region in the figure below:
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The integrand in polar coordinates is f(r,8) = r~*. The region D is given by
0<6<n/4,secd <r <2cosé. Thus

5 _ /4 2cosf . 1 /4 5 5 T
(x“+y7) “dA = rrdrdf =— (4cos“ 6 —sec”0)df = —.
D 0 sec 6 8 0 16

Problem 8: Calculate the volume of the solid bounded by the planes x = 0, y = 0, z = 0, and
x+y+z=1.

The volume V = f fD(l — x — y)dA, where D is the base of the solid on the xy-plane. We see that
D is the triangular region bounded by the straight lines x =0, y =0, x + y = 1. Thus,

1 1-x 1 1 1
V=f f <1—x—y)dydx:f (1 —x)*dx = —.
0 0 0 2 6

Problem 9: Compute the volume V of the solid bounded by the spherical surface x>+ y? +z% = 442,
the cylinder x? + y? = 2ay, where a > 0, and which is inside the cylinder.

The region of integration is the base of the cylinder. This is the circle x> + y> — 2ay = 0, whose
centre is (0, a) and radius a. We calculate V /4, the volume of the portion of the solid in the first
octant. Now, the region of integration D is the semicircular disk whose boundaries are given by

x=g1y) =0, x = g2(y) =+f2ay —y%, y =0, y = 2a.

The integrand is z = f(x, y) = v4a®? — x2 — y2. Then

Vv 2a V2ay-y?
— = \J4a? — x2 —y2dx dy.
4 Jo Jo

To evaluate this, use polar coordinates: x = rcos 6, y = rsin 6. For the limits of integration, use
x> +y2=r2 y=rsinfto get:
x2+y2—2ay =0=r>-2arsinf =0=r =2asinb.

That is, in polar coordinates, the boundaries of D are given by

r=g1(0)=0,r=gy60) =2asinf, 0 <0 < nx/2.
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The integrand is f(r, ) = V4a® — r2. Hence,

/2 2asin @
4f V4a? —r2rdrdo
0 0

—4 /2
3 Jo

Vv

[(4a® - 4a? sin® 0)*% — (4a*)/?] db = §a3(3ﬂ —4).

Problem 10: Integrate f(x,y, z) = z+/x2 + y2 over the solid cylinder x> + y?> < 4for1 < z < 5.

x

The region of integration D in cylindrical coordinates is givenby 0 < 6 < 27,0 <r <2,1 <z <5.
The integrand is zr. Thus

2r 2 5
fff z\/xz +y2dV = f f f (zr)rdzdrdf = 64nr.
D 0 0 1

Problem 11: Integrate f(x,y, z) = z over the part of the solid cylinder x> + y> <4 for0 < z < y.

_r2+}=2:4

The region W has the projection D on the xy-plane as the semicircle depicted in the figure. The
z-coordinate varies from O to y and y = rsin6. Thus W is given by 0 < § < 7,0 < r < 2,
0 < z < rsiné. In cylindrical coordinates,

g 2 rsinf bd 21
fffde:f f f zrd@a’rdz:f f —(rsin®)*rdodr = r.
W 0o Jo Jo o Jo 2
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Problem 12: Compute f f fD zdV, where D is the solid lying above the cone x> + y? = z? and below
the unit sphere.

ayi=y
///
K‘%—__u_j_, Region
T o
N o
\w =
- j___,.--' ST
/ R

The upper branch of the cone, which is relevant to D, has the equation ¢ = m/4 in spherical
coordinates. The sphere has the equation p = 1. Thus D is given by

D: 0<0<2r,0<¢=<n/40<p<l1.

Since z = pcos ¢, the required integral is

2r /4

fffde f f f (pcos¢)p singpdpde¢ do

D

/4 /4 -
27rf f p cosgsingdpdep = f cospsinpdp = 3

0
Problem 13: Evaluate / = f_oo e dx.
P o= i e ax) = i =y >y
i (e a) =t [( [Cetan)( [ e ay)

lim[ff = dx dy —hmff " gA
a—o0 —a _ a—o0

where R is the square [—a, a] X [—a, a] for a > 0.

Let D = B(0,a) and S = B(0, 2 a), the balls centred at O and with radii a and V2 a, respectively.
Then D C R C S. Since e~ > 0 for all (x,y) € R2, we have

ff e_xz_yz JA < ff e_xz_yz dA < ff e_xz_yz JA.
D R s
2.2 nopa 1 o 2 2
ffe‘x_y dA=f f e’ rdrdd =—= (e =1 df=n(l—-e).
D 0 0 2 Jo

Similarly, ff e dA = (1 — e29"). We see that
s

lim ff e dA = n, lim ff eV dA = 1.
a—0 D a—o0 S

Therefore, by sandwich theorem, we have

—hmff A == [ = V7.
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Problem 14: Compute the volume of the ellipsoid x_2 + y_2 + Z—z =1.
a b- ¢
22
Projection of this solid on the xy-plane is the ellipse — + i 1. Therefore, the required volume
a

is

- [ j;fj;dzdydx_zc”bﬁmm

Substitute y = b(1 — x2/a*)"/?sint. Then dy = b(1 — x*/a?) cost dt and
—n/2 <t < n/2. Therefore,

12 x2
V = 2cf f (1——) (1 ——)sm t] b(1 - =) costdtdx
-r/2 a
_ bcnf ( .y )d 4ﬂabc
e X _ e—bx
Problem 15: Evaluate f —dx fora>0,b>0.
0 X

o —ax _ ,—bx o b
f € "¢ ax = f f e dydx
0 X 0 Ja
b o0 b
1 b
ff e_yxdxdy:f —dy =In—.
a 0 a Y a

Notice the change in order of integration above.

9 3
Problem 16: Evaluate f f xe’ dx dy.

The region of integration is given by 1 <y <9, 4/y < x < 3.

3 —
y=Xx"(orx=vy)

The same is expressed as 1 < x < 3, 1 < y < x?. Changing the order of integration, we have

9 N3 3 pa? 3 " 1
f f xe’ dxdy = f f xe’ dxdy = f (xe* —ex)dx = =(e° = 9e).
NN 1 Ji 1 2

dA
Problem 17: Show that il < ff < m, where D is the unit disc.
3 X2+ (y - 2)2
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0, 2)

Closest point—___ |
——

{d=1) / s
f D 1x5:\

X
| ]

\ 4

Xt ———
Farthest point——
'f:ll =3

The quantity f(x, y) = /x% + (y — 2)? is the distance of any point (x, y) from (0, 2).
For (x,y) € D, maximum of f(x, y) is thus 3 and minimum is 1. Therefore,

1S ! <1.

3T V(o207

Integrating over D, we have

1 1
—dA < dA < 1dA.
ffD 3 ffD VxZ+ (y—2)2 ffD

Since f fD dA = area of D, we obtain

W

f dA

< <.

D \/x2+ (y—2)2

Problem 18: Evaluate f f fW zdV, where W is the solid bounded by the planes x = 0, y = 0,
x+y=1,z=x+y,and z = 3x + S5y in the first octant.

W lies over the triangle D in the xy-plane defined by 0 < x <1, 0 <y < 1 — x. Hence

4 / :'—.":1+5}'

I=X+Yy

1 1-x 3x+5y
fffzdv f f f zdzdydx
D 0 0 x+y

1 1-x 1 23
f f (4x% + l4xy + 12y*) dy dx = f (4-5x+2x>—x%)dx =
0 0 0

E.

Fun Problem: The n-dimensional cube with side a has volume a”. What is the volume of an
n-dimensional ball?
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Denote by V,,(r) the volume of the n-dimensional ball with radius r. Also, write A, = V,,(1). For
n = 1, we have the interval [—1, 1], whose volume we take as its length, that is, A| = 2, V| = 2n.
For n = 2, we have the unit disk, whose volume is its area; that is, A, = &, V» = nr2. Forn = 3, we
know that A3 = 47/3 and V3(r) = 4xr3/3.

n

Exercise 1: Show by induction that V,,(r) = A, r".

Suppose V,,_1(r) = An—1r"'. The slice of the n-dimensional ball x% + .- xi_l + x%l = r" at the

height x,, = ¢, has the equation

2 2 2_ .2
X{+-x,_ tct=r".

This slice has the radius Vr2 — ¢2. Thus

V,(r) = f Vo112 = x2dx, = Apy f (\Jr2 = x2)" "V dx,,.

Substitute x,, = rsiné. So, dx, = rcos@ and —n/2 < 0 < 7/2. Then

/2
V,(r) = An_lr”f cos"0do = A,_1C,r",
—r/2

where C,, = f_’:r//zz cos" 0 df. This says that A,, = A,,—1C,,.
Exercise 2: Prove that C3 = 4/5,C4 = 3n/8 and C,, = ”n;lCn_z.

P 2m+ln.m
Exercise 3: Prove that A,,, = o and A1 = (3. amtl)

This sequence of numbers have a curious property: A, increases up to n = 5 and then it decreases

to0asn — oo.
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Chapter 3

Vector Integrals

3.1 Line Integral

Line integrals are single integrals which are obtained by integrating a function over a curve instead
of integrating over an interval.

¥ P P" x5 yi)
_—o—‘vﬁ'

o
c / x
i |I |
|
|

\P, | (‘//P
\ P, ‘.II |

Let f(x,y, z) be a real valued function with region D as its domain. Let C be a curve that lies in
D given in parametric form as

PO =x)i+y@)j+z()0k a<t<b.

The values of f on the curve C are given by the composite function f(x(t), y(¢), z(¢)). We want to
integrate this composite function on the curve C.

Partition C into n sub-arcs. Choose a point (xg, yx, Zx) on the kth subarc. Suppose the kth subarc
has length Asy. Form the Riemann sum

n
Sn = Z S Xk Yie» 2k)Ask.
k=1

When n approaches co, the length s; approaches 0. In such a case, if lim,_. S, exists, then this
limit is called the line integral of f over the curve C.

ff(x, y,2)ds = lim S,,.
C n—oo

In practice, the line integral is computed by parameterizing the curve C.
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Theorem 3.1. Ler C :  x(1)i + y(t) j + z(t) k be a parametrization of the curve C lying in a
region D C R3. Let f : D — R be continuous and the component functions x(t), y(t), z(t) have
continuous first order partial derivatives. Then the line integral of f over C exists and is given by

b dx\2 dv.2 dz\2
Jornanis= [ oo on(G) (G (5o

We also write ds = |7/ (¢)|dt = \/(dx)2 + (ﬂ)z + (dz)zdt.

dt dt dt

Example 3.1. Integrate f(x,y,z) = x — 3y2 + z over the line segment from (0, 0,0) to (1,1, 1).

Parametrize the curve C : 7 () =ti+t ]+t k, 0<t<l.

Then x(f) = y(t) = z(t) = 1. So, |7/ (1)| = V12 + 12 + 12 = V3.

A
A
A
Ay
Ay
N

1 1
ffdszf [x(t)—3y2(t)+z(t)]\/§dt:f [z—3t2+z]\/§dr:\/§[t2—t3](1):0.
c 0 0

X

Example 3.2. Evaluate f (2 + x%y) ds, where C is the upper half of the unit circle in the xy-plane.
C

Here, f = f(x,y) is a function of two variables.
Parametrize the curve. C : x(t) = cost, y(t) =sint, 0 <t < x.Then

f(z +x%y)ds = fn(z + cos? ¢t sint)\/(x’(t))2 + ()2 dt =27 + 2
c 0 3

If C is a piecewise smooth curve, i.e., it is a join of finite number of smooth curves, written as
C=CyU---UC,, then we define

ff(x,y,z)ds: f(x,y,z)ds+---+f f(x,y,2)ds.
c i Com

Example 3.3. Let C be the curve consisting of line segments joining (0, 0, 0) to (1, 1,0) and (1, 1, 0)
to (1, 1, 1). Evaluate f(x -3y? +2) ds.
c

C is the join of C; and C,, whose parametrization are given by

Ci: P)=ti+1],0<t<1l; C:7@) =i+ j+tk 0<r<1.
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pi(l, 1, 1)

(0,0, 0) sy

(1, 1,0)

Then On C;, |7’(#)] = V2 andon Gy, |7'(#)| = 1. Now,

f(x—3y2+z)ds (x—3y2+z)ds+ (x—3y2+z)ds
C C (@)

1 1
f f(z,r,O)\/idHf F(1,1,0) 1dt
0 0
1 1
f(t—3t2+0)\/§dt+f(1—3+t)dt:
0 0

2

Example 3.4. Evaluate f 2x ds, where C is the arc of the parabola y = x? from (0, 0) to (1, 1)
c
followed by the line segment joining (1, 1) to (1, 2).

¥

(0,0) X

Parametrize: C = Cy U C,, where
Ci:x=x,y=x> 0<x<l1; C:x=1y=y, 1<y<2.
Choosing x =t for C; and y = ¢ for C;, we have

Ci:x=t,y=t2, 0<t<1l; C:x=1y=1 1<t<2.

On Cy, dx = 1dt, dy =2tdt, ds =V1+4t2dt. Similarly, on C,, ds = dt. Then

1 2
fods f2xds+f 2xds:f 2t 1+4t2dt+f 2(1) dt
C Cy C 0 1

1423/21
(A+42 20 5V5

6 |, 6

-1
+ 2.

Example 3.5. Evaluate f y sin z ds, where C is the circular helix given by
C

x(t) = cost, y(t) =sint, z(t) =t, 0 <t <2m.

76



2r
fysinzds:f sint tVsin2¢ + cos2t + 1 dt = V2r.
C 0

If the curve C happens to be a line segment on the x-axis, then ds = dx. In that case, the line
integral over the curve becomes

ff(x, y,2)dx = lim Zf(xk, Vi Zk)AX.

As earlier, if f(x, y, z) has continuous partial derivatives and 7 () is smooth, and C has parametriza-
tionas x = x(¢), y = y(t), z=2z(t), a <t < b, then

b
fc fx,y,2)dx = f fx(@®), y(@®), z()x'(t) dt.

Similarly, if the curve C is a segment on the y or z-axis, then the line integrals are, respectively

b b
[ feraaw= [ reosooyod [ ferod= [ raoso.e o
C a C a
These line integrals are called as the line integrals of f over C with respect to x, y, z respectively.

Example 3.6. Evaluate f yvdx + zdy + xdz, where C is the curve joining the line segments from
C
(2,0,0) to (3,4,5) to (3,4,0).

Parameterize: C = C; U C,, where

Ci:x=2+t y=4t,z=5 0<t<1; C:x=3y=427=5-5t 0<t<I.

2,0.0)

Then f yvdx + zdy + xdz = f vdx + zdy + xdz + f vdx + xdz + zdx
C C G

1 1
= f (4t)dt + (5t)4dt + (2 +1)5dt + f 3(=5)dt =49/2 - 15 =9.5.
0 0
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3.2 Line Integral of Vector Fields

We want to generalize line integrals to vector fields.

A vector field is a function defined on a region D in the plane or space that assigns a vector to each
point in D. If D is a region in space, a vector field on D may be written as

F(x,y,2) = M(x,y.2)i+N(x,y,2) j+ P(x, v, 2) k.

y

- ¥
|

Vectors in a gravitational field point toward the center of mass that gives the source of the field.
The velocity vectors on a projectile’s motion make a vector field along the trajectory.

Let f(x, v, z) be a continuous vector field defined over a curve C given by
) =x)i+y@t)j+z(t) k for a <t <b.

The line integral of F along C, also called the work done by moving a particle on C under the
force field F is
f F.d7 = f F(P(0)-7'(t)dt = f F.Tds,
C C c
(1)

S
where 7T (t) = m is the unit tangent vector at a point on C.
r

Example 3.7. Evaluate the line integral of the vector field F(x, y,z) = x*i — xy j along the first
quarter unit circle in the first quadrant.

