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Pathwise 1t6 Calculus

Fix a sequence of partitions m = (7"),>0 of [0, T]:

=(0=1t7 <tf <+ <tyem=T)

Theorem (FOLLMER, 1981)

For f € C2(R,R) and x € C°([0, T],R) N Q?([0, T], R),
the limit of Riemann sums

[/ s, 3 e )

exists and the following identity holds:

F(x()) = F(x(0)) + /0 F(x($))d"x(s)+ 5 /0 7 (x(5)) d11 2 (5).

v
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p-th variation of continuous functions along 7

Definition
x € CO([0, T],R) has finite quadratic variation along ,
if the sequence of functions

K@) = Y |x(th) — x(£)])* 27 9 (¢)

tj”Eﬂ"
n
<t

converges uniformly on [0, T] to a continuous (non-decreasing)
function [x]ﬁf). In this case, we denote x € Q7(r2)([0, T],R).

When a similar condition holds for some p € (1, 00), instead of 2,
we say x has finite p-th variation along 7, or x € Q (p)([O T],R).
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Recent generalizations of FOLLMER's pathwise calculus

e CoNT & PERKOWSKI (2019):
higher-order pathwise 1t6 formula for p € 2N.

o KiM (2022):
higher-order pathwise Tanaka-Meyer formula for p € 2N with
a relevant notion of pathwise local time.

e ConT & JIN (2024):
fractional pathwise 1t6 formula for general p > 1, with a
fractional It6 remainder term.

All of these results require the existence of (finite) p-th variation
along a given partition sequence T, i.e., we can only develop
pathwise calculus for x € Q7(Tp)([0, T],R).
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The space QP([0, T],R)

However, we barely know the space Q7(rp)([07 T],R).

The function space Q,(rp)([O, T],R) is NOT a vector space.

Proposition (SCHIED, 2016)

There is an example of continuous functions x and y such that
[X]1(r2) and [)/]%) exist, but [x + y]q(rz) does not exist.

The construction of this example uses Schauder representation of
continuous functions along the dyadic partition sequence
T = (T"), where

2 T2"

1

}.
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The space QP([0, T],R)

This indicates that requiring the existence of p-th variation, i.e.,
the existence of the foIIowing limit, would be too strong:

p
Tim [ (t) = tim. Z X(t21) = x(D)]” = P (1)
tj"gt

Thus, we rather consider sup of [x](p)( T), and define
X1 = () + sup (INE(T))".
n>0

2P = {x € C°([0, T, R) : [|x[| ") < oc}.

Proposition

For any p > 1 and a refining partition sequence m with vanishing

(P)7 H . HSTP))

mesh, the space (2, is a Banach space.
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p-th variation as a limsup
and variation index
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Variation index

Let MN([0, T]) be the set of all refining partition sequences on [0, T]|
with vanishing mesh.

Definition
The variation index of x € C°([0, T],R) along any = € N([0, T]) is

p™(x) :=inf{p>1:lim sup[x]gﬁ,)(T) < oo}
n—o0

=inf{p>1:|x|¥ < oo}.

Since we have
lim sup[x](q)( T)= 0, 9> P(x),
n—+00 00, g < p™(x),

the variation index can be a measure for ‘roughness’ of x along .
E.g. for a Brownian motion B, we have p™(B) = 2 almost surely
for any 7w € MN([0, T]). 9/30



Variation index p™(x) is

Proposition (FREEDMAN, 1983)

Let x € CO([0, T],R). There exists a sequence of partitions
m = (7") such that [X]F)(T) = lim sup,,_>oo[x](2)( T)=0.

This particular sequence 7 is of Lebesgue-type (partitioning the
range of x).

It can be generalized to:

Proposition

For any p > 1 and x € C°([0, T],R), there exists a sequence of
partitions m = (7) s.t. [x]P(T) = limsup,,_,..[x]7(T) = 0.
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Variation index p™(x) is

From the previous result with a fact from the rough path theory,

For any x € C°([0, T]), we have
inf{p"(x) : 7 € N([0, T])} =

Moreover, for any x € C%%([0, T]), we have

sup{p"(x) : m € ([0, T])} =~
Thus, for any x € C%%([0, T]) and 7 € M([0, T]), we have
1
1<pT(x) < .

Question: how can we characterize p™(x) of a function x along 77
11/30



Schauder representation
along a general partition sequence

Previous results:

e (CoNT & DAs, 2022) Quadratic variation along refining
partitions: Construction and examples, J. Math. Anal. Appl.

e (BAYRAKTAR, DAs & Kim, 2024) Holder regularity and
roughness: Construction and examples, Bernoulli.
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Construction of Brownian Motion

Our first step is to give a more convenient representation for the processes
B™ n=0,1,.... We define the Haar functions by H®(t) = 1,0 <t < 1, and
forn> 1, kel(n),

k—1 k
=12 <P
’ 2,, - < 2’,7
HM() = _ k k+1
N, Ui VA
2 TS T
0, otherwise.

