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Chapter 1

Limit and Continuity

1.1 Preliminaries

We use the following notation:

∅ = the empty set.

N = {1, 2, 3, . . .}, the set of natural numbers.

Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the set of integers.

Q = {p
q

: p ∈ Z, q ∈ N}, the set of rational numbers.

R = the set of real numbers.

R+ = the set of all positive real numbers.

N ( Z ( Q ( R. The numbers in R−Q is the set of irrational numbers.
Examples are

√
2, 3.10110111011110 · · · etc.

Along with the usual laws of +, ·, <, R satisfies the Archimedian property:

If a > 0 and b > 0, then there exists an n ∈ N such that na ≥ b.

Also R satisfies the completeness property:

Every nonempty subset of R having an upper bound has a least upper bound (lub) in R.

Explanation: Let A be a nonempty subset of R. A real number u is called an upper bound of A if
each element of A is less than or equal to u. An upper bound ` of A is called a least upper bound
if all upper bounds of A are greater than or equal to `.

Notice that Q does not satisfy the completeness property. For example, the nonempty set A =

{x ∈ Q : x2 < 2} has an upper bound, say, 2. But its least upper bound is
√

2, which is not in Q.

Similar to lub, we have the notion of glb, the greatest lower bound of a subset of R. Let A be a
nonempty subset of R. A real number v is called a lower bound ofA if each element ofA is greater
than or equal to v. A lower bound m of A is called a greatest lower bound if all lower bounds of A
are less than or equal to m. The completeness property of R implies that

Every nonempty subset of R having a lower bound has a greatest lower bound (glb) in R.
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The lub acts as a maximum of a nonempty set and the glb acts as a minimum of the set. In fact,
when the lub(A) ∈ A, this lub is defined as the maximum of A and is denoted as max(A).

Similarly, if the glb(A) ∈ A, this glb is defined as the minimum of A and is denoted by min(A).

Moreover, both Q and R−Q are dense in R. That is, if x < y are real numbers then there exist a
rational number a and an irrational number b such that x < a < y and x < b < y.

We may not explicitly use these properties of R but some theorems, whose proofs we will omit,
can be proved using these properties. These properties allow R to be visualized as a number line:

Let a, b ∈ R, a < b.

[a, b] = {x ∈ R : a ≤ x ≤ b}, the closed interval [a, b].

(a, b] = {x ∈ R : a < x ≤ b}, the semi-open interval (a, b].

[a, b) = {x ∈ R : a ≤ x < b}, the semi-open interval [a, b).

(a, b) = {x ∈ R : a < x < b}, the open interval (a, b).

(−∞, b] = {x ∈ R : x ≤ b}, the closed infinite interval (−∞, b].

(−∞, b) = {x ∈ R : x < b}, the open infinite interval (−∞, b).

[a,∞) = {x ∈ R : x ≥ a}, the closed infinite interval [a,∞).

(a,∞) = {x ∈ R : x ≤ b}, the open infinite interval (a,∞).

(−∞,∞) = R, both open and closed infinite interval.

We also write R+ for (0,∞) and R− for (−∞, 0). These are, respectively, the sets of all positive
real numbers, and the set of all negative real numbers.

A neighborhood of a point c is an open interval (c− δ, c+ δ) for some δ > 0.

A deleted neighborhood of a point c is (c−δ, c+δ)−{c} = (c−δ, c)∪ (c, c+δ) for some δ > 0.

Let D ⊆ R. Let c ∈ D. We say that c is an interior point of D if there exist an open interval (a, b)

such that c ∈ (a, b) ⊆ D.

Notice that c in interior point of D if there exists a neighborhood of c which is contained in D.

For example, 0.1 is an interior point of [0, 1). The point 0 is not an interior point of [0, 1).

In contrast, we say that a is a left end-point of the intervals [a, b) and of [a, b].

Similarly, b is a right end-point of the intervals (a, b] and of [a, b].

The absolute value of x ∈ R is defined as |x| =

{
x if x ≥ 0

−x if x < 0

Thus |x| =
√
x2. And | − a| = a or a ≥ 0; |x − y| is the distance between real numbers x and y.
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Moreover, if a, b ∈ R, then

| − a| = |a|, |ab| = |a| |b|,
∣∣∣a
b

∣∣∣ =
|a|
|b|

if b 6= 0, |a+ b| ≤ |a|+ |b|, | |a| − |b| | ≤ |a− b|.

Let x ∈ R and let a > 0. The following are true:

1. |x| = a iff x = ±a.

2. |x| < a iff −a < x < a iff x ∈ (−a, a).

3. |x| ≤ a iff −a ≤ x ≤ a iff x ∈ [−a, a].

4. |x| > a iff −a < x or x > a iff x ∈ (−∞,−a) ∪ (a,∞) iff x ∈ R− [−a, a].

5. |x| ≥ a iff −a ≤ x or x ≥ a iff x ∈ (−∞,−a] ∪ [a,∞) iff x ∈ R− (−a, a).

Therefore, for a ∈ R, δ > 0,

|x− a| < δ iff a− δ < x < a+ δ.

The following statements are useful in proving equalities from inequalities:

Let a, b ∈ R.

1. If for each ε > 0, |a| < ε, then a = 0.

2. If for each ε > 0, a < b+ ε, then a ≤ b.

Let A,B ⊆ R. A function f from A to B is a rule that assigns each point in A to some point in
B in a unique way. The unique here means that if f(a) 6= f, then a 6= b; that is, f(a) cannot be
sometimes a number b and sometimes a number c. The unique does not necessarily mean that all
points in A are associated to the same point in B. We write such a function f as f : A → B. If
x is a generic point in A and if f assigns this x to y in B, then we write f(x) = y. Here, y is the
image of x under f and x is one of the pre-images of y. Often we say that f(x) is a function,
loosely, or even as y = f(x) is a function. The set A is called the domain and the set B is called
the co-domain of f. The range of f is the set of actual values that have been assigned to in B.
That is, the range of f is the set {f(x) : x ∈ A}. Mostly, we will be interested in functions with
domains as intervals. When a function is given in the form y = f(x), we do not say explicitly
what its domain is. rather, we find out a largest subset of R which may serve as its domain. For
example,

y = x2 has domain as R and range as [0,∞).

y =
√
x has domain and range as [0,∞).

y = 1/x has domain and range as R− {0}.
y =
√

2− x has domain as (−∞, 2] and range as [0,∞).

y =
√

3− x2 has domain as [−
√

3,
√

3] and range as [0,
√

3].

The graph of a function y = f(x) is the set {(x, f(x)) : x ∈ domain of f}. We plot the points
(x, f(x)) in the plane R2. In this plotting, the convention is to regard x as the independent variable
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and y = f(x) as the function. Since f(a) is uniquely defined for each a in the domain of f, if you
draw a vertical line on the graph of f, then it never crosses the graph in more than one point.

For example, the unit circle in the plane does not represent a function but the semicircles above the
x-axis represent functions. The semicircles to the right or left of the y-axis are not functions.

Graphs of some known functions are as follows:

1. y = |x| =

{
x if x ≥ 0

−x if x < 0

2. y =


−x if x < 0

x2 if 0 ≤ x ≤ 1

1 if x > 1

3. y = f(x) =

{
x if 0 ≤ x ≤ 1

2− x if 1 < x ≤ 2

4. y = bxc = n if n ≤ x < n + 1 for n ∈ N. It is the
largest integer less than or equal to x.

The largest integer function or the floor function.

Sometimes we write b c as [ ].

5. y = bxc = n+ 1 if n < x ≤ n+ 1 for n ∈ N. It is the
smallest integer greater than or equal to x.

The smallest integer function or the ceiling function.
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6. The power function y = xn for n = 1, 2, 3, 4, 5 look like

7. The power function y = xn for n = −1 and n = −2 look like

8. The graphs of the power function y = xa for a = 1
2
, 1

3
, 3

2
and a = 2

3
are

9. Polynomial functions are y = f(x) = a0 + a1x+ a2x
2 + · · · anxn for some n ∈ N∪{0}. Here,

the coefficients of powers of x are some given real numbers a0, . . . , an and an 6= 0. The highest
power n in the polynomial is called the degree of the polynomial. Graphs of some polynomial
functions are as follows:

7



10. A rational function is a ratio of two polynomials; f(x) = p(x)
q(x)

, where p(x) and q(x) are
polynomials, may or may not be of the same degree. Graphs of some rational functions are as
follows:

11. Algebraic functions are obtained by adding subtracting, multiplying, dividing or taking roots
of polynomial functions. Rational functions are special cases of algebraic functions. Some graphs
of alhebraic functions:

12. Trigonometric functions come from the ratios of sides of a right angled triangle. The angles
are measured in radian. The trigonometric functions have a period. That is, f(x + p) = f(x)

happens for some p > 0. The period of f(x) is the minimum of such p. The period for sinx is 2π.

The functions cosx and secx are even functions and all others are odd functions. Recall that
f(x) is even if f(−x) = f(x) and it is odd if f(−x) = −f(x) for each x in the domain of the
function. Some of the useful inequalities are

−|x| ≤ sinx ≤ |x| for all x ∈ R.

−1 ≤ sinx, cosx ≤ 1 for all x ∈ R.

0 ≤ 1− cosx ≤ |x| for all x ∈ R.

sinx ≤ x ≤ tanx for all x ∈ (0, π/2).

In fact, if x 6= 0, then sinx < |x|. Some examples:
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13. Exponential functions are in the form y = ax for some a > 0 and a 6= 1. All exponential
functions have domain (−∞,∞) and co-domain (0,∞). They never assume the value 0. Graphs
of some exponential functions:

14. Logarithmic functions are inverse of exponential functions. That is,
aloga x = loga(a

x) = x. Some examples:

Functions that are not algebraic are called transcendental functions. Trigonometric functions, ex-
ponential functions and logarithmic functions are examples of transcendental functions.

We will come back to exponential functions and logarithmic functions later.

Two functions can be combined to give another function. If f(x) and g(x) have the same domains,
then f ± g(x) are new functions defined by (f ± g)(x) = f(x)± g(x).
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Similarly, (fg)(x) = f(x)g(x) and (f/g)(x) = f(x)/g(x) provided that g(x) 6= 0. Also, you can
have h(x) = f(x)g(x) as another function provided that the latter is meaningful.

Another way is to obtain a function by taking composition. If the range of f(x) is a subset of the
domain of g(x), then g(f(x)) is meaningful. The composite function (g ◦ f) is then defined as
(g ◦ f)(x) = g(f(x).

Notice that the inverse of a function f(x) is defined through the composition as f−1 is that func-
tion which satisfies f(f−1(x)) = f−1(f(x)) = x. In that case, f must be a one-one function
onto its co-domain. Sometimes, we restrict the domain of a function so that it may be one-
one and onto so that its inverse can be defined. For example, restricting the domain of sinx to
[−π/2, π/2], makes it one-one and onto the range [−1, 1]. Then its inverse sin−1(x) is a function
from [−1, 1] to [−π/2, π/2] and this is also one-one and onto. This means that sin−1 x is that
number y ∈ [−π/2, π/2] for which sin y = x. Similarly, for other trigonometric functions their
inverse functions are defined. Warning: sin−1 x is not the same as (sinx)−1. Inverse trigonometric
functions are given below:
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1.2 Limit

The idea is to find how a function behaves near a point in its domain. Suppose y = f(x) is a
function, say, defined on an open interval (a, b). Let c ∈ (a, b). Under what condition can we say
that when x ∈ (a, b) is taken near c, the values f(x) stay near f(c)?

To tackle the vague notion of nearness, suppose I quantify it. Suppose ε > 0. I say that two
numbers r and s are ε-near if their difference is bounded by ε; That is, when |r − s| < ε. But the
amount of nearness in x to c need not be the same amount in f(x). However, there should be some
connection between the two. I may say that whatever nearness I choose between f(x) and f(a), I
find a certain nearness in x and c such that if x lies near c, then f(x) lies near f(a). If this condition
is satisfied, we say that the function f is continuous at c.

If f is not defined at c but at every point in an open interval around c, then it is not meaningful to
write f(c). But still there may exist some real number ` such that f(x) lies near `. In such a case,
we say that f has limit ` at c. We state it formally.

Let a < c < b. Let f : D → R be a function whose domain D contains the union (a, c) ∪ (c, b).

Let ` ∈ R. We say that the limit of f(x) as x approaches c is ` and write it as

lim
x→c

f(x) = `

iff for each ε > 0, there exists a δ > 0 such that for each x ∈ (a, c) ∪ (c, b) with 0 < |x− c| < δ,

we have |f(x)− `| < ε.

This is the formal definition of the notion of limit of a function. In this definition, δ may depend
on ε and also on the point c. Notice that given a function our definition does not lead us to find `.
it is a guess work. Once a guess has been taken, we can only verify whether the guess is correct.

The definition says that each ε-neighborhood of `must contain the f -image of some δ-neighborhood
of c. Writing Dδ(c) = (c − δ, c + δ) for a δ-neighborhood of c, it demands that each Dε(`) must
contain the f -image of some Dδ(c). To put it another way, write the inverse image of f of a subset
A of R as {x ∈ dom(f) : f(x) ∈ A}. Then

lim
x→c

f(x) = ` iff inverse image of each neighborhood of ` is contained in some neighborhood of c.

We will not always use this formal definition; rather we will work with our intuitive understanding
of the notion that f(x) has a limit ` at c provided the following condition holds:

if x is near c, then f(x) is near `

If a certain case poses problem, we may come back to the formal definition.
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Example 1.1. Find lim
x→0
|x|.

From the graph of |x|, we guess that this limit is 0. To show this, let ε > 0. Choose δ = ε.

(Why? Do not ask me; see whether it works.)
If |x− 0| = |x| < δ = ε, then |f(x)− 0| = |x| < ε. Hence lim

x→0
|x| = 0.

Example 1.2. Find lim
x→1

f(x), where f(x) =

{
3− x if x < 1

x2 + 1 if x > 1
.

On the left side of x = 1 the function is 3 − x. If x is near 1, we see that f(x) is near 2. On the
right side, if x is near 1, then we see that x2 + 1 lies near 2. Therefore, lim

x→1
f(x) = 2.

We can check it formally. Let ε > 0. Choose δ = min{ε,
√

1 + ε− 1}.
(Again, do not ask me how I got it; but see how it works.)
Suppose 1− δ < x < 1 + δ;x 6= 1. Break into two cases.
(a) Let x < 1. That is, 1− δ < x < 1, Then |f(x)− 2| = |3− x− 2| = 1− x < δ ≤ ε.

(b) Let x > 1. That is, 1 < x < 1 + δ, Then

|f(x)− 2| = |x2 + 1− 2| = x2 − 1 < (1 + δ)2 − 1 ≤ (1 +
√

1 + ε− 1)2 − 1 = 1 + ε− 1 = ε.

Therefore, |x− 1| < δ implies |f(x)− 2| < ε.

We see that it is often difficult to follow the definition. However, the definition can be used to prove
certain properties of limits which help us in the intuitive understanding and also in determining the
limit of a function at a point. Before stating the theorem, let us consider some more examples.
Remember that the nearness in f(x) to ` includes f(x) being equal to ` whereas the nearness in x
to c, x 6= c.

Example 1.3. Let f(x) = 5 for x 6= 1; and f(1) = 1. What is lim
x→1

f(x)?

When x is near 1 but not equal to 1, f(x) = 5 or that f(x) is near 5. Therefore, lim
x→1

f(x) = 5. It

does not matter whether f is defined at 1 or not. It also does not matter what value f(1) has.

Example 1.4. Let f(x) =
x2 − 25

x− 5
for x 6= 5. What is lim

x→5
f(x)?

When x is near 5, the numerator x2 − 25 is near 0. So is the denominator x − 5. It looks that the
limit is undefined. However, it is wrong, since for x 6= 5, f(x) = x2−25

x−5
= x+ 5. Now, x+ 5 stays

near 10 when x is near 5. Hence lim
x→5

f(x) = 10.
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Theorem 1.1. (The Limit Properties) Let k be a constant; or a constant function.

1. lim
x→c

k = k and lim
x→c

x = c.

2. lim
x→c

(f(x)± g(x)) = lim
x→c

f(x)± lim
x→c

g(x).

3. lim
x→c

kf(x) = k lim
x→c

f(x).

4. lim
x→c

[f(x)g(x)] = lim
x→c

f(x) lim
x→c

g(x).

5. lim
x→c

[f(x)/g(x)] =
[

lim
x→c

f(x)
]
/
[

lim
x→c

g(x)
]

if lim
x→c

g(x) 6= 0.

6. lim
x→c

(f(x))r = (lim
x→c

f(x))r if taking powers are meaningful.

7. lim
x→c

f(x) is a unique real number if it exists.

8. If lim
x→c

g(x) = 0, and lim
x→c

[f(x)/g(x)] exists, then lim
x→c

f(x) = 0.

9. (Sandwich) Let f, g, h be functions whose domain include (a, c) ∪ (c, b) for a < c < b.

Suppose that g(x) ≤ f(x) ≤ h(x) for all x ∈ (a, c) ∪ (c, b). If lim
x→c

g(x) = ` = lim
x→c

h(x),

then lim
x→c

f(x) = `.

10. (Domination Limit) Let f, g be functions whose domains include (a, c)∪(c, b) for a < c < b.

Suppose that both lim
x→c

f(x) and lim
x→c

g(x) exist. If f(x) ≤ g(x) for all x ∈ (a, c)∪ (c, b), then

lim
x→c

f(x) ≤ lim
x→c

g(x).

It follows from Theorem 1.1 that if p(x) = a0+a1x+· · · anxn is a polynomial, then lim
x→c

p(x) = p(c).

Also, if q(x) is another such polynomial with q(c) 6= 0, then lim
x→c

(p(x)/q(x)) = p(c)/q(c). Also,
the (8) implies that

If lim
x→c

f(x) 6= 0 and lim
x→c

g(x) = 0, then lim
x→c

(f(x)/g(x)) does not exist.

For example, lim
x→−3

x2 + 9

x+ 3
does not exist.