0 P x

The curve C is given by 7 () = costi+sint j, 0 <t < n/2. Then

N
F(7 (1)) = cos’ti—costsint j, 7’ =—sinti+cost].

The work done is



Let the vector filed be F(x, v,2) =M(x,y,2) 1+ N(x,y,2) J+ P(x,y,2) k.
Let C be the curve given by 7 (¢) = x(¢) T+ y(t) j + z(t) k fora <t < b. Then

fﬁ’-d?
C

b
f F(7 ()7 (1) drt

b
f [M x'(t) + Ny'(t) + PZ'(t)] dt

f Mdx + Ndy + Pdz.
c

Example 3.8. Evaluate f c F-d 7, where F = xyi+ yzj+ zx k and C is the twisted cube given
byx=t y=1t> z=1, OStsl

zx_ - 7\
157 ‘\‘FII‘\]:I
Syl L1

03
0

i

N ]

JoMdx= [t 1dt = 1/4, [.Ndy=r12tdr =2/7,and

Jo Pdz =132 dt = 3/7. So,
> o, 1.2
fF~dr:—+—+
c 47
27

1 1
f F-d7 = f [xyx" + yzy' + zxz'ldt = f [£3 + 265 + 3¢%)dr = =
c 0 0 28

3.3 Conservative Fields

27
- 28"

| W

Also,

Let f(x,,z) be a function from a region in R? to R. If f,, Yy, [ exist, then the gradient field of
f(x,y,z) is the field of gradient vectors

0 0 P
grad f = Vf——fz 8§A 8?

The gradient field of the surface f(x,y,z) = ¢ may be drawn as follows:

At each point on the surface, we have a vector, the gradient vector, which is normal to
the surface. And we draw it there itself to show it.



For example, the gradient field of f(x,y,z) = xyz is
grad f = yzi+zx J+ xy k.

Notice that f(x,y,z) has a continuous gradient iff f, f), f; are continuous on the domain of
definition of f.

A vector field F is called conservative if there exists a scalar function f such that F = grad f.
In such a case, the scalar function f is called the potential of the vector field F.

mMG
7. Tt is also written in the form:

For example, consider the gravitational force field F = — BE
-

mMG

_(x2+y2+Z2)3/2[xl+y]+Zk]

F(x, ¥,2) =

-
Here, F is a conservative field. Reason?

mMG
Define f(x,y,z) = 211 i Then

_of, of . Of » =
gradf—axl+ay]+azk—F.

Physically, the law of conservation of energy holds in every conservative field.

Recall: fa b f/(t)dt = f(b) — f(a) for a function f(¢). In case of line integrals, the gradient acts as
a sort of derivative.

Theorem 3.2. Let C be a smooth curve given by 7 (t) = x(t)1+ y(t) J + z(1) l%for a<t<b.
Suppose C joins points (x1, Y1, 21) t0 (X2, y2, z2). That is,

@ =xii+y1j+zuk and 7)) =x20+ ]+ k.
Let f(x,y,z) be a function whose gradient vector is continuous on a region containing C. Then
f Vf-d7 = f(7() - f(7(a) = f(x2,y2, 22) = f(x1, 1, 21)-
C

Proof:

b
fo -d7 f V(7 @) -7'(t)dt
C a

b
. |Oxdt  dydt 9z dt

b
d — —> — —>
f SFEO)d = fF W], = FFB) - (7 (@), 0

—
Theorem 3.2 says that if F' is a conservative vector field with potential f, then the line integral over
any smooth curve joining points A to B can be evaluated from the potential by:

fcf-d?:f(B) — f(A).
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In such a case, the line integral is independent of path of C; it only depends on the initial point and
the end point of C.

We say that a line integral f c F-d7is independent of path iff for any curve C’ that is lying in

the domain of f and having the same initial and end points as that of C, we have

fﬁ’-d?:f F.-d7.
C ’

Thus, if Fis conservative, then the line integral f c F-d7is path independent.

Example 3.9. Find the line integral of the field F = yzi+zxj+ xyk along any smooth curve
joining the points A(—1,3,9) to B(1,6,-4).

Notice that F is conservative since F = grad (xyz) = Vf, where f = xyz. Let C be any such
curve. Then

B
fF~d7’:f Vf-d7 = f(B) - f(A) = 3.
C A
The following result is a corollary to Theorem 3.2.

Theorem 3.3. Let F be a continuous vector field defined on a region D. Let C be any smooth curve
lying in D. The line integral f cF-d 7 is path independent iff f o F-d 7 = 0 for every closed
curve C' lying in D.

Remark: A closed curve is a curve having the same initial and end points. “Smooth curve” may
be replaced by “Piecewise smooth curve” everywhere. When C is a closed curve, the line integral
. . - e
over C is written as 9§C F-dr.
Path independence implies that the field is conservative. We state this theorem without proof.

Theorem 3.4. Let F be a continuous vector field defined on a region D. If f c F -d7 is path

.
independent for each smooth curve C lying in D, then F is conservative.

If F(x, y) = M(x,y)T+ N(x,y) Jis conservative, then we have a scalar function f(x, y) such
that f, = M, f, = N. Then using Clairaut’s theorem, we have f,, = M, = f,, = N,. That is, if
F = M7i+ N jis conservative, then My = N,. Similar result holds in three dimensions.

Theorem 3.5. Let F(x, v,2) =M(x,y,2)T+ N(x,y,2) ]+ P(x,y,2) k, where the gradients of the
component functions M, N, P are continuous on a region D. If F is conservative, then we have
My = Ny, N, =Py, Py =M;onD.

Example 3.10. Are the following vector fields conservative?

(@) F(x,y) = (x—y)i+(x-2)]
(b) F(x, y) = (B +2xy)i+ (x2=3yH) ]

(©) F(X,y, 2)=02x-3)i+zj+ cos z k.
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(a) F = Mi+ N j,where M =x-y, N=x-2. M, =-1, N, = 1. Since My, # N,, the vector
field F is not conservative.

(b) Here, M =3 + 2xy, N = x2 - 3y2. M, = 2x = N,. The vector filed is defined on R2, which is
a simply connected region. The partial derivatives of M and N are continuous. Therefore, F' is a
conservative field.

©) I_T):Mi+Nj+PI€,whereM =2x-3, N=2z, P =cosz.
M, =0, N, =0, szl,_I)Dy:O, P, =0, M, =0.
Since N, # Py, the field F is not conservative.

The converse of Theorem 3.5 holds if the region of Fisa simply connected region.

A simple curve is a curve which does not intersect itself. A connected region D is said to be a
simply connected region iff every simple closed curve lying in D encloses only points from D.

simply-connected region

/_\ ."/ /}I

|
Raa T o W

simple, not simple,
closed closed regions that are not simply-connected

Theorem 3.6. Let F = Mi+ N 7+ Pk be a vector field on a simply connected region D, where
gradients of M, N, P are continuous. If My = N,, N, = P,, and P, = M hold on D, then F is
conservative.

Proof of this can be done here, but it follows from Green’s theorem in the plane and from Stokes’
theorem in space, which we will do later.

These equations help in determining the potential function of a conservative field.

Example 3.11. Find a potential for the vector field F = (3 + 2xy) i+ (x2 — 3y?) j. Then evaluate
Jo F - d7, where Cis givenby 7 (1) = ¢'sinti+e'costj, 0 <t <.

To determine a scalar function f(x, y, z) such that F = grad f, we start with
fe=3+2xy, fy=x*-3y%
Integrate the first one with respect to x and integrate the second with respect to y to obtain:
fly)=3x+x°y+g(),  fny)=x"y =y +h(x).
Taking g(y) = —y3 + const. and h(x) = 3x + const., we have
f(x,y) =3x+x%y—y> +k forany constant k.

Verify to see that f is a potential for F.
Next, fc F-d7 = f(x(m), y(r)) — f(x(0),y(0)) = &3 + 1.
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Example 3.12. Find a potential for the vector field F= y2i+ 2xy + €3%) f+ 3y k.
Denote the potential by f(x,y, z). Then
fe=Y% fy=2xy+ €% fr=3ye™.
Integrate with respect to suitable variables:
f=xy"+8(n2), f=xy" +ye " + h(x,2), =y +$(x,y).

Taking g(y, z) = ye?, ¢(x,y) = xy?, h(x, z) = k, a constant, we get one such f.

Sometimes matching may not be obvious. So, differentiate the first:
fy=2xy+g,(y,2) =2xy + e
Thus, g,(y,2) = e32. Integrate: g(v,z) = ye’? + ¥ (z). Then
f=xy+ye" +y(2).
This gives f, = 3e3* +’(z) = 3y*%. Thus, ¥(z) = k, a const. Therefore,
f(x,y,2) = xy* + ye¥ + k.

Example 3.13. Show that the vector field F = (e cosy + yz) T+ (xz — e*siny) J+ (xy + 2) k is
conservative by finding a potential for it.

Let the potential be f(x,y, z). Then
fx=e"cosy+yz fy=xz—e"siny, f,=xy+z.
Integrate the first w.r.t. x to get
f=e"cosy+xyz+g(y,2).
Differentiate w.r.t. y to get
fy=—e'siny+xz+gy(y,2) =xz—e€'siny = gy(y,2) =0.
Thus g(y,z) = h(z). And then f = e*cosy + xyz + h(z). Differentiate w.r.t. z to obtain
fe=xy+ W (@) =xy+z=> W (2)=2> h(z) = /2 +k.
Then f(x,y,z) = e cosy + xyz + z%/2 + k.
If M, N, P are functions of x, y, z, on a region D in space, then the expression

M(x,y,z)dx + N(x,y,z)dy + P(x,y, z)dz

Is called a differential form. The differential form is called exact iff there exists a function
f(x,y,z) such that

0 o P
M(X,y,Z) = %’ N(X,yaZ) = 8_5’ P(X,y,Z) = a_g
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Notice that if the differential form is exact, then
M(x,y,z)dx + N(x,y,z2)dy + P(x,y, z)dz = df,

which is an exact differential. In that case, if C is any curve joining points A to B in the region D,
then

B B
f [de+Ndy+sz]:fo-d?:f df = f(B) - f(A).
A C A

Therefore, the differential form is exact iff F =Mi+Nj+ P [ is conservative. Then the scalar
function f(x,y, z) is the potential of the field F'.

Example 3.14. Show that the differential form ydx + xdy + 4dz is exact. Then evaluate the
integral fc(ydx + xdy + 4dz) over the line segment C joining the points (1,1, 1) to (2,3, -1).

M=y, N=x, P=4.ThenM,=1=N,, N,=0=P,, P, =0=M..
Therefore, the differential form is exact.

Also, notice that ydx + xdy + 4dz = d(xy + 4z + k). Hence it is exact.
In case, f is not obvious, we can determine it as earlier by differentiating and integrating etc. Next,

(2,3,-1)
f(ydx+xdy+4dz) =f dxy +4z+k) = (xy+4z+k)| = -3,
C (L,1,1) (L1,

3.4 Green’s Theorem

Let C be a simple closed curve in the plane. The positive orientation of C refers to a single
counter-clockwise traversal of C. If C is given by 7(¢), a < t < b, then its positive orientation
refers to a traversal of C keeping the region D bounded by the curve to the left.

W ¥

0 x L] x

(a) Positive orientation (b} N egative orientation

Theorem 3.7. (Green’s Theorem) Let C be a positively oriented simple closed piecewise smooth
curve in the plane. Let D be the region bounded by C. (That is, C = dD.) If M(x,y) and N(x, y)
have continuous partial derivatives on an open region containing D, then

SE(de+Ndy) ff a—N—a—M dA.

SE(Mdy Ndx) = f oM | ON dA.
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Green’s theorem helps in evaluating an integral of the type f F - d7 in a non-conservative vector

field F. It gives a relationship between a line integral around a simple closed curve C and the
double integral over the plane region D bounded by this closed curve.

¥ {
] ¥=g(x)

- i'-\-\.,_ c,
\"x_______
C, D | W
_.-rf"(---

y=glx)

0 l,ll} x

Proof: We only prove for a special kind of regions to give an idea of how it is proved.

Consider the region D = {(x,y) :a < x < b, f(x) <y < g(x)}. Assume that f, g are continuous
functions. Then

b (x) b
f —dA f ’ M,dydx = f [M(x,g(x)) — M(x, f(x))]ldx
a Jfx) a

Now we compute f c Mdx by breaking C into four parts Cy, C3, C3 and Cy.
The curve Cy is givenby x = x, y = f(x), a < x < b. Thus

b
Mdx = f M(x, f(x))dx.
C a
On (; and also on Cy, the variable x is a single point. So,

Mdx = Mdx = 0.
G Cs

As x increases, C3 is traversed backward. That is, —C3 is given by x = x, y = g(x), a < x < b. So,

b
Mdx = — Mdx = —f M(x,g(x))dx.
G Cs a

Therefore, f f —dA = f Mdx. Similarly, express D using the variable of integration as y.

Then we have f 6_dA f Ndy. Next, add the two results obtained to get
c

D X
ON aM
f(Ma’x+Ndy) ff ———y dA.

The second form follows similarly. O

Example 3.15. Verify Green’s theorem for the field F = (x —y) 7+ x j, where C is the unit circle
oriented positively.
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Here, we have C : 7(t) = xi+yj=costi+sintj, 0 <t < 2n. The region D is the unit disk.

M = cost —sint, N =cost, dx = —sintdt, dy =costdt.
M,=1 M,=-1, No=1, N, =0.
Now,

2w
SE(Mdy — Ndx) = f [(cost —sint)cost — cost(—sint)]dt = «.
c 0
ff(Mx+Ny)dA = ff(l +0)dA = Areaof D = 7.
D D

2
SE(de + Ndy) = f [(cost —sint)(—sint) + cos? tldt = 2n.
C 0

ff (Ny — M,)dA = ff(l —(=1))dA =2 x Areaof D = 2r.
D D

Example 3.16. Evaluate the integral I = ﬁc xy dy + y* dx, where C is the square cut from the first
quadrant by the lines x = 1 and y = 1, with positive orientation.

Similarly,

Take M = yz, N = xy, D as the region bounded by C. Then

1 pl
I = SE(de + Ndy) = ff (Nx —M,)dA = f f (y —2y)dxdy = —1/2.
C D 0 Jo

Also, taking M = xy,and N = —y2, we have

1 1
1= SE(Mdy — Ndx) = ff (M, + Ny)dA = f f (v - 2y)dxdy = —1/2.
C D 0 0

Example 3.17. Evaluate the integral / = §C(3y — "N dx + (Tx + /1 + yHdy,

where C is the positively oriented circle x> + y*> = 9.

Take D as the disk x> + y> < 9. Then by Green’s theorem,

1=ff [(7x + 1+y4)x—(3y—€smx)y]dz4=ff(7—3)dA:367r.
D D

Example 3.18. Evaluate [ = §C x*dx + xy dy, where C is the triangle with vertices at (0, 0), (0, 1)
and (1, 0); its orientation being from (0, 0) to (1,0) to (0, 1) to (0, 0).

(0,1} y=l-x

- ¥

LR (L
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The triangle is positively oriented. Let D be the region bounded by the triangle.
Take M = x* N = xy. Then

| plex 1
I = ff[(xy)x — (x*),1dA = f f ydydx = lf (1 — x*)dx = 1
D o Jo 2 Jo 6

Example 3.19. Evaluate f c(xdy — y%dx), where C is the positively oriented square bounded by
the lines x = +1 and y = +1.

Here, M = x, N = y?, and D is the region bounded by C. By Green’s theorem,

1,1
SE(Mdy—Ndx) = ff(Mx+Ny)dA= f f (1 +2y)dxdy = 4.
C D -1J-1

Observation: Consider the formula f fD(NX - M,)dA = 9§c(M dx + Ndy).

