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A Mathematician’s viewpoint on Computer Science

The aim of theoretical computer science is to understand the di�iculty
of solving a given computational problem.

Some examples:
I Given two natural numbers n,m, compute n+m,n × m and gcd (m,n).
I Trisect a given angle using only a straight-edge and compass.
I Given a natural number p, determine if p is prime or not. More
generally, given a natural number n, determine its prime factorization.

TCS has as much to do with computers as astronomy has to do with
telescopes.
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Origin: Leibniz’s dream

In the seventeenth century, Go�fried Leibniz constructed a mechanical
calculating machine known as the stepped reckoner.
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Origin: Leibniz’s dream

Leibiniz dreamt of building a machine which would decide the truth of
a statement of mathematics.

He also understood that it is essential that one develops a formal
language in which statements of mathematics could be expressed in,
and spent a considerable amount of time in designing such a language.

However, he never completed this project. His ideas were far ahead of
his times and his contemporaries were not interested in them. Much
later, in the 19th century, George Boole developed first-order logic.

A famous quote: “Gentlemen, let us calculate!”.
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Hilbert’s tenth problem and Entscheidungsproblem

Hilbert’s tenth problem asks for a “mechanical procedure” to
determine whether a given polynomial equation with integer
coe�icients has an integer root.

p(x ) = anxn + an−1xn−1 + · · ·+ a0, ai ∈ Z.

Does there exists z ∈ Z such that p(z ) = 0?

More generally, Hilbert’s Entscheidungsproblem asks for a “mechanical
procedure” to decide whether a given statement of first order logic is
true or false.

To answer such questions one needs to have a rigorous definition of a
“mechanical procedure” (nowadays know as an algorithm).
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The Turing machine

A TM consists of three parts, an infinite type divided into cells and
each cell consists of symbols 0,1,B and a head (or control) that is in one
of finitely many states q1, . . . ,qn and a set of instructions (a program).

The head scans one cell at a time and executes a step of computation
that depends on the content of the current cell and its current state.
A step of computation consists of
I replacing the contents of the scanned cell with another symbol,
I move one step to the le� or right, or stay still,
I change to a new state;

A TM program is sequence of instructions of the form

(qi,Sj ) 7→ (ql ,Sk )D.
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A counting machine

The video demonstrates a simple machine that counts. Given any input, the
machine keeps incrementing the input by 1 indefinitely. The states of the
machine are also 0 and 1.

A counting program
(0,1) → (0,1) Right
(0,0) → (0,0) Right
(0,B) → (1,B) Left
(1,0) → (0,1) Right
(1,1) → (1,0) Left
(1,B) → (0,1) Right
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Computable functions and the Halting problem

A function f : N→ N is said to be computable if there is a Turing
machine that computes f .

Thus, the Entscheidungsproblem can be rephrased as “Is there a Turing
machine that takes as its input an encoding of a first-order logic
formula and returns 1 if its true and 0 if it is false?”

As there are uncountably many functions from N to N but only
countably many Turing machines it follows that there are uncountably
many uncomputable functions.

Turing observed that TMs themselves might be encoded as natural
numbers. He showed that the Halting problem is unsolvable and also
showed that if the Entscheidungsproblem is solvable, then so is the
Halting problem.
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The Church–Turing thesis

The Chruch–Turing thesis states that any function that is “e�ectively
calculable” can be computed by a Turing machine. Note that this is not
a theorem and can never be formally proved.

The thesis was proposed because entirely di�erent ways to define what
it means for a function to “e�ectively calculable” turned out to be
equivalent. Church’s lambda calculus, the recursive functions of
Gödel–Herbrand, register machines are all equivalent to the TM. All
known models of computation that are “physically realizable”
(including quantum computers) can be emulated on a Turing machine

This thesis has been the subject of much debate and philosophical
speculation.

The video demonstrates an entirely di�erent type of computing
device—Conway’s game of life.
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Real computing

What does it mean for a function f : R→ R to be computable?

Turing in his famous 1936 paper defined a real number to be
computable if its decimal expansion can be wri�en out by a TM.

