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Introduction

® Derivative pricing in finance can be divided into two major categories:
@ Model-based pricing.
® Robust/model-independent pricing.
® Model based pricing, as the name suggests, involves pricing of a derivative,
given certain assumptions on the underlying asset following some model.
Examples- Black-Scholes model, Heston model, Merton Jump-Diffusion
model.

® The quantity of interest in any form of pricing is the valuation of the
underlying risk-neutral densities, under no-arbitrage conditions.

® One of the most pioneering works in this regard was by Breeden and
Litzenberger (1978).
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Breeden and Litzenberger's result

® lLet C(S,t,K, T) denote the time-t price of a European call with strike K
and maturity T.

® The probability density function of the asset price under a risk-neutral
measure Q, evaluated at the future price level K and the future time T,
conditional on the stock price starting at level S at an earlier time t, is
denoted by q(S,t,K, T).

® Breeden and Litzenberger (1978) proved that the risk-neutral density is
related to the second strike derivative of the call pricing function as follows,

2
q(S,t, K, T) = e'(T*ﬂ%(s, t,K, T). (1)
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|
Optimal Transport

® The optimal transport (OT) problem is concerned with transferring mass
from one location to another in such a way as to optimize a given criterion.

® Rephrased mathematically, and for simplicity considering the one-dimensional
case, we are given two probability distributions p and © on R and seek to
minimize

[ ctxy)ece,an. @)

R

among all probability measures [P, also known as transport plans, such that
P[E x R] = p[E] and P[R x E] = v[E], for all E € B(R), 3)

where ¢ : R> — R is a measurable cost function.

® Example: An Asian option with pay-off c(x,y) = (3(x +y) — K)T, with K
being the strike price at maturity T, and x, y denoting the underlying asset
prices at times 0 < T3 < T, = T, respectively.
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Optimal Transport

® In the absolutely continuous case, i.e., u(dx) = p(x)dx and v(dy) = o(y)dy,
Benamou and Brenier (2000) proposed a numerical scheme for the quadratic
distance function c(x,y) = (x — y)? using an equivalent formulation arising
from fluid mechanics.

® In the purely discrete case, i.e. p(dx) =" @;dx(dx) and
v(dy) = Z}’Zl Bjdy,;(dy), the OT problem reduces to a linear programming
(LP) problem. It can be computed using the iterative Bregman projection as
shown in Benamou et al. (2015).

® In the semi-discrete case, i.e. u(dx) = p(x)dx and v(dy) = >_7_; 5;d,,(dy),
Lévy et al. (2015) adopted a computational geometry approach to the cost
c(x,y) = (x — y)? and solved the OT problem utilizing Laguerre’s
tessellations.
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Martingale Optimal Transport

® Recently, an additional constraint has been taken into account, which leads
to the so-called martingale optimal transport (MOT) problem.

® More precisely, the two given measures 1 and v describe the initial and final
distributions of stock prices.

® These distributions can be recovered from market prices of traded call/put
options.

® Calibrated market models are then identified by martingales with these
prescribed marginals, i.e. transport plans P which further satisfy

Ep[Y[X] = X (4)

® The MOT problem aims at maximizing the integral (2) overall PP, still named
transport plans, satisfying the constraints (3) and (4), and it corresponds to
the model-independent price for option c.

® This methodology was pioneered by Beiglbock et al. (2013).
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LP formulation for MOT problems

® When the underlying marginal distributions are discrete, i.e.
p(dx) = 3217 idy(dx) and v(dy) = >°7_; Bjdy,(dy), the MOT problem is
equivalent to the following LP problem:

m n n
max o g g pijc(xi,y;) s.t. E pij=cj, for i=1.,m,
(Pijhi<izmi<j<n€RT" <= = =

m
Zpi,j - /Bja for ./: 1,..,”,
i=1

n
E pijyj = ajxi, for i=1,..,m.

i (5)
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® Davis et al. (2014) developed such LP formulation, where instead of the
marginal constraint v, only a finite number of expectation constraints are
given.

® For a convex reward function, this leads to optimizers with finite support.

® |n order to generalize this approach, a natural direction would be to try
approximating the MOT problem for (i, v) with the LP problem mentioned
above, for finitely supported (1", v") which are 'close’ to (i, V).