1. Take M =0 and N = x. Then N, — M, = 1 so that

Areaof D = ff(Nx - M,)dA = 9§(de+Ndy) = 56 xdy.
D c c

2. Take M = —y and N = 0. Then N, — M, = 1 so that

AreaofD:ff(Nx—My)dA=9§(de+NdY)2—56de-
D c C

3. Combining the two above, we also have

1
Areaof D = —9§(xdy—ydx).
2 Jc

{8}

For example, to compute the area enclosed by the ellipse C : — +

X y2 .
— = 1, we parameterize C
a? b2

asx =acost, y=bsint, 0 <t < 2n. And then the area is

1 1
ESEC(xdy—ydx)—E .

Example 3.20. Evaluate ggc (y2 dx + xy dy), where C is the boundary of the semi- annular region
between the semicircles x> + y> = 1 and x> + y*> = 4 in the upper half plane.

2 2
1
[(acostbcost) — (bsint (—bsint))]dt = 3 f abdt = ab.
0

¥
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Write, in polar coordinates, D = {(r,0) : 1 <r <2, 0 < 0 < n}. Then

[[ [z - g-od)aa=- [[ yaa
ffrsm@rdrd@— f 2drf 51n9d9_—13—4

In fact, Green’s theorem can be applied to regions having holes, provided the region can be divided
into simply connected regions.

95()12 dx + xy dy)
c

The boundary C of the region D consists of two simple closed curves C; (Outer) and C; (inner).
Assume that these boundary curves are oriented so that the region D is always on the left as the
curve C is traversed.

Thus the positive direction is counterclockwise for the outer curve C; but clockwise for the inner
curve C,. Divide D into two regions D’ and D" as shown in the figure. Green’s theorem on D’ and
D" gives

f (N — M,)dA
D

f (N, — My)dA + f (N — M,)dA
D/ DN

(de+Ndy)+f (de+Ndy):f(de+Ndy).
oD"” C

oD’

This is the general version of Green’s Theorem.

Example 3.21. Show that if C is any positively oriented simple closed path that encloses the origin,

then
-y
dx + d 2,
Sgc x% +y? 2y T

No idea how to show it for every such curve. So, take a positively oriented circle C’, of radius a,
around origin that lies entirely in the region bounded by C. Let D be the annular region bounded
by C and C’. Take F (x,y) = (—yi+ x )/ (x> + y?).

v

i

. ‘

Then the positively oriented boundary of D is 0D = C U (-C’). Here, F=Mi+N j gives
Ny, =M, = (y2 —x2)/(x2 + yz)z. Green’s theorem on D gives

é(de+Ndy) +9€ (Mdx + Ndy) = ff (Ny —M,)dA = 0.
C -’ D
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Then
gg(de + Ndy) = 95 (Mdx + Ndy).
c c’

But C’ is parameterized by x(t) = acost, y(t) = asint, 0 <t < 2x. So,

2r
SE(de+Ndy):f(de+Ndy):f F(acosti+asintf)-(acosti+asint j)'dt = 2n.
c c’ 0

Generalize this example by taking the constraint N, = M, on the vector field.

3.5 Curl and Divergence of a vector field

IfF =Mi+N 7+ Pk is a vector field in R3, where the partial derivatives of the component
functions exist, then curl F is a vector field given by

Cuﬂ]?_(ap 6N)2+<8M 8P) o (8N aM)l%
9y a9z 0z Ox J ox oy’
L : . . ~ 0
Writing in operator notation, recall that grad =V = I— + j— + k—.
0x 0y 0z

Pk
ThencurlF:fo:% g—y g—z.

M N P

For example, if F=zxi+ xyz j— y? k, then curl F= -y2+x)I+xj+yz k.

N

Theorem 3.8. Let F be a vector field defined over a simply connected region D whose component
— —

functions have continuous second order partial derivatives. Then F is conservative iff curl F = 0.

Proof of =: If F is conservative, then F=V f for some f, where f is some scalar function defined
on D. Now,

PGk
crl Vi=VX (V) =% & 5| == fo)i+ (foxr— fr) J+ (fry = [r) k= 0.
fx fy [z
The converse follows from Stokes’ theorem, which we will discuss later. m]

Remember: The curl of gradient of any scalar function is zero:

curl grad f = 0.
Example 3.22. Is the vector field F=zxi+ xyz j— y? k conservative?
Here, curl F = —yQ2+x)i+xj+yzk #0.So, F is not conservative.

Example 3.23. Is the vector field F= V223 1+ 2xyz3 7+ 3xy2z% k conservative?
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Here, f is defined on R? and

7 J k (6xy%z> — 6xy?22) 1
curl F=| & & g = —Gy2-3D)] =0
y2z3 2xyzd 3xy?Z? +(2yz® -2y k

Hence F is conservative. In fact, F = grad f, where f(x,y,z) = xy2z3.

The name game: curl F measures how quickly a tiny peddle (at a point) in some fluid in a vector
field moves around itself. If curl F' = 0, then there is no rotation of such a tiny peddle.

IfF =Mi+N 7+ Pk is a vector field defined on a region, where its component functions have
first order partial derivatives, then

- - O0M ON 0P
divF=V-F=—+4+—+ —.
ox 0y 0z
The divergence is also called flux or flux density.
For example, if F=zxi+ xyz j — y* k, then div F=z+xz
The divergence of the vector field F = (X2 —y)i+ (xy — y?) jis
A —y)  dxy—y?)
+
ox dy

= 3x —2y.

Intuitively, div F measures the tendency of the fluid to diverge from the point (a, b). When the gas
(fluid) is expanding, divergence is positive; and when it is compressing, the divergence is negative.
The fluid is said to be incompressible iff div F' = 0.

Theorem 3.9. Let F = Mi+ N j 7+ Pk be a vector field defined on a simply connected region
D C R3, where M, N, P have continuous second order partial derivatives. Then div curl F =0.

0 ;0P ON 0 ,0M OP 0 ,ON oM
Proof: diveul F=V- (VX F) = — (E_0_Z>+5(8_Z_a)+8_z<a_$)
This is equal to zero, due to Clalraut s Theorem. O

Example 3.24. Does there exist a vector field G such that F=zxi+ xyz j—y?k = curl G?

div I? =z + xz # 0. Hence there is no such G.

Divergence of grad f is the Laplacian of a scalar function f since

62f A f . *f
(?y2 072’

divgrad f =V - (VF) = = V2f.

The operator V2 = a = + 662 + aa > is called the Laplacian.

Green’s Theorem - Tangent form

Let D be a simply connected region whose boundary is the simple closed curve C.
Let F = M7+ N jbe a vector field defined on D.
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Let C be parameterized by 7 (t) = x(¢) T+ y(t) J.
Let T (¢) be the unit tangent vector to C at the point (x(z), y(¢)). Then

F-T(t)ds=F -d7 = Mdx + Ndy.

The line integral of F over C is

SEF?(r)ds:SEf-d?:gg(MdHNdy).
C C

Consider f as a vector field on R3 with P = 0. Then
curl F = (Nx—My)IE:/curlI_T)-I%:Nx—My.

Thus Green’s theorem takes the form

ﬁf-?(z)dszsgf-d?:ff(curlf-lé)dA.
C C D

Green’s Theorem - Normal form

Let C be given by 7 (t) = x(¢) 7+ y(¢) j. Then

xX@ Y@

Y L X
=ol tEo "0

T = = S, =i =],
7ol [r @l

Then F -7 =[My(t) = Nx(O)/I7 @)
Now, §.F - ads= ['F - a|7"(0)di = §.(Mdy - Ndx).
Also, [f, div F dA = [[ (M + Ny)dA.

Hence Green’s theorem takes the form

95?- ﬁds:ffdideA.
C D

The tangent form of Green’s theorem is also called the circulation-curl form and the normal form
is called flux-divergence form. Both the tangent form and the normal form of Green’s theorem are
together referred to as vector forms of Green’s theorem.

3.6 Surface Area of solids of Revolution

Suppose a smooth curve is given by y = f(x), where f(x) > 0. Its arc when a < x < bis revolved
about the x-axis to generate a solid. How do we compute the area of the surface of this solid?

We follow a strategy similar to computing the volume of revolution. Partition [a, b] into n subin-
tervals [xz_1, xx]. When each Axj is small, the surface area corresponding to this subinterval is
approximately same as the area on the frustum of a right circular cone.
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If a right circular cone has base radius R and slant height ¢, then its surface area is given by 7R¢.
Now, for the frustum, we subtract the smaller cone surface area from the larger. Look at the figure.
The area of the frustum is

A= 71'7‘2({71 +f) - 7Tr1f1 = 7'([(1”2 - rl){’l +r2€].

b 6+ ¢
Using similarity of triangles, we have 2= .
r r

This gives ryly = ri€; + ri = (rp —r1)¢; = ri{. Therefore,

+
A:n@w+mazmwa\mmer:”2”.

To use this this formula on the frustum obtained on the subinterval [xj_1, xx ], we notice that the slant
height £ is approximated by /(Axz)2 + (Ayx)2 where Ax; = x;—xz—1 and Ay = f(xp)— f(x5-1).

Next, the average radius r = “52 is i (x"");f @) Thus the area of the frustum is

_5 S (xk-1) + f(xk)
=21 >

Due to MVT, we have ¢, € [x;_1, xx] such that

Ay VA2 + (A2,

Ay = f(xi) = f(xk=1) = f/cr) (xx = xk-1) = f'(ck)Axg.

So, V(Ax)? + (Ayr)? = /1 + (f'(ck))? Ax. The surface of revolution is approximated by

;Ak . f(xk—1)2+ f(xx) [+ (F(con? Axy.

Its limit as n — oo is the Riemann sum of an integral, which is the required area:

b b
S:f 27 f () 1+ (f(x))? dx = f 2y + (f7(x))2 dx.

We summarize.

1. If the arc of the curve y = f(x) for a < x < b is revolved about the x-axis, then write

ds = /1 + (f"(x))%dx. The area of the surface of the solid of revolution is given by

b
Sszﬂyds:f 2y +/1 + (f/(x))? dx.
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2. If the arc of the curve x = g(y) for ¢ < y < d is revolved about the y-axis, then write
ds = /1 + (g’(y))*dy. The area of the surface of the solid of revolution is given by

d
Sszﬂxds:f 2nx A/l + (g’ (y)%dy.

" 2
1, ¥)
: y j I

[ty
e e
X B it
|/]' — JdEa
e — P . L—_.__———j :
| 3
_ _,:-K_/J' | \
.-';- .".
circumference =2y | circumference = 2rx

t]l X

For parameterized curves, suppose the smooth curve is given by x = x(¢), y = y(¢t) fora <t < b.
If the curve is traversed exactly once while ¢ increases from a to b, then the surface area of the solid
generated by revolving the curve about the coordinate axes are as follows:

b
1. Revolution about the x-axis (y > 0): S = f 27 y(t) \/()c’(t))2 + (y'(1))% dt.

a

b
2. Revolution about the y-axis (x > 0): § = f 27 x(t) \/(x’(t))2 + (y'(2))% dt.

a

Example 3.25. Find the surface area of the solid obtained by revolving about x-axis, the arc of the
curve y =24/x, 1 < x < 2.

Since y = 2+/x, ¥/ = 1/4/x, /1 + (3/)2 = V1 + 1/x. Then

2 o172 2 1 87
S:f 2ry(1+[y1) “dx= | 272vx 1+—dx:?(3\/§—2\/§).
1 X

1

Example 3.26. The arc of the parabola y = x?, 1 < x < 2 is revolved about the y-axis. Find the
surface area of revolution.

Since y’ = 2x, the surface area is

2 2
S = fZﬂx\/1+(y’)2dx:27rf x V1 +4x2dx
1 1

2 1 (2 2
”’§'Zf \/1+4x2d(1+4x2):%[1+4x2]1:%(17\/17—5\/5)
1
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Example 3.27.

The circle of radius 1 centered at (0, 1) is revolved about Cirele y

x=cost

the x-axis. Find the surface area of the solid so generated. y=1+ sint

0=<f=2w

The circle can be parameterized as
x=cost, y=1+sint, 0 <t < 2.

Then (x'(¢))% + (¥'(¢))? = 1. Thus the area is

2 Y L\
S:f 27 (1 +sint) d = 4r. ' |/e"
0

3.7 Surface area

As we know, smooth surfaces can be given by a function such as z = f(x,y). More generally,
a smooth surface is given parametrically by x = x(u,v), y = y(u,v), z = z(u,v), where (u, v)
varies over a given parameter region. Normally, we say that the point (u, v) varies over a region in
uv-plane. The parametric equation is also written in vector form as

7= x(u, )i+ y(u,v) ]+ z(u, v)k.

Some examples:

The cone z = 4/x2 + y2, 0 < z < 1 can be parametrized by
x=rcosf, y=rsinf, z=r, where0 <r <land0 <6 < 2x.

Then its vector form is
7(r,0) =rcos@i+rsinfj+rk.

The sphere x? + y? + 72 = a®

can be parametrized by
x=acosfsing, y=asinfsing, z=acos¢ for0 <0 <2n, 0 < ¢ < .
In vector form the parametrization is
70, ¢) =acosOsind?+ asinfsing j+ acos ¢ k.
The cylinder x> + y? = @, 0 < z < 5 can be parametrized by

7(0,2) =acosOi+asindf+zk, for0 <6 < 2n.

Let S be a smooth surface given parametrically by x = x(u,v), y = y(u,v), z = z(u,v), where
(u, v) ranges over a parameter region D in the uv-plane. Suppose that § is covered exactly once as
(u, v) varies over D. For simplicity, assume that D is a rectangle. We write S in vector form:

7= x(uv)i+ y(u,v) ]+ z(u, v)k.
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Divide D into smaller rectangles R;; with the lower left corner point as P;; = (u;, v;). For simplicity,
let the partition be uniform with u-lengths as Au and v-lengths as Av. The part §;; of § that
corresponds to R;; has the corner P;; with position vector 7 (u, v ;). The tangent vectors to S at P;;
are given by

Phi= P vi) = (s vi)i+ yu i vi) j + zuk (ui, v))

> —>

ry = ry,vi) = xy(u vi)i+ yy (g, vi) j+ 2ok (ug, v;y)

The tangent plane to S is the plane that contains the two tangent vectors 7, (u;, v;) and 7, (u;, v;).
The normal to S at P;; is the vector 7, Vi) X 7, v;j). Notice that since § is assumed to be
smooth, the normal vector is non-zero.

The part S;; is a curved parallelogram on S whose sides can be approximated by the vectors 7 Au
and 7*Av. Then the area of S; j can be approximated by

Area of S;; = |7 X 73| Audv.
Then an approximation to the area of S is obtained by summing over both indices i and j:

Areaof § = »° 3" |75 x 7lAuAv.
j i

We thus define the surface area by taking the limit of the above approximated quantity. It is as
follows:

Let S be a smooth surface given parametrically by
7 = xu,v)i+ y(u,v)j+ z(u, Wk,

where (u,v) € D, a region in the uv-plane. Suppose that § is covered exactly once as (u, v) varies
over D. Then the surface area of S is given by

Areaof S = ff |7y X 7| dA
D

where 7, = x,0 + yuj+ zuk and 7, = x,0 + y, ] + 2,k.

In case, the surface S is given by the graph of a function such as z = f(x,y), where (x,y) € D,
then we take the parameters asu = x, v = y and z = z(u,v) = f(x,y). Thatis, S is given by

—
%

=ul+vj+ zk.
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We see that

Tu=i+z,k =1+ fik, T,=j+zk=j+fk
7k
TuxTy=|1 0 fi|=-fii-fij+k.
01 f

Therefore,

Areaofszff|7Mx?v|dA:ff,/f§+fy2+1dA.
D D

This formula can also be derived from the first principle as we had done for the parametric form.
For this, suppose that S is given by the equation z = f(x, y) for (x,y) € D. Divide D into smaller
rectangles R;; with area A(R;;) = AxAy. For the corner (x;, y;) in R;;, closest to the origin, let P;;
be the point (x;, y;, f(x;, y;)) on the surface. The tangent plane to § at P;; is an approximation to
S near P;;.

