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1 Statement of the Project

This project is concerned with studying the parallel performance of two numerical approaches used for simu-
lation of fluid flows. The first approach is a traditional finite-difference based computational fluid dynamics
(CFD) solver name WenoHydro, which solves the incompressible Navier-Stokes equations [3]. The second
approach is based on the Lattice Boltzmann method (LBM), which solves the Boltzmann transport equa-
tions for fluid flow at mesoscopic length scales [1, 2, 5]. Both the WenoHydro and the FlowLBM solvers are
written in Fortran90. The codes are parallelized using domain decomposition with calls to subroutines of the
Message Passing Interface (MPI) libraries for exchanging data among processors. The parallel performance
of the codes is evaluated by conducting numerical experiments on the Rossman cluster available through
Purdue RCAC. RCAC servers use PBS script files for managing the job submission process on the cluster,
and the same is used for the present simulations.

Various metrics can be defined for evaluating the performance of a parallel code. Three metrics which
will be considered in this report are given below:

• Speedup: ψ = T1

TP

• Efficiency: E = ψ
P

• Karp-Flatt metric: e = 1/ψ−1/P
1−1/P

In the above definitions, P denotes the number of processors, and TP denotes the time required for execution
of the code on P processors. The serial time T1 can be computed either as the time required for execution
of the serial version of the code (Ts), or as the time required for execution of the parallel version of the code
(TP=1). The first, and most intuitive, metric is the speedup, ψ, which is the ratio of serial execution time
to parallel execution time. The second metric, defined as the ratio of speedup to the number of processor
employed, is the efficiency of parallel execution. The Karp-Flatt metric measures the fraction of the time
spent by processors in a parallel execution for performing serial computation.

The next section presents details about the WenoHydro algorithm and its evaluation. The FlowLBM
solver and its parallel performance are then presented, followed by a summary and conclusion.

2 WenoHydro

The parallel performance of a computational fluid dynamics (CFD) code named WenoHydro is evaluated in
this section. WenoHydro simulates the flow of an incompressible fluid with a buoyant force caused by density
differences. A brief description of the code, the test problem considered and sample fluid dynamic results are
given in the next subsection. This is followed by details about the baseline parallel algorithm. Three further
modifications to the baseline algorithm are then described. Parallel execution characteristics of the baseline
and modified algorithms are reported and analyzed in Section 2.3.

2.1 Code and Sample Results

The WenoHydro code is a CFD code written in Fortran90, employing high-order numerical methods for
convection, diffusion and time stepping. The OpenMP version of the code has been validated previously in
two and three dimensions for simulating laminar and turbulent flows [3]. An MPI version of the code has
been written recently and the aim of this project is to analyze and improve its parallel performance. Two
dimensional flow driven by heating the left wall and cooling the right wall of a square cavity is used as a test
case. The differential heating of the walls sets up steady convection patterns in the cavity. Starting from
a cavity filled with fluid with uniform temperature at rest at non-dimensional time t = 0, the steady state
solution is attained at large non-dimensional times, t > 10. The horizontal velocity, u, vertical velocity, v,
and temperature contours at steady state for one particular strength of the differential heating are shown
in Figure 1. In order to evaluate the speedup, efficiency, Karp-Flatt and iso-efficiency metrics, the code is
executed from t = 0 to t = 1. Contours of u, v and T at this intermediate time instant of non-dimensional
t = 1 are shown in Figure 2. All simulations described below, using different algorithms, and on different
numbers of processors, yield results identical to those in Figure 2.
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Figure 1: Steady state solution at non-dimensional time t = 10 of the flow in a two-dimensional differentially
heated square cavity.
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Figure 2: Intermediate solution at non-dimensional time t = 1 of the flow in a two-dimensional differentially
heated square cavity. All simulations reproduce these results.

2.2 Baseline and Modified Algorithms

The WenoHydro code solves the incompressible Navier-Stokes equations using a 5th-order scheme for the
convective terms, a 4th-order scheme for the viscous terms and a 3rd-order explicit Runge-Kutta scheme for
time stepping [3]. Solution of incompressible Navier-Stokes equations also involves solving a Poisson equation
for the pressure for every stage of the time stepping scheme. For solving the pressure Poisson equation, the
WenoHydro code makes use of the Schur decomposition technique, which is an inherently parallel variant of
the exact (non-iterative) LU decomposition method [4].