® One would encounter two main obstacles while working in that direction:

@ General continuity results of the MOT problem are difficult to establish.

@ Even if (i, v) admits a martingale transport plan, in dimensions d > 1, the
construction of a discrete approximation (u”, ") which also satisfies this, may
be quite involved.

® Both of these issues were addressed in Guo and Obtdj (2019), and forms the
basis of this talk.
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Outline of their results

® The authors provide an approximation approach for solving systematically
N—period MOT problems on RY, with N >2 and d > 1.

® Their approximation of the original problem relies on a discretization of the
marginal distributions combined with a suitable relaxation of the martingale
constraint leading to a sequence of LP problems.

® A proof of the convergence of this sequence is given.

® Results for the convergence speed are obtained when restricted to N =2 and
d=1
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Preliminaries

® For a given set E, we denote by EX its k— fold product.

® If E is Polish, then B(E) denotes its Borel c—field and P(E) is the set of
probability measures on (E, B(E)) which admit a finite first moment.

o Let Q := R? with its elements denoted by x = (x1, X2, ..x4) and P := P(Q).
Throughout, the Euclidean space R? is endowed with the /; norm | -], i.e.

d
x| =205y il
® Define A to be the space of Lipschitz functions on R? and, given f € A,
denote by Lip(f) its Lipschitz constant on R¢.

® For each L > 0, let Ay C A be the subspace of functions f with Lip(f) < L.
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Preliminaries

® \We consider the coordinate process (Sk)i<k<n, i-e. Sk(x1,x2, ..., xn) € Qn
and its natural filtration (Fy)i<k<n, i.e. Fx := o(51, ...5k).

® From a financial viewpoint, QN models the collection of all possible
trajectories for the price evolution of d stocks, where N is the number of
trading dates.

® Given a vector of probability measures g1 = (ux)1<k<n € PV, define the set
of transport plans with the marginal distributions g, .., uy by

P(u) ={PePQV):PoS ' =y, for k=1,..,N},

where P o Sk_l denotes the push forward of P via the map S, : Q¥ — Q.
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Wasserstein distance

® The Wasserstein distance in terms Sy is given by

W(p,v) = 7|)n(f 3} Ep[|S1 — S2|] = sup {/Rd f(x)p(x)dx 7/

PeEP(p,v) e R

f(x)v(x) dx} |
(6)

® The probability space P, equipped with the metric W, is a Polish space.
® Further, for any (")p>1 C P and p € P, W(u", ) — 0 holds if and only if

n ‘C’ n
2 and / x| (d) / Ixu(d),
R4 Rd

where L represents the weak convergence of probability measures.

® The space W is endowed with the product metric
W (p,v) = S0 W gk, vi), for all p,v € PN
® Then PV is Polish with respect to W®.
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e—approximating measure

We first define an e—approximating measure to introduce the main results.
Definition
For any € > 0, a probability measure P € P(QV) is said to be an e—approximating

martingale measure if for each k=1,.N —1

Ep | |Ep[Skt1]Fk] — Sk|| <, (7)
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Relaxed MOT

® Given ¢ > 0, let M(p) C P(p) be the subset containing all e—
approximating martingale measures.

® For a measurable function ¢ : QV — R, the relaxed MOT problem is defined

by
P.(p):= sup Ep[c(St,..., Sw)], (8)
PeEM. (1)
where we set by convention Pc(u) := —oco whenever M, () = 0.

® We denote P= C PN the collection of measures p such that M(p) # (). For
€ = 0, we drop the subscript and denote by P= = P>, M(u) = Po(p), etc.
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Main Result

Theorem

Fix u € P=. Let (u")n>1 C PN be a sequence converging to p under W®. Then,
forall n > 1, p" € PZ with r, :== W®(u", ). Assume further c is Lipschitz.

@ For any sequence (€,)n>1 converging to zero such that e, > r, for all n > 1,
one has

. mo
Jim P (n") = P(p)-
@® For each n > 1, P, (1) admits an optimizer P, € M, (u"), i.e.,
P, (") = Ep,[c]. The sequence (P,),>1 is tight, and every limit point must
be an optimizer for P(u). In particular, (P,),>1 converges weakly whenever
P(p) has a unique optimizer.
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Remark

@ By a theorem in Strassen (1965) we have pu € P= if and only if ik < pixs1
for k =1,..,N —1, or namely, [ fdux < [ fdpk41 holds for all convex
functions f € A and k=1,.., N —1,. In addition, it follows by definition that
PZ C PN is convex and closed under W®, and M(p) C Mc(p) for all
e > 0.