Caution: In (10), if f(x) < g(x) happens for all x, then we may not be able to conclude that
lim
x→c

f(x) < lim
x→c

g(x). The first limit may become equal to the second limit. For example, consider

the function f(x) = |x| with the domain R−{0}.We have 0 < f(x) for all x in this domain. Then
lim
x→0

0 = 0 = lim
x→0
|x|.
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Example 1.5. Evaluate
(a) lim

x→0
|x| sinx (b) lim

x→0
sinx (c) lim

x→0
cosx (d) lim

x→c
f(x), given that lim

x→c
|f(x)| = 0.

(a) Since −1 ≤ sinx ≤ 1, we have −|x| ≤ |x| sinx ≤ |x|. We know that
lim
x→0
−|x| = lim

x→0
|x| = 0. By Sandwich theorem, lim

x→0
|x| sinx = 0.

(b) Since −|x| ≤ sinx ≤ |x|, Sandwich theorem gives lim
x→0

sinx = 0.

(c) Since 0 ≤ 1− cosx ≤ |x|, it follows that lim
x→0

(1− cosx) = 0. This gives lim
x→0

cosx = 1.

(d) −|f(x)| ≤ f(x) ≤ |f(x)|. Since lim
x→c
|f(x)| = 0, by Sandwich theorem, lim

x→c
f(x) = 0.

Functions may not have a limit at a given point because there may be a jump at that point, or it
may be growing too large near that point, or even it may be oscillating too often near the point.

1.3 One-sided Limits and Asymptotes

One-sided limits can be defined in an analogous manner. We write lim
x→c−

f(x) = ` iff whenever x

lies near c and remains less than c, we have that f(x) lies near `. That is, in the ε− δ definition, we
simply consider all x satisfying all those conditions along with x being less than c. This is called
the left hand limit of f(x) at x = c. Similarly, we write lim

x→c+
f(x) = ` iff whenever x lies near c

and remains greater than c, we have that f(x) lies near `. This is the right hand limit of f(x) at
x = c.

It thus follows that lim
x→c

f(x) = ` iff lim
x→c−

f(x) = lim
x→c+

f(x) = `.

Example 1.6. Evaluate the left hand and right hand limits if they exist:
(a) f(x) = x/|x| at x = 0 (b) g(x) =

√
4− x2 at all the points in its domain [−2, 2].

(a) For the left hand limit, x < 0. It gives f(x) = x/|x| = x/(−x) = −1. Thus lim
x→0−

f(x) = −1.

For the right hand limit, x > 0. Then lim
x→0+

(x/|x|) = lim
x→0+

(x/x) = lim
x→0+

(1) = 1.

Thus lim
x→0

(x/|x|) does not exist.

(b) We cannot speak of the left hand limit of g(x) at x = −2 since the domain does not include
an open interval to the left of x = −2. Similarly, we cannot speak of right hand limit of g(x) at
x = 2.

But lim
x→−2+

√
4− x2 = 0 = lim

x→2−

√
4− x2. Hence lim

x→2

√
4− x2 = 0.
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At all (other) points c ∈ (−2, 2), lim
x→c

g(x) =
√

4− c2.

All the properties in Theorem 1.1 hold true for one-sided limits.

Example 1.7. Show that lim
x→0

sinx

x
= 1.

Using the inequality sinx < x < tanx for 0 < x < π/2, we have

1 <
x

sinx
<

1

cosx
Or cosx <

sinx

x
< 1.

By Sandwich theorem,

lim
x→0+

sinx

x
= 1.

When x < 0, write x = −t for t > 0. Then sinx = − sin t.

lim
x→0−

sinx

x
= lim

t→0+

− sin t

−t
= 1.

Hence lim
x→0

sinx

x
= 1.

We also bring in∞ in discussing limits. These are referred to as limits at∞. The formal defini-
tions follow:

Let I be (a,∞) or [a,∞) for some a ∈ R. Let f : I → R. Let ` ∈ R. We say that lim
x→∞

f(x) = `

if for each ε > 0, there exists an m > 0 such that if x is any real number greater then m, then
|f(x)− `| < ε.

Let I be (−∞, a) or (−∞, a] for some a ∈ R. Let f : I → R. Let ` ∈ R. We say that
lim

x→−∞
f(x) = ` if for each ε > 0, there exists an m > 0 such that if x is any real number less

than −m, then |f(x)− `| < ε.

Limits at∞ or at −∞ have all the same properties as the limit at any point c.

Example 1.8. Show that lim
x→∞

1

x
= lim

x→−∞

1

x
= 0.

Let ε > 0. Choose m = 1/ε. If x > m, then x > 0 and |1/x− 0| = 1/x < ε. Hence lim
x→∞

1

x
= 0.

For the other limit, let ε > 0. Choose m = 1/ε. If x < −m, then 0 > 1/x > −1/m = −ε. So,

|1/x− 0| = −1/x < ε. Hence lim
x→−∞

1

x
= 0.

As earlier, we will not use this ε − δ definition often in our calculations. These definitions are
not new provided that you consider any neighborhood of −∞ as any interval (−∞,−a) and any
neighborhood of∞ is of the form (a,∞) for a > 0. We rather depend on our intuitive understand-
ing. For the limit at ∞ to be equal to `, we understand that as x increases without bound, f(x)

remains near `. Similarly, for the limit at −∞ to be equal to ` means that as x decreases without
bound, f(x) lies near `.

Geometrically, it means that at∞ or at −∞, the line y = ` merges with the curve y = f(x).
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We say that the line y = ` is an asymptote of y = f(x) at∞ if lim
x→∞

f(x) = `.

Similarly, the line y = ` is an asymptote of y = f(x) at −∞ if lim
x→−∞

f(x) = `.

Both the asymptotes at∞ and at −∞ are called asymptotes of y = f(x).

An asymptote y = ` is also called a horizontal asymptote.

An asymptote can intersect the curve as the following example shows.

Example 1.9. Find the asymptotes of y = f(x) = 2 +
sinx

x
.

Since 0 ≤
∣∣∣sinx
x

∣∣∣ ≤ ∣∣∣1
x

∣∣∣, by Sandwich theorem, lim
x→±∞

sinx

x
= 0. Hence lim

x→±∞

(
2 +

sinx

x

)
= 2.

The line y = 2 is the asymptote to y = 2 +
sinx

x
at∞ and also at −∞.

In general, a straight line y = ax+b is an asymptote to y = f(x) if lim
x→∞

(f(x)− (ax+ b)) = 0 or

if lim
x→−∞

(f(x)− (ax+ b)) = 0, respectively at∞ and at −∞. Such asymptotes are called slanted
asymptotes.

Usually, when a rational function p(x)/q(x) has the degree of the numerator p(x) one more than
the degree of the denominator q(x), then a slanted asymptote exists.

Example 1.10. Find an asymptote of y = f(x) = 2x2−3
7x+4

.

Using long division write f(x) =
2x2 − 3

7x+ 4
=

(
2

7
x− 8

49

)
+

−115

49(7x+ 4)
.

Notice that lim
x→±∞

{
f(x)−

(2

7
x− 8

49

)}
= lim

x→±∞

{
−115

49(7x+ 4)

}
= 0.

Hence the line y = 2
7
x− 8

49
is an asymptote to f(x) both at∞ and at −∞.
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Sometimes it is easier to calculate the limits at infinity by substituting the independent variable by
its reciprocal. We see that if the limits at infinity exist, then

lim
x→∞

f(x) = lim
x→0+

f(1/x) and lim
x→−∞

f(x) = lim
x→0−

f(1/x).

Consider two functions f(x) and g(x) with the same domain (0,∞). Let f(x) = 1 for all positive
rationals and f(x) = 0 for all positive irrationals. In contrast, take g(x) = 1/x for all positive x.
Limits for both as x approaches 0 from the right hand side, do not exist. For f(x), the limit does
not exist because the values f(x) when x is near 0 fluctuates between 0 and 1, and never remains
near either of them. Whereas as x approaches 0, g(x) increases without bound, so does not remain
near any real number. We want to separate the case of g(x) from the rest. We say that g(x) has an
infinite limit as x approaches 0. Formal definitions in various cases follow.

1. Let f(x) have a domain containing (c, b). Then lim
x→c+

f(x) =∞ iff for each m > 0, there

exists a δ > 0 such that for every x with c < x < c+ δ, we have f(x) > m.

Again we work with an intuitive understanding that

lim
x→c+

f(x) =∞ iff, “as x decreases to c, f(x) increases without bound”.

2. Let f(x) have a domain containing (a, c). Then lim
x→c−

f(x) =∞ iff for each m > 0, there

exists a δ > 0 such that for every x with c− δ < x < c, we have f(x) > m.

That is, lim
x→c−

f(x) =∞ iff, “as x increases to c, f(x) increases without bound”.

3. Let f(x) have a domain containing (c, b). Then lim
x→c+

f(x) = −∞ iff for each m > 0, there

exists a δ > 0 such that for every x with c < x < c+ δ, we have f(x) < −m.

That is, lim
x→c+

f(x) = −∞ iff, “as x decreases to c, f(x) decreases without bound”.

4. Let f(x) have a domain containing (a, c). Then lim
x→c−

f(x) = −∞ iff for each m > 0, there

exists a δ > 0 such that for every x with c− δ < x < c, we have f(x) < −m.

That is, lim
x→c−

f(x) = −∞ iff, “as x increases to c, f(x) decreases without bound”.

As earlier, we write lim
x→c

f(x) =∞ if lim
x→c+

f(x) =∞ = lim
x→c−

f(x).

Similarly, we write lim
x→c

f(x) = −∞ if lim
x→c+

f(x) = −∞ = lim
x→c−

f(x).

5. Let f(x) have a domain containing (a,∞). Then lim
x→∞

f(x) =∞ iff for each m > 0, there

exists a δ > 0 such that for every x with x > δ, we have f(x) > m.

That is, lim
x→∞

f(x) =∞ iff, “as x increases without bound, f(x) also increases without

bound”. Notice that lim
x→∞

f(x) =∞ iff lim
x→0+

f(1/x) =∞.

6. Let f(x) have a domain containing (a,∞). Then lim
x→∞

f(x) = −∞ iff for each m > 0, there

exists a δ > 0 such that for every x with x > δ, we have f(x) < −m.
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That is, lim
x→∞

f(x) = −∞ iff, “as x increases without bound, f(x) decreases without bound”.

Again, lim
x→∞

f(x) = −∞ iff lim
x→0+

f(1/x) = −∞.

7. Let f(x) have a domain containing (−∞, a). Then lim
x→−∞

f(x) =∞ iff for each m > 0,

there exists a δ > 0 such that for every x with x < −δ, we have f(x) > m.

That is, lim
x→−∞

f(x) =∞ iff, “as x decreases without bound, f(x) increases without bound”.

Here, lim
x→−∞

f(x) =∞ iff lim
x→0−

f(1/x) =∞.

8. Let f(x) have a domain containing (−∞, a). Then lim
x→−∞

f(x) = −∞ iff for each m > 0,

there exists a δ > 0 such that for every x with x < −δ, we have f(x) < −m.

That is, lim
x→−∞

f(x) = −∞ iff, “as x decreases without bound, f(x) also decreases without

bound”. Once more, lim
x→−∞

f(x) = −∞ iff lim
x→0−

f(1/x) = −∞.

If you understand the principle behind limits at infinity and infinite limits, then you will not
have to remember each one separately.

Caution: When limit of a function at a point, or at infinite, becomes infinite, it does not mean that
the limit exists. It only says that this non-existence of limit is special, in the sense of growing too
large or becoming smaller and smaller without bound. In fact, if the limit of a function exists at
x = c, then it is necessarily a real number, which is never equal to∞ or −∞.

The algebra with the symbols∞ and −∞ are as follows:

Let a ∈ R, b > 0 and c < 0. Then

a+∞ =∞, a−∞ = a+ (−∞) = −∞, a− (−∞) =∞, a/∞ = a/(−∞) = 0.

b · ∞ =∞, b · (−∞) = −∞, c · ∞ = −∞, c · (−∞) =∞.
∞+ (−∞), 0 · ∞, 0 · (−∞), ±∞/±∞ are indeterminate.

All the properties of limits hold provided we do not end up at indeterminate forms. For example,
if lim
x→c

f(x) = d > 0 and lim
x→c

g(x) =∞, then lim
x→c

f(x)g(x) =∞.

Example 1.11. Let p(x) = a0 + a1x+ · · ·+ anx
n, where an 6= 0. Let b > 1. Show the following;

(a) lim
x→∞

p(x)

xn
= an. (b) lim

x→∞
p(x) =∞ if an > 0 (c) lim

x→∞
p(x) = −∞ if an < 0.

(a) lim
x→∞

p(x)

xn
= lim

x→∞

( a0

xn
+

a1

xn−1
+ · · ·+ an−1

x
+ an

)
= an.

(b-c) From (a), lim
x→∞

p(x) = lim
x→∞

p(x)

xn
lim
x→∞

xn = an · ∞. Now the answers follow.

This example says that as x approaches∞, p(x) behaves as its leading term.

Infinite limits allow us to define vertical asymptotes.

A line x = c is called a vertical asymptote of the function y = f(x) if one of the following
happens:

lim
x→c+

f(x) = ±∞ or lim
x→c−

f(x) = ±∞.
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Example 1.12. Find the horizontal and vertical asymptotes of y = f(x) =
x+ 3

x+ 2
.

We see that lim
x→−2−

f(x) = −∞ Also, lim
x→−2+

=∞. And, for no other point c, limit of f(x) is ±∞
as x approaches c. So, x = −2 is a vertical asymptote.

Next, lim
x→∞

f(x) = 1. Also, lim
x→−∞

f(x) = 1. So, y = 1 is the horizontal asymptote.

Alternatively, write f(x) as f(x) = 1 +
1

x+ 2
.

Now, both horizontal and vertical asymptotes are visible from this expression!
As x→ −2, from left or from right, f(x)→ ∓∞. And as x→ ±∞, f(x)→ 1.

There are curves with infinitely many asymptotes. For example, y = secx and y = tanx have
vertical asymptotes at points (2n+ 1)π/2 for each n ∈ N.

1.4 Continuity

Let f : D → R be a function. Let c be an interior point of D. We say that f(x) is continuous at c
if lim
x→c

f(x) = f(a).

IfD = [a, b) orD = [a, b], then f(x) is called continuous at the left end-point a if lim
x→a+

f(x) = f(a).

IfD = (a, b] orD = [a, b], then f(x) is called continuous at the right end-point b if lim
x→b−

f(x) = f(a).

f(x) is called continuous if it is continuous at each point of its domain D.

For domains of the type (0, 1] ∪ [2, 3), continuity can be defined similarly at x = 1 and at x = 2,

but we will not need them.
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A function with domain as in interval if found to be continuous at all points, then you can draw its
graph without lifting the pen.

In the following figure, the functions in (a) is continuous at x = 0. Others are not continuous at
x = 0, though the types of discontinuity are different. Write out what kinds of discontinuity you
observe.

Example 1.13. Where is the function defined below continuous?

f(x) =

{
1

x−3
if x < 4

2x+ 3 if x ≥ 4

At any point c < 3, f(x) = 1/(x− 3) is continuous since lim
x→c

f(x) = 1/(c− 3).

At x = 3, f(x) is not defined; so we cannot speak of its continuity at x = 3.

For 3 < c < 4, f(x) = 1/(x− 3). It is again continuous.

At x = 4, lim
x→4−

f(x) = lim
x→4−

{1/(x− 3)} = 1. And lim
x→4+

f(x) = lim
x→4+

(2x+ 3) = 11. Hence limit

of f(x) does not exist at x = 4. That is, f(x) is not continuous at x = 4.

For c > 4, clearly f(x) = 2x+ 4 is continuous at x = c.

Due to the properties of limits, the following theorem is obvious.

Theorem 1.2. Let f(x) and g(x) be functions continuous at x = c. Let k ∈ R. Then

1. f(x) + g(x), f(x)− g(x), f(x) · g(x), k · f(x) are continuous at x = c.

2. f(x)/g(x) is continuous at x = c provided that g(c) 6= 0.

3. [f(x)]k is continuous at x = c provided [f(x)]k is defined in an interval around c.

4. In addition, if h(x) is continuous at f(c), then (h ◦ f)(x) is continuous at c.

Every polynomial and every rational function is continuous. The trigonometric functions are con-
tinuous on their respective domains. The absolute value function f(x) = |x| is continuous. The
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function f(x) = 1/x is continuous on R− {0}, which is its domain. So, f(x) = 1/x is a continu-
ous function.

Example 1.14. Is the function f(x) =
∣∣∣x sinx

x2 + 2

∣∣∣ continuous?

f1(x) = x is continuous, f2(x) = sin x is continuous. Thus f3(x) = x sinx is continuous.
f4(x) = x2 + 2 is continuous and is never 0. So, f5(x) = f3(x)/f4(x) is continuous. The function
f6(x) = |x| is continuous. So, f(x) = (f6 ◦ f5)(x) is continuous. Its graph looks like:

The function f(x) =
sinx

x
is not continuous at x = 0 since it is not defined at x = 0. However, the

function g(x) =
sinx

x
for x 6= 0; and g(0) = 1 is continuous everywhere since lim

x→0

sinx

x
= 1 = g(0).

1.5 Continuous functions on Closed Intervals

The formal definition can be used to prove a nice fact about continuous functions.

Theorem 1.3. Let f(x) be continuous at x = c,where the domain of f(x) includes a neighborhood
of c. If f(c) > 0, then there exists a neighborhood (c− δ, c+ δ) such that f(x) > 0 for each point
x ∈ (c− δ, c+ δ).

Proof: Suppose that f(c) > 0. Let ε = f(c)/2. Since f(x) is continuous at x = c, we have a δ > 0

such that for each x ∈ (c− δ, c+ δ), |f(x)− f(c)| < f(c)/2. That is, f(c)/2 < f(x) < 3f(c)/2.

As f(c) > 0, we see that for each x ∈ (c− δ, c+ δ), we have f(x) > 0. �

Continuous functions on intervals enjoy another nice property:

The image of a closed bounded interval under a continuous function is a closed bounded interval.

We write it formally as follows.

Theorem 1.4. Let f(x) be a continuous function, whose domain contains [a, b] for a < b. Then
there exist α, β ∈ R such that {f(x) : x ∈ [a, b]} = [α, β].

