
GENERAL ARTICLE

On Proving a Program Shortest
∗

Arindama Singh

Arindama Singh works as a

professor in mathematics at

IIT Madras. His teaching and

research interests include

theory of computation, logic,

and linear Algebra. He has

authored three books in these

areas.

We revisit a problem faced by all programmers. Can one

write a program that determines whether any given program

is the shortest program? How does one prove that a given

program is the shortest? After answering these questions, we

discuss very briefly the Kolmogorov complexity of a string of

zero and one, which leads to a barrier on any axiomatic sys-

tem, known as Chaitin’s barrier.

Introduction

Consider writing a program that computes the function

5 : {1, . . . , 20} → {1, . . . , 6},

given by the following table:

= : 1 2 3 4 5 6 7 8 9 10

5 (=) : 1 5 2 5 2 6 2 6 3 0

= : 11 12 13 14 15 16 17 18 19 20

5 (=) : 3 0 4 0 4 1 4 1 5 2

We can write a program by giving this table as an input so that

5 (=) can be computed for a given = by just reading the table ap-

propriately. However, there is an alternative. It is easy to verify

that the function 5 can be specified by Keywords

Four types of programs, simu-

lating programs, input bit-string,

input-program, length of a pro-

gram, complexity, Chaitin’s bar-

rier.

5 (=) = [(3.7 × =) − 2] mod 7 for 1 ≤ = ≤ 20.

It is the remainder obtained by dividing the integral part of

(3.7 × =) − 2 by 7. Is there a shorter way of specifying the same

function?

In fact, we are interested in more general questions.

∗Vol.25, No.9, DOI: https://doi.org/10.1007/s12045-020-1043-6

RESONANCE | September 2020 1251

GENERAL ARTICLE

Strong Question: How do we prove that a given program is a

shortest program among all those doing the same job?

Weak Question: Can we write a program which will determine

whether a given program is a shortest program among all

the programs doing the same job?

1. Preparation

To answer these questions, we need a little preparation as to fix-

ing some notions, etc. We fix a computer and a general-purpose

language for this computer, be it C, Java, Python, or Lisp. Though

we give input to the computer and get some output from the com-

puter by executing a program, we say that the program has taken

an input and gave us that output. Based on this, we will deal with

four types of programs:

1. Programs that take inputs and give outputs upon halting.

2. Programs that take no inputs but give outputs upon halting.

3. Programs that take inputs, do not halt and give outputs time to

time.

4. Programs that do not take inputs, do not halt, and give outputs

time to time.

In fact, inputs and programs are all stored in the computer as

bit-strings, that is, finite sequences of 0 or 1. And all our pro-

grams can take bit-strings as inputs. Thus all programs can take

other programs as inputs.There are programs that

can take other programs

as inputs and run an

input-program.

That is, there are programs that can

take other programs as inputs and run an input-program. Such

programs may be called as simulating programs. If the input-

program needs another input, then our simulating program can

take inputs in the form of a pair of bit-strings, where the first bit-

string is another input-program, and the second bit-string is an

input to the input-program. Then the simulating program runs the

input-program on the input bit-string. It outputs the output of the

input-program when run on the input-string. We would encapsu-

late this scenario as follows:

1252 RESONANCE | September 2020

GENERAL ARTICLE

There exist programs that run other programs.

Notice that bit-strings can be ordered; we fix the following order-

ing:

0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 000, 101, 110, 111, . . .

Some of these bit-strings are programs, and others are not. Ac-

cording to our fixed language, it is syntactically determined as to

which bit-strings are programs, and which are not. Thus, the syn-

tax of the language can be written as a program for determining

and enumerating all those bit-strings which are programs. There-

fore,

There exists a program that enumerates all programs.

Each program has some length. The length of a program is the

length of the bit-string that represents the program. Since bit-

strings can be ordered in a particular way, the same ordering is

used to enumerate all programs. Further, given any natural num-

ber =, from the enumeration of all programs, we may discard all

those bit-strings which are of a length less than or equal to =. That

is,

There exists a program that enumerates all programs

of length bigger than a given natural number =.

Notice that such an enumerating An enumerating program

takes a single input =, it

does not halt, and it gives

us outputs as programs

in the particular

ordering, time to time.

program takes a single input

=; it does not halt, and it gives us outputs as programs in the

particular ordering, time to time. As we see, the outputs of such

an enumerating program come in an orderly fashion. The order is

given as follows:

Programs of smaller lengths are output first; and among

programs of the same length those come first in the

above ordering of the bit-strings, come first.

RESONANCE | September 2020 1253

GENERAL ARTICLE

Such an enumerating program can be easily modified to wait for

another bit as an input after printing each output. Hence,

There exists a program which takes input as a natural

number =; outputs a single program of length larger

than =; waits for another time-to-time input which

may be either 0 or 1. If this input is 0, the program

halts; and if this input is 1, then the program prints

the next program of length larger than =. It continues

this way unless the time-to-time input is given as 0.

