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Flipping Coins to Win!
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Multi armed bandits: What do we discuss 

•  Sequentially generate samples from a number of arms


• To maximise long term stochastic reward  (optimally manage explore and exploit 
trade-off)


• Simple and yet interesting setting to illustrate the underlying conceptual ideas


• A large number or practical applications esp. in online settings fit these 
settings with some adjustments



Which coin do you sample next?
To maximise expected reward



Applications: Clinical trials

• Four vaccines (or experimental drugs). Which ones to give to patients


• ‘it seems apparent that a considerable saving of individuals otherwise sacrificed to 
the inferior (drug) treatment might be effected’ Thompson, 1933 


 
•



Applications

• Placing advertisements on a Google search


• Web construction amongst many options


• Recommendation systems

 


• Movies/products to recommend

• Facebook posts to show 

• News paper articles to bring to your attention

• Price to offer for a digital good


• Travel route to recommend amongst many



   Maximise expected reward

or 


Minimise expected regret 




Stochastic regret minimisation 
problem  (Lai and Robbins 1985) 


Given K unknown probability distributions (Coins) that can be sampled from, 
sample to maximise expected reward or, equivalently, minimise the expected 
regret in n steps. 


What is the best explore and exploit trade-off
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Stochastic regret minimisation

 


K Bernoulli arms with unknown means  .  


W.l.o.g. . Expected regret  is suffered 
every time a sub-optimal arm  a is pulled


(μ1, μ2, …, μK)

μ1 > max
a≥2

μa μ1 − μa



Algorithm generates samples sequentially

Aim:                 Max                    


equivalently     Min       


or                     Min    

T

∑
t=1

EXt

ERT = T × μ1 −
T

∑
t=1

EXt

ERT =
K

∑
a=1

(μ1 − μa) × ENa(T)



Stochastic regret minimisation 
problem 


Some simple strategies 




Egalitarian principle: Equal samples to all

 Each arm is given T/K samples


Regret equals         


Linear in time T !

T
K ∑

a

(μ1 − μa)



 Greedy strategy: Follow the leader

Pull arm with the largest sample mean thus far

Consider one coin heads w.p. 0.9. 


Other heads w.p. 0.6


Regret at least  0.06 T, so linear 


                 Is sub linear regret possible?



 Explore then commit when  is knownμ1 − μ2

Sample each arm m times. 


Thereafter sample the empirical winner for remaining T-Km trials


Regret  in two arms  and  setting,  setting          


      


                 


N(μ1,1) N(μ2,1) μ1 > μ2

m(μ1 − μ2) + (T − 2m) × exp(−m(μ1 − μ2)2/4))



 Explore then commit strategy

Minimum at  


Regret 


Logarithmic regret!  Requires knowledge of T and 
.


m = Θ(log T)

≤ Θ(log T)

(μ1 − μ2)

T = 10,000, μ1 − μ2 = 2.5



 Successive elimination algo (Bounded [0, 1] rv)      α(t) =
2 log T

t

1.  Sample each active arm once. Compute indexes


         


  and  


2. Eliminate arms for which 


4. If a single arm remains, then assign remaining samples to this arm.


5. Increment t and repeat

UCBa(t) = X̄a,t + α(t) LCBa(t) = X̄a,t − α(t) .

UCBa(t) < max
a

LCBa(t)



Our friend: Hoeffding

Each   are independent, identically distributed with zero mean 


Law of large numbers, Central limit theorem  


                                     


Hoeffding’s  Inequality captures large deviations -   


                                 


 

Xi ∈ [−1,1]

1
n

n

∑
i=1

Xi ≈ 0 +
1

n
N(0,1)

P ( 1
n

n

∑
i=1

Xi ≥ ϵ) ≤ exp(−nϵ2/2) .