Proof of this result requires the completeness property of R and we omit it. Of course, the image
as an interval may degenerate into a single point, for example, when f(x) is a constant function.

We will discuss two important corollaries of Theorem 1.4.
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If f(x) is not known to be continuous, then the real numbers α and β given by

α = glb{f(x) : x ∈ [a, b]} and β = lub{f(x) : x ∈ [a, b]}

may or may not be in the image of [a, b] under f. However, if f(x) is continuous, then α and β
must be in the image of [a, b] under f. This is the content of our first corollary.

Theorem 1.5. (Extreme Value Theorem) Let f(x) be continuous on a closed bounded interval
[a, b]. Then there exist numbers c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for each x ∈ [a, b].

Proof: By Theorem 1.4, we have α, β ∈ R such that {f(x) : x ∈ [a, b]} = [α, β]. Then α ≤ f(x)

for each x ∈ [a, b] and α ∈ {f(x) : x ∈ [a, b]}. That is, there exists c ∈ [a, b] such that α = f(c).

Similarly, β ≥ f(x) for each x ∈ [a, b] and there exists d ∈ [a, b] such that β = f(d). �

The Extreme Values Theorem (EVT) says that the quantities

min{f(x) : x ∈ [a, b]} and max{f(x) : x ∈ [a, b]}

are well-defined. It is informally stated as

A continuous function on a closed bounded interval achieves its minimum and maximum.

The other important corollary of Theorem 1.4 is as follows:

Theorem 1.6. (Intermediate Value Theorem) Let f(x) be continuous on a closed bounded interval
[a, b]. Let d be a number between f(a) and f(b). Then there exists c ∈ [a, b] such that f(c) = d.

Proof: By Theorem 1.4, we have α, β ∈ R such that {f(x) : x ∈ [a, b]} = [α, β]. Then

α ≤ f(a) ≤ β and α ≤ f(b) ≤ β.

If d lies between f(a) and f(b), then α ≤ d ≤ β. Therefore, there exists c ∈ [a, b] such that
f(c) = d. �

Intermediate Value Theorem (IVT) says that a function continuous on a closed interval [a, b] takes
on every value between f(a) and f(b). It helps in bracketing a zero of a function. A number α is
called a zero of a function if f(α) = 0. Given a continuous function f(x), if f(a) and f(b) have
opposite signs, then the interval (a, b) must contain a point c where f(c) = 0; IVT confirms this
conclusion.

Remark: We have derived IVT and EVT from Theorem 1.4. However, IVT and EVT together
prove Theorem 1.4. In such an approach, we would require independent proofs of IVT and EVT;
and these proofs use the completeness principle of R.
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Example 1.15. Let ABCD be a square. Draw a curve lying inside ABCD and joining the diag-
onally opposite points A and C. Draw a curve joining B and D and again lying inside ABCD.
Prove that the two curves intersect somewhere inside the square. (Though a curve is much more
general, here we assume that they are represented by continuous functions of x.)

Let the vertices of the square be A(0, 0), B(1, 0), C(1, 1), and D(0, 1) in the plane. The curves
are (assumed to be) continuous functions f, g : [0, 1] → [0, 1]. We see that f(0) = 0, f(1) = 1

and g(0) = 1, g(1) = 0. Then h(x) = f(x)− g(x) is a continuous function from [0, 1] to [−1, 1].

And h(0) = −1, h(1) = 1. Therefore, by IVT, there is a point c ∈ [0, 1] such that h(c) = 0. At
this point, f(c) = g(c), that is, the curves intersect.

Example 1.16. Prove that every polynomial of odd degree has a real root.

Without loss of generality let p(x) = a0 + a1x + · · · + an−1x
n−1 + xn, where n is odd. Now,

lim
x→−∞

p(x) = −∞. So, there exists a point a < 0 such that p(a) < −1. Also, lim
x→∞

p(x) =∞. So,

there exists a point b > 0 such that p(b) > 1. Consider p as a function from [a, b] to R. Since
0 ∈ [p(a), p(b)], by IVT, we conclude that there exists a point c ∈ [a, b] such that p(c) = 0.

If a function is not continuous, then the conclusion of IVT may or may not hold.

Example 1.17. Define f : [0, 1] → R by f(x) = x if x 6= 1 and f(1) = 0. Then f(x) is not
continuous at x = 1. But it satisfies the conclusion of IVT, even on any closed subinterval of [0, 1].

On the other hand, let g : [0, 2] → R be given by g(x) = x for 0 ≤ x ≤ 1 and g(x) = x + 2 for
1 < x ≤ 2. Here, g is not continuous at x = 1, g(0) = 0, g(2) = 4. For no c ∈ [0, 2], g(c) = 2.

1.6 Review Problems

Problem 1: (a) Find ` = lim
x→0

√
x sin

1

x
.

0 ≤ |
√
x sin 1

x
| ≤
√
x. By Sandwich theorem, ` = 0.

Same argument shows that lim
x→0

xn sin
1

x
= 0 for any n ∈ N.

(b) Find ` = lim
x→0

sin
1

x
.

When x is near 0, we may take x as (mπ/2)−1 for a large m or we may choose x as (nπ)−1 for
a large n. Then sin 1

x
in the first case, will be equal to 1 and in the seond case, will be equal to

0. Notice that in any neighborhood of x = 0, there are numbers of the first form and also of the
second form for some large m and n. Therefore, this limit does not exist.

Problem 2: Find the limits lim
x→a

f(x), lim
x→a

g(x) where

f(x) =

{
1 if x ∈ Q
0 if x 6∈ Q,

g(x) =

{
x if x ∈ Q
0 if x 6∈ Q.

In any neighborhood of x = a, there are rational as well as irrational numbers. Thus, for any
rational number close to x = a, f(x) = 1 where as for irrational numbers close to x = a,

f(x) = 0. Therefore, the first limit does not exist.
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For g(x), if a = 0, and x is any rational number close to a = 0, then f(x) = x which is close
to 0. On the other hand, when x is any irrational number close to 0, f(x) is equal to 0. Therefore,
lim
x→0

g(x) = 0.

For x 6= 0, if x is any rational number close to a, then f(x) = x is close to a, and not to 0.

Whereas if x is an irrational number close to a, then f(x) is equal to 0. Therefore, limit of g(x) as
x approaches a does not exist, for a 6= 0.

Problem 3: Discuss the continuity of f(x) =


1 + x if x < 0

1 + bxc+ sinx if 0 ≤ x ≤ π/2

3 if x ≥ π/2.

For x < 0, f(x) = 1 + x, which is a continuous function. At x = 0,

lim
x→0−

f(x) = lim
x→0−

(1 + x) = 1, lim
x→0+

f(x) = lim
x→0+

(1 + bxc+ sinx) = 1, f(0) = 1.

Hence f(x) is continuous at x = 0.

For 0 < x < 1 and 1 < x < π/2, f(x) = 1 + bxc+ sinx is continuous. At x = 1,

lim
x→1−

(1 + bxc+ sinx) = lim
x→1−

(1 + 0 + sinx) = 1 + sin 1.

lim
x→1+

(1 + bxc+ sinx) = lim
x→1−

(1 + 1 + sinx) = 2 + sin 1 = f(1).

So, f(x) is not continuous at x = 1; it is only right-continuous at x = 1.

For x > π/2, f(x) = 3, which is continuous. At x = π/2,

lim
x→π/2−

f(x) = lim
x→π/2−

(1 + bxc+ sinx) = 3 = lim
x→π/2+

f(x) = f(π/2) = 3.

So, f(x) is continuous at x = π/2.

In summary, f(x) is continuous everywhere except at the point x = 1.

Problem 4: Let f(x) be an unbounded function, i.e., for each m ∈ N, there exists an x such that
|f(x)| > m. Does it follow that lim

x→∞
f(x) = ±∞?

No. For example, let f(x) = x sinx. Let m ∈ N. Consider x = mπ/2. Now, | sinx| = 1.

Consequently, |x sinx| = mπ/2 > m. But lim
x→∞

x sinx 6= ±∞. Reason: If x is large and in the
form mπ, then x sinx = 0.

Problem 5: Find the largest integer m such that

lim
x→1

[
m(1− x) + sin(x− 1)

x− 1 + sin(x− 1)

]1+x

=
1

4
.

We are interested in finding the limit of the given function when x is near 1 but x is not equal to 1.

If m = 0, then using lim
x→1

sin(x− 1)

x− 1
= 1, we find that the limit is equal to (1

2
)2 = 1

4
. Thus m = 0

is a possible value. There can be others.
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If m ≥ 1 and x is near 1, then
m(1− x) + sin(x− 1)

x− 1 + sin(x− 1)
< 0. Its power is not defined.

Therefore, m = 0. Exercise 1: Let f(x) =

{
x2n sin( 1

x
) if x 6= 0

0 if x = 0.

Show that f ′(0), f ′′(0), . . . , f (n)(0) exist, f (n)(x) is not continuous at x = 0.

Exercise 2: Let g(x) =

{
x2n+1 sin( 1

x
) if x 6= 0

0 if x = 0.

Show that g′(0), g′′(0), . . . , g(n)(0) exist, g(n)(x) is continuous at x = 0, but g(n)(x) is not differ-
entiable at x = 0.
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Chapter 2

Differentiation

2.1 Derivative

Let f(x) be a function whose domain includes an open interval (a, b). Let c ∈ (a, b). If the limit

lim
h→0

f(c+ h)− f(c)

h

exists, we say that f(x) is differentiable at x = c; and we write the limit as f ′(c) and call it the
derivative of f(x) at x = c.

We also write f ′(c) as
df

dx

∣∣∣
x=c

, and also as
df

dx
(c). Throughout, we will use the prime (′) notation

for differentiation with respect to the concerned independent variable. For example, if y = f(x),

then both y′ and f ′(x) denote
dy

dx
, whereas if x = g(y), then both x′ and g′(y) will denote

dx

dy
.

Example 2.1. Is f(x) = x3 − x2 + x− 2 differentiable at x = 1?

lim
h→0

{(1 + h)3 − (1 + h)2 + (1 + h)− 2} − {13 − 12 + 1− 2}
h

= 2.

Hence f(x) is differentiable at x = 1 and f ′(1) = 2.

Example 2.2. Is f(x) = |x| differentiable at x = 0?

lim
h→0

|0 + h| − |0|
h

= lim
h→0

|h|
h

does not exist since the left hand limit is −1 whereas the right hand limit is 1.

Therefore, |x| is not differentiable at x = 0.

Example 2.3. Is f(x) = x1/3 differentiable at x = 0?

lim
h→0

h1/3

h
= lim

h→0
h−2/3 does not exist. Hence x1/3 is not differentiable at x = 0.

26



Let y = f(x) be a curve. Let (x0, f(x0)) and (x0 + h, f(x0 + h)) be two points on the curve. The
line joining these points is a secant to the curve. The slope of the secant is

f(x0 + h)− f(x0)

x0 + h− x0

=
f(x0 + h)− f(x0)

h
.

Then its limit as h → 0 gives the slope of the tangent to y = f(x) at the point x = x0. That is,
f ′(x0) is the slope of the tangent to the curve y = f(x) at x = x0.

We should be cautious in using the word tangent. A tangent to a curve may be defined criptically
as a unique straight line that has exactly one point in common with the curve at identically two
points. That is, at a point, a tangent is unique and if we change its slope a little bit, then it has more
than one point in common with the curve. For example, there are many straight lines that touch the
curve y = |x| at the point x = 0 and therefore, this curve has no tangent at x = 0. Leaving out the

horizontal and vertical tangents, we may take the following view: if both
dy

dx
and

dx

dy
do not exist,

or if both
dy

dx
=
dx

dy
= 0 at a point, then a tangent to the curve is not defined at that point. If both

dy

dx
and

dx

dy
are nonzero at a point, then a tangent to the curve exists at that point.

If a curve is given parametrically by x = x(t), y = y(t), and at a point t = t0, both x′(t0) and
y′(t0) are nonzero, then the straight line

(y − y(t0))x′(t0)− (x− x(t0))y′(t0) = 0

is the tangent to the curve at t = t0. Similarly, if the curve is given implicitly by f(x, y) = 0 and

both m =
dy

dx
(x0, y0) and m =

dx

dy
(x0, y0) are nonzero at the point (x0, y0), then the tangent at

(x0, y0) is given by

y − y0 = m(x− x0) and also by x− x0 = m(y − y0).

However, differentiability says something more than the existence of a tangent at a point. For
example, the tangent to the curve y = x1/3 at x = 0 is the y-axis whereas y = x1/3 is not
differentiable at x = 0. Because,

lim
h→0

h1/3 − 0

h
= lim

h→0
h−2/3 =∞.

The curve has a vertical tangent at x = 0, which intersects the curve only at that point.
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We thus say that a curve y = f(x) has a vertical tangent at x = c if f ′(c) is either equal to∞ or
equal to −∞.

Caution: Vertical tangents are not covered in the usual interpretation of derivative as the slope of
the tangent.

What about the curve y = x2/3? Compute its derivative:

lim
h→0

h2/3 − 0

h
= lim

h→0
h−1/3.

We get the left hand limit as −∞ and the right hand limit as∞. That is, this curve does not even
have a vertical tangent.

We say that a function f(x) is differentiable if it is differentiable at every point of its domain.
Leaving the pathological cases aside, we will write f ′(x) as a new function obtained from f(x).

Then f ′(c) is the value of f ′(x) at x = c.

Let φ(t) be a differentiable function on an open interval (a, b). Suppose that φ(t) represents the
position of a moving body at time t. Let c ∈ (a, b). Then

φ′(c) = instantaneous velocity of the moving body at t = c.

Theorem 2.1. Each function differentiable at x = c is continuous at x = c.

Proof: Let c be any point in the domain of f(x). Given that f(x) is differentiable at x = c, we

have a real number f ′(c) and f ′(c) = lim
h→0

f(c+ h)− f(c)

h
. Now,

lim
x→c
{f(x)− f(c)} = lim

h→0
{f(c+ h)− f(c)} = lim

h→0

[
f(c+ h)− f(c)

h
· h
]

= lim
h→0

f(c+ h)− f(c)

h
· lim
h→0

h = f ′(c) · 0 = 0.

Therefore, lim
x→c

f(x) = f(c). And the function f(x) is continuous at x = c. �

It only says that a differentiable function is continuous on its domain; it does not say that the
derivative of a function is continuous.

Example 2.4. Let f(x) =

{
x2 sin(1/x) if x 6= 0

0 if x = 0.

We see that f ′(x) = g(x) = 2x sin(1/x)− cos(1/x) for x 6= 0.

Also, lim
x→0

g(x) does not exist. Hence f ′(x) is not continuous at x = 0.

The derivative of a function need not be continuous, but it satisfies the conclusion of IVT. Its proof
again uses the completeness principle of R.
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Theorem 2.2. (Darboux Theorem) Let f be a differentiable function whose domain includes an
interval [a, b]. If d is between f ′(a) and f ′(b), then there exists a point c ∈ [a, b] such that d = f ′(c).

That is, f ′(x) takes on every value between f ′(a) and f ′(b).

Since derivatives are defined through the limiting process, the usual laws of limits apply to deriva-
tives, with some twists.

Theorem 2.3. Let f(x), g(x) be differentiable functions. Let k ∈ R. Then

1. (f(x) + g(x))′ = f ′(x) + g′(x).

2. (k f(x))′ = k f ′(x).

3. (f(x)g(x))′ = f ′(x) g(x) + f(x) g′(x).

4. (g(f(x)))′ = g′(f(x)) f ′(x).

5. (f(x)/g(x))′ = [f ′(x)g(x)− f(x)g′(x)]/(g(x)2).

6. (f−1(x))′ =
1

f ′(f−1(x))
.

The fourth one, called the Chain Rule is written more suggestively as

dg(f(x))

dx
=
dg(f(x))

df(x)
· df(x)

dx
.

We prove (3), (4) and (6).

Proof: (3)

f(x+ h)g(x+ h)− f(x)g(x)

h
=
f(x+ h)− f(x)

h
g(x+ h) + f(x)

g(x+ h)− g(x)

h
.

Taking limit as h→ 0 proves (3).

For (4), consider x = a; define

φ(h) =

{
g(f(a+h))−g(f(a))
f(a+h)−f(a)

if f(a+ h) 6= f(a)

g′(f(a)) if f(a+ h) = f(a).

Now, φ is continuous at 0. And lim
h→0

φ(h) = φ(0) = g′(f(a)). Also,

g(f(a+ h))− g(f(a))

h
= φ(h)

f(a+ h)− f(a)

h
.

Taking limit as h→ 0 gives (g ◦ f)′(a) = g′(f(a)) f ′(a).

(6) Let g(x) = f−1(x) be the inverse of the function f(x). We assume that f ′(x) is not zero in the
domain of f(x) which is an interval I. Differentiating f(g(x)) = x we have

f ′(g(x))g′(x) = 1⇒ df−1

dx

∣∣∣
x=b

= g′(b) = (f ′(x))−1
∣∣∣
x=f−1(b)

.

This proves (6) �
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We will not use the formula in (6) explicitly. We will rather differentiate the equations g(f(x)) = x

or f(g(x)) = x as appropriate.

For example, differentiating sin(sin−1 x) = x, we obtain cos(sin−1 x)(sin−1 x)′ = 1.

Since sin(sin−1 x) = x, we have

cos(sin−1 x) =
√

1− (sin(sin−1 x)) =
√

1− x2. Therefore, (sin−1 x)′ =
1√

1− x2
.

The derivative of inverse of a function in Theorem 2.3(6) is also stated in a different way. For a
function y = f(x), we may write x = f−1(y) provided that f−1 exists. In this case,

dy

dx

dx

dy
= 1.

This formulation helps in differentiating a function given in parametric form or even given implic-
itly. If a function y = f(x) is given parametrically, say, as x = g(t) and y = h(t), then

dy

dx
=
dy

dt

dt

dx
=
dy

dt

(dx
dt

)−1

.

If y = f(x) is given implicitly by an equation g(x, y) = 0, then we differentiate g(x, y) as a
function of x, treating y also as a function of x. Since the derivative of 0 is 0, we get an equation
in y′. Then we solve this new equation in determining y′.

