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Abelian sandpile

Set s(z) =0 for all z € A € Z¢

1. Choose a site = uniformly at random
s(z) ~ s(z) +1
. If s(z) > 2d (instability), topple x sending one “grain” to each neighbor

P If other sites become unstable, topple them as well
» Grains outside A are lost

4. Go to 1.

w N

This Markov chain has a unique stationary measure P. We look at

Definition (Height-one field)
ha(z) := 1{s(z)=13 under P
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An example

s(w) =15 595:(0, 0) + 2(53;:(1’0)
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An example

Stable configuration!
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Going larger

Figure: Sandpile configuration on a 300 x 300 box.
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The height one field
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Joint cumulants

Joint cumulants « for r. v!'s X1, ..., X,, are defined by

E{f[lX} = > [] x(x::ieB)

7 partition of {1,...,n} BE™
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E{f[lX} = > [] x(x::ieB)

7 partition of {1,...,n} BE™

Example
K(X) = E[X], s(X,Y) =cov(X, Y)

We are going to study
k(h(z1), ..., h(zn))
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Question

@ Can there be random variables with cumulants equal to

k(h(z1), ..., h(zn))?
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Question

@ Can there be random variables with cumulants equal to
k(h(z1), ..., h(zn))?

@ Regardless of the microscopic details of the model, what is the “driving
force” behind height one?
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Abelian sandpile

e Let U C R? be smooth connected bounded and A := U, := U/ N Z?
o Let
Udur ue=|¥e] €U
@ Let gu (-, -) be the harmonic Green's function on U with Dirichlet
boundary conditions

Figure: U = B(0,1),Uc = B(0,2) N Z2, e = 1/2,u = (1/2,1/2),uc = (1,1)
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Abelian sandpile

Height-one field in d = 2

Theorem (Diirre (2009))

Theorem 2 (Scaling Limit for the Height One Joint Cumulants). Let V be as in Theorem 1
and suppose |V| = 2. Then as € — 0 the rescaled joint cumulant € (hu( (ve) v € V)
converges to

A1) 4(2)
kuw:veV)=—cV Z l—l Opr By 8U (0, o (V)
0E€Seyat (V) (k") ey €lx,y)V vEV

Here C = (2/m) — (4/7{1). That is, if we write ky(v) :== 0 forall v € V, then

lime 2VIE |:l_[ (ho, (ve) 7]E|hu‘(vf)l)i| = Z l_[ ku(v:v e B).

€0 veV Hell(V)Bell
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Abelian sandpile

Let U be a Gaussian free field with 0-boundary conditions on U:
Definition (GFF)

U is the centered Gaussian random distribution with

E¥(2)¥(y)] = gu(z,y), z=#yeU.
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Abelian sandpile

Let U be a Gaussian free field with 0-boundary conditions on U:
Definition (GFF)
W is the centered Gaussian random distribution with

E¥(2)¥(y)] = gu(z,y), z=#yeU.

= Antal Jarai: formal computations show that

lim e 2V gy (ho, (v) : v € V) = ko (: |[VE@)|?:, ve V)

e—0

We investigated this conjecture
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Grad squared DGFF

Definition (DGFF)
Let (Te(v) : v € Ue) be the discrete GFF on U.:

Ele(v)] =0, E[le(v)le(w)] = Gu.(u, v)

where Gy, (-, -) is the discrete harmonic Green's function with Dirichlet b.c.
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Grad squared DGFF

Definition (DGFF)
Let (Te(v) : v € Ue) be the discrete GFF on U.:

Ele(v)] =0, E[le(v)le(w)] = Gu.(u, v)

where Gy, (-, -) is the discrete harmonic Green's function with Dirichlet b.c.

Definition (Grad squared DGFF)
The field (®c(v) : v € Ue) is defined as

d d
:Z;Vi Z (v +ep) —Fe(v))Z:

We will work in d > 2 (d = 1: manual calculations)
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Grad squared DGFF

Covariances

Call [d] == {1, ..., d}.

E [0 (e)0.(0)] =2 3 (VOVOGu, (e w))]

i,j€[d]
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Main results

Theorem (Cipriani, Hazra, Rapoport, Ruszel 2023)

Let £ be the set of coordinate vectors of R%. Let {zM),... ™} C U. Let
Sgycl(B) be the set of cyclic permutations of a set B without fixed points. If

2D £ 29 for all i £ j, then
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Main results

Theorem (Cipriani, Hazra, Rapoport, Ruszel 2023)

Let £ be the set of coordinate vectors of R%. Let {zM),... ™} C U. Let
Scycl( ) be the set of cyclic permutations of a set B without fixed points. If
2@ £ 29 for all i # j, then

liII(l) efdkm(ée(xgj)) 1j € [k}) =

e—
D SO TR

aesgycl([k]) n:[k] =€ j=1

In d = 2 the limit is conformally covariant with scale dimension 2
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Main results
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@ Diirre
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Main results

Comparison in d = 2

@ Diirre:
Flijbe—QkN(hUe (ng)) Lje [k]) _ _ck > SOOI 37(1(3) 77(6(]))911(T(J) (G(J)))
Uescoycl([k])n:[k]ﬂej:
@ CHRR:
e e w) =4 25 Lo g O 200)
creSSyCl([k])Tl [k]—€ j=1
Corollary