The area T;; of the portion of the tangent plane that lies above R;; approximates the area of §;;, the
portion of S that is directly above R;;. Therefore, we define the area of the surface S as

AS) = 1520,}52022%
i=1 j=1

Let @ and b be the vectors that start at P;; and lie along the sides of the parallelogram whose area
is T;j. Then T;; = |'d x b| However, fx(x,, y;) and f)(x;, y;) are the slopes of the tangent lines
through P;; in the directions of @ and b respectively. Therefore,

@ =Axi+ fo(xiny)Axk, b =Ayj+ fy(xiy)Ay k.

1@ X Bl = 1= fe(xiny)i— fy(xiy) J+ kI AR;)
VF2 ey + F2r ) + 1 AGR).

T;j

Summing over these T;; and taking the limit, we obtain:

Areaofssz,/f§+fy2+1dA.
D

Example 3.28. Find the surface area of the part of the surface z = x? + 2y that lies above the
triangular region in the xy-plane with vertices (0,0), (1,0) and (1, 1).
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T={(xy):0<x<1,0<y<x} f(xy) =x>+2y.

The required surface area is

1 X
ff\/(Zx)z +22+1dA = f f Vax2 +5dydx = %(27 —5V5).
T 0o Jo

Surface Area - a generalized form

Recall that for a surface S which is given by f(x, y) = z, the surface area is f f N R+ fy2 + 1dA.
D

Here, D is the rectangle on the xy-plane obtained by projecting S onto the plane.

Look at this surface as f(x,y) —z2=0.Then Vf = f, 7+ f,j-1 k. If 7 is the unit normal to the
projected rectangle, then 7 = k. Then

Vi N

vf-Pl 2
which is the integrand in the surface area formula.

Warning: Vf - p must not be ZERO.

A derivation similar to the surface area formula gives the following:

Let the surface S be given by f(x,y,z) = c. Let R be a closed bounded region which is obtained
by projecting the surface to a plane whose unit normal is 7. Suppose that V£ is continuous on R
and Vf - P # 0on R. Then

\Y
The surface area of S = f f V]
IVf-p |

Of course, whenever possible, we project onto the coordinate planes.

Example 3.29. Find the area of the surface cut from the bottom of the paraboloid x? + y> = z by
the plane z = 4.
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Surface S is given by f(x,y,z) = x> + y*> — z = 0. Project it onto xy-plane to get the region R as

x2+y2<4.Then Vf =2x7+2yj— k. |Vf] = 1 +4x2 + 4y2.
p=kIVf-Pl=1

Ris givenby x =rcosf, y =rsinf, 0 <0 < 21,0 <r < 2. So, the surface area is

2 2
ff,/1+4x2+4y2dA:f f \/1+4r2rdrd9:%(17\/ﬁ—1).
R 0 0

Example 3.30. Find the surface area of the cap cut from the hemisphere x> + y>2 +z2 =2, 7> 0
by the cylinder x? + y* = 1.

The surface projected on xy-plane gives R as the disk x> + y? < 1. The surface is f(x,y,z) = 2,
where f(x,y,z) = x> + y> + z2. Then

Vf=2xi+2yj+2zk |Vf] =24x2+y2+ 7% = 2V2.

D =k.|Vf- Pl =|2z| = 2z. Thus the surface area is

A:ff&dA:\/szz_ldA=\/§ff(2—x2—y2)‘l/2dA.
R 22 R R

Risgivenby x =rcosf,y =rsinf, 0 <0 <2x, 0<r <1.So,

0~y dr de
A:\/Ef f r = 27(2 - V2).
0 0 V2 —r2 i )
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3.8 Integrating over a surface

Suppose a function g(x, y, z) is defined over a surface S given by f(x,y,z) = c¢. To compute the
integral of g, where the area elements are taken over the surface, we look at the region R on which
this surface is defined as a function. Divide the region R into smaller rectangles AAy. Consider the
corresponding surface areas Acy.

flx,y.2)=r¢
7

LB o0 90 < AP,

"J'\‘U'k -

AAy

\%
Then Aoy, = (%

ment o, we form the sum

)kAAk. Assuming that g is nearly constant on the smaller surface frag-

IV/I
IVf- Pl

If this sum converges to a limit, then we define that limit as the integral of g over the surface S.

Zk:g(xk, Vi Z)ATE = g( Xk, Vi Zk)( )kAAk-

Let S be a surface S given by f(x,y, z) = c. Let the projection of S onto a plane with unit normal
7 be the region R. Let g(x, y, z) be defined over S. Then the surface integral of g over S is

vy
do = , Vs — dA.
ffsg ” fng(’““)|Vf-p|

Also, we write the surface differential as

\Y
do = | fl_, dA.
IVf- Pl
Warning: |V f - p| must not be ZERO.
If the surface S can be represented as a union of non-overlapping smooth surfaces S, . . ., S, then

ffsgda:ffslgd““'*LffSngdf’-

Ifg(x,y,2) =g1(x,y,2) +--- + gu(x,y, ) over the surface S, then

ffsgdo-:ffsgldo-+"'+ffsgmd0'-

Similarly, if g(x, y, z) = k h(x, y, z) holds for a constant k, over S, then

ffg(x,y, z)do = ffkh(x,y, z2)do.
S S
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Example 3.31. Integrate g(x, y, z) = xyz over the surface of the cube cut from the first octant by
the planes x = 1, y=1,and z = 1.

7
/ _r/ Side C
Side B

We integrate g over the six surfaces and add the results. As g = xyz is zero on the coordinate
planes, we need integrals on sides A, B and C.

X

Side A is the surface defined on the region R4 : 0 < x <1, 0 < y < 1 on the xy-plane. For this
surface and the region,

~

B=hk Vi=k V=1 IVf-Bl=1k- k=1, g(x,5,2) = xyzl_, = xy.

Therefore,

1 Al 1
ff Gyade = [[ are 'Vf' aa= [ [ Codxay= [2=4
Ry 0o Jo 0o 2 4
1
ffg(X,y,Z)d0'=Z:ffg(x,y,z)dcr.
B o)

Similarly,

Thus, ffgda = §
s 4

Example 3.32. Evaluate the surface integral of g(x, y, z) = x? over the unit sphere.

S can be divided into the upper hemisphere and the lower hemisphere. Let S be the upper hemisphere
f(x,v,2) :==x>+y?>+ 22 =1, z > 0. Its projection on the xy-plane is the region

R: x=rcos,y=rsing, 0<r<1,0<0<2n.

Here,
P =k IVfl =2\/m:2,
IVf- Pl =2lz] =241 = (x2 +y2) =2V1 — 72,
Hence

S |Vf pl RV] —r2
27r 1 3
r2cos? 6 r 2
dd@f cos edef dr = .
f f 1—r 0 0 V1-1r2 3
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Since the integral of x> on the upper hemisphere is equal to that on the lower hemisphere, the

2 4
required integral is 2 X ?ﬂ = ?ﬂ

Recall that when 77 = £, that is, when the region R is obtained by projecting the surface S onto the

\%

WJ]c—fl—j =41 +z22+ zg. Now, if the surface f(x,y,z) = c can be written explicitly by
b

Z = h(x,y), then the surface integral takes the form

.y, 2) do = Ly h(x,¥)) A1 + B2 + h? dx dy.
ffsg(xyZ)ff fng(xy (X, y)) /1 + hx + hy dx dy

Similarly, if the surface can be written as y = h(x, z) and R is obtained by projecting S onto the

v, 2)do = L h(x,2),2) A1 + h2 + W2 dx dz.
ffsg(xyZ)U fng(x (x,2),2) 1+ hy + h;dxdz

If the surface can be written as x = h(y, z) and R is obtained by projecting S onto the yz-plane,

then
ffsg(x,y,z) do = fﬁg(h(y,z),y, 2) 1+ h5 + hZdydz.

Example 3.33. Evaluate f fs y do, where S is the surface z = x + yz, 0<x<1,0<y<?2.

xy-plane,

xz-plane, then

Projecting the surface onto xy-plane, we obtain the region R as the rectangle
R: 0<x<1,0<y<?2.

Here, the surface is given by z = h(x, y) = x + y*. So,

I r2 13V2
do = Ji+1 22dA:ff\/§w/122dd:—.
ffsyaffRy +1+(2y) o Jo v (1 +2y=) dy dx 3

Suppose the surface S is given in a parameterized form:
P, v) = x(u,v) T+ yuv) j+ 2 v) k,

where (u, v) ranges over the region D in the uv-plane. Here, a change of variable happens. The
Jacobian is simply 7, X 7. Then

do = |7, X 7,|dA,

where 7 = X, 0+ yu j+ zu k and 7, = x, 7+ y, J + z» k. Then

fff(x,y,z)dcsz F(7Pu,v)| 7. x 7, dA.
S D
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Also this formula can directly be derived as we had done for computing surface area when a surface
is given parametrically. It is as follows.

Suppose the smooth surface S has the parametric equation in vector form as
7= x(uv)i+ y(u,v)j + z(u,v)k.

Assume that the parameter region D is a rectangle. Divide D into smaller rectangles R;; by taking
grid lengths Au and Av.

1 Au

Then the surface § is divided into corresponding patches S;;. We evaluate f at a point P;; in S;;
and form the Riemann sum ’; >;; f(P;;)AS;;, where AS;; is the area of the patch §;;. Taking limit
as the number of sub-rectangles approach oo, we obtain the surface integral of f over S as

n m
fff(x, y,z)do = lim lim ZZf(P,-j)AS,'j.
S m—-00 n—>o0 lz] J:]

However, AS;; = |7, (P;j) X 7 (P;;)|AulAv. Therefore, the surface integral is given by

fff(x,y,z)dO':fff(?(u,v))l?ux?vldA.
s D

Observe that the surface area of § is simply f fs 1 do as it should be. The relation between a surface
integral and surface area is much the same as that between a line integral and the arc length of a
curve.

Example 3.34. Evaluate f fS zdo, where S is the surface whose sides S; are given by the cylinder
x2+y? = 1, bottom S; is the disk x% + y?> < 1, z = 0, and whose top S3 is part of the plane z = 1 +x
that lies above S,.
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Sy is givenby 7 = xi+y j+ z k with x = cos 6, y = sin6, z = z, where D is given by 0 < 0 < 27
and0 < z<1+x=1+cos6. Then

|76 X 7| = |cos0i+sin6 j| = 1;

2 1+cos @ 2r 2
R R 1 0 3
[ o= [[ cimoxriaa= [T [ caeao= [T ag =
s, D o Jo 0 2 2

S, lies in the plane z = 0. Hence f sz zdo =0.
S3 lies above the unit disk and lies in the plane z = 1 + x.
Here,u = x,v = yand 7 = xi + yj + z(x, y)j. Then

|70 X Pl = |G+ 2k) X G+ 2yk)| = /22 + 22 + 1.

So,
ffzd(r = ff(1+x)w/1+z,%+z§dA
S3 D
2r 1
:f f(1+rcos9)V1+1+ordrd9:\/§n.
0 0
Hence,

fﬁzdazfﬁlzd0'+ffszzd0'+ffs3zd0':3§+\/§7r.

3.9 Surface Integral of a Vector Field

A smooth surface is called orientable iff it is possible to define a vector field of unit normal vectors
7 to the surface which varies continuously with position. Once such normal vectors are chosen, the
surface is considered an oriented surface.

n Start
n ':‘ ] i 3 n 4 »
4

i
n\ k / -*F & < @‘\l}innh 9
tn ’n f\" - dp : ]
AR .-', * £ 53 v i
Bt AR :

If the surface S is given by z = f(x, ), then we take its orientation by considering the unit normal
—fxi-fyj+k

,h+ﬁ+ﬁ

vectors 71 =

\Y
If S is a part of a level surface g(x, y, z) = ¢, then we may take 71 = %
8
. . . — N n ~ n ?u X 71,
If S is given parametrically as r (4, v) = x(u, v) i+ y(u,v) j+ z(u, v) k, then 7 = —|_, vt
r u r 1%

Sometimes we may take negative sign if it is preferred. Conventionally, the outward direction is
taken as the positive direction.
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R

Let F be a continuous vector field defined over an oriented surface S with unit normal 7. The
— —

surface integral of F over S, also called, the flux of F' across S is

ffﬁ)-ﬁdon
S

The flux is the integral of the scalar component of F along the unit normal to the surface. Thus
in a flow, the flux is the net rate at which the fluid is crossing the surface S in the chosen positive
direction.

Vg

> dA.
Vg.p |

If Sis partof alevel surface g(x, y, z) = ¢, whichis defined over the region D, then do- =

So, the flux across S is

fff.ﬁda:fffigdg ff* _=V8
s s Vgl Vg1

If S is parametrized by 7 (u, v), where D is the region in uv-plane, then
o= |7, xry|dudv. So, flux across S is

ffF ndo = ff | - ;v,ld(r ff F(7uv)) (Puxry)dudy.

Example 3.35. Find the flux of F = yz j + z% k outward through the surface S which is cut from

\J,\:

the cylinder y% + z2 = 1,z > 0 by the planes x = 0 and x = 1.

(1,-1,0) ¥

(1, 1.0)
x

S is given by g(x, y,z) := y* + z2 — 1 = 0, defined over the rectangle R = R, as in the figure.

\% .
The outward unit normal is 71 = +|V_g| =yj+zk.
8
A \Y% 24722 1
Here, 7 = k. So,dor = -8l ga ¥+ 1,
Vg - ki z z

F -fonSis vz + 22 = 2(y* + z%) = z. Therefore, outward flux through S is

- 1
ffF-ﬁdU:ffz—dA:ffdA:AreaofR:Z
S R < R

Example 3.36. Find the flux of the vector field F=zi+ y } + x k across the unit sphere.

If no direction of the normal vector is given and the surface is a closed surface, we take 7 in the
positive direction, which is directed outward.
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Using the spherical coordinates, the unit sphere § is parametrized by
7(4,6) = singcos 7 + sin psinb j + cos ¢ k,
where 0 < ¢ < mand 0 < 6 < 2 give the region D. Then
F(7(4,6)) = cos ¢+ sin ¢ sin 6 § + sin ¢ cos 6 k.

74X Ty = sin® ¢cos 01 + sin® psin 6  + sin ¢ cos 0 k.

ffﬁ-(mx?@)d(pde
D

2r n 47
f f (2 sin? ¢cospcost + sin’ ¢ sin” 6) d¢db = 3
0 0

Consequently,

ff?-ﬁ’da
s

Example 3.37. Find the surface integral of the vector field

= A ~ 27 4
F=yzi+xj-277k .
(1,0,4 Goll—

over the portion of the parabolic cylinder given by

.
P=E"

y=x%,0<x<1,0<z<4 e

We assume the positive direction of the normal 7. On e p S
the surface, we have x = x, y = x% z = z giving the /\ 2
parametrization as 7 (x,z) = xi+ x> j+ z k where D is x
givenby0 <x <1, 0<z<4.

—> 2 ~ ~ 2/\
On the surface F = x“z71+ x j— z° k. So,

fff-ﬁda = fff-(?xx?z)dxdz
N

= ff(x i+ xj-z2k)- 2xi— j)dxdz

-1
ff(2xz—x)dxdz—f Zz dz =2.
0

If §is given by z = f(x, y), then think of x, y as the parameters u and v. We have
F=M(xy)i+Nxy)j+Pxy kand 7 =xi+yj+ f(xy)k
Then 7 X 7y = (i+ fr k) X (j+ fy k) = —foi— fy ]+ k.