For example, if y = f(x) is given implicitly by x2 + sin(xy) + y2 = 0. Then differentiating the
equation we get:

2x+ cos(xy)(y + xy′) + 2y y′ = 0.

Solving this, we obtain

y′ = −2x+ y cos(xy)

2y + cos(xy)
.

Analogous to one-sided continuity at the end-points of a semi-closed or closed interval, we also
define one-sided derivatives.

Let the domain of a function f(x) be either [a, b) or [a, b]. If the limit

lim
h→0+

f(a+ h)− f(a)

h

exists, then this limit is the right hand derivative of f(x) at x = a; and we denote it as f ′+(a).

Similarly, suppose the domain of a function f(x) is either (a, b] or [a, b]. The left hand derivative
of f(x) at x = b is defined as

f ′−(b) = lim
h→0−

f(b+ h)− f(b)

h

provided this limit exists. Notice that f ′−(b) = limh→0+
f(b)−f(b−h)

h
.

Also, notice that f ′+(a) need not be the same as lim
h→0+

f ′(a+ h), and f ′−(a) need not be equal to

lim
h→0+

f ′(a+ h). These two equalities say something about the continuity of f ′(x) at the end-points.
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To extend the vocabulary a bit, suppose f(x) is differentiable on (a, b) and it has right hand deriva-
tive at x = a, then we say that f(x) is differentiable on [a, b).

Similarly, if f(x) is differentiable on (a, b) and it has a left derivative at x = b, then f(x) is called
differentiable on (a, b].

Suppose the domain of f(x) includes [a, b]. If f(x) is differentiable on (a, b) and has both right
derivative at x = a and left derivative at x = b, then we say that f(x) is differentiable on [a, b].

Obviously, at an interior point, if both the left hand derivative and the right hand derivative are
equal, then that quantity is the derivative at the point.

The absolute value function |x| is differentiable on [0,∞). It is also differentiable on (−∞, 0]. But
it is not differentiable on (−∞,∞). Reason: the right hand derivative of |x| at x = 0 is not equal
to the left hand derivative at x = 0.

The function f(x) =
√
x for x ≥ 0, is not differentiable at x = 0. Reason?

lim
h→0+

√
0 + h− 0

h
=∞.

The Right hand derivative at x = 0 does not exist.

Common functions and their derivatives

Function Derivative Where
k 0

xr rxr−1 r 6= 0

sinx cosx

cosx − sinx

tanx sec2 x x 6= nπ/2, n ∈ Z
secx secx tanx x 6= nπ/2, n ∈ Z
cosec x −cosec x cotx x 6= nπ, n ∈ Z
cotx −cosec 2x x 6= nπ, n ∈ Z
sin−1 x 1√

1−x2 |x| < 1

tan−1 x 1
1+x2

sec−1 x 1
|x|
√
x2−1

|x| > 1

Use the formulas: cos−1 x = π/2− sin−1 x, cot−1 x = π/2− tan−1 x, cosec −1x = π/2− sec−1 x

for their derivatives.

2.2 Maxima Minima

Let a function f(x) have domain D. The function f(x) has an absolute maximum at a point
d ∈ D if f(x) ≤ f(d) for every x ∈ D. in such a case, we also say that the point x = d is a point
of absolute maximum of the function f(x).
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Similarly, f(x) has an absolute minimum at b ∈ D if f(b) ≤ f(x) for every x ∈ D. In this case,
we say that the point x = b is a point of absolute minimum of the function f(x).

The points of absolute maximum and absolute minimum are commonly referred to as absolute
extremum points; and the function is said to have absolute extrema at those points.

In the figure, x = d is a point of absolute maximum and x = a is a point of absolute minimum.
But the point x = c is also some sort of maximum. It is a point where f(x) achieves its maximum
compared with values of f(x) at all the neighboring points.

Let a function f(x) have domain D. The function f(x) has a local maximum at a point d ∈ D if
f(x) ≤ f(d) for every x in some neighborhood of d contained in D. in such a case, we also say
that the point x = d is a point of local maximum of the function f(x).

Similarly, f(x) has an local minimum at b ∈ D if f(b) ≤ f(x) for every x in some neighborhood
of b contained in D. In this case, we say that the point x = b is a point of local minimum of the
function f(x).

The points of local maximum and local minimum are commonly referred to as local extremum
points; and the function is said to have local extrema at those points.

As we know from Theorem 1.5, a continuous function defined on a closed interval achieves its
extremum points. These are the absolute extrema. If differentiability of f(x) is assumed, then
something can be said about local extremum points.

Theorem 2.4. Let f(x) with domain D have a local extremum at x = c. Let c be an interior point
of D. Suppose that f(x) is differentiable at x = c. Then f ′(c) = 0.

Proof: Suppose that f(x) has a local minimum at x = c. There exists a neighborhood (c− δ, c+ δ)

of c such that for every x ∈ (c − δ, c + δ), we have f(c) ≤ f(x). Now, for all such points x we
obtain:

f(x)− f(c)

x− c
≤ 0 for x < c, and

f(x)− f(c)

x− c
≥ 0 for x > c.

Taking the limit as x → c, the first inequality says that f ′(c) ≤ 0 and the second inequality says
that f ′(c) ≥ 0. Therefore, f ′(c) = 0.

When f(x) has a local maximum, the inequalities above get changed. Then also we conclude that
f ′(c) = 0. �

Notice that there can be points where a function can have its extreme value where f(x) is not dif-
ferentiable or such a point is not an interior point. In such scenario, Theorem 1.5 is not applicable.
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Let f(x) have domain D. A point c ∈ D is called a critical point of f(x) if c is not an interior
point of D, or if f(x) is not differentiable at x = c, or if f ′(c) = 0.

Then Theorem 2.4 says that if f(x) has an extremum at x = c, then c is a critical point of f(x).

A critical point need not be an extremum point. For example, the function f(x) = x3 defined on R
has a critical point at x = 0 but this function does not achieve an extreme value at x = 0. Reason:
to the left of x = 0, the values of x3 are less than 0 = f(0) and to the right of x = 0, the values
of x3 are greater than 0. When is a critical point an extremum point? To answer this question we
discuss some results which are geometrically appealing.

Theorem 2.5. (Rolle’s Theorem) Suppose that f : [a, b]→ R is continuous, f(x) is differentiable
on (a, b), and f(a) = f(b). Then f ′(c) = 0 for some c ∈ (a, b).

Proof: If f(x) is a constant function, then there is nothing to prove. Assume that f(x) is not a
constant function. By Theorem 1.5, f(x) has a maximum and a minimum in [a, b]. Since f(x) is
not a constant, at least one of these extreme values is different from f(a), and also different from
f(b). Suppose such an extreme value is achieved at x = c. Then c ∈ (a, b), is an interior point of
[a, b]. By Theorem 2.4, f ′(c) = 0. �

Example 2.5. Show that x3 + ax+ b has a unique real root if a > 0.

Since f(x) = x3 + ax + b is a polynomial of odd degree, it has a real root. Suppose c < d

are two ral roots of f(x). Then by Rolle’s theorem, we have r ∈ (c, d) such that f ′(r) = 0. But
f ′(x) = 3x2 + a > 0.

Rolle’s theorem can be generalized.

Theorem 2.6. (Mean value Theorem) Suppose that f : [a, b] → R is continuous and f(x) is
differentiable on (a, b). Then there exists c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

Proof: Define g : [a, b]→ R by g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Then g(x) is continuous on [a, b], differentiable on (a, b), and g(a) = 0 = g(b). By Rolle’s theo-
rem, we have c ∈ (a, b) such that g′(c) = 0. That is, f(b)− f(a) = f ′(c)(b− a). �
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The conclusion of the Mean value theorem is stated in another way:

f(a+ h) = f(a) + hf ′(a+ θh) for some θ ∈ (0, 1).

It follows from Theorem 2.6 by writing b = a+ h.

We know that the derivative of a constant function is zero. Its converse follows from the Mean
value theorem provided the domain is an interval. We do not consider degenerate intervals of the
form [a, a] etc.

Theorem 2.7. Let I be an interval containing at least two points. Let f : I → R be differentiable.
If f ′(x) = 0 for each x ∈ I, then f(x) is a constant function.

Proof: Let s < t ∈ I. Then f(x) is continuous on [s, t] and is differentiable on (s, t). By the Mean
value theorem, f(t)−f(s) = f ′(c)(t−s). If f ′(x) = 0 for all x ∈ I, then f ′(c) = 0; consequently,
f(b) = f(a). �

It thus follows that functions whose derivatives are the same can only differ by a constant.

In addition to the assumptions of the Mean value theorem if m ≤ f ′(x) ≤ M for some real
numbers m and M, then It follows that

m(b− a) ≤ f(x) ≤M(b− a).

This is sometimes called as the Mean value inequality.

MVT helps in determining whether a function is increasing or decreasing on an interval, and
consequently it leads to a test for maximum/minimum.

Let f(x) be a function defined on an interval I.
We say that f(x) is increasing on I if for all s < t ∈ I, f(s) < f(t).

Similarly, we say that f(x) is decreasing on I if for all s < t ∈ I, f(s) > f(t).

A monotonic function on I is one which either increases on I or decreases on I.

For example, f(x) = x2 increases on [0,∞) and decreases on (−∞, 0]. It is monotonic on both
the intervals (−∞, 0] and on [0,∞). But it is not monotonic on R, since it neither increases on R
nor decreases on R.

Theorem 2.8. Let f(x) be continuous on [a, b] and differentiable on (a, b).

1. If f ′(x) > 0 on (a, b), then f(x) is increasing on [a, b].

2. If f ′(x) < 0 on (a, b), then f(x) is decreasing on [a, b].

Proof: Let s < t ∈ [a, b]. By MVT, f(t)−f(s) = f ′(c)(t−s) for some c ∈ (s, t). Since f ′(c) > 0,

f(t) > f(s). Therefore, f(x) is increasing on [a, b]. This proves (1). Proof of (2) is similar. �

The point x = c is a point of local maximum for the function f(x) iff in the left neighborhood of
c, f(x) is increasing and in the right neighborhood of c, f(x) is decreasing. The increasing and
decreasing nature of f(x) are determined from the sign of f ′(x).

If f ′(c) = 0, f ′(x) > 0 on an interval to the immediate left of x = c, and f ′(x) < 0 on an interval
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to the immediate right of x = c, then we say that f ′(x) changes sign from + to − at x = c.

Similarly, f ′(x) changes sign from − to + means that f ′(c) = 0, f ′(x) < 0 on an interval to the
immediate left of x = c, and f ′(x) > 0 on an interval to the immediate right of x = c.

Thus the following are true:

If f ′(x) changes sign from − to + at x = c then f(x) has a local minimum.
If f ′(x) changes sign from + to − at x = c then f(x) has a local maximum.

Look at f ′(x) as a function and we can take its derivative once more. Suppose f ′′(c) < 0. Then
f ′(x) is decreasing on a neighborhood of x = c. Since f ′(c) = 0, we see that this decrease must
be from + to −. In that case, x = c is a point of local maximum.

Analogous arguments hold for a point of local minimum where f ′(x) changes sign from − to + at
x = c.

2.3 Tests for Maxima-Minima

We summarize the discussion.

Test for Local Extrema:

Let c be an interior point of the domain of f(x) with f ′(c) = 0.

f ′(x) changes sign from + to − at x = c iff x = c is a point of local maximum of f(x).

If f ′′(c) < 0, then x = c is a point of local maximum of f(x).

f ′(x) changes sign from − to + at x = c iff x = c is a point of local minimum of f(x).

If f ′′(c) > 0, then x = c is a point of local minimum of f(x).

Let x = c be a left end-point of the domain of f(x).

f ′(x) < 0 on the immediate right of x = c iff x = c is a point of local maximum of f(x).

f ′(x) > 0 on the immediate right of x = c iff x = c is a point of local minimum of f(x).

Let x = c be a right end-point of the domain of f(x).

f ′(x) > 0 on the immediate left of x = c iff x = c is a point of local maximum of f(x).

f ′(x) < 0 on the left of x = c iff x = c is a point of local minimum of f(x).
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Example 2.6. Find all points of local extrema of the function f(x) = x3 − 3x2 − 24x+ 5.

The domain of f(x) is −(∞,∞). Here, f ′(x) = 3x2 − 6x− 24 = 3(x+ 2)(x− 4).

The critical points are x = −2 and x = 4. Now, f ′′(x) = 6x− 6.

Then f ′′(−2) = −18 < 0 says that x = −2 is a local maximum point and the local maximum
value of f(x) at x = −2 is f(−2) = 33.

f ′′(4) = 18 > 0. Then x = 4 is a local minimum point and the local minimum value of f(x) at
x = 4 is f(4) = 75.

Example 2.7. Find all local maxima/minima for the function g(x) = x+ sinx.

g′(x) = 1 + cosx vanishes for x = (2n + 1)π, where n ∈ Z.
Now, g′′(x) = − sinx is also zero at all these critical points.
So, it does not help. We look for change of sign of g′(x). Now,
g′(x) > 0 for all values of x except the critical points. So, there
is no change in sign of g′(x) at the critical points. Therefore,
g(x) has no local maxima/minima.

Example 2.8. Find the critical points of f(x) = x1/3(x−4) defined on the interval [−1, 2]. Identify
the intervals in which f(x) is increasing or decreasing. Find the absolute and local extreme points
and values of f(x).

f ′(x) =
1

3
x−2/3(x− 4) + x1/3(1) =

x− 4 + 3x

3x2/3
=

4(x− 1)

3x2/3
.

It is zero at x = 1 and is undefined at x = 0. The end-points of the domain of f(x) are −1 and 2.

Thus x = −1, 0, 1, 2 are its critical points.

(a) For absolute extrema: f(−1) = 5, f(0) = 0, f(1) = −3, f(2) = −24/3.

Comparing these values, we see that the absolute minimum value of f(x) is −3 and the point of
absolute minimum is x = 1.

The point of absolute maximum is x = −1 and the absolute maximum value is 5.

(b) For the increasing and decreasing nature of f(x), look for the signs of f ′(x).

For x < 0, f ′(x) is −ve. Thus f(x) is decreasing on [−1, 0].

For 0 < x < 1, f ′(x) is −ve. Thus f(x) is decreasing on [0, 1].

For x > 1, f ′(x) is +ve. Thus f(x) is increasing on [1, 2].
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(c) The change of sign of f ′(x) says that f(x) does not have a local extremum at x = 0.

And f(x) has a local minimum at x = 1. The local minimum value at x = 1 is f(1) = 3.

At the end-points, since f(x) is decreasing on [−1, 0], x = −1 is a local maximum point, the local
maximum value is f(−1) = 5. Similarly, x = 2 is also a local maximum point, and the local
maximum value at x = 2 is f(2) = −24/3.

In summary,

x = −1 is a local maximum point and also an absolute maximum point.
x = 0 is not an extremum point.
x = 1 is a local minimum point as well as an absolute minimum point.
x = 2 is a local maximum point.

Notice that lim
x→0

f ′(x) = −∞. Thus y = f(x) has a vertical tangent at the origin.

Example 2.9. A box is to be made from a sheet of cardboard that measures 12 × 12. The con-
struction will be achieved by cutting a square from each corner of the sheet and then folding up the
sides. What is the box of greatest volume that can be constructed in this fashion?

Let x be the side length of the squares that are to be cut from the sheet of cardboard. Then the side
length of the resulting box will be 12− 2x; the height of the box will be x. As a result, the volume
of the box will be

f(x) = x(12− 2x)2 = 144x− 48x2 + 4x3.

This function is to be maximized. The critical points are

f ′(x) = 0⇒ 144− 96x− 12x2 = 0⇒ x = 2, 6.

Now, f ′′(x) = −96 + 24x. Since 0 ≤ x ≤ 6; comparing f(0), f(2), f(6), we see that f(2) is
maximum.

Also, notice that f ′′(2) = −48 < 0 and f ′′(6) = 48 > 0. Therefore, f(x) has a local maximum at
x = 2 and a local minimum at x = 6.

The greatest volume is f(2) = 2(12− 4)2 = 128.

The second derivatives help us to know the shape of a curve.
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Here, the graph of the function f(x) = 3 + sinx is concave down on (0, π) and is concave up from
(π, 2π). The concavity changes at x = π.

The graph of a function y = f(x) is concave up on an open interval I if f ′(x) is increasing on I.
The graph of y = f(x) is concave down on an open interval I if f ′(x) is decreasing on I.
A point of inflection is a point where y = f(x) has a tangent and the concavity changes.

Now, f ′(x) increases on I when f ′′(x) > 0 on I. Similarly, f ′′(x) < 0 on I implies that f ′(x)

decreases on I. We thus have the following:

Second derivative test for concavity:

Let y = f(x) be twice differentiable on an interval I.

If f ′′(x) > 0 on I, then the graph of y = f(x) is concave up over I.

If f ′′(x) < 0 on I, then the graph of y = f(x) is concave down over I.

If f ′′(x) is positive on one side of x = c and negative on the other side, then the point
(c, f(c)) on the graph of y = f(x) is a point of inflection.

At a point of inflection, either f ′′ does not exist or it vanishes. Notice that in the latter case, f ′(x)

has a local extremum.
Here is a summary of how the derivatives give information regarding the shape of a curve:

Example 2.10.
(a) The curve y = x2 is concave up everywhere. Because, (x2)′′ = 2 > 0 at all points.

(b) The curve y = x3 is concave down on (−∞, 0) where f ′′(x) = 6x < 0. It is concave up on
(0,∞), where f ′′(x) = 6x > 0. The point x = 0 is its inflection point.
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(c) The curve y = f(x) = x4 has f ′′(x) = 12x2 = 0 at x = 0. But the point (0, 0) is not a point of
inflection since f ′′(x) does not change sign at x = 0.

(d) For the curve y = f(x) = x1/3, f ′′(x) = −(2/9)x−5/3 for x 6= 0. And f ′′(x) does not exist at
x = 0. However, f ′′(x) < 0 for x < 0 and f ′′(x) > 0 for x > 0. That is, f ′′(x) changes sign at
x = 0. Therefore, the point (0, 0) is a point of inflection.

Example 2.11. Give a rough sketch of the graph of y = f(x) =
(1 + x)2

1 + x2
.