Concentration inequality   αt =
2 log T

t

     1/T      P (there exists t ≤ T :
1
t

t

∑
i=1

Xi ≥ αt) ≤
T

∑
t=1

P ( 1
t

t

∑
i=1

Xi ≥ αt) ≤

 for all t  
with probability  1-1/T 
X̄t ∈ μ ± αt



Successive elimination algorithm


  



        If 


        


        eliminate


UCBa(t) = X̄a,t + α(t)
LCBa(t) = X̄a,t − α(t)

UCBa(t) < max
a

LCBa(t)

α(t) =
2 log T

t



 Instance dependent regret 

Best arm, arm 1 will never be rejected on 
the good set. Arm 1 loses if


                           


But  on a good set


X̄1,t < X̄a,t − 2α(t)

X̄1,t ≥ μ1 − α(t) ≥ μa − α(t) ≥ X̄a,t − 2α(t)



Consider  tubes 


   
X̄t ∈ μ ± 2αt

Exp. regret     
O (log(T)∑
a

1
(μmax − μa) )



 Instance dependent regret 
 Suppose arm a rejected after sampled  times.


  


Thus,  or  


So the total expected regret from the good set as well as from the rogue set  
is bounded from above by  

t + 1

μa + 2α(t) ≥ X̄a,t + α(t) ≥ X̄1,t − α(t) ≥ μ1 − 2α(t)

(μ1 − μa) ≤ 4α(t), t ≤ 32(μ1 − μa)−2log T

K + 1 + 32 log T∑
a≥2

(μ1 − μa)−1 .



 Upper Confidence Bound Algorithm (Auer et al. 2002)

Form an optimistic upper confidence bound (UCB) on each arm  

This UCB is greater than the sample average but converges to it as the 
number of samples increase  

It increases if arm is not sampled for a long time - encouraging exploration  
 

Algorithm simply involves sampling the arm with the largest UCB `Index’



Upper Confidence Bound Algorithm (Auer  et al. 2002)


Adaptive arm selection  


At each step t+1 select an arm 
with the largest value of index


             X̄a(t) +
2 log t
Na(t)



 Upper Confidence Bound Algorithm
UCB does a good trade-off between explore and exploit.

 

       


      


Better than successive rejection 

ENa(T) ≤
8 log T

Δ2
a

+ 1 +
π2

3



Lower bounds and algorithms 
that match even the constant in 
the lower bounds - general 
distributions 




Large deviations result (Sanov’s Thm.)

Green true dist . Red empirical dist  (based on 
generated samples )


Prob of seeing emp dist when the true dist is 


 





       where   

ν μ
(X1, X2, …, Xn)

μ ν

≈ exp(−nKL(μ |ν))

KL(μ |ν) =
4

∑
i=1

μi log ( μi

νi )
0

0.1

0.2

0.3

0.4

x1 x2 x3 x4



   Lower bounds    Lai and Robbins 88, Burneta Katehakis 96

                                


                    


      where    


        


          


          

lim inf
T→∞

ENa(T)
log T

≥
1

KLinf(μa, m(μ1))

KLinf(μa, x) = inf
ν∈ℒ:m(ν)>x

KL(μa, ν)



 Heuristic argument for lower bound: Using Sanov’s Thm.

For arm a and 1, generated samples  with h.p. close to true dist. 


Algorithm concerned that data of arm a coming from dist  with , 
and current data a large deviations  leading to wrong conclusion.


Evidence needed so regret from potential error is small.


If m  samples given to arm a. Chance that arm a is from dist  and emp dist looks 
like      


                 .

ν m(ν) > m(μ1)

ν
μa

≈ exp(−mKL(μa |ν))



• Want m  so error prob is order 1/T 


So                         


Want this for all  with , hence           


                           


Arm 1 gets most of T samples. Its large deviations not a 
concern

m ≥
log T

KL(μa |ν)

ν m(ν) > m(μ1)

m ≥
log T

KLinf(μa |m(μ1))



                      The Data Processing Inequality                                                  


                                    


        





            


    


                                       

KL(PX |QX) ≥ KL(Pg(X) |Qg(X))

KL(Pμ(X) |Pν(X)) ≥ KL(Pμ(IE) |Pν(IE))

KL(Pμ(X) |Pν(X)) =
K

∑
a=1

EPμ
Na(T)KL(μa |νa)



KL-UCB Algorithm

We restrict arm distributions to


    
ℒ := { Probability measures η : 𝔼X∼η( |X |1+ϵ ≤ B}



Some conditions on the underlying distributions are necessary 
Glynn and J 2015 

Easy to find two distributions 
whose 


KL distance is arbitrarily close


but means are arbitrarily far 


Intermission


https://www.jimmycarr.com/



 KL-UCB Algorithm: Index based  (Garivier, Cappe 2011, Agrawal, J, Koolen 2021)

A disc around empirical distribution

Largest mean in that disc is the index                       


  


Matches the lower bound!                               