Therefore, the flux is

ffﬁﬁdaszf-(?xx?y)dxdy:f (~Mf, — Nfy + P) dxdy.
S D D

Example 3.38. Evaluate f fs F-h do, where F= yi+ x j+ z k and § is the boundary of the solid
enclosed by the paraboloid z = 1 — x> — y? and the plane z = 0.
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The surface S has two parts: the top portion S; and the base S;. Since S is a closed surface, we
consider its outward unit normal 7. Projections of both S| and S, on xy-plane are D, the unit disk.
By the simplified formula for the flux, we have

ffﬁ-ﬁda ff(—fo—ny+P)dxdy
M D

ff [—y(=2x) — x(=2y) + 1 — x* — y*]dxdy
D

2n 1
f f (1 +4r*cosOsind — r?) rdr do
0 0

2r
1
j; (Z+cosesin0)d9:%.

The disk $> has positive direction, when 7 = — k. Thus

ffﬁ-ﬁdcr:f (—F-l%)da:ff(—z)dxdy:o
AY) S D

sinceon D = S5, z = 0. Then

ffl?-ﬁd(r:ffl?-ﬁd0'+ffI—*")-ﬁd(r:z.
S S $ 2

3.10 Stokes’ Theorem

Consider an oriented surface with a unit normal vector 7. Call the boundary curve of S as C. The
orientation of S induces an orientation on C.

- A

We say that C is positively oriented iff whenever you walk in the positive direction of C keeping
your head pointing towards 7, S will be to your left.

Recall that Green’s theorem relates a double integral in the plane to a line integral over its boundary.
We will have a generalization of this to 3 dimensions. Write the boundary curve of a given smooth
surface as dS. The boundary is assumed to be a closed curve, positively oriented unless specified
otherwise.
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Theorem 3.10. (Stokes’ Theorem) Let S be an oriented piecewise-smooth surface that is bounded
by a simple, closed, piecewise-smooth boundary curve dS with positive orientation.

Let F = Mi+ N j+ Pk be a vector field with M, N, P having continuous partial derivatives on an
open region in space that contains S. Then

95 ﬁd?:ffcuﬂf.ﬁda.
S S

In particular, if S is a bounded region D in the xy-plane, S = C, the smooth boundary of D, then
A = k and do = dA. We obtain

éﬁ-d?szcurlf-l@a%zf (Ny — M) dx dy.
C D D

as Green’s theorem states. In fact, we can use Green’s theorem to prove Stokes’ theorem in case S
—
is the graph of a smooth function z = f(x, y) with a smooth boundary, and the vector field F is

smooth.

Proof: Let F =Mi+ N j+ Pk. We see that

95 F.d7 = Mdx + Ndy+ Pdz.
as as

And

ffcuﬂf-ﬁda = ffcurl(Mi)-ﬁdO'
S S
ffcurl (Nj)-ﬁdo'+ffcurl (Pk)-Ado.
S S

——a,rn ¥l

n
/" .- f
e r S 4
ol 1
e
| i
|

-~
3
|

|
|
|
—
I Y

We show that the M-, N- and P- components in both are equal.

Suppose S is given by z = f(x,y) for (x,y) € D. Orient D positively, i.e., counter-clock-wise.
Choose a parameterization for this. Suppose 9D is given by

F@)=x@)i+y(@)j for a<t<b.
Then 0S has the parameterization as

7)) =x@)i+y@)j+ f(x(@),y@))] for a<t<b.
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Thus

b
d
M(x,y,2) dx = f MOx(0), (). f(x(0), y(0) - dr.
0S a !

Or that
M(x,y,z)dx:f M(x,y,z)dx.
EN aD

Next, we apply Green’s theorem on the integral on the right to obtain:

M(x,y,z)dx = - ff My (x,y, f(x,y))dA.
as D

Apply Chain rule on the right side integrand to obtain

é My(X,y’Z)dx:_ff [My(x’y,f(x’)’))+Mz(x’y,f(x’y))fy] dA'
EN D
We now compute f fs curl (M 7)do . For this, notice that S has the parameterization:

F) = x() i+ y) f+ f(x,y) k.

So, 7

—fei= o]+ k .
_ LI IR R e e = | fui— £, 7+ kI Then
C

curl (M7) - A = (01 + M, j+ My k) - it = [-M_fy — M,]/c.

f fS curl (M) - i dor = - f fD [My (x, v, £ (6 )y + Mo(x,y, £ y))] fe (c dA),

since ¢ = |V(z = f(x, y)I|/IV(z = f(x,y)) - l%l. Therefore,

ffcurl (M17) - n= M(x,y,z)dx.
S as

Similarly, other components become respectively equal.
Example 3.39. Consider S as the hemisphere x* + y?> + z2 =9, z > 0. Let 1_5(7) =yi—x].

The bounding curve for S in the xy-plane is 0 given by x> + y*> =9, z = 0.

Parameterization of 85 is 7 (#) = 3cos @i+ 3sinfj for 0 < 6 < 2x. Then

2
56 F-d7 [(3sin@)i— (3cosh) j]-[(—3sinf)i+ (3cosh) jldo
as 0

2n
f [-9 sin® 6 — 9 cos? 0]do = —18x.
0
This is the line integral in Stokes’ theorem. For the surface integral, we have
cul F = (Py = N.)i+ (M. = P) j+ (Ny - My) k = -2 k.

Since on the surface g := X2+ y2 + 72— 9, we have



A \% 2x3 3
ok odo= 8L 4o dA = 2 dA,
Vg - pl 27 z

where dA is the differential in the projected area D : x% + y?> < 9. Then

ffcurlF ndo = ff—da ffﬁédA f (-2)dA = —18nx.
D

Example 3.40. Evaluate ﬁc(()c2 — ) i+4z]+x2k)-d7,
where C is the intersection of the plane z = 2 and the cone

Parameterize the cone as (Instead of usual » use p.)

7(p,0) = pcosOi+ psind i+ pk

S:r(t) = (rcos )i + (rsin@®j + rk

for0 < p<2,0<6<2n. Then

X ¥

F = (x*—y)i+4zj+ x>k

. ?pX?g 1 R i R N
i = ————=—=—(—cosfi—sinfj+ k).
|rp>< ol \/5
cul F' = (Py—N.)i+ (M. —P)j+(Ne—My)k=—-4i—2rcosfj+ k.

- 1
curl F-n = —(4cosf+ psin(260) +1)
V2
do = p\@ dp dé.

By Stokes’ theorem,

2w 2
F d7 _ffcurlF Ado = f f(4cos9+psm(29)+1)p\/§dpd9=4n.
0 0

Example 3.41. Evaluate §.(-y*i+ x j+ 2* k) - d7, where C is the curve of intersection of the
plane y + z = 2 and the cylinder x> + y*> = 1, oriented counter-clock-wise when looked from above.

F=Mi+Nj+Pk where M = —y%, N=x, P=z2
cul F = (Py— N.)i+ (M. — Py) j+ (N, — My) k = (1+2y) k.

Here, there are many surfaces with boundary C. We choose a convenient one: the surface S on the
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plane y + z = 2 with boundary as C. Its projection on the xy-plane is the disc D : x? + y*> < 1.
Then 7 = k. With g(x,y) = y + z — 2, we have A = (Vg)/|Vg| = (j+ k)/V2, Vg - P =1, and
do = V2 dA. Stokes’ theorem gives

. . 142
SEF-d? ffcurlF-ﬁdU:ff T Y2 dA
o s p V2

2r 1 2 1 2
f f (1+2rsin9)rdrd9:f (—+—sin0)d0:ﬂ.
o Jo o 2 3

Example 3.42. Compute f fs curl F - do, where F =xzi+ yzj+ xyk and S is the part of the
sphere x? + y% + z% = 4 that lies inside the cylinder x> + y> = 1 and above the xy-plane.

The boundary curve C is obtained by solving the two equations to get z> = 3. Since z > 0, we have
the curve C as x2 + y2 =1, z= V3. In vector parametric form,

C: 7(0) =cos@i+sinff+V3k for0<6<2r

Then
F(7(0) = V3cos07+ V3sin6 j+ cos@sin6 k.

By Stokes’ theorem,

2r
ffcurlF-ﬁdO' = 56F-d7:f F-77(0)de
s c 0

2

= (=V3cosfsin@ + V3sinfcos §) do = 0.
0

Stokes’ theorem can be generalized to piecewise smooth surfaces like union of sides of a polyhedra.
Here, we take the integral over the sides as the sum of integrals over each individual side.

Similarly, Stokes’ theorem can be generalized to surfaces with holes. The line integrals are to be
taken over all the curves which form the boundaries of the holes.

The surface integral over S of the normal component of curl F is equal to the sum of the line
—

integrals around all the boundary curves of the tangential component of F'. Here, the curves are

traced in the direction induced by the orientation of S.

Recall that a conservative field is one which can be expressed as a gradient of another scalar field.
In such a case, curl /' = 0. Then from Stokes’ theorem, it follows that SEC F-d7 =0.

Theorem 3.11. If curl F = 0 at each point of an open simply connected region D in space, then
on any piecewise smooth closed path C lying in D, fc F-d7 =0.
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3.11 Gauss’ Divergence Theorem

We have seen how to relate an integral of a function over a region with the integral of possibly
some other related function over the boundary of the region.

For definite integrals on intervals: fab f(t)dt = f(b) — f(a).

For a path from a point P to a point Q in R?, fc Vf-ds=f(Q)—- f(P).
For a region D in R?, ffD(Ny - M,)dA = faD F-d7.

For a surface S in R3, ffs curl F -ndo = fc f -d7.

It suggests a generalization to three dimensions; and we use the divergence of a vector field for this
purpose.

Recall that div 1_5 =V. 77) That is, the divergence of a vector field f =M(x,y,2) T+ N(x,y,2) J+
P(x,y,2) k is the scalar function div F' = M, + Ny + P,.

Our generalization is fffD div F dV = ffs F-fhdo.
Theorem 3.12. (Gauss’ Divergence Theorem) Let S be a piecewise smooth simple closed bounded
surface that encloses a solid region D in R3. Suppose S has been oriented positively by its outward

>
normals. Let F be a vector field whose component functions have continuous partial derivatives
on an open region that contains D. Then

ffﬁ-ﬁdcr:fffdwfdv.
S D

Proof: We prove this in the special case that D is a box in R3 given by D = [a, b] X [c,d] X [e, f].
Let F = Mi+ N j+Pk. Then

it i

I
B

=

([ a7 av = [[[ assave [[] asvav [[f anav
ffsf.ﬁda:ffsM.ﬁdaJrffsN.ﬁdwrffSp.ﬁda.

We prove that the respective components are equal. We thus consider only the 7-component. That
e
is, we take F' = M 7 and prove the divergence theorem in this case.
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Back face §;, —
(x=a)

€ 4

Front face §, 7

(x=b) ,

a e ¢
b iy N N
e I e 0

X il

So, let F = M. The solid has six faces. The surface integral over § is the sum of integrals over
these faces. A simplification occurs. F = Miwehave F - j=F-k=0.Thatis, F is orthogonal
to the normals of the top, bottom, and the two side faces.

Writing the remaining faces as Sy and S, we have

fff-ﬁda:ff F-ﬁda+ff F - ido.
S Sy Sy

Parameterization of these faces give
Se: T =bi+yj+zk Sp:

forc <y <d, e <z < f.The outward normal to Sy is 7, and to S is —17. Then

N f ord f pd
ffF-ﬁda f f M(b,y,z)dydz—f f M(a,y,z)dydz
S e c e c

f d
f f [M(b’y’Z)_M(a’y’Z)]dde

f p~d b
f f f Mx(-x’yaz)dXdde
e C a
fff div F dV,
D

since F = Mi= div F =divM = M,. O

Example 3.43. Consider the field F=xi+ y 7+ z k over the sphere S : x>+ y> + 72 = d°.

The outer unit normal to S computed from V f, with f = x> + y?> + 72 — a2, is

2xi+yj+zk) 1 R
PRI T k1. N TIN5

VA2 +y? + 22)

Hence on the given surface,

N 1
F-ido=~-x*+y’+75)do =ado.
a

ffﬁ ﬁd(f:ffada:axAreaofS:47ra3.
S S
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Now, for the triple integral,

_0x 0y 0z

di F M, + Ny + P, + =+ — =3.
v T ox "y oz

Therefore, with D as the ball bounded by S,

fffdivfdv:fff3dV:3xVolumeofD:4na3.
D D

Example 3.44. Find the outward flux of the vector field xy + yz j + zx k through the surface cut
from the first octant by the planes x =1, y=1and z = 1.

The solid D is a cube having six faces. Call the surface of the cube as S. Instead of computing the
surface integral, we use Divergence theorem.

With F = xy?+ yz ]+ zx k, we have

- 0 0 0
xy  Oyz O

div F = =y+z+x.
v ox ay 0z yramy

Therefore the required flux is

1,1 pl
— — 3
ffF-ﬁdaszfdidesz f f (y+z+x)dxdydz = =.
s D o Jo Jo 2

Example 3.45. Evaluate ffs F-h do, where F = xyi+y>+ s 7+sin(xy) k and § is the surface
of the solid D bounded by the parabolic cylinder z = 1 — x2, and the planes y = 0, z = 0, and

y+z=2.
(0.0, lz-l P

| ) i -
Uabesd (0,2,01y
_\/ \

y=1-2?
S has four sides. Instead of computing the surface integrals, we use Divergence theorem. We have
div F = (xy)e + (32 + &%), + (sin(xy)): = 3y.

AndDisgivenby—lesl,O§z§1—x2,0§y§2—z,

[[f o 7= [[f e
fflezz3ydydzdx_ff1x(2 2,

184

_EL[(X +1)° - 8]dx = <~

Therefore,

ffﬁﬁda
S
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Example 3.46. Find the outward flux of the vector field F across the boundary of the solid D
xi+yj+zk

where I? =
(x2 + y2 + 72)32

and D : 0<a®<x*>+y>+z72 < b’

d - N
Write p = \/x2+y2+z2.Thend—p =X With F=Mi+ N j+ Pk, we have
X p

A(xp3) 3 40p 1 3x?
M, = = -3 =
! 0x p P 9x P
3y? 1 3z
Similarly, Ny = — — Ls and P, = — — is
p p p p
- 3 3x?+3y?+37?
Thendiv F = — - i )75 * =0,
p p

Thus the required flux is f f fD div FdV = 0.

In fact, flux through the inner surface and flux through the outer surface are in opposite directions.
Are their magnitudes equal?

— 1 N
Example 3.47. Consider the vector field F' = —(xi+yj+zk) on the sphere § of radius a
a
centered at the origin. Show that the flux through § is a constant.

We compute the flux directly. Let S be the sphere x? + y? + z2 = a2 for any a > 0. The gradient

computed from f = x? + y* + z> — a® gives the outward unit normal to S as

2xi+2yj+2zk  xi+yj+zk
Va4x2 +4y2 + 472 a -

il =

Therefore, on the sphere S with F =(xi+yj+z I’Ac)/(x2 + y2 + 7232,

> . xP+y+ 2 1
F-n:—4:—2.
a a

- 1 1
ffF-ﬁdU:ff—de':—ZXAreaofS:47r.
S sa a

Then
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3.12 Review Problems

Problem 1: Compute the line integral of the vector function x3 7+ 3zy? j— x?y k along the straight
line segment L from the point (3,2, 1) to (0,0,0).