We define the Schauder functions by
.
S0 = j H{M(uw)du, 0<t<1,n>0kel(n).
0

Note that S{°(t) = ¢, and for n > 1 the graphs of S are little tents of height
270172 centered at k/2" and nonoverlapping for different values of ke I(n).
It is clear that B{® = £?8{)(t), and by induction on n, it is easily verified that

(32) By =3 Y &M@Sm, 0<i<1,n>0
m=0 ke I(m)

3.1 Lemma. As n — oo, the sequence of functions {B™(®);0<t<1},n>0,
given by (3.2) converges uniformly in t to a continuous function {B(w),0 <t < 1},
for ae. weQ.

3.2 Theorem. With {B™}%, defined by (3.2) and B, = lim,._., B{", the process
{B,, #8,0 < t < 1} is a Brownian motion on [0,1].
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Sequence of partitions

A sequence of partitions 7 of [0, T] is a sequence (7")p>0 :

m=0=1t <t <- <tygm=T),

= inf th o, —tf
i:0,~~~,N(7r”)—1| i+1 i |7

= sup [t -t

':07 7N(7T")

|7

For a fixed n > 0, we denote

p(n, k) :=inf{t!*' >t} for k=0,--- ,N(x") -1,
J

then the next level partition 77+ contains
n__ wn+l n+1 n+1 __4n
0 < 8=tk < tonigrt <77 < by = e < T
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Generalized Haar basis

Definition

The Haar basis associated with 7 is a collection of piecewise constant functions
{¥mk,i},m=0,1,---  k=0,--- N(x")=1,i=1,---,p(m, k+1)— p(m, k):

; +1 +1
0 e [t k)

by m i~ Splmsk) 1 : 1 1
p(m,k)+i “p(m,k)+i—1 2 m+ m—+
Ymk,i(t) = ( i x ) if t € [tp(m,kw tn(m,k)—Hfl)

tm 1 _tm+1 tm+1 _tm+1
p(m,k)+i—1" "p(m,k) p(m.k)+i ~ "p(m, k)

\

tm+1 _tm+1 2

. p(mok)+i=1 " tp(mak) 1 ifte [tm+1 L
m+1 __m+1 m+1 __m+1 Jk)+i—12 Jk)+i
LRy Sp(myk)bim Ep(mk)bi T Tn(mk) plm;k)+i ”)m I,

{%m,k,i} is an orthonormal family! (< f,g >= [ f(t)g(t)dt)
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Generalized Schauder functions

Definition
The Schauder functions ef , ; are obtained by integrating 47

m,k,i*

- t/”'(':ﬁk)ﬂ/\t
en ()= @/}m ki(s)ds = Ym k,i(s)ds Ly, mtl 5(2).
pLSE) tm+1 (m, k)+i
p(m, k)

em ki - [0, T] — R are triangle-shaped, continuous; e, , :(t) =
m+l m+1
0 if t ¢ [ (m,k)’ p(m,k)+i>
k) i k) -1 1 : 1 1 )
p(m,k)+i ~ “p(m k)+i— m+ et m+
CEs T X — x(t—t ) |ft€[ .7>
( tp(;,k)+i717tp(:1,k) Eo(m, k) +i tp(m,k)) . p(m, k) p(m,k)* Eo(m,k)+i—1
( f£"<“k>+- l_t;:n(“k) 1 )5 ( m+1 ) +1 m+l )
= T x x (t —t |ft€[ t )
tgal,k)ﬂ_t;;l,k)w—l t;n(#,k)ﬂ_f,r,?;l,k) p(m,k)+i p(m,k)+i—1’ "p(m,k)+i
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Figure 1: Schauder functions e
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Schauder representation of a continuous function

Proposition

Let w be a finitely refining sequence of partitions of [0, T].
Any x € C°([0, T],R) has unique Schauder representation along :

x(t) = x(0) + (x(T) - t+ZZH;’L el (1)

m=0 kel

k k . . . .
3] and its maximum is attained at

Ifsupport of ep . is [t

t2 , then the coefficient 9,"” i has an explicit representation:

(XCEE4) = x84 (7% = 674 = (x(&54) = x(e24) (&% = )
() (Em S ()

X, T __
em,k -
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Refining (nested) partitions, 7 = (7")pen, 7t C 72 C - - -

Definition (Finitely refining sequence of partitions)

A refining sequence 7 of [0, T] is said to be finitely refining, if || — 0 and
IM < oo such that number of partition points of 7"*! within any two
consecutive partition points of 7" is always bounded above by M, irrespective
of n € N.

Recall: A sequence of partitions 7 of [0, T] is a sequence (7")n>0 :
T=0=t <t{ < - <thzm=T),
with

. . n n ny.__ n n
= inf [th, — t7], |7 = sup [ths — ti
=0, ,N(m")—1 =0, N(xm)—1
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Refining (nested) partitions, 7 = (7")pen, 7t C 72 C - - -

Definition (Complete refining sequence of partitions)

A refining sequence 7 is said to be complete refining, if there exists positive
constants a and b satisfying

|

|7
] < b,

1+a< Vn e N.