We see that programs are bit-strings. A job is specified by a

function, which maps inputs to outputs. For each job, which is

a computable function, there exist possibly many shortest pro-

grams. And, there are infinitely many jobs. Thus,

There exist infinitely many shortest programs.

WeThere exist infinitely

many shortest programs.

There exist only finitely

many shortest programs

for doing the same job.

should not misunderstand this; there exist only finitely many

shortest programs for doing the same job.

2. The Weak Question

We try to answer the weak question first. Assume that there exists

a program, namely, (%, which takes a program % as an input and

outputs 0 if % is the shortest program among all those which do

the same job as %; else, it outputs 1.

Let � be the program that takes input as a natural number =, enu-

merating all the programs of length larger than =, in a time-to-

time fashion. That is, it prints the first program of length larger

than =, and then waits for a bit input. Once this input is given as

1, it goes to print the next program of length larger than =. If the

input is 0, then � halts.

We construct a program & which takes a natural number = as its

input, and does the following:

1254 RESONANCE | September 2020

GENERAL ARTICLE

& first simulates � with the same = as an input to �.

Then & passes the output of � to (%. Next, & passes

the output of (% to �, and so on until � halts. Once

� halts with a program % as its output, & runs % with

the same input =.

The following schematic diagram shows the structure of the pro-

gram &:

✲= 8=
& :

✲= 8=
� ✲>DC

% ✲8=
(% ✲>DC 0 ✲ %

=

❄
8=

✻
>DC

1

❄

Here,

−→ H means ‘run the program H’,

G
8=
−→ H means ‘run the program H with input as G’,

H
>DC
−→ G means ‘output of the program H is G’.

The details of the execution of & are as follows. & runs � with

input to � as the natural number =. Recall that � is supposed to

print all the programs of length larger than = one by one following

the ordering of the bit-strings. So, � prints the first program % of

length larger than =, and waits for an input which may be either 0

or 1.

If (% finds that % is not the shortest program, it outputs 1. Then

& passes this output to �. � prints the next program of length

larger than =.

If (% finds that % is the shortest program, it outputs 0. Then &

passes this output to �. � then halts. Once � halts, we see that

(% has found the

shortest program %.

Now, & runs % with the

input =, producing the

same output as % does.

Once � halts, we see that

(% has found the shortest program %. Now, & runs % with the

input =, producing the same output as % does.

Since & simulates � and (%, we summarize the execution of &

as follows:

& is a program that takes a natural number = as its

RESONANCE | September 2020 1255

GENERAL ARTICLE

input; it eventually finds the shortest program % of

length larger than =, and then it runs % producing the

same output as %.

Suppose the length of the program � is 1, and the length of the

program & is @. Suppose the syntax for giving input to the pro-

gram takes 2 bits in our language. Then take : = 221+@+2 . Run &

with : as the input.

Since there exist infinitely many shortest programs, � eventually

finds one of length larger than :. So, suppose � finds the pro-

gram %, which subsequently, is determined by (% as the shortest

program. Now, we know that % is the shortest program, whose

length is larger than :. This means that for doing the same job as

% does, there exists no shorter program.

NoticeWe have a program in

our language, namely, &

along with the input :

which does the same job

as %.

that & does the same job as % with input as :. We see

that length of : in bits is 21+@+2 . Thus, we have a program in our

language, namely, & along with the input :, which does the same

job as %. Now, the length of our program is at most &, plus the

length of :, plus 2, which is 21+@+2 + @ + 2 which is much smaller

than :.

This contradiction proves the following result.

Theorem 1. There exists no program to determine whether or not

a given program is the shortest.

3. The Strong Question

Suppose we have written a program for doing a particular job. We

have an intuitive feeling that this might be the shortest program

for doing that job. Since we know the length of our program as a

bit-string, our strong question may be formulated as follows:

How do we prove that for a given computer, with a

given language, for doing a given job, the shortest

program will have at least = bits?

1256 RESONANCE | September 2020

GENERAL ARTICLE

Observe that given any axiomatic system, its axioms and rules

of inference can be encoded in a program so that the program

generates all theorems one by one. So, suppose) is the theory of

all programs. Let % be a program that generates all theorems in

the theory) . Let (be the statement:

For the computer �, with the language !, the shortest

program for doing a job � will have = bits and no less.

Suppose that (has a proof. Then the program % will print this

sentence (sooner or later. If (does not have a proof, then % will

never print it. However, we may not be able to know that % would

never print (. But the programs of length less than = bits are finite

in number. Thus, they can all be enumerated and checked whether

any of those is meant to do the same job or not. So, let & be this

program that generates and checks all the programs of length less

than = bits.

Now, combine the programs % and & to write a new program

which runs % and then &, next % followed by &, and so on. This

new program now determines whether or not there exists a short-

est program for doing the same job. This contradicts Theorem 1.

Therefore, our assumption that (has a proof is wrong. We obtain

the following result.

Theorem 2. There is no way to prove that a program is the short-

est for doing an arbitrarily given job.

