1. Let \(n \) be the last two digits of your roll number. Verify the series Fourier expansion of the entry numbered \(n \mod 20 \) in Table 1 of the textbook.

2. Recall that \(D_n \) was the \(n \)-th Dirchlet kernel. Define
 \[
 K_n := \frac{(D_0 + \cdots + D_n)}{n},
 \]
 the Fejer kernel. Compute \(K_n * f \).

3. Show that
 \[
 K_n(x) = \frac{1}{2\pi n} \frac{\sin^2(nx/2)}{\sin^2(x/2)}.
 \]

4. Solve Problems 5 and 6 on Page 43 of the textbook.

5. Solve Problem 12 on Page 48 of the textbook.

6. Solve problems 7 and 8 on Page 213 and use these to prove Theorem 2.7.

7. Compute the Fourier transform of \(f(x) = \frac{1}{x^2 + a^2}, a > 0 \) using the Calculus and residues and by using the inversion formula.

8. Show that the convergence of the Fourier series of \(f \) at a point \(x \) depends only on the behaviour of \(f \) near \(x \), i.e., if \(f(t) = g(t) \) for all \(t \) in some open interval containing \(x \) then the Fourier series of \(g \) converges to \(g(x) \) at \(x \) if and only if the Fourier series of \(f \) converges to \(f(x) \) at \(x \).

9. (The Schwartz Space) Let \(f : \mathbb{R} \to \mathbb{R} \) be continuous. We say \(f \) is rapidly decreasing at infinity if for each integer \(m > 0 \), the function \(|x|^m f(x) \to 0 \) as \(x \to \infty \). Let \(S \) denote the collection of all infinitely differentiable function all of whose derivatives are rapidly decreasing at infinity.
 a) Give several examples of functions in \(S \).
 b) Show that \(S \) is an algebra over \(\mathbb{R} \) with multiplication given by the usual product of functions.
 c) Show that the Fourier transform is well-defined on \(S \) and that \(\hat{f} \in S \).
 d) Show that \(S \) is an algebra under the operation \(\ast \).
 e) Let \(f \in S \) and let \(g = f + \hat{f} + \hat{\hat{f}} + \hat{\hat{\hat{f}}} \).

10. Show that
 \[
 \int_0^\infty \frac{\sin rx}{x} \, dx = \int_0^0 \frac{\sin rx}{x} \, dx = \frac{\pi}{2}.
 \]