1. Which of the following subsets of \(\mathbb{R} \) have (length) volume zero.
 a) \(\mathbb{Q} \cap [0,1] \).
 b) \(\mathbb{Q}^c \cap [0,1] \)
 c) The Cantor set.

2. Let \(X \subset \mathbb{R}^n \) be a bounded subset which is contained in a proper vector subspace of \(\mathbb{R}^n \). Prove that \(X \) has volume zero.

3. Let \(X \subset \mathbb{R}^n \) be a set of volume zero and let \(T : \mathbb{R}^n \to \mathbb{R}^n \) be a linear map. Prove that \(T(X) \) has volume zero.

4. Let \(\Omega \subset \mathbb{R}^n \) be a connected region and let \(f : \Omega \to \mathbb{R} \) be a continuous function. Prove that there is a point \(c \in \Omega \) such that

\[
\int_{\Omega} f = f(c) \text{vol}(\Omega).
\]

5. Find the volume of the region in \(\mathbb{R}^3 \) bounded by the cylinders \(x^2 + y^2 = 1 \) and \(x^2 + z^2 = 1 \).

6. Use Fubini’s theorem to show that the mixed partial derivatives of \(C^2 \)-smooth function are equal.

7. \textbf{(Symmetry principle)} Let \(R \subset \mathbb{R}^n \) be a rectangle that is symmetric about the \(x_1 = 0 \) hyperplane, i.e., \((x_1, \ldots, x_n) \in R \implies (-x_1, x_2, \ldots, x_n) \in R \). Suppose \(f : R \to \mathbb{R} \) is an integrable function with the property that \(f(x_1, \ldots, x_n) = f(-x_1, x_2, \ldots, x_n) \). Compute \(\int_R f \). What if \(R \) were symmetric about the origin and \(f \) is an odd function? What about more general regions?

8. Let \(B \subset \mathbb{R}^3 \) be the open unit-ball. Evaluate

\[
\int_B x^2.
\]

9. Find the volume of the cone of radius \(r \) and height \(h \) using cylindrical coordinates and spherical coordinates.

10. Use the change of variables theorem to justify the use of polar, cylindrical and spherical coordinates.

 \textbf{Note:} Check the hypotheses of the change of variables theorem very carefully!