1. The domain of f(x) is (−∞,∞). There are no symmetries.

2. f(x) =
(1 + x)2

1 + x2
, f ′(x) =

2(1− x2)

(1 + x2)2
, f ′′(x) =

4x(x2 − 3)

(1 + x2)3
.

3. The critical points are x = −1, 1.

At x = −1, f ′′(−1) = 1 > 0. So, y = f(x) has a local minimum at x = −1.

At x = 1, f ′′(1) = −1 < 0. So, y = f(x) has a local maximum at x = 1.

4. On the interval (−∞,−1), f ′(x) < 0, so, f(x) is decreasing.
On the interval (−1, 1), f ′(x) > 0, so, f(x) is increasing.
On the interval (1,∞), f ′(x) < 0, so, f(x) is decreasing.

5. f ′′(x) = 0 for x = −
√

3, 0,
√

3. On the interval (−∞,−
√

3), f ′′(x) < 0. On the interval
(−
√

3, 0), f ′′(x) > 0. On the interval (0,
√

3), f ′′(x) < 0. And on the interval (
√

3,∞),

f ′′(x) > 0. Thus, each of these points is a point of inflection. Moreover, on (−∞,−
√

3),

y = f(x) is concave down; on (−
√

3, 0), it is concave up; on (0,
√

3) it is concave down,
and on (

√
3,∞), it is concave up.

6. Rewrite f(x) =
1 + (2/x) + (1/x2)

(1/x2) + 1
. Thus f(x) decreases to 1 as x → ∞ and f(x) in-

creases to 1 as x→ −∞. Thus y = 1 is a horizontal asymptote to y = f(x).

For every c ∈ R, limit of f(x) as x→ c remains finite.
Thus there are no vertical asymptotes. Since the curve
decreases to reach the point (−1, 0) and then increases
up to the point (1, 2), and then decreases towards its
asymptote, the local minimum at x = −1 is an abso-
lute minimum. And also the local maximum at x = 1

is an absolute maximum.

7. The curve thus looks like :
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2.4 L’ Hospital’s Rule

Throughout, we have used the MVT for deciding about the increasing and decreasing nature of
functions. The MVT can be generalized a bit.

Theorem 2.9. (Cauchy Mean Value Theorem) Let f(x) and g(x) be continuous on [a, b] and
differentiable on (a, b). If g′(x) 6= 0 on (a, b), then there exists c ∈ (a, b) such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.

Proof: If g(b) − g(a) = 0, then by MVT, g′(d) = 0 for some d ∈ (a, b), contradicting our
assumption. Hence g(b)− g(a) 6= 0. Define h : [a, b]→ R by

h(x) = f(x)− f(a)− f(b)− f(a)

g(b)− g(a)
{g(x)− g(a)}.

Now, h(x) is continuous on [a, b] and differentiable on (a, b). Also, h(a) = h(b). By Rolle’s
theorem, there exists c ∈ (a, b) such that h′(c) = 0. That is,

f ′(c)− f(b)− f(a)

g(b)− g(a)
g′(c) = 0. �

Theorem 2.10. (L’Hospital’s Rule) Let f(x) and g(x) be differentiable on a neighborhood of a
point x = a. Suppose f(a) = g(a) = 0 but g(x) 6= 0, g′(x) 6= 0 in the deleted neighborhood of

x = a. If lim
x→a

f ′(x)

g′(x)
exists, then lim

x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Proof: First, consider the interval [a, x] to the right of a, which is contained in the given neigh-
borhood of a. Both f and g are continuous on [a, x], and differentiable on (a, x). Also, g′ 6= 0 on
(a, x). By Cauchy MVT, there exists a point θ ∈ (a, x) such that

f ′(θ)

g′(θ)
=
f(x)− f(a)

g(x)− g(a)
=
f(x)

g(x)
.

When x→ a, we have θ → a. Therefore,

lim
θ→a+

f ′(θ)

g′(θ)
= lim

x→a+

f(x)

g(x)
.
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Similarly, considering an interval [t, a] to the left of the point a, we conclude that

lim
τ→a−

f ′(τ)

g′(τ)
= lim

x→a−

f(x)

g(x)
.

Combining the two above completes the proof. �

Of course, when only one sided limit is relevant, our proof shows that L’ Hospital’s Rule is still
applicable. The method can also be used for evaluating limits in the indeterminate forms such as
±∞
±∞ , ±∞ · 0, and∞−∞.

Example 2.12. (a) lim
x→0

√
1 + x− 1− x/2

x2
in 0

0
form.

= lim
x→0

(1/2)(1 + x)−1/2 − 1/2

2x
in 0

0
form.

= lim
x→0

−(1/4)(1 + x)−3/2

2
=

1

8
.

(b) lim
x→0

1− cosx

x+ x2
= lim

x→0

1− cosx

x

1

1 + x
= lim

x→0

sinx

1
= 0.

But lim
x→0

1− cosx

x+ x2
= lim

x→0

sinx

1 + 2x
= lim

x→0

cosx

2
=

1

2
.

What is wrong? The second limit in the second calculation is not in 0
0

form. In fact, the limit there
is equal to 0 as it should be.

(c) lim
x→0+

sinx

x2
= lim

x→0+

cosx

2x
=∞.

(d) lim
x→0−

sinx

x2
= lim

x→0−

cosx

2x
= −∞.

(e) For the limit lim
x→π/2

secx

1 + tan x
, notice that both the numerator and denominator are discontinuous

at x = π/2. We consider only one-sided limits.

lim
x→(π/2)−

secx

1 + tan x
= lim

x→(π/2)−

secx tanx

sec2 x
= lim

x→(π/2)−
sinx = 1. Similarly,

lim
x→(π/2)+

secx

1 + tan x
= 1. Hence lim

x→π/2

secx

1 + tan x
= 1.

(f) lim
x→∞

x− 2x2

3x2 + 5x
= lim

x→∞

1− 4x

6x+ 5
= lim

x→∞

−4

6
= −2

3
. ±∞

±∞

(g) lim
x→∞

x sin
1

x
= lim

t→0+

1

t
sin t = lim

t→0+
cos t = 1. ∞ · 0

(h) For the limit lim
x→0

(
1

sinx
− 1

x

)
, we see that as x→ 0+, it is in∞−∞ form and as x→ 0−,

it is in −∞+∞ form. We need 0
0

or ±∞±∞ . So, we rearrange.

lim
x→0

(
1

sinx
− 1

x

)
= lim

x→0

x− sinx

x sinx
= lim

x→0

1− cosx

sinx+ cosx
= lim

x→0

sinx

cosx− sinx
= 0.

Let c be an arbitrary point in the domain of a differentiable function y = f(x). Suppose ∆x
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represents the change in x near c. Then the change in y near c is f(c+ ∆x)− f(c). The derivative

f ′(x) at c is f ′(c) = lim
∆x→0

f(c+ ∆x)− f(c)

∆x
. Therefore, near c, the change in y is approximately

equal to f ′(c)∆x. In abstract terms, we express this as differentials.

The change dx at any arbitrary point x is an independent variable called the differential of x.
It is the same as ∆x. The corresponding change in y is a dependent variable and is called the
differential of y. The differential of y is denoted by dy. We define this differential of y as

dy = f ′(x) dx.

Then the differential dy is an approximation of the increment ∆y in y near c.

Notice that in this view, the differentials give a proper notation in viewing dy
dx

as a ratio.

This helps. For example, the derivative of a product

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)

can be stated in terms of differentials as d(fg) = df g + f dg.

For y = f(x), the differential dy = f ′(c)dx gives an approximation to the increment in y near c.
Thus

∆y = f(c+ dx)− f(c) ≈ dy ⇒ f(c+ dx) ≈ f(c) + dy.

It helps in approximately computing the function value at a neighboring point from the value at
that point and the differential near the point.

Example 2.13. The radius of a circle of radius 10 increases to 10.1. Estimate the change in area.

Since y = f(x) = πx2, the differential formula gives the estimate as

∆y ≈ dy = 2πx dx = π(10)(0.2) = 2π.

Of course, the change in area is π{(10.1)2 − 102} = π(0.1× 20.1) = 2.01π.

2.5 Curvature

The curvature of a curve at a point quantifies how much the curve is bent at that point. For exam-
ple, consider two circles, C1 of radius 1 and C2 of radius 2. Intuitively, the bent on any circle is
independent of the point we choose on it. So, choose a point P1 on C1 and a point P2 on C2. Now,
the bent of C1 at P1 is certainly stiffer or more than that at P2 on C2. Thus the curvature of a circle
may be taken as something that varies inversely with the radius. We also use the term radius of
curvature for the reciprocal of the curvature.

To compare the curvatures of these circles at those points, let us take another pair of points,
say Q1 near P1 on C1 and Q2 near P2 on C2. The angle between the tangents at P1 and Q1 is more
than the angle between the tangents to C2 at P2 and Q2. It shows that the rate of change of the
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angle between a tangent and the x-axis with respect to the length of the curve is faster when the
corresponding angles between the tangents is more. We thus define the curvature as follows.

Curvature of a curve at a point P on the curve is the rate of change in direction with respect to
the arc length of the curve at P. Writing κ for the curvature, our definition yields the formula

κ =
∣∣∣dψ
ds

∣∣∣
where s is the arc length and ψ is the angle between the tangent to the curve at that point and the
positive x-axis. Further, the radius of curvature, denoted by ρ is given by

ρ =
1

κ
=
∣∣∣ ds
dψ

∣∣∣.
We now derive the formulas for calculating curvature in cartesian coordinates.

As we know,

tanψ =
dy

dx
, ds =

√
dx2 + dy2,

dx

ds
= cosψ.

Then sec2 ψ
dψ

dx
=
d2y

dx2
. Consequently,

κ =
∣∣∣dψ
ds

∣∣∣ =
∣∣∣dψ
dx

dx

ds

∣∣∣ =
∣∣∣d2y

dx2
cos3 x

∣∣∣ =
∣∣∣y′′ [1 + (y′)2]−3/2

∣∣∣.
ρ =

1

κ
=
∣∣∣ [1 + (y′)2]3/2

y′′

∣∣∣.
In these formulas, we should take care that at the point where the curvature or radius of curvature
are computed, the quantities in the denominator are not 0.

Similarly, in polar coordinates, the formula for the radius of curvature is given by

ρ =
1

κ
=

∣∣∣∣[r2 +
(dr
dθ

)2
]3/2[

r2 + 2
(dr
dθ

)2 − rd
2r

dθ2

]∣∣∣∣ .
Notice that the curvature of a straight line is 0 at every point since ψ, the angle between any tangent
to it (tangent is the straight line itself) and the x-axis never changes.

Example 2.14. Find the radius of curvature for a circle of radius a, say, centred at the origin.

In polar coordinates, the circle is given by r = a. We have

dr

dθ
= 0,

d2r

dθ2
= 0.

ρ =
1

κ
=
∣∣[a2]3/2[a2]−1

∣∣ =
∣∣∣a3

a2

∣∣∣ = a.

If C is a curve having radius of curvature ρ at a point P on the curve, then imagine a circle of
radius ρ touching the curve at P and lying on the convex side of the curve.
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Then the centre of such a circle , now called an osculating circle is called the centre of curvature
of the curve at that point. Clearly, the centre of curvature of a circle is the centre of the circle,
whatever point P on the circle we choose.

If (a, b) is the centre of curvature of a curve y = y(x) at the point (x, y), then

a = x− ρ sinψ = x− y′[1 + (y′)2]

y′′
, b = y + ρ cosψ = y +

1 + y′

y′′
.

Example 2.15. Find the radius and centre of curvature for the parabola y2 = 4ax.

Let (x, y) be any point on the parabola y2 = 4ax. at P, we have

dy

dx
=

2a

y
,

d2y

dx2
= −4a2

y3
.

ρ =
[
1 +

4a2

y3

]3/2(
− 4a2

y3

)−1

=
2(x+ a)3/2

√
a

.

If (a, b) is the centre of curvature at (x, y), then

a = x− y′[1 + (y′)2]

y′′
= x+

4a2 − y2

2a
, b = y +

1 + y′

y′′
= y − y3 + 2ay

4a
.

2.6 Review Problems

Problem 1: What is the derivative of f(x) =
√
|x| ?

For x > 0,
√
|x| =

√
x. So, f ′(x) = 1

2
√
x
.

For x < 0,
√
|x| =

√
−x. So, f ′(x) = −1

2
√
−x .

For the derivative of f(x) at x = 0,
f(h)− f(0)

h
=

{
1/
√
h if h > 0

1/
√
−h if h < 0.

So, lim
h→0+

f(h)− f(0)

h
=∞ and lim

h→0−

f(h)− f(0)

h
= −∞.

Therefore, the derivative of f(x) at x = 0 does not exist. Even the left hand and right hand
derivatives do not exist at x = 0.

Problem 2: Find f ′(x) if f(x) =

{
x2 if x ≥ 0

−x2 if x < 0.
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If x > 0, then f ′(x) = 2x. If x < 0, then f ′(x) = −2x. For x = 0,

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

h2

h
= 0. lim

h→0−

f(h)− f(0)

h
= lim

h→0−

−h2

h
= 0.

Thus f ′(0) = 0. That is, f ′(x) = 2|x|.

Problem 3: Find the derivative of y = f(x) where x and y are given parametrically:
(a) x = a cos t, y = a sin t, 0 ≤ t ≤ π. Upper semi-circle y =

√
a2 − x2.

(b) x = a cos t, y = b sin t, 0 ≤ t ≤ π. Upper part of an ellipse y = b
√

1− x2/a2.

(c) x = a(t− sin t), y = a(1− cos t), 0 ≤ t ≤ 2π. The cycloid.
(d) x = a cos3 t, y = a sin3 t, 0 ≤ t ≤ 2π. The asteroid x2/3 + y2/3 = a2/3.

If a function y = f(x) is given parametrically by x = φ(t), y = ψ(t), then assuming that
φ′(t) 6= 0, we have

dy

dx
=
dy

dt

dt

dx
=
ψ′(t)

φ′(t)
.

(a)
dy

dx
=
d(a sin t)

dt

/d(a cos t)

dt
=

a cos t

−a sin t
= −x

y
.

(b)
dy

dx
=
d(b sin t)

dt

/d(a cos t)

dt
=

b cos t

−a sin t
= − b

2

a2

a cos t

b sin t
=
b2x

a2y
.

(c)
dy

dx
=
d(a(t− sin t))

dt

/d(a(1− cos t))

dt
=
a(1− cos t)

sin t
= cot

(
t

2

)
.

(d)
dy

dx
=
d(a sin3 t)

dt

/d(a cos3 t)

dt
=

3a sin2 t cos t

−3a cos2 t sin t
= − sin t

cos t
= −

(y
x

)1/3

.

Problem 4: If a curve is given in polar coordinates, show that the derivative of the radius vector
with respect to the polar angle is equal to the radius vector multiplied by the cotangent of the angle
between the radius vector and the tangent to the curve at the given point.

In polar coordinates, x = ρ cos θ, y = ρ sin θ, where the
curve is given by ρ = ρ(θ). Let φ be the angle formed by
the tangent to the curve at some point M(ρ, θ) with the
positive x-axis. Then

tanφ =
dy

dx
=
dy/dθ

dx/dθ
=
ρ′(θ) sin θ + ρ cos θ

ρ′(θ) cos θ − ρ sin θ
.

Let µ be the angle between the radius vector ρ and the tangent at that point M. Then µ = φ − θ,
and then

tanµ =
tanφ− tan θ

1 + tanφ tan θ
=

(ρ′ sin θ + ρ cos θ) cos θ − (ρ′ cos θ − ρ sin θ) sin θ

(ρ′ cos θ − ρ sin θ) cos θ + (ρ′ sin θ + ρ cos θ) sin θ
=
ρ

ρ′
.

This gives ρ′(θ)θ = ρ(θ) cotµ.

Problem 5: Consider the function f(x) = 1− x2/3 defined on the interval [−1, 1]. Its derivative is
f ′(x) = −2

3
x−1/3. Notice that f(−1) = f(1) = 0 but f ′(x) 6= 0 on [−1, 1]. Why?
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Reason: Rolle’s theorem is not applicable because, at x = 0, f(x) is not differentiable.
Also, notice that at x = 0, f(x) attains its maximum value 1.

Problem 6: Find the maximum and minimum values of (1− x2)−1 in (0, 1).

Let f(x) = (1− x2)−1. Now, f ′(x) =
2x

(1− x2)2
. It is 0 only for x = 0.

When x is close to 1, f(x) becomes arbitrarily large. So, f(x) has no maximum in (0, 1).

When x < 0, f ′(x) < 0 and when x > 0, f ′(x) > 0. That is, at x = 0, f ′(x) changes sign from
− to +. Therefore, f(0) = 1 is a minimum value of f(x). This is the only minimum value since
f ′(x) is never 0 for any other point.

Problem 7: Examine f(x) = 2 sinx+ cos 2x for maxima/minima for x ∈ R.

Since f(x) has period 2π, we consider it on (0, 2π). Now,

f ′(x) = 2 cosx− 2 sin 2x = 2(cosx− 2 sinx cosx) = 2 cosx(1− 2 sinx).

The critical points are a = π/6, b = π/2, c = 5π/6, d = 3π/2.

f ′′(x) = −2 sinx− 4 cos 2x.

f ′′(π/6) = −2(1/2) − 4(1/2) = −3 < 0. Hence f(x) has a local maximum at x = π/6 and this
maximum value is f(π/6) = 3/2.

f ′′(π/2) = −2 · 1 + 4 · 1 = 2 > 0. Thus f(x) has a local minimum at x = π/2 and this minimum
value is f(π/2) = 1.

f ′′(5π/6) = −2(1/2) − 4(1/2) = −3 < 0. So, f(x) has a local maximum at x = 5π/6) and this
maximum value is f(5π/6) = 3/2.

f ′′(3π/2) = −2(−1) − 4(−1) = 6 > 0. Then f(x) has a local minimum at x = 3π/2 and this
minimum value is f(3π/2) = −3.