The overall algorithm for advancing the solution from time step n to time step n+1 involves three predictor
stages and four corrector stages. Each predictor step involves computing derivatives for the convective and
viscous terms, while each corrector step involves setting up and solving a Poisson problem for the pressure.
The algorithm can be briefly expressed as:

• Predictor 1: Compute derivatives for the convective and viscous terms based on the available velocity
field, uni . Use these to compute intermediate solutions u∗i and u∗∗i .

• Corrector 1: Set up and solve a Poisson problem for pressure and correct u∗i .

• Corrector 2: Set up and solve a Poisson problem for pressure and correct u∗∗i .

• Predictor 2: Compute derivatives for the convective and viscous terms based on the intermediate
velocity field, u∗∗i . Use these to compute intermediate solution u∗∗∗i .

• Corrector 3: Set up and solve a Poisson problem for pressure and correct u∗∗∗i .

• Predictor 3: Compute derivatives for the convective and viscous terms based on the intermediate
velocity field, u∗∗∗i . Use these to compute solution at the next time step un+1

i .
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• Corrector 4: Set up and solve a Poisson problem for pressure and correct un+1
i .

Arrays for the velocity, temperature and pressure fields are distributed across processors arranged in a
two-dimensional grid (2D decomposition). Each processor performs computation on its parts of the global
arrays. Each processor also sends and receives data to and from other processors in order to facilitate this
computation. Advancing the solution by one time step (through three predictor and four corrector stages)
requires both local communication between adjacent left, right, top and bottom processors, and global
communication between all processors. The local communication involved is:

1. Three layers (rows or columns) of velocities and temperature before every predictor stage for computing
intermediate velocities,

2. One layer of velocities before every corrector stage for setting up the Poisson problem,

3. One layer of pressure values after every corrector stage for correcting the velocities.

One global communication episode with one call to MPI AllReduce is required during every corrector stage
for solving the pressure Poisson problem.

The global communication in the total communication described above is part of the parallel Poisson
solver, and cannot be improved upon. The local communication operations however, can be implemented
in a number of ways, such as by changing the manner of accessing data, by splitting up messages into
smaller chunks resulting in larger number of smaller messages, and increasing the computation on individual
processors so as to altogether eliminate one or more communication steps. A baseline implementation and
three different versions based on these ideas are described below.

• Version 1

The baseline version of the implementation carries out all the three communication operations described
above. Before each communication, the data to be sent is copied into buffers reserved exclusively for
sending messages. The data is sent from ’send’ buffers to exclusively reserved ’receive’ buffers, and
finally copied out from the ’receive’ buffers into proper velocity, temperature and pressure arrays. In
this version, all the data to be sent at a time is packed into one ’send’ buffer.

• Version 2

In the first modification, the ’send’ and ’receive’ buffers are eliminated, and data is accessed directly
from and placed into appropriate locations in the velocity, temperature and pressure arrays using MPI
derived data types. This modification leads to a reduction in the amount of required memory. In
addition, it is expected that the time required to fill the ’send’ buffer before the actual communication
step, and the time required to copy out data from the ’receive’ buffer after the communication step
would be reduced.

• Version 3

In the first modification, constructing the derived data types to be used for directly accessing data to
be communicated is complicated by the fact that the block lengths and the distances between blocks
are not uniform. A simpler way of accessing data elements involves constructing MPI derived data
types for rows and columns first, and using these to build derived data types for accessing 2D sections
of the array. However, this modification requires that messages to be sent be split up into three sub-
messages, one each for the two velocity components and the temperature. This modification, with a
simpler means of accessing data resulting in sends and receives of larger number of smaller messages,
is contained in Version 3.

• Version 4

In the final version, computation on each processor is increased so that each processor computes one
additional layer of the computational grid in each direction, in addition to its share of the domain.
This computation enables eliminating one local communication step, namely the communication of one
layer of velocities before every corrector stage for setting up the Poisson problem. However, this also
leads to the need for communication of two (instead of one) layers of pressure values for correcting
the velocities. Thus, overall, the amount of data communicated is not reduced. However, one local
communication step (Step 2) is eliminated, while the size of one local communication step (Step 3) is
increased.

The above four versions have been implemented and are evaluated in the next subsection.
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Table 1: Serial times in seconds using two alternatives

Serial Parallel, P = 1

N = 642 245.97 620.45
N = 1282 974.35 4003.7

2.3 Parallel performance

The parallel performance of the above algorithms is evaluated in this section using speedup, efficiency and
Karp-Flatt metrics. Execution times of the four versions described above have been recorded using calls to
the MPI WTIME subroutine. The serial execution time can be determined by either executing the serial
code, or by executing the parallel code on a single processor, with appropriate conditional statements which
ensure that no spurious communication occurs on the single processor. The effect of these alternatives will
be demonstrated. Finally, an iso-efficiency analysis of the algorithm will be presented.