A C L N
—2lim e an(2<1> (z (])) Jje [k]) = l%e zkn(hUE (m&”) 1j € [k])

e—0
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Main results

Convergence as random distribution

Consider for f € C°(U), U C R,

(e, f) = /U<I>e (ze) f(z) dz.
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Main results

Consider for f € C°(U), U C R,
(@ f) = [ @) f@)d.
U
Theorem (C, Hazra, Rapoport, Ruszel 2022)

x e &, L5 white noise on U,

in Cy.(U) for any a < —d/2, and the constant x is

xi=2 Y 3 (VVPG0(0,0)) € (0, +0)

vezd i,j€[d]

. infinite-volume discrete Green'’s function ind > 3
where Go(-, -) is the . .
potential kernel ind=2
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Recap

What we have so far

Random distribution Scaling e~%2 and limit are the same as height-one field

Cumulants Scaling e~ and limit are the same as height-one field up to sign
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Proofs

Why white noise?

o Finite susceptibility ( <= x € (0, +00)) suggests CLT-type rescaling and
WN convergence Bauerschmidt et al. (2014), Newman (1980)...

18/30



Proofs

Why white noise?

o Finite susceptibility ( <= x € (0, +00)) suggests CLT-type rescaling and
WN convergence Bauerschmidt et al. (2014), Newman (1980)...

o Kassel-Wu (2013) derive Gaussian fluctuations for models related to the
spanning tree measure (reprove Diirre)

18/30



Proofs

Why white noise?

o Finite susceptibility ( <= x € (0, +00)) suggests CLT-type rescaling and
WN convergence Bauerschmidt et al. (2014), Newman (1980)...

o Kassel-Wu (2013) derive Gaussian fluctuations for models related to the
spanning tree measure (reprove Diirre)

o We are not able to apply K-W's results directly, but this hints at a
universality class of models related to the spanning tree measure via the
transfer current matrix 7(-, -)

E[Vile(v)V;De(u)] = T((v,v + e:), (u, u + €;))
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Proofs

Useful facts: white noise

For v, w € Uc "away from the boundary”

@ E[® (v)Pc(w)] <c- {

v —w|™2* v#£w,

1 v=w .

o (VIIVP Gy, (v,w) - VIV Go(v,w)| < ce?
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Proofs

1. ®. is tight in an appropriate local Besov-Holder space using a tightness
criterion of Furlan-Mourrat (2017)

» control of the summability of k-point functions
P use estimates for double derivatives of the Green's function in a domain

2. Determine the finite-dimensional distributions

» vanishing cumulants of order at least three
> the limiting covariance structure is the L2(U) inner product
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Proofs

Why these cumulants?

To answer, we need to look at the proof first...
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Proofs

Useful facts: cumulants

o T'((ze, e + €), (Ye, ye + €')) = € dgu|(a,y (e, €') + 0(e?) (Kassel-Wu,
2013).
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Proofs

k-point functions

We derive cumulants from k-point functions:

f1 (”] > [Ix(e@):jen)
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Proofs

Cumulants: another viewpoint

In the proof we (loosely) obtain that the k-point function is

> 11 T (@), 09 +0). (@, 2l )

7PN R (o) 59 o) 2l ol e ) e
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Cumulants: another viewpoint

In the proof we (loosely) obtain that the k-point function is

)3 II (@220 +0)), (1, 2 4 )

7PN R (o) 59 o) 2l ol e ) e

R 90, gy (20 ,a(m))
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Fermionic (or Grassmannian) calculus

Definition (Grassmanian variables)

Let {&, & : i € A} be symbols that satisfy for all i, j

Gy = =8, G = GBS =

Example

Used in physics to model Fermi—Dirac statistics (opposed to Bose—Einstein
statistics)
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Fermionic Gaussian free field

Definition (fGFF)

For every function F of {£,€} = {&, & : i € A} the expectation of F' under
the fGFF is defined as

[ [ / dEdg o229
Berezin
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Definition (fGFF)

For every function F of {£,€} = {&, & : i € A} the expectation of F' under
the fGFF is defined as

[ [ / dEdg o229
Berezin

Compare with

[Flperr X /

1
dpeia(® —2ae) p
R v

Example

1l rarr = dédﬁe(g’ A8) = det(—A/\)
f
Ber

/ dapeﬁ(‘P’*AA‘P) 62 (det(—AA))71/2
R4

26/30



“Fermionic gradient squared”

Forve A=U. .
Xv:ﬁ Z C(e)

edv edges

C(e) = (&; - §u) (Ev *éu)7 e={v, u}

Theorem (CCRR, 2023)

lim e_2nl'-c(hUe (uﬁ”), ..., ho., (UE")))

e—0

lim 672nl$(7CXU(1) yee ey —-CX (n)).

e—0
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Summary & open questions

We studied the scaling limit of . as a random distribution and the scaling
limit of its k-point functions/cumulants

@ As a random distribution the limit is WN as height-one field: common
decay of correlations
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Summary & open questions

We studied the scaling limit of . as a random distribution and the scaling
limit of its k-point functions/cumulants

@ As a random distribution the limit is WN as height-one field: common
decay of correlations

@ The cumulants have the same limit as in the height-one field (up to sign)
and conformal covariance property

@ the Fermionic free field kind of identifies the height-one field and gives an
alternative the gradient free field squared.
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Summary & open questions

Open questions

@ Can one make sense of the scaling limit which captures the correlations?
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Thank you!
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