What about the points x = 0 and x = 2π? Due to periodicity we need to consider x = 0 only.
f ′(0) = 2 6= 0. Hence x = 0 is not a point of maxima/minima.
In summary, the points of local maxima are 2nπ + π/6 and 2nπ + 5π/6 for n ∈ Z.
The points of local minima are 2nπ + π/2 and 2nπ + 3π/2 for n ∈ Z.
The absolute maximum value of f(x) is 3/2 and the absolute minimum value of f(x) is −3.

Problem 8: Determine the points of inflection of y = (x− 1)1/3.

y′ =
1

3
(x− 1)−2/3, y′′ = −2

9
(x− 1)−5/3.

The second derivative does not vanish anywhere. But at x = 1, y′′ does not exist. There is a
possibility of a point of inflection at x = 1.
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For x < 1, y′′ > 0. So, the curve is concave up in a left neighborhood of x = 1.

For x > 1, y′′ < 0. So, the curve is concave down in a right neighborhood of x = 1.

Therefore, x = 1 is a point of inflection.
Notice that at x = 1 the curve has a vertical tangent since y′(x)→ ±∞ as x→ 1.

Problem 9: Investigate the curve x(t) =
3at

1 + t3
, y(t) =

3at2

1 + t3
for a give a > 0 for its decreas-

ing/increasing behavior. Sketch the curve.

Both the functions are defined for all values of t except for t = −1. We see that

lim
t→−1−

x(t) = lim
t→−1−

3at

1 + t3
=∞, lim

t→−1+
x(t) = −∞

lim
t→−1−

y(t) = lim
t→−1−

3at2

1 + t3
= −∞, lim

t→−1+
y(t) =∞

x(0) = y(0) = 0, lim
t→∞

x(t) = lim
t→∞

y(t) = 0, lim
t→−∞

x(t) = 0, lim
t→−∞

y(t) = 0.

Also,
dx

dt
=

6a(1/2− t3)

(1 + t3)2
,

dy

dt
=

3at(2− t3)

(1 + t3)2
;
dy

dx
=
t(2− t3)

1− 2t3
. For the parameter t,we have the

four critical values (when dx/dt = 0 = dy/dt):

t1 = −1, t2 = 0, t3 = 2−1/3, t4 = 21/3.

At t = 0, x = 0, y = 0, we have dy
dx

= 0 and when t→∞, x = 0, y = 0, we have dy
dx
→∞.

Thus the curve cuts the origin twice:

with the tangent parallel to x-axis and with the tangent parallel to y-axis.

Also, when t = 2−1/3, x = a41/3, y = a21/3, dy
dx
→∞.

At this point the tangent to the curve is vertical.
When t = 21/3, x = a21/3, y = a41/3, dy

dt
= 0.

At this point the curve has a horizontal tangent.
The information obtained from the derivative are as follows:

Range of t Range of x Range of y sign of variation
dy/dx in y = f(x)

−∞ < t < −1 0 < x <∞ 0 > y > −∞ − decreases
−1 < t < 0 −∞ < x < 0 ∞ > y > 0 − decreases
0 < t < 21/3 0 < x < a41/3 0 < y < a21/3 + increases
2−1/3 < t < 21/3 a41/3 > x > a21/3 a21/3 < y < a41/3 − decreases
21/3 < t <∞ a21/3 > x > 0 a41/3 > y > 0 + increases

lim
x→∞

y

x
= lim

t→1−

3at2(1 + t3)

3at(1 + t3)
= −1.

lim
x→∞

(y − (−1)x) = lim
t→1−

3at(t+ 1)

1 + t3
= −a.
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Hence the straight line y = −x− a is an asymptote to a branch of the curve as x→∞. Similarly,

lim
x→−∞

y

x
= −1, lim

x→−∞
(y − (−1)x) = −a.

Therefore, the straight line y = −x− a is also an asymp-
tote to a branch of the curve as x→ −∞.

Now, we can have a rough sketch of the curve, called
Descartes’ Folium.

Problem 10: Let f : (a, b) → R; c ∈ (a, b). Suppose that |f | is differentiable at x = c and f is
continuous at x = c. Show that f is differentiable at x = c.

Notice that f may not be continuous but |f | can be differentiable. For example, the function that
takes value −1 for all rational numbers and takes value 1 for all irrational numbers.

If f(c) > 0, then f(x) remains positive in a neighborhood of x = c. That is, in that neighborhood,
f(x) = |f(x)|. Then f is differentiable at x = c.

Similarly, if f(c) < 0, then in a neighborhood of x = c, f(x) = −|f(x)| and then f(x) is
differentiable at x = c.

If f(c) = 0, then x = c is a local minimum point of |f(x)|. So, |f |′(c) = 0. This means

0 = lim
h→0

|f(c+ h)| − |f(c)|
h

= lim
h→0

|f(c+ h)|
h

⇒ f ′(c) = 0.

Problem 11: Find the radius and centre of curvature for y = x2 at (0, 0).

Here, y′ = 2x, y′′ = 2. That is, at the origin, y′ = 0, y′′ = 2. Thus

ρ =
∣∣(y′′)−1[1 + (y′)2]3/2

∣∣ = (1/2)−1(1) =
1

2

The centre of curvature at the origin is (a, b), where

a = x− y′[1 + (y′)2](y′′)−1 = 0, b = y + (1 + y′)(y′′)−1 =
1

2
.
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Chapter 3

Integration

3.1 The definite integral

Integration is a reverse process of integration. Look at the figure:

Imagine h is very small. Then f(x) can be approximated by the shaded area divided by h. Write
the area as F (x), say, starting from some point x = a on the left. Then the shaded area is
F (x+ h)− F (x). Consequently,

f(x) ≈ F (x+ h)− F (x)

h
.

Or, in the limit, we have f(x) = F ′(x). This means:

If F (x) denotes the area of the region bounded by y = f(x) and the x-axis, starting from some
point x = a up to the point x = c, then f(c) = F ′(c). That is, the function which may serve as an
inverse process of differentiation is this area. How do we find this area?

We can approximate the area by dividing the x-interval, the domain of f(x) into smaller parts, and
then take the sum of all smaller rectangles of width as the small part on x-axis and the height as
the function value at some point inside the smaller interval.

That is, suppose that f : [a, b]→ R. Divide [a, b] into smaller sub-intervals by choosing the break
points as a = x0 < x1 < . . . < xn = b.

The set P = {x0, x1, . . . , xn} is called a partition of [a, b].

Now P divides [a, b] into n sub-intervals: [x0, x1], · · · , [xn−1, xn]. Here, the kth sub-interval is
[xk−1, xk]. The area under the curve y = f(x) raised over the kth sub-interval is approximated by
f(ck)(xk − xk−1) for some choice of the point ck ∈ [xk−1, xk].
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Write the choice points (also called sample points) as a set C = {c1, . . . , cn}.

Then the Riemann sum

S(f, P, C) =
n∑
k=1

f(ck)(xk − xk−1)

is an approximation to the whole area raised over [a, b] and lying between the curve y = f(x) and
the x-axis.

If the sub-intervals become smaller and smaller, we expect better and better approximation of the
area by the Riemann sum. This hints at a limit process. That is, by taking the norm of the partition
as ‖P‖ = max

k
(xk − xk−1), we would say that when the norm of the partition approaches 0, the

Riemann sum would approach the required area. Thus, we define the area of the region bounded
by the lines x = a, x = b, y = 0, and y = f(x) as

lim
‖P‖→0

n∑
k=1

f(ck)(xk − xk−1)

provided that this limit exists. Notice that we can choose ck from each sub-interval in many ways.
We can choose n in many ways. Thus the limit of he Riemann sum must exist for all such choices,
and all those limits must be equal. If the limit of all such Riemann sums exist, and are equal, we
call this limit as the integral of f(x) from a to b. Our heuristics says that the integral is nothing
but the area of the bounded region we just considered. In fact, when an area of such a region is
required, we simply compute this integral. We write the integral as in the following:∫ b

a

f(x) dx = lim
‖P‖→0

S(f, P, C) = lim
‖P‖→0

n∑
k=1

f(ck)(xk − xk−1)

We say that the integral exists if for all such choices of P and of ck, the right hand side limit exists.
In that case, the integral can be computed by choosing a particular type of P, or even a particular
way of choosing these ck from the sub-intervals. The notation demands that the limit, when exists,
must not depend on the particular choice points in C. Since the above limit looks different from
lim
x→c

f(x), we must state it correctly. It means the following:
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There exists ` ∈ R so that for all ε > 0, there exists δ > 0 such that if ‖P‖ < δ, then for all choices
of C, |S(f, P, C)− `| < ε.

Of course, we will not use this definition always. The key to its application is the following basic
fact, which we accept without proof:

Theorem 3.1. Let f : [a, b]→ R be a continuous function. Then
∫ b
a
f(x) dx exists.

Since the integral is the area bounded by the curve and the x-axis between the two vertical lines
that are obtained from the limits of integration, a prerequisite for a function to be integrable is that
it must be bounded. Due to Theorem 1.4, a continuous function on a closed bounded interval is
bounded.

Example 3.1. Calculate the area of the region below the curve y = x2 above x-axis and between
the lines x = 0 and x = 1.

That is, we compute
∫ 1

0
x2 dx. By Theorem 3.1, this integral exists. We thus choose a particular

type of partition, say, uniform partition

P : 0 = x0 =
1

n
< x1 =

2

n
< · · · < xn−1 =

n− 1

n
< xn =

n

n
= 1.

We also choose the sample points C : c1 = x0 = 1
n
, · · · cn = xn−1 = n−1

n
, the left end-points of

the partition sub-intervals. That is,

The Riemann sum is

S(f, P, C) =
n∑
k=1

f(ck)(xk − xk−1) =
(k
n

)2 1

n
=

1

n3

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6n3
.

Notice that as ‖P‖ → 0, we have n→∞. Then∫ 1

0

x2 dx = lim
n→∞

n(n+ 1)(2n+ 1)

6n3
=

1

6
lim
n→∞

(
1 +

1

n

)(
2 +

1

n

)
=

1

3
.

Example 3.2. Show that
∫ 1

0

1

x
dx does not exist.

The function 1/x is not defined at 0. As such
∫ 1

0
(1/x) is not defined.

Suppose we redefine the function by taking its value at 0 as 0. That is, we ask for
∫ 1

0
f(x)dx,

where f(0) = 0 and f(x) = 1/x for x ∈ (0, 1]. Here, f(x) is an unbounded function since
lim
x→0+

(1/x) =∞. Therefore, f(x) is not integrable.
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Now, you see that an integrable function must be bounded in its domain of definition. If f(x)

becomes unbounded, then the limit of the Riemann sum will not exist. Even though a function is
bounded, it need not be integrable.

Example 3.3. Show that
∫ 1

0

f(x)dx does not exist, where f(x) =

{
0 if x ∈ Q
1 if x 6∈ Q.

Again, choose a uniform partition of [0, 1] as P : 0 < 1
n
< · · · < n

n
= 1. Let us choose two

separate sets of sample points

C1 : x1 < x2 < · · · < xn, C2 : t1 < t2 < · · · < tn,

where each xk is a rational number in the k-th subinterval and tk is an irrational number in the
same k-th subinterval. The Riemann sums are the following:

S(P, f, C1) =
n∑
k=1

f(xk)

n
= 0, S(P, f, C2) =

n∑
k=1

f(tk)

n
=

n∑
k=1

1

n
.

The limits of the first Riemann sum as n→∞ is 0. The limit of the second Riemann sum if exists,
will remain positive. Therefore, f(x) is not integrable. In fact, limit of the second Riemann sum
does not exist.

Form the definition of the definite integral we observe an interesting fact. Suppose we take any
partition P of the interval [a, b] on which the function f(x) is defined, say, into n subintervals.
Assume that f(x) is bounded. Choose three different sets of sample points. Choose xk as such
a point that f(xk) is minimum in that k-th subinterval. Take tk be any point in the subinterval.
Finally, choose yk as a point where f(yk) is maximum in the subinterval. Call C1 as the set of
sample points xk, C2 for the tks and C3 for the yks. The Riemann sums will satisfy the following:

S(P, f, C1) ≤ S(P, f, C2) ≤ S(P, f, C3).

If the function f(x) is integrable, then as ‖P‖ → 0, all of them will approach the limit
∫ b
a
f(x)dx.

It is also clear that if lim
‖P‖→0

S(P, f, C1) = S(P, f, C3), then f(x) is integrable. The sum S(P, f, C1)

is called the lower sum and S(P, f, C3) is called the upper sum; their limits if exist, are respec-
tively called the lower integral and the upper integral. Integrability is equivalent to the statement
that “as the norm of a partition approaches 0, the difference between the lower and upper sums
approach 0”. Sometimes this characterization helps in proving that a given function is integrable.
We will not use this in usual circumstances due to Theorem 3.1. In fact, Theorem 3.1 is proved
using this technique!

Since
∫ b
a
f(x) dx is a number, it is called a definite integral.

Example 3.4. Evaluate the definite integral
∫ 1

0

cosx dx.

Since cosx is continuous on [0, 1], the integral exists. To evaluate it, choose a partition

P : 0 = x0 < x1 =
1

n
< x2 =

2

n
< · · · < xn−1 =

n− 1

n
< xn = 1.
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Consider the sub-interval [xk−1, xk]. Since (sinx)′ = cosx. By MVT, there exists ck ∈ [xk−1, xk]

such that
sinxk − sinxk−1 = (cos ck)(xk − xk−1).

Choose these cks as the sample points in the sub-intervals. Then∫ 1

0

cosx dx = lim
n→∞

n∑
k=1

cos ck(xk − xk−1) = lim
n→∞

n∑
k=1

[sinxk − sinxk−1]

= lim
n→∞

(sinxn − sinx0) = lim
n→∞

(sin 1− sin 0) = sin 1.

The following properties of the definite integral are obvious from the definition.

Theorem 3.2. (Properties of Definite Integral)

1. Let f(x) have domain [a, b]. Let c ∈ (a, b). Then f(x) is integrable on [a, b] iff f(x) is
integrable on both [a, c] and [c, b]. In this case,∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

2. Let f(x) and g(x) be integrable on [a, b]. Then (f + g)(x) is integrable on [a, b] and∫ b

a

(f + g)(x)dx =

∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

3. Let f(x) be integrable on [a, b]. Let c ∈ R. Then (cf)(x) is integrable on [a.b] and∫ b

a

(cf)(x) dx =

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx.

4. Let f(x) and g(x) be integrable on [a, b]. If for each x ∈ [a, b], f(x) ≤ g(x), then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

5. Let f(x) be integrable on [a, b]. If m ≤ f(x) ≤M for all x ∈ [a, b], then

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a).

6. (Average Value Theorem) Let f(x) be continuous on [a, b]. Then there exists c ∈ [a, b] such
that

f(c) =
1

b− a

∫ b

a

f(x) dx.

7. Let f(x) be continuous on [a, b]. If f(x) has the same sign on [a, b] and
∫ b

a

f(x) dx = 0,

then f(x) is the zero function, i.e., f(x) = 0 for each x ∈ [a, b].
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Notice that (6) follows from (5) and the intermediate value theorem for continuous functions. The

value f(c) =
1

b− a

∫ b

a

f(x) dx. is called the average value of the function f(x) and (6) says that

a continuous function achieves its average value. It also follows from (6) that if
∫ b

a

f(x)dx = 0,

then f(x) has a zero in [a, b].

Convention:
∫ b

a

f(x) dx makes sense when a < b. We extend the integral even when a 6< b by the

following:

If a = b, then we take
∫ b

a

f(x) dx = 0.

If a > b, then we take
∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

Notice that this convention goes well with the properties listed in Theorem 3.2. Moreover, we also
extend Theorem 3.2(1) for any real number c; even when c is outside the interval (a, b) by∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

In all these extensions, we assume that the definite integrals exist.

3.2 The Indefinite Integral

If F ′(x) = f(x), then we say that the function F (x) is an antiderivative of f(x). Example 3.4
shows that if we know an antiderivative of a function, then we can readily get its integral.

Theorem 3.3. (Fundamental Theorem of Calculus− 1) Let f(x) be continuous on [a, b]. Let F (x)

be an antiderivative of f(x). Then
∫ b
a
f(x) dx = F (b)− F (a).

Proof: Since f(x) is continuous on [a, b], the definite integral exists. To evaluate it, choose a
partition

P : a = x0 < x1 = a+
b− a
n

< · · · < xn−1 = a+
(n− 1)(b− a)

n
< xn = b.

Consider the sub-interval [xk−1, xk]. Since F ′(x) = f(x), By MVT, there exists ck ∈ [xk−1, xk]

such that F (xk) − F (xk−1) = f(ck)(xk − xk−1). Choose these cks as the sample points in the
sub-intervals. Then∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(ck)(xk − xk−1) = lim
n→∞

n∑
k=1

[F (xk)− F (xk−1)]

= lim
n→∞

(F (xn)− F (x0)) = F (b)− F (a). �

We may remember the conclusion of this theorem as∫ b

a

g′(x) dx = g(x)
∣∣∣b
a

= g(b)− g(a).
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FTC-1 makes evaluation of definite integrals easy, which you are familiar with. For example,∫ 0

−π/4
secx tanx dx =

∫ 0

−π/4
(secx)′ dx = secx

∣∣∣0
−π/4

= sec 0− sec(−π/4) = 1−
√

2.

Its use is limited, for, we require an antiderivative of the integrand in closed form.

FTC-1 considers taking the integral of the derivative of f(x); it is f(x)− f(a). What about taking
the derivative of the integral? For this, we need the integral to be a function. Define g(x) =∫ x
a
f ′(t) dt for each x ∈ [a, b]. We then show that g′(x) = f(x).

Theorem 3.4. (Fundamental Theorem of Calculus − 2) Let f(x) be continuous on [a, b]. Then
g(x) =

∫ x
a
f(t) dt is continuous on [a, b] and differentiable on (a, b). Moreover,

g′(x) =
d

dx

∫ x

a

f(t) dt = f(x).

Proof: Let x ∈ (a, b) and let h > 0 such that x+ h ∈ [a, b]. Now,

g(x+ h)− g(x)

h
=

1

h

[∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

]
=

1

h

∫ x+h

x

f(t) dt = f(c)

for some c ∈ [x, x+ h], by the Average Value theorem. We see that if h→ 0, then c→ x. Thus

lim
h→0

g(x+ h)− g(x)

h
= lim

c→x
f(c) = f(x).