It is quite possible Theorem 2 asserts that

there is no uniform

method of proof that

might show that any

given program is really

shortest.

that for a particular job, the shortest program

is indeed the shortest. For example, “print 0” may be the short-

est program in some language to print the symbol 0. Theorem 2

asserts that there is no uniform method of proof that might show

that any given program is really the shortest.

4. Chaitin’s Theorem

In fact, Chaitin proved a generalization of these results by defin-

ing the complexity of a bit-string. To get an idea of his result,

RESONANCE | September 2020 1257

GENERAL ARTICLE

consider the following bit-strings having some finite lengths (not

shown here):

1101110111011101...; 10110011100011110000...;

10110000001101111100...

The first string has a pattern: 1101 is repeated. The second string

has a pattern:

10 1100 111000 11110000...

The third string does not show any obvious pattern. We do not

know whether it follows any pattern or not. Now, to produce the

first string as an output of a program is easy. Just print 1101

repeatedly. The second string can also be printed though in a bit

complicated manner. But in the absence of any pattern, the third

one can be printed only by specifying “print that-string-itself”.

Observe that finding the shortest program to generate a bit-string

has obvious applications to zipping a file.

We mayWe may define the

(Kolmogorov)

complexity of a bit-string

as the length of the

shortest program that

prints the string.

define the (Kolmogorov) complexity of a bit-string as

the length of the shortest program that prints the string.

Then the complexity of the first string is 4 + 21 + log2(=), where

21 is the length of the added instructions needed to give the print

command, and = is the length of the required bit-string, etc. No-

tice that along with the pattern encapsulated in the program, the

length = should be given as an input. Here, 21 does not depend on

the string.

The second string has the complexity 22+ log2 (=), where 22 is the

length of the instructions for describing the pattern and the print

command, and = is the length of the required string. Here also, 22

does not depend on the string.

For the third string, the complexity is 23 +=, where again 23 is the

length of the print command that does not depend on the string,

and = is the length of the string. In this case, we need to give the

string as a built-in input in the program.

1258 RESONANCE | September 2020

GENERAL ARTICLE

Thus, the complexity of each string is at most 2 + ;4=6Cℎ(BCA8=6)

for a constant 2. There are 2= strings of length =, and at most

2=−: programs (also bit-strings) of length less than = − :. Thus,

the number of strings of length = and complexity at most = − :

decreases exponentially as : increases. Therefore, there are very

few strings of length = whose complexity is much less than =.

That is, the majority of strings of length = have complexity ap-

proximately =.

Since we have an ordering of the strings, consider the first string

that can be proved to have complexity greater than one billion.

Now, this description itself can be used as a program to generate

such a string. But the length of such a program is clearly less than

one billion. Using our earlier discussed method of generating

proofs, we see that:

There exists a program of length log2(=) + 2 bits that

computes the first string that can be proved to be of

complexity greater than =.

Here, the log2(=) term comes from the requirement that = should

be given as an input to our program in the built-in form. This

contradicts a large =, since such a string has complexity log2(=) +

2, whereas, it is supposed to be greater than =. Therefore, such a

string does not exist. Thus we obtain Chaitin’s theorem:

Theorem 3. For all sufficiently large values of =, it cannot be

proved that a particular string is of complexity larger than =.

In fact, Chaitin goes further to prove the following theorem: The natural number ! is

called Chaitin’s barrier

for any axiomatic

system.

Theorem 4. Suppose an axiomatic system can be encoded in

LISP in # bits. Then there exists a natural number ! ≤ # + 2359

such that no proof in the axiomatic system proves that the com-

plexity of any specific bit-string is of length more than !.

The natural number ! is called Chaitin’s barrier for any axiomatic

system. Observe that the constant 2359 is specific to the lan-

RESONANCE | September 2020 1259

GENERAL ARTICLE

guage LISP. If another general purpose language is used in place

of LISP, this constant will possibly change.

We see that most strings of large length are of complexity almost

the length of such a string, but we cannot exhibit one such string.

There are many applications of Chaitin’s theorem. For this, the-

ory of programs, and the notion of proofs in an axiomatic system,

see the references.

Acknowledgement

The author cheerfully thanks the referee for very constructive sug-

gestions that improved the presentation of the paper.

Suggested Reading

[1] G J Chaitin, The Unknowable, Springer-Verlag, Singapore, 1999.

Address for Correspondence

Arindama Singh

Professor of Mathematics

IIT Madras

Email: asingh@iitm.ac.in

[2] G J Chaitin, The Limits of Mathematics, arXiv:chao-dyn/9407003v1/7 July

1994.

[3] J P Lewis, Large limits to software estimation, ACM Software Engineering

Notes, Vol.26, No.4, pp.54–59, July 2001.

[4] J McCarthy, A basis for mathematical theory of computation, Studies in Logic

and the Foundations of Mathematics, Vol.35, pp.33–70., 1963.

[5] A Singh, Elements of Computation Theory, Springer-Verlag, London, 2009.

[6] A Singh, Logics for Computer Science, 2nd Ed., PHI, New Delhi, 2018.

1260 RESONANCE | September 2020