The parametric equation of the line segment joining these points is
x=-3t,y=-2t, z=—-tfor -1 <t <0.
The derivatives of these with respect to ¢ are
Xp=-3, y,=-2, 7, =—1.
Then the required line integral is
0 -87
1

f ¥} dx+3zy*dy-x*ydz = f [(=31)%(=3) + 3(=1) (=21)*(=2) = (=31)*(=21)(=1)] di = ——.
L _

Problem 2: Let C be the portion of the curve y = x> from (1, 1) to (2, 8). Compute
L(6x2y dx + 10xy2 dy).
C is parametrized as x =, y = 3, 1<t<2. Thenx, =1, Vv = 372. The line integral is
fc(6x2y dx + 10xy* dy) = flz(sﬁ -1+ 10¢7 - 3¢%) dr = 3132.

Problem 3: Evaluate f C(—y i—xyJ)-d7, where C is the circular arc joining (1,0) to (0,1) of a
circle centered at the origin.

Prameterize C by 7 (6) = cos 81+ sin6 j, for 0 < 6 < /2. Thus x(8) = cos 6, y(0) = sin6. Then

fﬁd?
C

/2 -
f F(7(6))-7'(0)do
0

/2
f (—sinf7—cosfsinf j) - (—sinfi+ cosbj)db
0

n/2
f (sin2 6 — cos® @ sin 0)do =
0

1N
W | —

Problem 4: Let F = 5zi + xyj+x*zk. Is fc F -d7 the same if Cis a curve joining (0,0, 0) to
(1,1, 1), given by
(@ 7)) =ti+tj+thkfor0<t<1; O)P@) =ti+tj+2kfor0<t<1?

() F(F() =5t1+127+13k.d7(t) = i+ j+ k. Thus

.7 : 2, .3 37
fFodr:f St+t7+17)dt = —.
c 0 12

(b) F(F(t) =5ti+ 127+ 3k d7(t) = i+ j+2tk. Thus

.7 : 2,42 5 28
fF-dr:f(5t+t+2t)dt:—.
c 0 12
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As we see the line integral is not path-independent.

Problem 5: Let D be a simply connected region containing a smooth curve C from (0,0, 0) to
(1,1, 1). Evaluate fc(2xdx +2ydy +4zdz).

F =2xi+2yj+4zk = Vf, where f = x? + y? + 222. Therefore, the line integral is independent
of path C. Hence its value is f(1,1,1) — £(0,0,0) = 4.

Problem 6: Evaluate ffs(7xi— Z l%) - fido over the surface S @ x% + y*> + 72 = 4.

div F = div (7xi—zk) =7 - 1 = 6. So, the integral = 6 x volume of S = 64x.

Problem 7: Evaluate / = fc (_3)x2 dx + 2yz dy + y* dz), where C is a smooth curve joining (0, 1,2)
to (1, —1,7) by showing that F' has a potential.

In order that F = V f, we should have

fe=M=3x fy=N=2yz f.=P=y"
To obtain such a possible f, we use integration and differentiation:
f=xX 4802 fr=g =2z g=yz+h()

f=Y+H (@)=Y, W@ =0, h(z)=0, say.
Then f = X3+ yzz. We verify that F = V f. Therefore, I = F(l, -1,7) - f(0,1,2) = 6.

Problem 8: Determine whether / = [.(2xyz* dx + (x*z* +z cos(yz)) dy + (2x*yz + y cos(yz) dz)
is independent of path. Evaluate I, where C is the line segment joining (0,0, 1) to (1, 7/4,2).

Here, M = 2xyz%, N = x?z? + zcos(yz), P = 2x*yz + ycos(yz). Then
M, =2xz* = Ny, N, =2x%z+cos(yz) — yzsin(yz) = Py, Py =4dxyz = M,.

Hence the line integral is independent of path. We find f such that F=V f- Now,
f= dey = x°2%y +sin(yz) + g(x,2), fx =2x2°y + g = M = 2xyz".

g =0, g = h(z), f.=2x"yz+ycos(yz) + I'(z) = P = 2x’yz + ycos(yz), H'(z) = 0.
Taking h(z) = 0, we get f(x,y,z) = xzyz2 + sin(yz) as a possible potential. Then

I=f(1,n/4,2) - f(0,0,1) =m + 1.

Problem 9: Use Green’s theorem to compute the area of the region
(a) bounded by the ellipse x2/a® + y2 /b = 1.
(b) bounded by the cardioid r = a(1 —cos8) for 0 < 8 < 2.
(a) Recall: Green’s theorem gave Area of D = 3 ¢, (xdy — y dx). The ellipse x*/a* + y*/b* = 1
has the parameterization x(¢) = acost, y = bsint for 0 < ¢t < 2x. Then its area is
2r 2r

— (xy' —yx')dt = = (abcos®t — (—absin®t)) dt = nab.
2 Jo 2 Jo
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(b) In polar form, x = rcos#, y = rsinf. Then dx = cos@dr —sinfdf and dy = sinfdr +
r cos 6 df. Consequently the area is equal to

2 2r

1 1 a 3n
= (xdy—ydx):—é r2do = — (1—0059)2d9:—a2.
2 Jop 2 Jap 2 Jo 2

Problem 10: Compute the flux of the water through the parabolic cylinder S : y = x%, 0 < x < 2,
0 < z < 3 if the velocity vector F = 3727+ 6 ] + 6zx k, speed being measured in m/sec.

2

Write x =u, z=v. Wehave y = x~ = u®. The surface is

S: P=ui—-u?j+vk forO<u<2 0<v<3.
Then
N=7TuxTy=0+2)x k=2ui-}

On S,
F(7(u,v)) =3v?1+6]+6uvk.

Hence F (7 (u,v)) - 7@ = 6uv® — 6. Consequently the flux is

3 2 3
ffF-ﬁ’da:f f(6uv2—6)dudv:f (12v> = 12) dv = 72 m’/sec.
S 0 0 0

Problem 11: Find the area of the portion of the surface of the cylinder x> + y?> = @ which is cut

out by the cylinder x? + z> = a?.

One-eighth of the required surface area is in the first octant. This portion of the surface has the
equation y = Va2 — x2. This gives

dy X dy x2 a
= 2 =0 > Jl+yi+yi =4[l + = :
ox  NpZ_ 2 0z Yo a2 -x2  \p@Z_ 2

The region of integration is a quarter of a disk given by

Therefore, the required area is

a az—xz a
8><f [f Ldz]dxzsaf dx = 84>
0 0 a? — x? 0

Problem 12: A torus is generated by rotating a circle C about a straight line L in space so that
C does not intersect or touch L. If L is the z-axis and C has radius b and its centre has distance
a (> b) from L, then compute the surface area of the torus.

The surface S of the torus is represented by

7(u,v) = (a+bcosv)cosui+ (a+bcosv) sinu j+ bsiny k.
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Here, v is the angle in describing the circle and u is the angle of rotation. Thus 0 < u,v < 2n.
Projection onto the uv-plane shows that

7w) = —(a+bcosv)sinui+ (a+bcosv)cosu
7(v) = —bsinvcosui—bsinvsinu j+bcosv k
Tw)x 7(v) = b(a+bcosv)(cosucosvi+sinucosv J+sinv k)

Hence |7 (1) X 7 (v)| = b(a + bcosv) and the area is

2r 2r
ﬂ |7 (u) x P(v)|dudv = f f b(a + bcosv) dudv = 4n’ab.
c o Jo

Problem 13: Let S be the closed surface consisting of the cylinder x> + y?> = a%, 0 < z < b and
the circular disks x> + y> < a? one with z = 0 and the other with z = b. By transforming to a triple
integral evaluate / = ffs(x3 dy dz + x>y dz dx + x*z dx dy).

77) =Mi+Nj+ Pl%, where M = x3, N = xzy, P = x%z. Then div F = 5x2. Let D be the solid
bounded by S. In cylindrical coordinates, using Gauss’ divergence theorem,

b a 2 5
I = fff 5x2dV = 5f f f FZCOSZQI’dI’deZ = Zna*b.
D o Jo Jo 4

Problem 14: Compute the flux of the vector field F = (22 + xy?) T+ cos(x +2) f+ (e — zy?) k
through the boundary of the surface given in the following figure:

0 0 0
div (F) = a(z2 +xy%) + 7 cos(x +z) + a—z(e—y —zy?) =0.

Let D be the region enclosed by S. By the Divergence theorem,

Flux through S = f f f div F dV = 0.
D

Problem 15: Let a closed smooth surface S be such that any straight line parallel to the z-axis cuts
it in no more than two points. Let n3 denote the z-component of the unit outward normal 7 to the
surface S. Then what is f fs znz do?

In this case, S has an upper part and a lower part. Suppose they are given, respectively, by the
equations

2= fulx,y), z= fp(x,y).
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Let D be the projection of S on the xy-plane. Then

ffzme':fffu(x,y)dA—fffb(x,y)dA.
S D D

This is equal to the volume of the solid B bounded by S.
Alternatively, take F =zk. Thendiv F = 1. By the Divergence theorem,

ffzmdaszl?-ﬁdazfffdideVzvolumeofB.
S S B

Problem 16: Prove that the integral of the Laplacian over a planar region is the same as the
integral, over the boundary curve, of the directional derivative in the direction of the unit normal
to the boundary curve.

We rephrase: Let f(x, y) be a function defined over a simply connected region D in the xy-plane.
Let C be the boundary curve of D. Denote by D, f(x, y) the directional derivative of f in the
direction of the unit outer normal 7 to C. Show that ffD (frxx + fyy)dA = fC D, f ds.

Let 0 be the angle between 7 and 7, the x-axis. Then 7 = cos 87+ sin @ j. If  is the angle between
the tangent line to C and the x-axis, then cos @ = —sin 6 and sin @ = cos 6. Then

dx =cosads = —sinfds and dy = sina ds = cos 0 ds.
Consequently, the directional derivative D,, f is given by
Dyf(x.y) = (ful+ fy]) <A = fecosd + fysing.

—_>
For the vector function F' = f, 7+ f, j, by Green’s theorem, we obtain

ff(fxx+fyy)dz4=ffxdy—fydx:f(fxcost9+fysin6)ds:fands.
D c c C

Problem 17: Let f and g be functions with continuous partial derivatives up to second order on
a region D in space, which has a smooth boundary dD. Denote by Af and Ag their Laplacians.
Prove the Green’s formula:

@rf - fagav = ([ (e2L - r%8) 4o
ff]) ffaD on on

Let F =Mi+N j+P k. Gauss’ divergence theorem says that

fffdivfdv:ff F - ido.
D oD

Suppose the unit normal 7 has the components a, b, ¢ in the x, y, z-directions, respectively. Then

ff (Mx+Ny+PZ)dV:ff (aM + bN + cP) do.
D aD

Substitute M = g fx — fgx, N =gfy — f&y, P=gf:— fg.- Then
Mx+Ny+Pz:g(fxx+fyy+fzz)_f(gxx+gyy+gzz):gAf_ng-

af

g
on i

aM +bN +cP=g(afc+bfy,+cf;)— f(ag. +bgy,+cg;) =g 37

-f

Now Green’s formula follows from Gauss’ divergence theorem.

119



Bibliography

[1] Advanced Engineering Mathematics, 10th Ed., E. Kreyszig, John Willey & Sons, 2010.

[2] Basic Multivariable Calculus, J.E. Marsden, A.J. Tromba, A. Weinstein, Springer Verlag,
1993.

[3] Differential and Integral Calculus, Vol. I and II, N. Piskunov, Mir Publishers, 1974.
[4] Calculus, G. Strang, Wellesley-Cambridge Press, 2010.

[5] Thomas Calculus, G.B. Thomas, Jr, M.D. Weir, J.R. Hass, Pearson, 2009.

120



Appendix A

One Variable Summary

This appendix is devoted to summarizing some results and formulas from calculus of functions
of one real variable that we may use in the class. For details, see Functions of One Variable - A
Survival Guide.

A.1 Graphs of Functions

x ifx>0
The absolute value of x € R is defined as |x| =
—x ifx<0

Thus |x| = Vx2. And | — a| = a or a > 0; |x — y| is the distance between real numbers x and y.
Moreover, if a, b € R, then

| —al =lal, labl = lal|b],

%|:%ifb¢0, la+ bl < lal +[bl, |lal - [b]| < |a—bl.

Let x € R and let @ > 0. The following are true:

1. |x| = aiff x = +a.

[\

x| <aiff —a < x < aiff x € (—a, a).

W

x| €aiff —a < x <aiff x € [—a,a].
4. |x| >aiff —a<xorx >aiff x € (—o0,—a) U (a,0) iff x e R — [—a, a].
5. x| >aiff —a < xorx > aiff x € (—o0,—a] U [a, ) iff x e R — (-a,a).

Therefore, fora e R,6 >0, |x—a|<diff a-d<x<a+§6.

The following statements are useful in proving equalities from inequalities:

Leta, b € R.
1. If foreach € > 0, |a| < €, thena = 0.

2. Ifforeache >0, a < b+ ¢, thena < b.
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Graphs of some known functions including | - |, are as follows:

x ifx>0 .
L. y=Ix|= - :
—x ifx<0 ¥=d
-x ifx<0 3
R v = f{x
2.y={x2 ifo<x<l = v
y=1
1 ifx>1 I s
B — u| 2 *
; o x if0<x<1
. = X) = i1, 1)
Y 2-x ifl<x<?2 £

4. y=|x] =nifn < x <n+1forn e N. Itis the largest
integer less than or equal to x.

The largest integer function or the floor function.

Sometimes we write | | as[ ].

5. y=lx]=n+1lifn<x <n+1forneN.Itis the
smallest integer greater than or equal to x. N

The smallest integer function or the ceiling function. i

6. The power function y = x" for n = 1,2, 3,4, 5 look like
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7. The power function y = x" for n = —1 and n = -2 look like

Domain: x + ()
Range: v+ 0 0

Domain: x # 0
Range: y =10

8. The graphs of the power function y = x“ for a = %, %, % and a = % are

y 7
y = /E
1 ¥ Vr
1 /—'
! x ! x
0 1 0 1
Domain: (0 = xr << o Domain: —o0 < x << o0
Range: 0=y<@= Range: -—oo<<y <=
%
¥
3/2
32
2
y=x"
| \/
! % ! X
0 1 0 1
Domain: (0 = x =< == Domain: = << x < =
Range: O0=y=< Range: (O0=y<w

9. Polynomial functions are y = f(x) = ap+a;x+ arx*+- - - a,x™ for some n € NU{0}. Here, the
coeflicients of powers of x are some given real numbers ay, . . ., a, and a,, # 0. The highest power
n in the polynomial is called the degree of the polynomial. Graphs of some polynomial functions
are as follows:

=
ey 3. _
¥ R T I L | y={x—2x+ 1)V(x 1

X

—4F —12f
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’%, where p(x) and g(x) are

polynomials, may or may not be of the same degree. Graphs of some rational functions are as
follows:

10. A rational function is a ratio of two polynomials; f(x) =

I I I I I
-4 - ll 2 4 =5 0 ] 10 2
/ | J ]
Jd
=% NOTTO SCALE
4

11. Algebraic functions are obtained by adding subtracting, multiplying, dividing or taking roots
of polynomial functions. Rational functions are special cases of algebraic functions. Some graphs
of alhebraic functions:

13 y y = x(l — 0"
\ _\=.\|' (x —4) .

ey

12. Trigonometric functions come from the ratios of sides of a right angled triangle. The angles
are measured in radian. The trigonometric functions have a period. That is, f(x + p) = f(x)
happens for some p > 0. The period of f(x) is the minimum of such p. The period for sin x is 2.

The functions cos x and sec x are even functions and all others are odd functions. Recall that f(x)
is even if f(—x) = f(x) and it is odd if f(—x) = —f(x) for each x in the domain of the function.
Some of the useful inequalities are

—|x| <sinx < |x| forall x € R.

—1 <sinx, cosx <1 forall x e R.
0<1-cosx < |x| forall x € R.
sinx < x <tanx forall x € (0,7/2).

In fact, if x # 0O, then sin x < |x|.