That is, g(x) is differentiable and g′(x) = f(x). Also, continuity of g(x) follows from its differen-
tiability. When x is either equal to a or b, we consider the appropriate one-sided limits:

lim
h→0+

[
g(a+ h)− g(a)

]
= lim

h→0+

∫ a+h

a

f(x) dx = lim
h→0+

hf(d) = 0.

Here d is some point in [a, a + h] which exists due to Theorem 3.2(5). This proves that g(x) is
continuous at x = a. Similar argument proves continuity of g(x) at x = b. �

The two fundamental theorems say that integration and differentiation are inverse processes. The
reason behind introducing the definite integral as the area is to obtain these two theorems. In fact,
starting from “inverse processes”, we have no way of relating the integral to the area. Using the
Riemann integration, we get both! Moreover, the fundamental theorems say that the differential
equation y′ = f(x) has a solution provided that f(x) is continuous.

Example 3.5. Calculate the area bounded by x-axis and the parabola y = 6− x− x2.

We get the points of intersection of the curve with x-axis
by setting y = 0 = 6− x− x2 = (x+ 3)(2− x).

That is, x = 2 or x = −3.

The curve is non-negative on [−3, 2].

Therefore, the required area is∫ 2

−3

(6− x− x2) dx =
125

6
.
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Caution: The actual area is
∫ b
a
|f(x)| dx. The signed area is given by

∫ b
a
f(x) dx. If f(x) is not of

the same sign throughout [a, b], then the integral gives the sum total of the signed areas only.

In Example 3.5, the function f(x) = 6−x−x2 ≥ 0 for each x ∈ [−3, 2]. Therefore, |f(x)| = f(x).

Hence the area is equal to the integral as computed there.

Example 3.6. Calculate the area of the region bounded by the x-axis, the lines x = 0, x = 2π,

and the curve y = f(x) = sinx.

∫ 2π

0

f(x) dx = − cosx
∣∣∣2π
0

= 0.

This gives the signed area, where the portions below and
above the x-axis get canceled.
The true area is given by∫ 2π

0

|f(x)| dx =

∫ π

0

sinx dx+

∫ 2π

π

− sinx dx

= − cosx
∣∣∣π
0

+ cosx
∣∣∣2π
π

= 4.

Example 3.7. Find the area of the region bounded by the lines x = −1, x = 2, y = 0, and the
curve y = x3 − x2 − 2x.

f(x) = x3 − x2 − 2x = x(x+ 1)(x− 2).

On [−1, 0], f(x) ≥ 0. On [0, 2], f(x) ≤ 0.

Thus the area of the given region is∫ 0

−1

(x3 − x2 − 2x) dx−
∫ 2

0

(x3 − x2 − 2x) dx

=
5

12
− −8

3
=

37

12
.

Example 3.8. What is wrong with
∫ 1

−1

1

x2
dx = −1

x

∣∣∣1
−1

= −2?

For each x ∈ [−1, 1],
1

x2
≥ 0. So,

∫ 1

−1

1

x2
dx, if exists, must be non-negative. The problem is

1

x2

is not integrable on [−1, 1], since it is not defined at x = 0. Moreover, it becomes unbounded as x

approaches 0. Therefore,
∫ 1

−1

1

x2
dx does not exist.

Due to the Fundamental theorems, we introduce the indefinite integral:∫
f(x)dx =

∫ x

a

f(t) dt for any a ∈ R

whenever the definite integral makes sense. Notice that if
∫
f(x)dx = g(x), then g′(x) = f(x).

Conversely, if g′(x) = f(x), then∫
f(x)dx =

∫ x

a

f(t) dt =

∫ x

a

g′(t)dt = g(x)− g(a).
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We write this by taking g(a) as an arbitrary constant C; and we call it as a constant of integration.
That is,

g′(x) = f(x) if and only if
∫
f(x) dx = g(x) + C.

The differentiation of usual functions give rise to their integration. For example, (x2)′ = 2x.

Therefore,
∫

(2x)dx = x2 + C

Below, we list integrals of some functions which we use often.

Common functions and their integrals

f(x)
∫
f(x) dx

0 C

xr
xr+1

r + 1
+ C for r 6= −1

sinx − cosx+ C

cosx sinx+ C

sec2 x tanx

secx tanx secx+ C

cosec x cotx −cosec x+ C

cosec 2x − cotx+ C

1√
1− x2

sin−1 x+ C for |x| < 1

1

1 + x2
tan−1 x+ C

1

|x|
√
x2 − 1

sec−1 x for |x| > 1

3.3 Substitution and Integration by Parts

The chain rule for differentiation: (g(f(x))′ = g(f(x))f ′(x) is translated to integration as in the
following.

Theorem 3.5. (Substitution)

1. Let u = g(x) be a differentiable function whose range is an interval I. Let f(x) be continu-
ous on I. Then ∫

f(g(x))g′(x) dx =

∫
f(u) du.

2. Let u = g(x) be a continuously differentiable function on [a, b] whose range is an interval I.
Let f(x) be continuous on I. Then∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du.
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Proof: Since f(x) is continuous, F (x) =
∫
f(x) dx is an antiderivative of f(x). That is, F ′(x) =

f(x). By Chain rule for differentiation,

F (g(x))′ = F ′(g(x))g′(x) = f(g(x))g′(x).

Then
∫
f(g(x))g′(x) dx =

∫
F (g(x))′dx = F (g(x)) + C

= F (u) + C =

∫
F ′(u) du+ C =

∫
f(u) du.

This proves (1). Similarly, for (2) we see that∫ b

a

f(g(x))g′(x) dx = F (g(x))
∣∣∣x=b

x=a
= F (g(b))− F (g(a)) = F (u)

∣∣∣u=g(b)

u=g(a)
=

∫ g(b)

g(a)

f(u) du. �

When u = g(x), du = g′(x)du. Then the substitution rule looks like∫
f(u)u′dx =

∫
f(u)du.

Similar comments apply for the definite integral, where we take care of the limits of integration in
terms of u.

Example 3.9.
∫

sin2 x dx =

∫
1− cos(2x)

2
dx

=
1

2

∫
dx− 1

2

∫
cos(2x)

1

2
d(2x) =

x

2
− sin(2x)

4
+ C.

Therefore,
∫ 2π

0

sin2 xdx =
[x

2
− sin(2x)

4

]2π

0
= π.

Example 3.10. Evaluate
∫ 1

−1

3x2
√
x3 + 1 dx.

Put u = x3 + 1. Then du = 3x2 dx;
√
x3 + 1 =

√
u.

When x = −1, u = 0. When x = 1, u = 2. Thus∫ 1

−1

3x2
√
x3 + 1 dx =

∫ 2

0

√
u du =

2

3
u3/2

∣∣∣2
0

=
4
√

2

3
.

Sometimes for integration, you may require to use breaking a rational function into simple form
using decomposition into partial fractions.

Example 3.11. Evaluate
∫

10 dx

(x+ 1)(x2 + 9)2
.

Here, we try to determine constants A,B,C,D and E from

10

(x+ 1)(x2 + 9)2
=

A

x+ 1
+
Bx+ C

x2 + 9
+

Dx+ E

(x2 + 9)2
.
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By simplifying and comparing, we obtain: A = 1/10, B = −1/10, C = 1/10, D = −1 and
E = 1. Therefore,∫

10 dx

(x+ 1)(x2 + 9)2
=

∫
dx

10(x+ 1)
−
∫

xdx

10(x2 + 9)
+

∫
dx

10(x2 + 9)
−
∫

xdx

(x2 + 9)2
+

∫
dx

(x2 + 9)2
.

For the second and fourth integrals use the substitution u = x2 + 9 and for the last integral, use
the substitution x = 3 tan t and integrate to obtain:

Example 3.12. Evaluate
d

dx

∫ x4

1

sec t dt.

Substitute u = x4. Using FTC and the Chain rule,

d

dx

∫ x4

1

sec t dt =
d

du

∫ u

1

sec t dt× du

dx
= secu× du

dx
= 4x3 sec(x4).

Recall that a function f(x) is called even if f(−x) = f(x). In that case,∫ 0

−a
f(x) dx =

∫ 0

a

f(−x)d(−x) =

∫ a

0

f(−x)dx =

∫ a

0

f(x)dx.

And when f(x) is an odd function, i.e., when f(−x) = −f(x), we see that∫ 0

−a
f(x) dx =

∫ 0

a

f(−x)d(−x) =

∫ a

0

f(−x)dx = −
∫ a

0

f(x)dx.

In summary, let f(x) be a continuous function on [−a, a]. Then∫ a

−a
f(x)dx =

{
2
∫ a

0
f(x)dx if f is even

0 if f is odd.
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The Fundamental theorems are used to translate the product rule for differentiation to integration.
Recall that the product rule for differentiation says that

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

Write h(x) = g′(x). Then g(x) =
∫
h(x) dx, and we get

f(x)h(x) = (f(x)g(x))′ − f ′(x)

∫
h(x) dx.

Integrate both the sides to get∫
f(x)h(x) dx = f(x)

∫
h(x) dx−

∫ [
f ′(x)

∫
h(x) dx

]
dx+ C.

We remember it as follows (Read F as first and S as second):

Integral of F × S = F× integral of S− integral of (derivative of F × integral of S).

This is called the integration by parts formula. We also write it in the form∫
u dv = uv −

∫
v du+ C.

Example 3.13. Find
∫
x cosx dx.

Integrating by parts, we have∫
x cosx dx = x

∫
cosx dx−

∫ [
(x′)

∫
cosx dx

]
dx = x sinx−

∫
sinx dx = x sinx+cosx+C.

Since definite integral uses area as its definition, it is fairly straightforward to calculate the areas
bounded by curves. Of course, we use the fundamental theorems for this purpose.

Let f(x) g(x) be continuous functions with f(x) ≥ g(x) on [a, b]. The area between the curves
y = f(x) and y = g(x) is∫ b

a

[f(x)− g(x)] dx.

In applying this result, you must consider where the curves
intersect. It may turn out that inside the interval [a, b] the
curves intersect more than once. In that case, all the inte-
grals are to be computed separately since there will be a
sign change in f(x)− g(x).

Example 3.14. Find the area of the region enclosed by the line y = −x and the parabola y = 2−x2.
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The curves here intersect to give a bounded region. The
points of intersection are obtained from −x = 2 − x2.

They are x = −1 and x = 2. The line y = −x lies below
the parabola. Therefore, the area between them is∫ 2

−1

[2− x2 − (−x)] dx =
[
2x+

x2

2
− x3

3

]2

−1
+

= 4− 4

2
− 8

3
−
(
− 2 +

1

2
+

1

3

)
=

10

3
− −7

6
=

9

2
.

Example 3.15. Find the area of the region in the first octant bounded by the lines y = 0, y = x−2,

and the parabola x = y2.

The parabola y =
√
x is the upper curve. But there are two

lower lines. Their break point is at x = 2. We divide the
region into two parts by drawing the vertical line x = 2.

Then we find the areas of the regions marked A and B

separately and take their sum. The required area is∫ 2

0

[
√
x− 0] dx+

∫ 4

2

[
√
x− (x− 2)] dx

=
[2

3
x3/2

]2

0
+
[2

3
x3/2 − (x− 2)2

2

]4

2

=
2

3
23/2 +

2

3
43/2 − 22

2
− 2

3
23/2 =

16

3
− 2 =

10

3
.

Alternate Method: If you integrate with respect to y, then a single integral gives the result. Viewed
from y-axis, the upper curve is the line x = y + 2 and the lower curve is x = y2. The limits of
integration are y = 0 to y = 2. Therefore, the required area is∫ 2

0

(y + 2− y2) dy =
[y2

2
+ 2y − y3

3

]2

0
= 2 + 4− 8

3
=

10

3
.

3.4 Logarithm and Exponential

The function f(t) =
1

t
is continuous on (0,∞). Therefore for any x ∈ (0,∞), the integral

∫ x

1

1

t
dt

exists. Notice that when x ∈ (0, 1), we look at the integral as −
∫ 1

x

1

t
dt. So, we define its value

as a the value of a function depending on x.

This is called the natural logarithmic function lnx.

That is,

lnx =

∫ x

1

1

t
dt for x > 0.
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We see that ln : (0,∞) → R. Since 1
t
> 0 for t > 0, ln is a strictly increasing function. Also,

lnx > 0 for x > 1, lnx < 0 for 0 < x < 1, and ln 1 = 0. Moreover, (lnx)′ = 1
x
. Since

(lnx)′′ = − 1
x2

< 0, we conclude that the graph of lnx is concave down. Also, lnx → ∞ as
x → ∞ and lnx → −∞ as x → 0+ . All but the limit properties are easy to see. We prove that
lim
x→∞

lnx =∞.

For this, suppose 1 ≤ k ≤ t ≤ m. Then 1/t ≥ 1/m. Consequently,∫ m

k

1

t
dt ≥

∫ m

k

1

m
dt =

1

m

∫ m

k

dt =
m− k
m

.

Let n ∈ N. Let x = 22n. Using the above inequality, we have

lnx =

∫ x

1

1

t
dt =

∫ 22n

1

1

t
dt =

2n∑
j=1

∫ 2j

2j−1

1

t
dt ≥

2n∑
j=1

2j − 2j−1

2j
=

2n∑
j=1

1

2
= n.

That is, for each n ∈ N, there exists x > 1 such that lnx ≥ n. This proves that lim
x→∞

lnx =∞.

For the other limit, observe that by substituting s = 1/t, we have ds = −(1/s2) ds. Then

ln
1

x
=

∫ 1/x

1

1

t
dt =

∫ x

1

s
−1

s2
ds = −

∫ x

1

1

s
ds = − lnx.

Therefore,

lim
x→0+

lnx = lim
y→∞

ln
1

y
= − lim

y→∞
ln y = −∞.

Due to its strict increasing nature, the limit properties imply that ln : (0,∞) → R is a one-one
and onto function. Then lnx has an inverse function. We call this inverse function as the natural
exponential function and denote it by exp . That is,

exp : R→ (0,∞); y = exp(x) iff x = ln y.

Hence exp(lnx) = x for x ∈ (0,∞)

and ln(exp(x)) = x for x ∈ R.

Differentiating the latter equation, we get
1

exp(x)
exp′(x) = 1. That is, exp′(x) = exp(x).

Similar to ln, we have the limit properties:

lim
x→∞

exp(x) =∞; and lim
x→−∞

exp(x) = 0.

Moreover, exp(x) is strictly increasing and is always positive.

Let a, b > 0. Consider f(x) = ln(xb) − lnx. Now, f ′(x) = b
xb
− 1

x
= 0. So, f(x) is a constant.

But f(1) = ln b − ln 1 = ln b. Therefore, for each x ∈ (0,∞), f(x) = ln b. In particular,
f(a) = ln(ab)− ln a = ln b. That is,

ln(ab) = ln a+ ln b, for all a, b > 0.
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Similarly, if c, d ∈ R, let a = exp(c), b = exp(d). Then ln a = c and ln b = d. Now, the previous
equation gives

exp(c+ d) = exp(ln a+ ln b) = exp(ln(ab)) = ab = exp(c) exp(d) for all c, d ∈ R.

Arbitrary powers of positive real numbers can then be defined using exp and ln .

Let a > 0 We define the exponential function ax = exp(x ln a).

The number e is defined as the unique positive number satisfying ln e = 1.

Then ex = exp(x ln e) = exp(x). We dispense with the symbol exp(x) and write it henceforth as
ex. The exponent symbolism is consistent with the usual powers like x3 × x2 = x2+3, etc.

The definitions, the limit properties and the differentiation properties tell us that for a > 0,

ln e = 1 = e0, elnx = x, ln(ex) = x, ax = ex ln a,

lim
x→∞

lnx =∞, lim
x→0+

lnx = −∞, lim
x→∞

ex =∞, lim
x→−∞

ex = 0,

(lnx)′ =
1

x
, (ex)′ = ex, (ax)′ = (ln a)ax,

∫ e

1

1

t
dt = 1,

∫
ex dx = ex.

Example 3.16. (a) lim
h→0

ln(1 + xh)

xh
= 1 for x 6= 0.

As h→ 0, both ln(1 + xh) and xh approach 0. By L’ Hospital’s rule, (with respect to h)

lim
h→0

ln(1 + xh)

xh
= lim

h→0

x

x(1 + xh)
= 1.

(b) lim
h→0

eh − 1

h
= 1.

Using L’ Hospital’s rule again, we have lim
h→0

eh − 1

h
= lim

h→0
eh = 1.

(c) lim
h→0

(1 + xh)1/h = ex.

If x = 0, then (1 + xh)1/h = 11/h = e(1/h) ln 1 = e0 = 1. For x 6= 0,

lim
h→0

ln(1 + xh)1/h = lim
h→0

ln(1 + xh)

h
= x lim

h→0

ln(1 + xh)

xh
= x.

Since exp is a continuous function, we have

lim
h→0

(1 + xh)1/h = exp
(

lim
h→0

ln(1 + xh)1/h
)

= exp(x) = ex.

In particular, e = lim
h→0

(1 + h)1/h.

(d) lim
x→∞

lnx

x1/k
= 0 for any k ∈ N.

The limit is in ∞∞ form; apply L’ Hospital’s rule: lim
x→∞

lnx

x1/k
= lim

x→∞

k

x x1/k−1
= 0.
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(e) lim
x→∞

xk

ex
= 0 for any k ∈ N.

Again, the limit is in ∞∞ form. So, lim
x→∞

xk

ex
= lim

x→∞

kxk−1

ex
= · · · = lim

x→∞

k!

ex
= 0.

(f) If a > 1, then lim
x→∞

xk

ax
= 0 for any k ∈ N.

For a > 1, ax →∞ as x→∞. Therefore,

lim
x→∞

xk

ax
= lim

x→∞

kxk−1

ln(a)ax
= · · · = lim

x→∞

k!

(ln a)kax
= 0.

Exercise: In proving that lnx→∞ as x→∞, we have shown that ln(22n) ≥ n. Use this and the
limit for e in (3) to prove that 2 ≤ e ≤ 4.

