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The Stochastic Model

Let P := (Ω,F ,F,P) be a filtered probability space with
F = {Ft}0≤t≤T , and {W (t)}t≥0 be a finite dimensional Wiener
process defined on it.

Let D ⊂ Rd , for 1 ≤ d ≤ 3 be a smooth bounded domain.

We investigate the numerical approximation of the following stochastic
wave equation perturbed by multiplicative noise of Itô type:

The Stochastic Semilinear Wave Equation


∂2
t u −∆u = F (u, ∂tu) + σ(u, ∂tu) ∂tW in (0,T )× D ,

u(0, ·) = u0 , ∂tu(0, ·) = v0 in D ,

u(t, ·) = 0 on ∂D, ∀ t ∈ (0,T ) ,

(1)

u denotes the displacement/position, ∂tu denotes the velocity;

Here, F (·, ·) and σ(·, ·) are Lipschitz in both arguments;

The initial data u0 and v0 are given F0-measurable random
variables.
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The Problem of Interest:
The Strong Approximation
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Considering a numerical scheme of a stochastic equation

Types of Errors

Strong Error

measures pathwise approx.

Weak Error

approx. of the law of the solution

The strong error measures the pathwise approximation of the true
solution by a numerical one.

The weak order of convergence is concerned with the approximation of
the law of the solution at a fixed time.

We discuss the strong approximation of (1), i.e.,

E
[
∥u(n∆t, ·)− un∥2L2

]
≤ C

(
∆t

)δ
If such a bound is true, we say that the numerical scheme has strong
order of convergence δ or strong rates of convergence δ.
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First Order System and Total Energy

Chow [2] (2015)

A strong variational solution to (1) exists, and is usually constructed via the

reformulation of (1)1 as a first order system by setting v = ∂tu ,{
du = v dt

dv =
[
∆u + F (u, v)

]
dt + σ(u, v) dW (t) .

(2)

Walsh [8] (2006), Sanz-Solé [7] (2006)

The first works to numerically solve (1), where (semi-)discrete scheme was
constructed based on the solution concept of a mild solution.

We associate the following energy functional

E(u, v) := 1

2

∫
O
|∇u(x)|2dx︸ ︷︷ ︸

Elastic Energy

+
1

2

∫
O
|v(x)|2dx︸ ︷︷ ︸

Kinetic Energy

. (3)
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Why Study with
F (u, v) and σ(u, v)?
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Why such a system is of importance? (Dalang [4] (2009))

Many biological events are related to the motion of the DNA string; for
instance, an enzyme may be released.

A DNA molecule can be viewed as a long elastic string, whose length is
essentially infinitely long compared to its diameter.

A DNA molecule floats in a fluid, so it is constantly in motion, just as a
particle of pollen floating in a fluid moves according to Brownian motion.

The forces acting on the string are mainly of three kinds:

1 elastic forces, which include torsion forces,
2 friction due to viscosity of the fluid;
3 random impulses due the the impacts on the string of the

fluid’s molecules.
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The Effect of Noise

10 / 38



Effect of Noise - A Numerical Experiment

Example 1

Let D = (0, 1), T = 1, F ≡ 0 in (1), and W be of the form

W (t, x , ω) :=
M∑
j=1

βj(t, ω)ej(x) , (4)

where
{
βj(t, ω); t ≥ 0

}
are mutually independent Brownian motions and

ej(x) =
√
2 sin(jπx). Let u0(x) = sin(2πx) and v0(x) = sin(3πx) .