Definition (Convergent refining sequence of partitions)

A refining sequence 7 is said to be convergent refining, if there exists a
constant r > 1 satisfying

o

ne Tort] "

Convergent refining = Complete refining
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Main results
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Schauder coefficients and p-th variation

Consider a Schauder representation of x € C°([0, T],R) along m:

ZZ@:: et te o, T

n=0 kel,

For p > 1 and a balanced, convergent refining partition sequence w, let

g = nlt (L GEF), Va0

kEln

Then, we have limsup&y™P < 0o <= lim sup[x]grpn) < 00.
n— 00 n— o0

Here, the expression §n depends only on the [” norm of the n-th level
Schauder coefficients (0,7 )ker, = (056, 0n1 0,7 1)
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Characterization of variation index

For any x € C°([0, T],R) and a balanced, convergent refining ,
p"(x) :=inf{p >1:limsup [X]srpn)(T) < oo}
n—oo

:inf{p >1:limsup&y™P < oo}.
n—oo

In other words,

limsup&y™P <00 <= x € t%fﬂ(")

n—o0

where 2,7 := {x € C°([0, T],R) : ||x||”) < oo} is a Banach space
with the norm ||XH(p) = |x(0)| + SUP >0 ([X](p)( ))
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Schauder coefficients and p-th variation

limsup £3™P < 0o = x € 2P

n—o0

= w"l5<z [ ) Vn>0.

kely

Xy

Thus, the finiteness of /P-norm of (6';)ke, for each n > 0 is closely
related to the finiteness of p-th variation of x.

On the other hand, the finiteness of £>*-norm of (6 '}')n>0.kel, is
connected to the Holder regularity of x, due to CIESIELSKI.
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Schauder coefficients and Holder exponent

Recall the a-Haélder norm of x € C°([0, T], R):

t —
Ixllcon = Ixlleo + Ixlcon = sup x(e)] + sup PAD=XEN
te[0,T] tseo,1] |t —s]
t#s

Theorem (CIESIELSKI, 1960)

Let T be the dyadic partition sequence. Then, we have

x € C%%([0, T],R) <= sup (2(mD=2)g<T ) < oo
P :

m,
Moreover, the mapping
Y. C%([0, T],R) —— (*(R)

X %{2(m+1><a—%)|9fn’?fk|}myk.

is an isomorphism.
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A recent generalization to general partition sequences

Theorem (BAYRAKTAR, DAs & KiM, 2023)

For any balanced and complete refining partition sequence w, we have

x € C%([0, T],R) <= sup (|657]|x™|27%) < oo,
m,k :

and the following mapping is also an isomorphism:
Tr: C%([0, T],R) —— (*(R)

= {lmmi L
m, k

Also, we have the bounds

1

1
5 5=
lxllco,a < sup (16575 117™ 2 7%) < 2V lIxll o,
max (2M\EK1°‘ + 2MKS*, MKs* \7r1|a) m,k

1

H fo JuP—
with Ki* == T—@ia—o

1 —
T—@iaa=T and K3* :=
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A recent generalization to general partition sequences

We may arrange Schauder coefficients in an infinite-dimensional matrix:

X, T X, T X, T
90,0 001 90,|10\71 0 0 0
Oy Or1 O fy-1 O 0
X, ’ ? El 1‘
%™ — Hx,ﬂ' ex,ﬂ X,
20 Y21 2,|h|-1

We also define a diagonal matrix DT whose (m, m)-th entry is [x™+1|z—

Then, we have
|73 7) = || DEO*T |,

sup (167577
m,k ’

where || Al|sup = SUPp k>0 |Am k| is the supremum norm for matrices.

27/30



A recent generalization to general partition sequences

Therefore, the previous isomorphism can be reformulated as...

Theorem (BAYRAKTAR, DAs & KiM, 2023)

For any balanced, complete refining partition sequence w and o € (0, 1),
the mapping

sup

T2+ (€0, TLR), I+ e ) — (2, 11 1,)
X  —— Sl

is an isomorphism, where

My ={A€ M :Ank =0 for k > |l,| and [|A|g,, < oo},
1Al = 1 DEAllsup-
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Schauder coefficients and p-th variation

For any p € (1, 00), recall the main result

limsup£5™P < 00 <= x € 2P

n—oo

gemP = w”i‘z’(Z ok ) V>0,

kel,

We define another diagonal matrix Qf,) whose (m, m)-th entry is |7™|%.

Moreover, we define a subspace of infinite-dimensional matrices

MP) = {A€ M :Ani =0 for k> |I,| and [|A]/(,) < oo},

1
1Al = 1A e 1Bl = sp (3 1Bul?)”.
k20 * >0
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Schauder coefficients and p-th variation

For any a € (0,1), p € (1, ], the space

(coe(o, TLR)N 2P, |- cow + - 19)

is a Banach space.

Furthermore, if 7w is balanced and convergent refining, then the mapping

T2 (€0, TLRY N 2P, 11 Nl o,o + 11 - 1P) ——— (e 0t 111135 + 1 )

X — [Shiad

is an isomorphism.

This provides a characterization of a-Holder functions with finite p-th
variation along 7.
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