Ua(t) = sup {m(κ), κ ∈ ℒ, KL( ̂μa |κ) ≤
log T
Na(t) } = sup {x : KLinf( ̂μa |x) ≤

log T
Na(t) }

̂μa

m(κ) = const .

m(κ*)
KL( ̂μa |κ) =

log T
Na(t)



All indexes typically dominate their mean


At least one arm gets  samples. So its 
index close to its mean


So arm 1 must get most of the samples

≥ t/K

Heuristic argument on why the algorithm works     




Every time arm  wins, its index just exceeds 
index of arm 1. Thus,


                                    





a ≠ 1

Na(t) ≈
log t

KLinf(μa |m(μ1))



KL Upper Confidence Bound Algorithm (for Bernoulli’s)


Adaptive arm selection  


sup {x : KLinf( ̂μ2 |x) ≤
log T

n }
Index



This relies on controlling probabilities such as


   


Dual representations, exponential concave inequalities and mixture martingales 
cleverly used for this


P(∃t ∈ N : Na(t)KLinf( ̂μa(t), m(μa)) ≥ x)

Rigorous analysis requires bounding the times sub-optimal 
arms are pulled  (Agrawal, J Glynn, 2020, Agrawal, J, Koolen 2021) 




It  equals      such that


 

  





 

 

 This is a convex program and is solved through Lagrangian duality.	 


inf
κ ∑

i

log ( ηi

κi ) ηi

∑
i

|yi |
1+ϵ κi ≤ B, ∑

i

yiκi ≥ x and ∑
i

κi = 1.

Understanding 
KLinf(η, x)



  where

 


For  empirical distribution  we have  equals 





In developing concentration inequality for this, the maximum function poses difficulties. 
We observe that inside the maximum we have a sum of exp-concave functions.

max
(λ1,λ2)∈ℛ2

Eη log(1 − (X − x)λ1 − (B − |X |1+ϵ λ2),

̂μa(n) KLinf( ̂μa(t), m(μa))

max
(λ1,λ2)∈ℛ2

1
Na(n)

Na(n)

∑
i=1

log(1 − (Xi − m(μ1))λ1 − (B − |Xi |
1+ϵ )λ2)) .

Using duality,   can be seen to equal
KLinf(η, x)



Let  be a compact and convex subset and q be the uniform distribution on 
. Let  be any series of exp-concave functions. Then


                     


Thus    is close to the expectation . 


The latter is a mixture of super-martingales and hence is a super martingale.


Λ ⊆ ℜd

Λ gt : Λ → ℜ

max
λ∈Λ

T

∑
t=1

gt(λ) ≤ log Eλ∼qe
∑T

t=1 gt(λ) + d log(T + 1) + 1.

max
λ∈Λ

exp (
T

∑
t=1

gt(λ)) Eλ∼qe
∑T

t=1 gt(λ)

Sum of exp concave functions: a useful inequality




Ville's inequality: For a non-negative super martingale 
,


                       


(Mn : n ≥ 0)

P(∃n : Mn ≥ x) ≤
EM0

x
.

Ville’s inequality




Let  and  be any probability measures on a common space. 
Then,


                             


μ ν

KL(μ |ν) = sup
g

(Eμg − log Eνeg) .

Donsker Varadhan Representation of KL Divergence




Conclusion


 
• Introduced the regret minimisation problem along with practical 

applications


• Discussed many naive and then sensible rules for arm selection and 
analysed their performance


• Arrived at a lower bound on the samples needed


• Introduced KL_UCB algorithm that is optimal for general distributions