Case 1 : σ(u, v) = 0
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Effect of Noise - A Numerical Experiment

Example 2

Let O = (0, 1), T = 1, F ≡ 0 in (1), and W be of the form

W (t, x , ω) :=
M∑
j=1

βj(t, ω)ej(x) , (5)

where
{
βj(t, ω); t ≥ 0

}
are mutually independent Brownian motions and

ej(x) =
√
2 sin(jπx). Let u0(x) = sin(2πx) and v0(x) = sin(3πx) .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

2

4

6

8

10

12

E
n
e
rg

y

Elastic potential energy

Kinetic energy

Total energy

Case 1 : σ(u, v) = 0 Case 1, Energy Curves

12 / 38



Effect of Noise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

2

4

6

8

10

12

E
n
e
rg

y

Elastic potential energy

Kinetic energy

Total energy

Fig.-1 : Case 1 : σ(u, v) = 0 Fig.-2 : Case 1, Energy Curves

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

2

4

6

8

10

12

E
n

e
rg

y

Elastic potential energy

Kinetic energy

Total energy

Fig.-3 : Case 2 : σ(u, v) = u Fig.-4 : Case 2, Energy Curves
13 / 38



Effect of Noise
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What Happens to the
Approximate Total Energy, i.e.,
Plots t 7→ EMC[E(u(t), v(t))]
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Plots t 7→ EMC[E(u(t), v(t))]
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The Highlight of The Work:
3 Important Results
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Aim of our work

We focus on the proper time discretization (which we consider to be the
essential part of an overall discretization) for the SPDE:{

du = v dt

dv =
[
∆u + F (u, v)

]
dt + σ(u, v)dW (t) .

(6)

We address the following problems:

Result 1:- For the Case: F ≡ F (u, v) and σ ≡ σ(u, v)

We use an implicit method in time to approximate (6), and we obtained

O(k
1
2 ) for the temporal error

in this general case, where {tn}Nn=0 be a mesh of size ∆t = k > 0
covering [0,T ]. This has not been addressed in the existing literature.
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The Highlight of our Work: for σ ≡ σ(u), F ≡ F (u)

{
du = v dt

dv =
[
∆u + F (u)

]
dt + σ(u)dW (t) .

(7)

Result 2:- For the case σ ≡ σ(u), F ≡ F (u)

We use energy arguments to obtain

O(k) for the temporal error

This coincides with the order obtained in Anton et al. [1] (2016) and
Cohen et al. [3] (2016).

Result 3:- For the case σ ≡ σ(u), F ≡ F (u)

With the introduction of an additional term to our scheme, we improve it
to a higher-order scheme which yields

improved convergence order O(k3/2) for approximates of u
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The Numerical Scheme
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Numerical Scheme

(α̂, β)−scheme

Fix α̂ ∈ {0, 1} and β ∈ [0, 1/2). Let {(un, vn)n=0,1} be given Ftn -measurable,
[H1

0]
2-valued r.v’s. For every n ≥ 1, find [H1

0]
2-valued, Ftn+1 -measurable

r.v’s (un+1, vn+1) such that P-a.s.

(un+1 − un, ϕ) = ∆t(vn+1, ϕ) ∀ϕ ∈ L2 , (8)

(vn+1 − vn, ψ) = −∆t
(
∇ũ

n, 1
2

β ,∇ψ
)
+

(
σ(un, vn− 1

2 )∆nW , ψ
)

+ α̂
(
Duσ(u

n, vn− 1
2 ) vn ∆̃nW , ψ

)
(9)

+
∆t

2

(
3F (un, vn)− F (un−1, vn−1), ψ

)
∀ψ ∈ H1

0 ,

where

ũ
n, 1

2
β :=

1 + β (∆t)β

2
un+1 +

1− β (∆t)β

2
un−1 , (10)

and

∆nW := W (tn+1)−W (tn) and vn− 1
2 :=

1

2
(vn + vn−1) .
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(α̂, β)−scheme

(un+1 − un, ϕ) = ∆t(vn+1, ϕ) ∀ϕ ∈ L2 , (11)

(vn+1 − vn, ψ) = −∆t
(
∇ũ

n, 1
2

β ,∇ψ
)
+

(
σ(un, vn− 1

2 )∆nW , ψ
)

+α̂
(
Duσ(u

n, vn− 1
2 ) vn ∆̃nW , ψ

)
(12)