Graphs of the trigonomaetric functions are as follows:
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y=lanx

¥ =cosx / v = sinx /‘

RIS e
_Hi_;:_
-

-

I.
—wﬁ—__\\:

3

|

E)

x
-7 Mo X & Az 2a - 7
1 2 & | 2 2
| | |
Domain: —= =< x < = Domain: —= < x < = Domain: x I_TZ—'_, =+ '%T'n— T
Range: -1=y=1 Range: -1=y=1] g R =
Period: 2w Period: 2w P.mg:} PSR
(a) (b) eriod: o {©)
Y b ¥
y=sccx ¥ =CSCXx ¥y = colx
J 1 U ‘ 1
1 x 1 | I 5 | | =
Ik ™ 3m - 7w 0| 37 Xm - _aYP| T\F
m m_ 2 m T\[ 2

Domain: x #1%, * jm—. i Domain: x # 0, *a, *2m, ... Domain: x # (0, *a, *27, . . .

= < Range: v=-landyv =1 Range: -0y <<
Range: y=-landy=1 e - ' jod: -

; Period: 2w Period: o

Period: 2w

(dy (e) (f)

13. Exponential functions are in the form y = a* for some a > 0 and a # 1. All exponential
functions have domain (—oo, c0) and co-domain (0, c0). They never assume the value 0. Graphs of
some exponential functions:

¥ ¥

¥ = 10" y=10"

12+ 12+
10+ 10+
8 8
] y=3F 6F
4
Al S e
d y=2""
mm— I | ” | | ———
-1 =05 0 0.5 1 =1 =05 0 0.5 1

14. Logarithmic functions are inverse of exponential functions. That is,
a'°%* =log,(a*) = x. Some examples:

.1'-

In- 4
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15. Trigonometric inverse functions:
Domain: -1 = x =1 Domain: -1 = = 1
Range: - Z =4y=T Range: b= vy=am
£ 5 : 3 £
v v
T .
5 —
¥ = sin x ¥ = CO8 X
| | - E
-1 1 ! \
!— s :—'_ ! L. X
5 -1 1
fa) (b)
Domain; —ee << x << s Domain: x=-lorx=1
Range: - T <y T ange: =y=my+ 2
inge = 3 3 Range: 0=y e 3
¥ b
_______ W ST R Tk -
2 v = tan"'x Ll HROGSE
1 I I I B ookt e
-2 -1 1 2 e
g ) /
_______ L S L ! ¥
=2 1 1 2
{©) (d)
Domain: r=-lorx =1 Domain: —so < x < oa
Range: —T_|—'_ =y= :—'_ y#10 Range: l<y<wmw
¥ 3
| T
2 ¥ = Cs¢ 'I_[' ________ R TR
\ y=col”x
x -

(1)

Functions that are not algebraic are called transcendental functions. Trigonometric functions,

exponential functions, logarithmic functions and inverse trigonometric functions are examples of
transcendental functions.

A.2 Concepts and Facts

Leta < c < b.Let f: D — R be a function whose domain D contains the union (a, c) U (c, b).
Let ¢ € R. We say that the limit of f(x) as x approaches c is ¢ and write it as

lim f(x) = ¢

iff for each € > 0, there exists a 6 > 0 such that for each x € (a,c¢) U (¢, b) with 0 < |x — ¢| < 6,
we have |f(x) —{| < €.
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{+ ¢

c—90 c+9

Limit Properties: Let k be a constant; or a constant function.

1.

2.

10.

limk:k and lim_x:c.

lim(f(x) £ g(x)) = lim f(x) £ lim g(x).

lim kf(x) = k lim £ (x).
. jlci_)ng_[f(X)g(X)] = ,lgﬁ f(x) )lci_{rgg(X)-

- lim{£(0/g(0)] = [1im £(0] / [lim g(x)] if lim g(x) # 0,

lim(f(x))" = (lim f(x))" if taking powers are meaningful.

. lim f(x) is a unique real number if it exists.
X—C

. Iflimg(x) =0, and lim[f(x)/g(x)] exists, then lim f(x) = 0.

(Sandwich) Let f, g, h be functions whose domain include (a,c) U (¢, b) for a < ¢ < b.
Suppose that g(x) < f(x) < h(x) forall x € (a,c) U (¢, b). If lim g(x) = € = lim h(x), then
X—C X—C

lim f(x) = ¢.

(Domination) Let f, g be functions whose domains include (a,c) U (¢, b) for a < ¢ < b.
Suppose that both lim f(x) and lim g(x) exist. If f(x) < g(x) for all x € (a,c) U (¢, b),
then lim f(x) < lim g(x).

X—C X—C

Let I be (a, o) or [a, o) for some a € R. Let f : I — R. Let £ € R. We say that lim f(x) =¢
X—00

if for each € > 0, there exists an m > 0 such that if x is any real number greater then m, then

lf(x)—£| <e.

Let f(x) have a domain containing (a, c¢). Then lim f(x) = oo iff for each m > 0, there exists a
X—c—

¢ > 0 such that for every x with ¢ — 6 < x < ¢, we have f(x) > m.

Thatis, lim f(x) = oo iff, “as x increases to ¢, f(x) increases without bound”.
xX—c—

Let f : D — R be a function. Let ¢ be an interior point of D. We say that f(x) is continuous at ¢
if lim f(x) = f(a).
If D = [a,b)or D = [a, b], then f(x) is called continuous at the left end-point a if 1irn+ f(x) = f(a).

If D = (a,b]or D = [a, b], then f(x) is called continuous at the right end-point b if lir? f(x) = f(a).
x—b—
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f(x) is called continuous if it is continuous at each point of its domain D.

The sum, multiplication by a constant, and product of continuous functions is continuous. In
addition, the following are some properties of continuous functions:

1. Let f(x) be continuous at x = ¢, where the domain of f(x) includes a neighborhood of c. If
f(c) > 0, then there exists a neighborhood (¢ — 6, ¢ + ¢) such that f(x) > 0 for each point
x€(c—06,c+9).

2. Let f(x) be a continuous function, whose domain contains [a, b] for a < b. Then there exist
a, B € Rsuchthat {f(x) : x € [a, b]} = [, B].

3. (Extreme Value Theorem) Let f(x) be continuous on a closed bounded interval [a, b]. Then
there exist numbers ¢, d € [a, b] such that f(c) < f(x) < f(d) for each x € [a, b].

4. (Intermediate Value Theorem) Let f(x) be continuous on a closed bounded interval [a, b].
Let d be a number between f(a) and f(b). Then there exists ¢ € [a, b] such that f(c) = d.

Let f(x) be a function whose domain includes an open interval (a, b). Let ¢ € (a, b). If the limit

y flc+h)—f(c)
1m
h—0 h

exists, we say that f(x) is differentiable at x = c¢; and we write the limit as f’(c) and call it the
derivative of f(x) at x = c¢. If f’(c) exists for each ¢ € (a, b), then we write f’(x) as %.

Also, derivative of f defined on a closed interval [a, b] at the end-point a is taken as the left hand
derivative, where in the defining limit of the derivative we take & — a — . Similarly, derivative at b

is taken as the limit of that ratio for 4 — 0 + .

Let f(x) be a function defined on an interval /.

We say that f(x) is increasing on [ if forall s <t e I, f(s) < f(1).

Similarly, we say that f(x) is decreasing on [ if forall s <t € I, f(s) > f(¢).
A moneotonic function on [ is one which either increases on I or decreases on /.

The sum, multiplication by a constant, and product of differentiable functions is differentiable. In
addition, the following are some properties of differentiable functions:

1. Each function differentiable at x = ¢ is continuous at x = c.

2. Derivatives of Sum, product etc. are respectives equal to sum, product etc of derivatives.

3. (Chain Rule) dg(i;gx)) = dil(ff((xx))) . dj;(xx).

4. (Rolle’s Theorem) Suppose that f : [a, b] — R is continuous, f(x) is differentiable on (a, b),
and f(a) = f(b). Then f’(c) = 0 for some ¢ € (a, b).

5. (Mean value Theorem) Suppose that f : [a, b] — R is continuous and f(x) is differentiable
on (a, b). Then there exists ¢ € (a, b) such that f(b) — f(a) = f'(c)(b - a).

6. Let I be an interval containing at least two points. Let f : I — R be differentiable. If
f'(x) = 0 for each x € I, iff f(x) is a constant function.
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7. (Cauchy Mean Value Theorem) Let f(x) and g(x) be continuous on [a, b] and differentiable

’ : f'©) _ f)-f(a)
on (a, b). If g’(x) # 0 on (a, b), then there exists ¢ € (a, b) such that 7O = gh=s@

8. (L’Hospital’s Rule) Let f(x) and g(x) be differentiable on a neighborhood of a point x = a.

Suppose f(a) = g(a) = 0but g(x) # 0, g’(x) # 0 in the deleted neighborhood of x = a. If
1) f @)

exists, then lim ——= = .
x—a g'(x x—oa g(x)  x—a g'(x)

9. Let f(x) be continuous on [a, b] and differentiable on (a, b).

(a) If f/(x) > 0 on (a, b), then f(x) is increasing on [a, b].
(b) If f’(x) < 0on (a,b), then f(x) is decreasing on [a, b].

Let a function f(x) have domain D. The function f(x) has a local maximum at a point d € D if
f(x) < f(d) for every x in some neighborhood of d contained in D. in such a case, we also say
that the point x = d is a point of local maximum of the function f(x).

Similarly, f(x) has an local minimum at b € D if f(b) < f(x) for every x in some neighborhood
of b contained in D. In this case, we say that the point x = b is a point of local minimum of the
function f(x).

The points of local maximum and local minimum are commonly referred to as local extremum
points; and the function is said to have local extrema at those points.

Let f(x) have domain D. A point ¢ € D is called a critical point of f(x) if ¢ is not an interior
point of D, or if f(x) is not differentiable at x = ¢, or if f’(c) = 0.

If f(x) has an extremum at x = ¢, then c is a critical point of f(x).

Test for Local Extrema:

Let ¢ be an interior point of the domain of f(x) with f"(c) = 0.
f’(x) changes sign from + to — at x = ¢ iff x = ¢ is a point of local maximum of f(x).
If f”(c) <0, then x = ¢ is a point of local maximum of f(x).
f’(x) changes sign from — to + at x = ¢ iff x = ¢ is a point of local minimum of f(x).
If f”(c) > 0, then x = ¢ is a point of local minimum of f(x).
Let x = ¢ be a left end-point of the domain of f(x).
f'(x) < 0 on the immediate right of x = c iff x = ¢ is a point of local maximum of f(x).
f'(x) > 0 on the immediate right of x = c iff x = ¢ is a point of local minimum of f(x).
Let x = ¢ be a right end-point of the domain of f(x).
f(x) > 0 on the immediate left of x = ¢ iff x = ¢ is a point of local maximum of f(x).

f'(x) < 0 on the left of x = c iff x = ¢ is a point of local minimum of f(x).
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The graph of a function y = f(x) is concave up on an open interval [ if f’(x) is increasing on /.
The graph of y = f(x) is concave down on an open interval [ if f’(x) is decreasing on /.
A point of inflection is a point where y = f(x) has a tangent and the concavity changes.

Second derivative test for concavity:

Let y = f(x) be twice differentiable on an interval 1.
If f”(x) > 0 on [, then the graph of y = f(x) is concave up over /.
If f”(x) < 0 on [, then the graph of y = f(x) is concave down over /.

If f”(x) is positive on one side of x = ¢ and negative on the other side, then the point
(¢, f(c)) on the graph of y = f(x) is a point of inflection.

Let f : [a,b] — R. Divide [a, b] into smaller sub-intervals by choosing the break points as
a=xp<x1<...<x,=b.

The set P = {xo, X1, ..., x,} is called a partition of [a, b].

Now P divides [a, b] into n sub-intervals: [xg, x1],-- -, [x,-1, x,]. Here, the kth sub-interval is
[xx-1, xk]. The area under the curve y = f(x) raised over the kth sub-interval is approximated by
f(cx)(xr — xgk—1) for some choice of the point ¢ € [xk—1, Xk].

Write the choice points (also called sample points) as a set C = {cy, ..., c,}.

Then the Riemann sum

S(f,P,C) = )| flew) Gk = xe-1)
k=1

is an approximation to the whole area raised over [a, b] and lying between the curve y = f(x) and
the x-axis. By taking the norm of the partition as || P|| = ml?x(xk — Xk-1), we would say that when

the norm of the partition approaches 0, the Riemann sum would approach the required area. Thus,
we define the area of the region bounded by the lines x = a, x = b, y =0,and y = f(x) as

Zf(ck)(xk — Xk-1)

||P|| -0

provided that this limit exists. We define this limit (which is the mentioned area here) as the definite
integral of f on the interval [a, b]. That is,

b n
fa fde= Hﬂo; Flew) (e = xp1).

Let f : [a, b] — R be a continuous function. Then fa b f(x) dx exists.

The definite integral has the following properties:
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(Properties of Definite Integral)

1.

Let f(x) have domain [a, b]. Let ¢ € (a,b). Then f(x) is integrable on [a, b] iff f(x) is
integrable on both [a, c] and [c, b]. In this case,

b c b
ff(x)dx:f f(x)dx+f f(x)dx.

. Let f(x) and g(x) be integrable on [a, b]. Then (f + g)(x) is integrable on [a, b] and

b b b b
f (f + ) (0dx = f (F () +g(x)) dx = f FOx)dx + f o(x) dx.

. Let f(x) be integrable on [a, b]. Let ¢ € R. Then (cf)(x) is integrable on [a.b] and

b b b
f(cf)(x)dx:f cf(x)dx:cf f(x)dx.

. Let f(x) and g(x) be integrable on [a, b]. If for each x € [a, b], f(x) < g(x), then

b b
ff(x)dxsfg(x)dx.

. Let f(x) be integrable on [a, b]. If m < f(x) < M for all x € [a, b], then

b
m(b —a) Sf f(x)dx < M(b- a).

(Average Value Theorem) Let f(x) be continuous on [a, b]. Then there exists ¢ € [a, b] such
that

1 b
fe) = f F(x) dx.

b
Let f(x) be continuous on [a, b]. If f(x) has the same sign on [a, b] and f f(x)dx =0,
a

then f(x) is the zero function, i.e., f(x) = O for each x € [a, b].

We extend the integral even when a £ b by the following:

b
If a = b, then we take f f(x)dx =0.

b a
If a > b, then we take f f(x)dx = - f f(x)dx.
a b

Also, for any real number c; even when c is outside the interval (a, b) we have

b c b
ff(x)dx:ff(x)dx+f f(x)dx

In all these extensions, we assume that the definite integrals exist.

The main result that shows that differentiation and integration are reverse processes is the following:
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(Fundamental Theorem of Calculus) Let f(x) be continuous on [a, b].
1. If F(x) is an antiderivative of f(x), then fab f(x)dx = F(b) — F(a).

2. The function g(x) = fa ! f(¢) dt is continuous on [a, b] and differentiable on (a, b). Moreover,
g =4 ["fydr = f(x).
The chain rule for differentiation is translated to integration as follows:

(Substitution)

1. Letu = g(x) be adifferentiable function whose range is an interval 1. Let f(x) be continuous
on /. Then

ff(g(X))g'(X)dx=ff(u)du.

2. Letu = g(x) be a continuously differentiable function on [a, b] whose range is an interval /.
Let f(x) be continuous on /. Then

b g(b)
f f(g(x))g’(x)dxzf() f@) du.
a gla

The rpoduct rule for differntiation gives the integration by parts formula.

ff(X)h(X)dx=f(X)fh(X)dx—f[f’(X)fh(X)dx

We remember it as follows (Read F' as first and S as second):

dx + C.

Integral of F' X § = FX integral of S — integral of (derivative of F X integral of S).