There are two main approaches to define what it means for a function
f : R→ R to be computable.

The first one known as Recursive Analysis (the bit model) was
developed by Andrzej Grzegorczyk, and independently by Daniel
Lacombe, and the second one by Blum, Shub and Smale known as the
BSS model.

Roughly speaking, a real function f is computable in the bit model if
there is an TM which, given a good rational approximation to x , finds a
good rational approximation to f (x ). One can neatly formalize this
notion in terms of a TM with access to an oracle.
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Definition of a computable real function
Let D denote the set of dyadic rational numbers, i.e., those that of the
form p

2m .

A function ϕ : N→ D is said to be an oracle for the number x ∈ R if
|x − ϕ (n) | < 2−n. In other words, ϕ provides a good dyadic
approximation of x .
A Turing machine with access to an oracle ϕ is a Turing machine that is
allowed at any step of its computation to query the value of ϕ (n) for
any n.

Definition
A function f : [a,b]→ [c,d] is said to be computable if there is an oracle
Turing machine Mϕ such that if ϕ is an oracle for x ∈ [a,b] then on input m,
Mϕ (m) is a dyadic rational with the property that |Mϕ (m) − f (x ) | < 2−m.

The definition says that a function is computable if there is TM when
provided with a good approximation of x outputs a good approximation of
f (x ). It is easy to prove that computable functions are continuous.
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When do we say that a picture is computable?

Computers have been used as an aid to visualizing mathematical
objects like graphs for decades.

In recent years, the study of a class of figures called fractals have
become very popular.

The pioneer of the subject was Mandelbrot who described fractals as
‘’beautiful, damn hard, increasingly useful. That’s fractals.”

There is some disagreement amongst experts as to what the precise
formal definition is but in short fractals are objects that are infinitely
self-similar, iterated, and detailed having fractal dimensions.

There are many computer images of theses infinitely self-similar
objects.

In what sense are these pictures accurate representations of these
complicated objects?
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The Koch snowflake
One famous example of a fractal is the Koch snowflake. The Koch
snowflake can be constructed by starting with an equilateral triangle, then
recursively altering each line segment as follows:

1 Divide the line segment into three segments of equal length.
2 Draw an equilateral triangle that has the middle segment from step 1

as its base and points outward.
3 Remove the line segment that is the base of the triangle from step 2.
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Computability of sets in the plane
It is clear that we can draw the Koch snowflake on a computer screen
to whatever degree of accuracy we desire.

Informally, a planar figure is computable if it can be “rendered” by a
computer to any desired level of accuracy.
We say that a set S ⊂ R2 is computable, if for any k ∈ N, there is a
computer program that outputs a finite set of points Sk whose
coordinates are dyadic rational such that Sk is a 2−k-approximation of
S in the Hausdor� distance.
The Hausdor� distance between two compact sets S1 and S2 is defined
as follows:

dH (S1,S2) := inf{ε > 0 : S1 ⊂ B(S1,ε ),S2 ⊂ B(S1,ε )}.

Apart from being natural this definition satisfies some nice properties.
For instance, the bit computability of a continuous function f : D → R
(D ⊂ R2 is a computable domain) is equivalent to its graph being
computable.
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Complex numbers

0

z = x+ iy

x = Re(z)

y = Im(z)
r = |z|

θ = arg(z)

z = x− iy
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Rational functions

A complex polynomial is function

P (z ) = c0 + c1z + c2z2 + · · ·+ cnzn, ci ∈ C

By a famous theorem called the Fundamental theorem of algebra, we
can factorize P (z ) as c(z − a1)n1 (z − a2)n2 . . . (z − ak )nk where ai’s are
the roots of P .

A rational function is just the quotient of two complex polynomials:
P (z )
Q (z ) . We will assume that the P and Q do not have any common
factors.
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The Riemann sphere

We add a point at∞ to the Complex plane. The result is the Riemann
sphere. Points on the sphere are identified to points on the plane via
stereographic projection from the north pole. The north pole is the point at
∞.