+
∆t

2

(
3F (un, vn)− F (un−1, vn−1), ψ

)
∀ψ ∈ H1

0 ,

where

∆̃nW :=

∫ tn+1

tn

(s − tn) dW (s) =

∫ tn+1

tn

s dW (s)− tn∆nW . (13)

By Itô’s formula, we can rewrite ∆̃nW as

∆̃nW =

∫ tn+1

tn

[
W (tn+1)−W (s)

]
ds = kW (tn+1)−

∫ tn+1

tn

W (s) ds. (14)

The β-term

The ‘β-term’ is necessary for the stability analysis, in order to handle the noise term,
which is unlike any parabolic SPDEs.
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)
∀ψ ∈ H1

0 ,

where

∆̃nW :=

∫ tn+1

tn

(s − tn) dW (s) =

∫ tn+1

tn

s dW (s)− tn∆nW . (13)

By Itô’s formula, we can rewrite ∆̃nW as

∆̃nW =

∫ tn+1

tn

[
W (tn+1)−W (s)

]
ds = kW (tn+1)−

∫ tn+1

tn

W (s) ds. (14)

The β-term

The ‘β-term’ is necessary for the stability analysis, in order to handle the noise term,
which is unlike any parabolic SPDEs.
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Higher Order Scheme when F ≡ F (u), σ ≡ σ(u)

Let’s recall the notation

ũ
n, 1

2
β :=

1 + β kβ

2
un+1 +

1− β kβ

2
un−1 , (15)

For β = 0,

ũ
n, 1

2
β = un, 1

2 =
1

2
(un+1 + un−1) .

This is inspired by the second order time-stepping scheme of Dupont [6] (1973)
for the deterministic wave equation.

Also, in the case when F ≡ F (u), σ ≡ σ(u) and β = 0, , the (α̂, β)−scheme

simplifies to (for n ≥ 1)

(α̂, 0)−scheme

(un+1 − un, ϕ) = ∆t(vn+1, ϕ) ∀ϕ ∈ L2 , (16)

(vn+1 − vn, ψ) = −∆t
(
∇un, 1

2 ,∇ψ
)
+

(
σ(un)∆nW , ψ

)
+α̂

(
Duσ(u

n)vn∆̃nW , ψ
)

(17)

+
∆t

2

(
3F (un)− F (un−1), ψ

)
∀ψ ∈ H1

0 .
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Numerical Example -
Comparison between the cases

α̂ = 0 and α̂ = 1
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Numerical Example - A Comparison

Example 3

Let D = (0, 1), T = 1, F ≡ 0, σ(u) = sin(u) in the equation (7). Let

u0(x) = sin(2πx) and v0(x) = sin(3πx) ,

and W as in Example 2.

For (0, 0)-scheme, i.e., α̂ = β = 0 in the scheme (18)-(19):
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Figure 1: (Example 3) Temporal rates of convergence; discretization
parameters: h = 2−7,∆t = {2−3, · · · , 2−6}, MC = 3000.
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(1, 0)-scheme, i.e., α̂ = 1, β = 0

(un+1 − un, ϕ) = ∆t(vn+1, ϕ) ∀ϕ ∈ L2 , (18)

(vn+1 − vn, ψ) = −∆t
(
∇un,

1
2 ,∇ψ

)
+

(
σ(un)∆nW , ψ

)
+α̂

(
Duσ(u

n)vn∆̃nW , ψ
)

(19)

+
∆t

2

(
3F (un)− F (un−1), ψ

)
∀ψ ∈ H1

0 .
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Figure 2: (Example 3) Temporal rates of convergence; discretization
parameters: h = 2−7,∆t = {2−3, · · · , 2−6}, MC = 3000.
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Figure 2: (Example 3) Temporal rates of convergence; discretization
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A Computable Approximation

of ∆̃nW
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A Computable Approximation of ∆̃nW

Recall that by Itô’s formula,

∆̃nW =

∫ tn+1

tn

[
W (tn+1)−W (s)

]
ds = kW (tn+1)−

∫ tn+1

tn

W (s)ds .