® As mentioned earlier, we would like to approximate P(u) by P(u")

with finitely supported measures p7, ..., ujy, since the latter reduces to
an LP problem.

© The Lipschitz assumption can be slightly weakened. Let E C R? be a closed
subset such that supp(p) € E forall n>1and k =1,..,N. Then it suffices
to assume in Theorem 1 that c, restricted to EV, is Lipschitz.
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LP formulation for finitely supported marginals

® The following Corollary shows that P, (") is equivalent to an LP problem.
® Henceforth, P, (") will denote the approximating LP problem of P(u) .

Corollary

Let p" = (u})1<k<n be chosen such that each p} has finite support, i.e.
,u‘k dX Z alk X
ik €l

where Iy = {1,.., n(k)} labels the support supp(u}). Denote by
p = (Pir,.in)ireh,...iwcly the elements of R? with D := HkN:1 n(k), then P (p™)
can be rewritten as an LP problem.
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LP formulation for finitely supported marginals

PROOF. By assumption, every element P € M, (") can be identified by some
p € RP. Therefore, P. (u") turns to be the optimization problem below

N
max E pi1,--,iN :17 X )

€RD .
PSR in

> Piy,..iy =k, forii € I and k =1,..., N,

15y ik—150k+150 50N

Z Z Py, in (X = xE)| < €, for k=1,..., N.
it,.

’k+1
ik ks

(9)

The optimization problem (9) is not an LP formulation. However, by adding slack
variables (6f ; . Vieh....icl.jes € R2 with J:= {1,..,d} and

Dy := cl]_[’:=1 n(r), (9) is equivalent to the following LP problem.
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LP formulation for finitely supported marginals

1 N
rpax Dy E Pil,..,iNC(Xila -~'inN
pERD SLER T GN-1eR " ;i
E Pi,.in = af‘k, forix € lyandk=1,.... N,

M1y ik—150k+150 050N

B ki1 _k K : ; —
- 6i17~-,ik,j < E Pi1,~.,iN(X'k+1 - Xik) < 5[17..,ik7ja foriy € I,je Jand k =1,.., N,
ikt15005iN
k
E 5i1,..,ik7j <eépfork=1,..,N—1
iy siksf

k _ (yk k
where we recall x; = (x;{ 1, -, X;{ 4)- O
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Convergence of the finitely supported marginals

The following theorem gives the convergence rate for N =2 and d = 1.
Theorem

Let N =2 and d = 1, or equivalently, & = (1, v) and ¢ : R? — R. In addition to
the conditions of Theorem 1, we assume that sup(, ,)cge |8§yc(x,y)| < oo and v
has a finite second moment. Then there exists C > 0 such that

|Pe, (1", ") — P(u,v)| < C}i?n>f0 An(R), forall n>1,

where A, : (0,00) — R is given by

M(R) = (R+ 1)en + / (Iy| - R)2w(dy).

(—o0,—R)U(R,0)

In particular, the convergence rate is proportional to ¢, if supp(») is bounded.
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Case for finitely many option prices

Remark

In general, the distributions pg, .., iy will not be fully spegified by the market when
d>2 Fork=1,..,N,let S := (S,((l)7 ...Sl(fl))7 where S,((') stands for the price of
the /™ stock at time k. Then, in practice, only prices of call options (S,E') - K)*,

or put options (K — S,(('))Jr, for a finite set of strikes K are actively traded in the
market. Even assuming call options are quotes for all possible strikes K only yields
the distributions pi ; of SL. Therefore, this leads to a modified optimization
problem. Denote [ix := (ftk1, .-, fk,a) @and fi == (fik)1<k<n, and let M (i) be
the set of e- approximating martingale measures P satisfying P(S]) ™! = jux ;, for
k=1,..,Nand i=1,...,d. Then, we define the optimization problem by

P(g) :== sup Ep[c(St, .., Sn)]- (10)
PeM. (i)

The problem (10), with € = 0, was first introduced in Lim (2024) and was called
multi-martingale optimal transport.
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