Jaikrishnan Janardhanan Continuous Computation with Applications



Notions from complex dynamics

Complex dynamics is primarily about the study of iterations of rational
functions on the Riemann sphere.

In the past 30 years, there has been tremendous progress in the subject
and this has been partially a�ributed to the possibility of computer
experimentation

We are primarily interested in the orbit R(z ),R2 (z ),R3 (z ), . . . of points
z ∈ Ĉ under the rational map R.

Consider R(z ) = z2. Then it is clear that orbit of any point in the unit
disk converges to 0 and the orbit of any point outside the closed unit
disk goes to∞. The orbits of points on the unit circle are complicated
and depend on the particular point.
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Julia and Fatou set

Any rational function partitions Ĉ into two complementary pieces the
Julia set and the Fatou set.

Roughly, the points of the Julia set are the points at which we have
chaotic behaviour and the Fatou set consists of points of stability.

The Julia set of the rational function z2 is the unit circle.

One central question in complex dynamics is to understand the
structure of the Julia sets of the rational functions Rc (z ) := z2 + c.

It turns out that for most c ∈ C, the associated Julia set Jc is a fractal!

One can show that the Rc (z ) is the boundary of the filled Julia set
given by {z ∈ C : Rn

c (z ) remains bounded}.
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The Mandelbort set

Arguably the most famous object in the study of complex dynamics is
the Mandelbrot set.

Some of the basic questions about this set remain open to this day.

Formally, the Mandelbrot set is the set of all points c ∈ C such that the
sequence

c,c2 + c, (c2 + c)2 + c, . . .

remains bounded.

A famous result
If c ∈ M then Jc is connected.
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Some pre�y pictures

There are many programs available that “draw” the Mandelbrot set.

The simplest method to “draw” the set is to start with a point c ∈ C
and perform a fixed number of iteration of the sequence in the
definition of the Mandelbrot set till an escape condition is reached. A
simple escape condition is the orbit escaping the disk of radius 2.

The color of each point represents how quickly the values reached the
escape point. O�en black is used to show values that fail to escape
before the iteration limit, and gradually brighter colours are used for
points that escape. This gives a visual representation of how many
cycles were required before reaching the escape condition.

There are other more sophisticated colouring techniques. The
Wikipedia article on the Mandelbrot set gives brief descriptions of
some of them.
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The MLC conjecture

One of the most important open questions in complex dynamics is the
following conjecture:

Conjecture
The Mandelbrot set is locally-connected.

There are many reasons why this conjecture is of central importance. If the
conjecture is true we get several significant consequences:

Using a classical result of Caratheodory combined with powerful
recent results of Thurston, Douady, Hubbard and others, we can get a
complete description of the Mandelbrot set.

A central conjecture in complex dynamics called the density
hyperbolicity conjecture will also be true.

The Mandelbrot set will be computable.
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Connectedness and local-connectedness

In this slide we will briefly describe the notions of connectedness and local
connectedness through pictures.

Connectedness just means that the set is in one piece. Local-connectedness
means that the set is connected in the vicinity of each point. The di�erence
between the two notions is best illustrated by the following picture.
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Computability of the Mandelbrot set and Julia sets

It is currently unknown whether the Mandelbrot set is computable.
But if we could somehow prove that it is not computable then the MLC
conjecture would be false. This would be a tremendous breakthrough.

On the other hand, if the Mandelbrot set is computable then it is quite
possible that the techniques used in the proof could be useful in
resolving the MLC conjecture.

It has also been established that for most values of c ∈ C, the Julia set
Jc is computable.

In 2005, Braverman and Yampolsky proved that there are values of
c ∈ C for which the associated Julia set is not computable.
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Reference

The subject of computability of fractals is very new and I have not discussed
many of the interesting topics. For instance, I have not talked about
complexity issues at all. The following recent book gives an excellent
overview of the subject and is wri�en with a diverse audience in mind.

Reference
Mark Braverman and Michael Yampolsky, Computability of Julia Sets,
Berlin: Springer, 2009.
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THANK YOU
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