Outline of solution to assignment 1 question 6

Fill in the details of the steps given below to complete the proof. If someone submits a different (correct) proof, they get bonus points.

1. Without loss of generality, assume that \(U \) is connected. Let \(g : U \to \mathbb{C} \) be a continuous branch of the square root function. Then we have

\[
g(z)^2 = z.
\]

Use this to show that \(g \in H(U) \) and that \(g'(z) = \frac{1}{2g(z)} \). You might freely use the chain rule, product rule, etc. Your are just proving the familiar fact that \(\frac{\partial \sqrt{x}}{\partial x} = \frac{1}{2\sqrt{x}} \) so don’t worry too much about being rigorous.

2. In this step, we will show that if \(\gamma : [0, 1] \to U \) is any closed path then \(\text{Ind}(\gamma, 0) = 0 \). Suppose not, then

\[
\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z} = k \in \mathbb{Z}, k \neq 0.
\]

Note that \(g(\gamma(z)) \) is also a closed path. Hence,

\[
\text{Ind}(g(\gamma), 0) = \frac{1}{2\pi i} \int_{g(\gamma)} \frac{dz}{z} = \frac{1}{2\pi i} \int_0^1 \frac{g'(\gamma(t))\gamma'(t)}{g(\gamma(t))} dt = \frac{1}{2\pi i} \int_0^1 \frac{\gamma'(t)}{2\gamma(t)} dt = k/2,
\]

which shows that the winding number of \(\gamma \) with respect to 0 is an even number. But any closed curve in the plane with non-zero winding number around the origin contains in its image a simple closed curve with winding number one around the origin, and this leads to a contradiction.

3. Fix \(z_0 \in U \) and define \(f(z_0) \) to be some arbitrary value in \(\text{arg} \, z_0 \). For any \(z \in U \), let \(\gamma : [0, 1] \to U \) be a path from \(z_0 \) to \(z \) and let \(\phi \) be the branch of \(\text{arg} \) along \(\gamma \) that satisfies \(\phi(z_0) = f(z_0) \). Set \(f(z) = \phi(z) \). Prove that \(f \) is well-defined and that it is the required continuous branch of \(\text{arg} \, z \) on \(U \).