We then approximate the last term by k2
∑k−1

ℓ=1 W (tn,ℓ) to get a

computable approximation of ∆̃nW by

∆̂nW := kW (tn+1)− k2
k−1∑
ℓ=1

W (tn,ℓ) , (20)

where
{
W (tn,ℓ)

}k−1

ℓ=1
is the piecewise affine approximation of W on

[tn, tn+1] on an equidistant mesh {tn,ℓ}k
−1

ℓ=1, of step size

k2 := tn,ℓ+1 − tn,ℓ. Now, the question is: Why such approximation,

i.e., ∆̂nW is necessary?
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Why ∆̂nW is necessary?

We have

E
[
|∆̃nW |2

]
≤ k

∫ tn+1

tn

E
[
|W (tn+1)−W (s)|2

]
ds ≤ Ck3 ,

and the identity (20) infers for q = 1, 2

E
[
|∆̂nW |2q

]
≤ Ck2q E

[
|W (tn+1)|2q

]
+ Ck2q+1

k−1∑
ℓ=1

E
[
|W (tn,ℓ)|2q

]
≤ Ck3q + Ck4q ≤ Ck3q .

Hence, the approximation of ∆̃nW by ∆̂nW maintains the mean

property of the former. This is the very reason to use k2 as the step size

to approximate the term.
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Assumptions: Choice of u1 and v 1

We choose (u0, v 0) = (u(0), v(0)), together with

Choice of u1 and v 1

{
u1 = u0 + k v0 +

k2

2
∆u0 + k2F (u0) + (k + k2)σ(u0)∆0W ,

v 1 = v0 + k σ(u0)∆0W .
(21)

We also assume:

∂D of class C4, and (u0, v0) ∈ (H1
0 ∩H4)× (H1

0 ∩H3) .

The Tools for the Error Analysis

The core of the analysis is

Hölder continuity in time of the solutions (for error analysis),

Higher moment bounds for the solutions of the continuous problem,

Higher moment bounds for the solutions of the discrete problem,

Trapezoidal quadrature rule developed by Dragomir [5] (2000).
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Some Interesting
Computational Observations
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Some Observations

Example 4

Consider σ(v) = v and F ≡ 0. Fig. 3 displays convergence studies for the
(α̂, β)−scheme for α̂ = 1 and β = 1/4 : the plots (a)− (C) of L2-errors in
u,∇u and v , respectively, confirm convergence order O(k1/2).
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Figure 3: (Example 4) Rates of convergence of the
(
1, 1

4

)
−scheme with

σ(v) = v and F ≡ 0.
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Some Observations on (1, 1
4
)-scheme

Example 5

Consider the following case: σ(u) = u and F (u, v) = cos(u) + 2v ;
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Some Observations on (1, 1
4
)-scheme

Example 6

Consider the following case: σ(u, v) = u
1+u2

+ v and F (u, v) = cos(u) + 2v ;
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Some Observations on (1, 0)-scheme

Example 7

Let F ≡ 0, and drop the assumption on σ ≡ σ(u) to be Lipschitz, i.e., let
σ(u) =

√
|u|.
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Choice of β and required number of MC

Example 8

Let D = (0, 1), T = 0.5, F ≡ 0, σ(v) = 5v . For increased value of β,
stabilization effect vanishes for small ∆t. Thus, a smaller choice of β is
preferred to have the stability of the scheme.
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Figure 4: The fig. (a) shows for β = 0, 1
4 ,

1
2 ,

3
4 , 1, that at least

MC = 400, 600, 800, 1000, 1400, are needed to have a steady of the
energy E at time T = 0.5. The fig. (b) evidence a higher number of MC
as we increase β to have a steady energy curve.
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