The natural logarithm In x is defined as follows:
1
1nx:f ;dt for x > 0.
1

The exponential function is the inverse of the natural logarithm. That is,
exp: R — (0,00); y=exp(x) iff x=Iny.
Since exp(x) exp(y) = exp(x + y) and exp(0) = 1, we write
exp(x) = e*, where e =exp(l).

Then hyperbolic functions are defined by

X —X X —X X -

) et —e et +e et —e
sinh x = , coshx = , tanhx = .
eX +e ¥

X

1 1+
sinh™' x =In(x + Vx2+1), cosh'x=In(x+Vx2-1), tanh 'x=- ln( x) .

2 1—-x
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Notice that cosh™! has domain as x > 1 and tanh™! has domain as -1 < x < 1.

Let C be a curve given parametrically by x = f(¢),y = g(t), a <t < b. Assdume that both f(r)
and g(t) are continuously differentiable.

b
Length of the curve = L = f \/[f’(t)]2 +[g’ (1)) dt.

If the curve is given as a function y = f(x), a < x < b, then take x = f and y = f(¢) as its

parameterization. We then have the length as

b b
L:f \/1+[f’(x)]2dx:f A1+ ()% dx.

Notice that this formula is applicable when f’(x) is continuous on [a, b].

We write L = fa ” ds with limits @ and b for the variable of integration, which may be x, y or ¢.

Here,

Suppose that a curve is given in polar coordinates by » = f(6) for a continuous function f(8),
where @ < 8 < . Then the area of the sector and the arc length of the curve are

B B
Area = f r*do, Length = f A2+ (r)%de.
(07 (07

A.3 Formulas

Here are some formulas for the exponential and the logarithm functions:

tP
lim — =0 for peN and a > 1.

t—oo
ne=1=¢" ™ =x, Ine")=x, a =e"%

limlnx =00, limIlnx=-c0, lime*=o00, 1lim e*=0,
X—00 x—0+ X—00 X—=00

1 ‘1
(Inx) =—, () =¢€", (a*) =(lna)a”, f A dt =1, fex dx = e”.
X 1

In(1 + xh h_1
fim DX v 20, dim e o lim(1 4 x) = e
h—0 xh h—0 h h—0

Below are given some integrals, from which you should get the derivatives by following the simple
rule that iff f(x)dx = g(x) + ¢, then g’(x) = f(x).

L[udv:uv—j vdu l.fcc”du=a +C, a#l, a=0
g In a

3.fcnsudu:sinu—£‘ 4.f5inua'u=—cnﬁu+(?
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ntl
5. f(a.r—!—b} dx (ax(—t_—:;}”+C, n#—1 6. f(a.t+b)"d.r=lln lax + bl 4+ C
a
(ax + by [ax + b b
. - : R
?fx[a.r-f—b}d = e T +C, mn#-1,
-1 x b
8. | x{ax+ b) dx:———zhliax+bl+f
a a
» 1 b . dx __ _1 &
9, fx(ax-i-b} dx = 2[Inh:uc+b[+‘Cm_1_b:|-rf.‘ m'f.r{ax#b)"bln T + C
.......... 2 (.,a'a_;[ + )"+1 Jax 4+ b ax
11, ax +b)dx = +C, —2 lz.f d.rz?«fr+b+bf—
(v Y - wty B x ¢ xfax + b
- b
13. a _ -IJ” c
} f,t\.-"ax— y’b b *
b) dx 1 il rafax+ vr
Xjax + b v"_ Ja;?-l-mg v"_
14 quax-f—bdx_ Jax + b 15 f dx _ Aax+b L8
' x2 - rJax + b “J xax+b bx 2bJ xJax+b
dx 1 dx X 1 X
Iﬁ'[a—1+xz_5 tan —+C H'f(a2+xl}ﬂ_2a?(a3+x2}+ﬁmn E+C
dx 1 x+a dx x 1 x+a
18. —_ = : 19. = — In |— C
-2 2 " |x-a hE (al — x1)?  2ai(gl ~x3}+4a3 : --a[ }
le.j%:sinh‘tz+ﬂ=1n(x—|—«ﬂ12+xi)—|—C Zl.fﬁ+x3d1=%qﬁ+xi+

4 2
22, fxzy‘azﬂ—.r:dx = :;"(a1+2x2]v’a3+.r3 - % In(x++a*+x2)+C -;— ln(x +va*+x2)y+C
Iy 2 f 2 71 {2 7 Fp; ]
23, fa—ﬂdx:\-”alw'-x?—ﬂln Bt E ¥ lee f”x—j”dlen{x+xfa2+x3)—%“+c
x x

2 = P
T S ;az+x2)+i+_x+c

X2
B o=y 2
. = F o o
26.f7= R e e 27.[ A R
xval  x2 a X x2./a% + x2 alx
d —  a x
28. fﬁ:sm‘lg-&ﬂ 29, f«mz—z d1—~va2—x—+-§- sin lé% C
4
30. fx?va? — xidx = 5; sin~' < — éxqﬂz —-x¥a’ —-2H+C
a
fo T Yo F T
31.fudx=,faz_x1,a|niu+c 3g.fii.i.dx:_sin—lf._u.+c
x X x a x
2 | o
ssf gl el L 34.f—5’x—;_l: sl |
Jaz —x? 2 a 2 xJai—xX a x
35[ i = az_xl-i—(" Sﬁf ot —cmh']x+l""—lnlt+ xt a?\+l"
O v T 7 . S =t -+ C=1n fx+v &

7. f\/}i—aidx = %2—7— % In |x + V- ai| +C
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afxt—aty" nat

38, fw&! —a?Ydx = fw’,i;ﬂ —aty" My, n#—1

n+1 n+1
30, f dx  _ ‘xlwaq}l_" = ',?-:?__f_' _dx n#?2
W=y T 2-ma (n—2)a® ) (V5% =a?)n-?
a F0 o Taatl
40. fx[JxI —a)'dx = 5—’”;—2}——+C, n# -2

41. fx'&v’;z —aldx = g(?,.\'z —a*)xt—a? - % In |z + 22 —az| +C

42, f x__de_x=\fxz~a3—a sec'3|i +C
x a

z
a S = .
44 711'1 |x+vxz—a“‘?%\fx?—af+c

Il
g

d 1 1@
= —sec"|£‘+£‘:—cns" | B
i a Xl

1
rWxl—g? a

47[ i 'n—'("_d):fc
e R,
V2ax — x? a
[T

dx
4. f -
x5 /xI —al

)+c

- d

:
x e a“ | X
V2ax —x* + = sin ! (

b f(“ 2ax — a2 ydx = L= e R f(M}"_:dx
n+1 n+1
50 f dx _ _ x-a)V2ax—x')y"  n -3 f =
) ax -y (n - 2)a? n-2)a J (Vax —x2)2
- e oy — 2 9 o
51. fxﬁJ?ﬂx—xzdxﬂ(x+a](h ;ﬂ')vZa.r X +%S_En_l (_x a)+c
el

A —a

52

J2ax — xt —
! f v2ax — x’ d )-I—C 53, fv’Zu.cz X
= x

r=+2ar—xI+a sjn"(

xdx X —a - dx
Sd.f—m-—--—--:asiﬂ‘(-—-—)— anJ:—x2+C' 55.[——-
V2ax — x? a X+ 2ax — x?

1
56. sinaxdx = —— cos ax + C
a

L =
- +C
a-x
= -2 ol —sin"](
X
| {2a—2x
__“ +C
i X

1
57. ft:os axdx = = sinax+C

sin 2ax

=Wy
i 1

X
2

na

58. fsinl axdx = % - sin4iax +C 59. fcusl axrdx =

60, [sin” axdx = asmuntﬂz et + e fsin"‘2 axdx 61, fcos" axrdxy = M
. na n

62. a) fsm ax cos bxdx = —”";{t’:gr » c”;[f:s;)" +C, a#£P
b) fsin ax sin bxdx = Si;{t:—_!?;x - $i;::if;x +C, a'#£¥
) fcns ax cos by dx = Sig{(j _ ;]I Si;{:{ji_g}x +C, a*#£b
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cos 2ax sin"™ ax
63, fsina.r cos ardx = — +C 64, fsin”u.t cosardr=—+C, n# -1
4a (n+ la 7
COs ax 1 , , cos"t! g
65. : dy=—In|sinax|+C ﬁvﬂ.fcns” ax sma.rdxr——-—-{+i‘:, n#—1
sin ax a n 1la
sin ax 1
67. dx=——In|cos ax| +C
COS ax a
. T L2
) sin" ax cos™ ax n—1 L i
68, fsm" ax cos” gxdx = — g ey -+ S fﬁm"'ﬂ ax cos” ardx, n#£—m (reduces sin" ax)
; sin"! ax cos" ' axr m—1 .
69, f sin" ax cos™ axdx = - S + o f sin” ax cos™ ™ axdx, m# —n (reduces cos™ ax)

dx -2 b—c T oax
7“. = -1 b L 2:_ 2
fb%—csinax A [ b+em“(4 2)]+C‘ It

- ;{t _ ol |6 + b sin ::-:.1r+-»..-‘u:‘2 —b* cos ax $io g
b+cesinar  gJ/or — Rt b+ csinax
dx 1 T oax dx 1 T ax
72. —-—=——tan(———)+C‘ 73.f—:—¢an(—+—) fa
_[I—I—smax a 4 2 l—sinax a 4 2 &
dx 2 {b—¢ a
74. f - = tan~" \f' an 2 |+e Bset
b4ccosax agh? -2 B+ 2
dx 1 c+ b cos — b* sin a;
5. f = In A Zlac, P
b4+ccosar gJo: — b b+ ¢ cos ax
dx 1 ax dx 1 ax \
TG-f—L—Iaﬂ—+C W.f—:——col—+c
l+cosax a 2 | —cos ax a 2
) 1 . X 1 x .
8. | x sinaxdx = — Sinax — — cos ax + C T9. | xcosaxdx = — C0§ ax + — sin ax + C
a a ] a
noL x" n a—1 " x” e n =l _:
80. | 2" sinaxrdx = 5 cos ax + &= 2" cos axdx B1. x" cos axdy = = sin ax — = x"7! sin ax dx
1 1
82. flana.rdx=~- In | sec ax| + C 83 fwtaxdx:a—lnlsina:rl+£"
a
2 1 o 1
84, tan” ardx = —tanar —x +C 85. et axdx = ——cotax —x+C
a a
ta =1 c{“ll-|
86. f:un" axdx = i s 25 f tan" 7 axdx, n#1 87. fcei" axdy = —— =g f cot' ™ axdr, n#1
ain — 1) aln—1)
| 1
88.fsecaxdx:;lnlsucax+wnax]+6 39.fﬂ:scaxdx:——lnIcscax-l—cmaxl-f—c
o
| 1
90, fsaac1 ardx:; tan ax +C 91, fcsﬂ::j axdx:—; cotax +C
sec™ 2 ax tan a -2
92, fsec" PO . M + s fsec"" axdx, n#1
aln — 1) n—1
H—2 ¥ cot o
93. fcsc" A o2 BN ENAE B 0 Faentian dx, n#1l
aln — 1) n—1
" sec” ax & csc” ax
94, f sec” ax tan gx dx = +C, ns£0 95, | esc” ax cot axdx = — +C, n#0
na na
I i 1 TR RS
96, fsin‘L axdr=xsinlax + -1 —a®x2 4 C 97. fcos" axdx =xcos lax — —/1 ~a2x? + C
a a
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98.

100.

101.

102,

104

106

108

110.

111.

[ 1 T 1
flan" axdx =x tan” ax — 7 In{l4+ax)1+C
|
f "gin! axdx by sin~! ax - x+dx
A J —_ L — — - 5
n+1J J1—ax?
A IJr+I I a xﬂ'l'i EfI
x"cosT axdx = cosT ax + i
f +1 n+1J 1 —alx
f e LT+ - a [ X" dx
x"tan” axdx = tan~" ax — R
n+1 n+l ) 14a2x2
1
fe’”’dx = - L
a
a5
: f.rc’""ﬂ’.r =3 (ax — 1)+ C
_rﬂbﬂ.l: n
e | X = —— — e dx, b>0b%#1
f alnh  aln b_[ *

iy

a* + b
' ln ax)™ N
n+1

.fe“cosbxd.r: (acos bx +bsinbx)+ C

fx" (In ax)" dx =

1 : m]
fx'liln ax)"dx = [:-r-t--fr} — 4+ C, m#-1

m—+ 1
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n#E =1
n#-1
nsE-—1
103 fb”d Ly +C, b=0, b#1
i = - 3 = 0,
alnb
1
105. fx"e“"a’x = —x"e™ — Ef.t""te"‘dx
a a

toky

2+b2

107. fe‘” sin bxdx = 7 (@ sin bx — b cos bx) + C

109. flnﬂxdx =xhhax -x+C

= r_;: ] fx“(hl axy’ldx, n# =1

112, f ....‘f.x..,-. =In|lnax|+C
x lnax



Index

absolute maximum, 29 divergence, 90, 111
absolute maximum value, 29 domain of f, 5
absolute value, 121 domination limit, 127
algebraic functions, 124 double integral, 47

area of surface, 96

auxiliary function, 35 error, 28

average value theorem, 131 even function, 124

axis of revolution, 40 exact form, 83
exponential functions, 125
boundary point, 4 Extreme value theorem, 128

bounded subset, 4
floor function, 122

Cauchy MVT, 129 flux, 90, 104
ceiling function, 122 flux density, 90
closed curve, 81 fundamental theorem of calculus, 132

closed subset, 4
gradient, 23

gradient field, 79
graph, 5
Green’s theorem-1, 90

closure, 4
co-domain, 5
concave down, 130
concave up, 130
conservative, 80 Green’s theorem-2, 91
continuous, 10, 127 Hessian, 30
continuous on, 10 homogeneous, 20
contour curves, 5
critical point, 29, 129 incompressible fluid, 90
curl of I_T), 89 increasing, 128
independent of path, 81
decreasing, 128 integrable, 47
degree of polynomial, 123
differentiable, 18
differentiable at a point, 128
differential, 17

differential form, 83

integration by parts, 132
interior point, 4

intermediate value theorem, 128
isolated point, 4

iterated integral, 47
directional derivative, 22

disk, 4 Jacobian, 63
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L’Hospital’s rule, 129
Laplacian, 90

level curve, 6

level surfaces, 6

limit, 6

limit of f(x), 126

linear approximation, 16
line integral, 74, 78

line integrals, 77

local extrema, 129

local extremum, 29

local extremum points, 129
local maximum, 29, 129
local maximum value, 29
local minimum, 129
logarithmic functions, 125

mean value theorem, 128
minimum, 29
monotonic, 128

norm, 46, 130
normal line, 25

odd function, 124
open subset, 4
orientable surface, 103
oriented surface, 103

partial derivative, 12

partition, 46, 130

period of f(x), 124

point of absolute maximum, 29
point of inflection, 130

point of local maximum, 29, 129
point of local minimum, 129
polar rectangle, 51

polynomial functions, 123
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positive orientation, 84

potential, 80

power function, 122

properties of definite integral, 131

range, 5

rational function, 124
region, 5

Riemann integrable, 47
Riemann sum, 46, 130
Rolle’s theorem, 128

saddle point, 30

sample points, 46, 130
sandwich theorem, 127
simple curve, 82

simply connected region, 82
solid of revolution, 40
substitution theorem, 132
surface, 5

surface area, 95

surface integral, 99

surface integral over S, 104

tangent plane, 16, 25

Taylor’s formula one variable, 26
tests for concavity, 130

tests for local extrema, 129

total differential, 17

total increment, 16, 17
trigonometric functions, 124

uniform partition, 47

vector field, 78

Vector forms of Green’s Theorem, 91

volume of solids with holes, 42

work, 78