The following properties of the exponential function can easily be proved:

If a > 1, then lim
x→∞

ax =∞ and lim
x→−∞

ax = 0.

If 0 < a < 1, then lim
x→∞

ax = 0 and lim
x→−∞

ax =∞.

If a 6= 1, then the x-axis is a horizontal asymptote to the graph of y = ax.

The hyperbolic functions are defined through the exponential and the logarithmic functions:

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
, tanhx =

ex − e−x

ex + e−x
.

sinh−1 x = ln(x+
√

x2 + 1), cosh−1 x = ln(x+
√
x2 − 1), tanh−1 x =

1

2
ln

(
1 + x

1− x

)
.

Notice that cosh−1 has domain as x ≥ 1 and tanh−1 has domain as −1 < x < 1.

The derivatives of these functions can be found out in the usual manner.

(sinhx)′ = coshx, (coshx)′ = sinhx, (tanhx) = (cosh x)−2.

(sinh−1 x)′ =
1√

1 + x2
, (cosh−1 x)′ =

1√
x2 − 1

, (tanh−1 x)′ =
1

1− x2
.

These formulas can be used for evaluating integrals as usual. For example,∫ 1

0

1√
1 + x2

dx = sinh−1 x
∣∣∣1
0

= sinh−1(1)− sinh−1(0) = ln(1 +
√

2).

3.5 Lengths of Plane Curves

Let C be a curve given parametrically by x = f(t), y = g(t), a ≤ t ≤ b. We assume that both the
functions f(t) and g(t) are continuously differentiable and the derivatives are not simultaneously
zero on [a, b]. (Smoothness) We also assume that the curve is traversed exactly once as t increases
from a to b.
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Take a partition of [a, b] into n subintervals [tk−1, tk] of equal length ∆t. and draw the secants on
the curve by using the partition points. The length of the curve is defined as the limit of the sum
of lengths of the secants as n approaches∞. Now, the length of a single secant joining the points
Pk−1 to Pk is √

(∆xk)2 + (∆yk)2 =
√

[f(tk)− f(tk−1)]2 + [g(tk)− g(tk−1)]2.

By the MVT, there exist ak, bk ∈ [tk−1, tk] such that

f(tk)− f(tk−1) = f ′(ak)∆t, g(tk)− g(tk−1) = g′(bk)∆t.

Then the sum of all the secants corresponding to the subintervals is

n∑
k=1

√
[f ′(ak)]2 + [g′(bk)]2 ∆t.

Since the length of the curve is the limit of this sum, we have

Length of the curve = L =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 dt.

If the curve is given as a function y = f(x), a ≤ x ≤ b, then take x = t and y = f(t) as its
parameterization. We then have the length as

L =

∫ b

a

√
1 + [f ′(x)]2 dx =

∫ b

a

√
1 + (y′)2 dx.

Notice that this formula is applicable when f ′(x) is continuous on [a, b].

Similarly, if a curve is given by a function x = g(y), c ≤ y ≤ d, where g′(y) is continuous on
[c, d], the length of the curve is

L =

∫ d

c

√
1 + [g′(y)]2 dy =

∫ d

c

√
1 + (x′)2 dy.

In the length formula, the integrand along with the differential is written as ds. Here, s stands for
the length element on a given curve. We write L =

∫ b
a
ds with limits a and b for the variable of

integration, which may be x, y or t. Here,

ds =
√

[x′(t)]2 + [y′(t)]2 dt =
√
(dx)2 + (dy)2 =

√
1 +

(dy
dx

)2
dx =

√
1 +

(dx
dy

)2
dy.
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This view makes it possible to see the arc length as a function:

s(x) =

∫ x

a

√
1 + [f ′(t)]2 dt

for the curve y = f(x) where the curve is measured from the point (a, f(a)).
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Example 3.17. Find the length of the curve y =
4
√

2

3
x3/2 − 1 traced for 0 ≤ x ≤ 1.

Here, y′ = 2
√

2x1/2. The length of the curve is

L =

∫ 1

0

√
1 + (y′)2 dx =

∫ 1

0

√
1 + 8x dx =

2

3
· 1

8
(1 + 8x)3/2

∣∣∣1
0

=
13

6
.

Example 3.18.

Find the length of the asteroid
x = cos3 t, y = sin3 t, 0 ≤ t ≤ 2π.

Due to symmetry of the curve, its length is four times the
arc traced when 0 ≤ t ≤ π/2.

(cos3 t)′ = −3 cos2 t sin t, (sin3 t)′ = 3 sin2 t cos t.

Therefore, the length of the asteroid is

L = 4

∫ π/2

0

√
[(cos3 t)′]2 + [(sin3 t)′]2 dt = 4

∫ π/2

0

3 cos t sin t dt = 6.

Example 3.19. Find the length of the arc of the curve y = (x/2)2/3 for 0 ≤ x ≤ 2.

Here, y′ =
1

3

(1

x

)1/3
. It is not defined at x = 0. We express the same curve as

x = g(y) = 2y3/2, 0 ≤ y ≤ 1.

Now, x′ = g′(y) = 3
√
y, which is continuous on [0, 1]. The length L of the arc of the curve is

L =

∫ 1

0

√
1 + [g′(y)]2 dy =

∫ 1

0

√
1 + 9y dy =

2

27
(1 + 9y)3/2

∣∣∣1
0

=
2(10
√

10− 1)

27
.

Example 3.20. Find the arc length function for the curve y = x2 − (lnx)/8, where the arc is
measured from the point (1, 1).

Write f(x) = x2− (lnx)/8. Then f ′(x) = 2x− 1/(8x), and
√

1 + [f ′(x)]2 = 2x+ 1/(8x). Then

s(x) =

∫ x

a

√
1 + [f ′(t)]2 dt =

∫ x

1

(
2x+

1

8x

)
dt = x2 +

1

8
lnx− 1.

Notice that for x < 1, the values of s(x) are negative, since s is measured from the point (1, 1).
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The calculation of area in polar coordinates is similar to the Cartesian coordinates; but it uses the
basic area as a circular sector instead of a rectangle. Recall that a circular sector of angle θ while
the circle has radius r is given by θr2/2, where θ is measured in radians.

Suppose that a curve is given in polar coordinates by r = f(θ) for a continuous function f(θ),

where α ≤ θ ≤ β. Divide the interval [α, β] into n sub-intervals [θk−1, θk], say of equal length
∆θ = θk − θk−1. Approximate the area of the sector of the region bounded by the curve r = f(θ)

and the rays θ = θk−1 and θ = θk by a circular sector of the same angle ∆θ and radius f(rk),where
rk is some point in the subinterval [θk−1, θk]. The approximate area of the sector is [f(rk)]

2∆θ/2.

Form the Riemann sum as an approximation to the required area. Then take the limit as the norm
of the partition, i.e., max(θk − θk−1) approaches 0, that is, as n→∞. This gives the area as

A = lim
n→∞

n∑
k=1

1

2
[f(rk)]

2∆θ =
1

2

∫ β

α

[f(θ)]2 dθ =

∫ β

α

r2 dθ.

Notice that our assumptions for the derivation of this formula are that the function f(θ) is con-
tinuous on the interval [α, β], where β − α ≤ 2π, that is, when the curve is traversed only once.
Moreover, we assume that f(θ) remains non-negative.

The arc-length of the curve r = f(θ) for α ≤ θ ≤ β can be obtained directly from the parametric
form. We parameterize the curve in Cartesian coordinates as

x = r cos θ = f(θ) cos θ, y = r sin θ = f(θ) sin θ, α ≤ θ ≤ β.

Here, the parameter is θ. Then

x′(θ) = f ′(θ) cos θ − f(θ) sin θ, y′(θ) = f ′(θ) sin θ + f(θ) cos θ.

Consequently, [(x′(θ)]2 + [y′(θ)]2 = [f(θ)]2 + [f ′(θ)]2. Therefore, the required length of the arc of
the curve is

L =

∫ β

α

√
[(x′(θ)]2 + [y′(θ)]2 dθ =

∫ β

α

√
[(f(θ)]2 + [f ′(θ)]2 dθ.

Again, our assumption for this formula is that f ′(θ) is continuous on the interval [α, β]. In sum-
mary, for r = r(θ), α ≤ θ ≤ β, the area of the sector and the arc length of the curve are

Area =

∫ β

α

r2 dθ, Length =

∫ β

α

√
r2 + (r′)2 dθ
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Example 3.21. Find the area of one petal of the rose curve
r = 3 cos(3θ).

One petal of the rose curve is traversed when θ varies from
−π/6 to π/6. Thus, the area enclosed by it is

A =
1

2

∫ π/6

−π/6
[3 cos(3θ)]2 dθ

=
9

4

∫ π/6

−π/6
(1 + cos(6θ)) dθ =

3π

4
.

Example 3.22. Find the area of the region lying between
the inner and the outer loops of the limacon r = 1−2 sin θ.

The inner loop is traced when θ varies from π/6 to 5π/6.

The area of the region enclosed by the inner loop is

A1 =
1

2

∫ 5π/6

π/6

(1− 2 sin θ)2 dθ

=
1

2

∫ 5π/6

π/6

[3− 4 sin θ − 2 cos(2θ)] dθ = π − 3
√

3

2
.

The outer loop is traced when θ varies from 5π/6 to 13π/6. Thus the area enclosed by the outer
loop is

A2 =
1

2

∫ 13π/6

5π/6

(1− 2 sin θ)2 dθ = 2π +
3
√

3

2
.

Therefore, the required area is A2 − A1 = π + 3
√

3.

Example 3.23. Find the area of the region common to the
interiors of the circle r = −6 cos θ and the cardioid r =

2− 2 cos θ.

Both the curves are symmetric about the x-axis. We work
with the upper-half plane.

The gray shaded region lies between the circle and the ra-
dial line θ = 2π/3. The circle has the coordinate (0, π/2)

at the pole. Thus this region has the area

1

2

∫ 2π/3

π/2

(−6 cos2 θ) dθ.

The region shaded pink is bounded by the radial lines θ = 2π/3 and θ = π. Thus it has the area

1

2

∫ π

3π/6

(2− 2 cos θ)2 dθ.
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Therefore, the required area is twice the sum of the above areas:

A =

∫ 2π/3

π/2

(−6 cos2 θ) dθ +

∫ π

3π/6

(2− 2 cos θ)2 dθ = 5π.

Example 3.24. Find the length of the arc of the cardioid r = 2− 2 cos θ for 0 ≤ θ ≤ 2π.

The length is given by

L =

∫ 2π

0

[(f(θ))2 + (f ′(θ))2]1/2 dθ =

∫ 2π

0

√
(2− 2 cos θ)2 + (2 sin θ)2 dθ

=

∫ 2π

0

2
√

2
√

1− cos θ dθ =

∫ 2π

0

4 sin(θ/2) dθ = 16.

3.6 Review Problems

Problem 1: Evaluate the limit of x−1 ln(1 + ex) as x→ ±∞.

lim
x→∞

ln(1 + ex)

x
= lim

x→∞

ex

(1 + ex)
= lim

x→∞

ex

ex
= lim

x→∞
1 = 1.

by using L’ Hospital’s rule and limx→∞ e
x =∞. Similarly,

lim
x→−∞

ln(1 + ex)

x
= lim

x→−∞

ex

(1 + ex)
= 1.

Problem 2: Evaluate
∫ √

a2 − x2 dx.

∫ √
a2 − x2 dx =

∫
a2 − x2

√
a2 − x2

dx = a2 sin−1 x

a
−
∫
x

x dx√
a2 − x2

.

Integrating the second integral by parts,∫
x

x dx√
a2 − x2

= −x
√
a2 − x2 +

∫ √
a2 − x2 dx.

Putting this result on the earlier equation and simplifying, we get∫ √
a2 − x2 dx =

a2

2
sin−1 x

a
+
x

2

√
a2 − x2 + C.

Problem 3: Evaluate
∫

dx√
x2 + 3x− 4

.

1√
x2 + 3x− 4

=
1√

x+ 4
√
x− 1

=

√
x+ 4 +

√
x+ 1(√

x+ 4 +
√
x− 1

)√
x+ 4

√
x− 1

=
2√

x+ 4 +
√
x− 1

( 1

2
√
x+ 4

+
1

2
√
x− 1

)
=
[
2 ln

(√
x+ 4 +

√
x− 1

)]′
.
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Therefore, ∫
dx√

x2 + 3x− 4
= 2 ln

(√
x+ 4 +

√
x− 1

)
+ C.

Problem 4: Evaluate In =
∫ π/2

0
sinn x dx.

In =

∫ π/2

0

sinn x dx =

∫ π/2

0

sinx sinn−1 x dx

= − sinn−1 x cosx
∣∣∣π/2
0

+ (n− 1)

∫ π/2

0

sinn−2 x cos2 x dx

= (n− 1)

∫ π/2

0

sinn−2 x(1− sin2 x) dx = (n− 1)In−2 − (n− 1)In

That is, In =
n− 1

n
In−2. Using this as an iteration formula, we have

I2m =
2m− 1

2m
· 2m− 3

2m− 2
· · · 3

4
· 1

2
I0, I2m+1 =

2m

2m+ 1
· 2m− 2

2m− 1
· · · 4

5
· 2

3
I1.

Moreover, I0 =
∫ π/2

0
dx = π/2 and I1 =

∫ π/2
0

sinx dx = 1. This gives a value for In depending
on whether n is even or odd.
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Problem 5: Compute the volume of the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
.

A plane parallel to yz-plane at a distance x from the origin on the x-axis has equation:

y2[
b
√

1− x2

a2

]2 +
z2[

c
√

1− x2

a2

]2 = 1.

Its area is A(x) = π bc
(

1− x2

a2

)
. Thus the required volume is

V = π bc

∫ a

−1

(
1− x2

a2

)
dx = π bc

(
x− x3

3a2

)∣∣∣a
−a

=
4

3
πabc.

Problem 6:
Find the length of the arc of the cycloid x(t) = a(t+ sin t), y(t) = a(1− cos t) for 0 ≤ t ≤ θ.

The required length is given by

L(θ) =

∫ θ

0

[
(x′(t))2 + (y′(t))2

]
dt =

∫ θ

0

√
2a2(1 + cos t) dt = 4a sin

θ

2
.

Problem 7: Find the length of the arc of the parabola y2 = 4ax cut by the line 3y = 8x.

The line cuts the parabola at the points (0, 0) and (9a/16, 3a/2). If y2 = 4ax, then 2yy′ = 4a gives
(y′)2 = (2a/y)2 = 4a2/(4ax) = a/x. The arc length is

L =

∫ 9a/16

0

√
1 + (y′)2 dx =

∫ 9a/16

0

√
1 + a/x dx.

With x = a tan2 θ, dx = 2a tan θ sec2 θ dθ, 0 ≤ θ ≤ tan−1(3/4),

L =

∫ tan−1(3/4)

0

sec3 θ dθ =
[
a sec θ tan θ + a ln | sec θ + tan θ|

]tan−1(3/4)

0
= a
(15

16
+ ln 2

)
.

Problem 8: Find the area of the region enclosed by the loop of Descartes’ Folium x3 +y3 = 3axy.

We cannot express this equation in the form y = f(x). Changing to polar coordinates with
x = r cos θ, y = r sin θ, the equation reduces to

r = f(θ) =
3a cos θ sin θ

cos3 θ + sin3 θ
.

The loop is traced when θ varies from 0 to π/2. Thus the required area is

A =
9a2

2

∫ π/2

0

cos2 θ sin2 θ

(cos3 θ + sin3 θ)2
dθ =

9a2

2

∫ π/2

0

tan2 θ sec2 θ

(1 + tan3 θ)2
dθ.

Substituting t = tan θ, we have

A =
9a2

2

∫ ∞
0

t2 dt

1 + t3
=

3a2

2

[ −1

1 + t3

]∞
0

=
3a2

2
.

72



Bibliography

[1] Calculus Demystified, S.G. Krantz, Mc-Graw Hill, 2011.

[2] A First Course in Calculus, S. Lang, Springer, 1986.

[3] Differential and Integral Calculus, Vol. I and II, N. Piskunov, Mir Publishers, 1974.

[4] Calculus, J. Rogawski, W.H. Freeman & Co., 2011.

[5] Calculus, M. Spivak, Cambridge University Press, 2008.

[6] Single variable Calculus, J. Stewart, Cengage Learning, 2012.

[7] Calculus, G. Strang, Wellesley-Cambridge Press, 2010.

[8] Thomas Calculus, G.B. Thomas, Jr, M.D. Weir, J.R. Hass, Pearson, 2009.

73



Index

max(A), 4
min(A), 4
e, 63

absolute extrema, 32
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constant of integration, 57
continuous, 19
critical point, 33
curvature, 43

Darboux theorem, 29

decreasing, 34
definite integral, 52
degree of polynomial, 7
deleted neighborhood, 4
dense, 4
derivatives of common functions, 31
differentiable, 28, 31
differentiable at a point, 26
differentiable on, 31
differential, 42
domain of function, 5
domination limit, 13

even function, 8, 59
EVT, 22
existence of integral, 50
exponential, 62, 63
exponential functions, 9
Extreme value theorem, 22

floor function, 6
function, 5
fundamental theorem of calculus-1, 54
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glb, 3
graph of function, 5

horizontal asymptote, 16
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increasing, 34
indefinite integral, 56
infinite limit, 17
integration by parts, 60
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left hand derivative, 30
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limit properties, 13
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local maximum, 32
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lower integral, 52
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mean value theorem, 33
monotonic, 34
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norm, 50

odd function, 8, 59
osculating circle, 44

partition, 49
period of f(x), 8
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point of absolute minimum, 32

point of inflection, 38
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polar coordinates, 68
polynomial functions, 7
power function, 7
pre-image, 5
properties of definite integral, 53

radius of curvature, 43
range of function, 5
rational function, 8
Riemann sum, 50
right end-point, 4
right hand derivative, 30
right hand limit, 14
Rolle’s theorem, 33

sample points, 50
sandwich theorem, 13
slanted asymptote, 16
substitution theorem, 57

tests for concavity, 38
tests for local extrema, 35
trigonometric functions, 8

uniform partition, 51
upper integral, 52
upper sum, 52

vertical asymptote, 18
vertical tangent, 28
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