2.3.1 Effect of serial time

As mentioned above, the serial execution time can be determined using either the serial version of the code,
or using the parallel version of the code executed on a single processor. Execution of the parallel code adds
overhead related to communication and parallel execution, even when executed on a single processor. The
overhead can be reduced by making use of conditional ’IF-ELSE’ statements, which ensure that communi-
cation is carried out only if the number of processors is larger than one. Serial execution times computed
using the serial version of the code and computed using single processor execution of the parallel code are
tabulated in Table 1.

It can be seen from the table that the serial execution times using the two alternatives are drastically
different. It should be recalled that solution of the incompressible Navier-Stokes equations requires solution
of a Poisson problem for the pressure. The Poisson solver employed in the parallel version of the code is the
inherently parallel Schur-decomposition method. On the other hand, the Poisson solver used in the serial
version of the code is a multigrid solver. Thus, although the rest of the algorithms in the serial and parallel
codes are identical, the Poisson solvers employed are completely different. This explains the fact that serial
times obtained using the serial code and the serial times obtained using the single processor execution of the
parallel code are significantly different. Figure 3 shows the speedups obtained using the two definitions for
the serial time. As can be seen from the figure, the definition of serial time has a significant impact on the
speedups in this case, and underscores the importance of choosing a correct definition for the serial time.
For further analysis, we choose to consider the time taken for the single processor execution of the parallel
code as the serial time. This choice has been made because the serial code employs a different algorithm for
the Poisson solver, and thus, is not really relevant for the present purpose.

2.3.2 Speedup, Efficiency and Karp-Flatt metrics

Figure 4 shows the evolution of the speedup, efficiency and Karp-Flatt metrics with number of processors
from P = 1 to P = 64 in multiples of 2, for two problem sizes of N = 642 and N = 1282. It can be seen
from Figure 4a that the codes show a super-linear speedup on up to 8 processors for the smaller N = 642

problem, and up to 16 processors for the larger N = 1282 problem. These better-than-expected speedups
result in efficiencies greater than unity in Figure 4b, and also yield negative Karp-Flatt metrics in Figure 4c.
The speedup drops below the ideal value for the smaller sized problem on 16 and 32 processors. Similarly,
the speedup is below its ideal value for the larger sized problem on 32 and 64 processors. The efficiencies,
which are above unity for smaller number of processors reduce on increasing the number of processors. The
efficiency reduces to around 60% forN = 642 sized problem on 32 processors, and to around 65% forN = 1282

sized problem on 64 processors. The Karp-Flatt metric (e), which is nothing but the serial fraction of the
parallel computation, is smaller for the larger size problem. Further, comparing the rate of growth of e for
the two problem sizes between processors P = 16 and P = 32, it can be seen that e grows slightly faster for
the smaller problem than for the larger problem. However, the metric e increases with increasing number
of processors for both the problem sizes. This indicates that as the serial fraction increases with increasing
number of processors, the speedup will eventually saturate and these problems will not scale indefinitely.
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Figure 3: Speedup of the parallel WenoHydro code based on two definitions of serial times. (a) Serial code
(b) Parallel code, executed on single processor
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2.3.3 Comparison of four versions

One striking feature, apparent from Figure 4, is that the four versions described in the previous section
yield almost identical speedups for both the smaller problem and the larger problem. In order to investigate
why reducing data access, eliminating operations associated with copying data into and out of buffers, and
reducing communication does not result in reduction of the overall computation time, individual stages in
one time step of the CFD algorithm have been tabulated in Table 2, along with averages of times required
for each individual stage. This data has been obtained from Version 1 of the parallel code, and has been
averaged over 1000 time steps. It can be seen that on an average, one complete time step takes 0.166 s,
out of which only about 0.8% time is spent in local communication. The bulk of the time is spent in the
computation of derivatives of velocities, and in the pressure Poisson solution. Thus, improvements to local
communication would not lead to large improvements in performance, and this is reflected in the results
shown in Figure 4.

2.3.4 Iso-efficiency analysis

In order to copmute an iso-efficiency function, estimates for the serial time and the parallel times are needed.
For the 2D WenoHydro CFD code considered here, the time required for all computations in a serial execution
is of the order O(N2). It can be noted that in a 3D code, the computations would be order O(N3). Thus,

T1 = c1N
2
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Table 2: Timing data for sub-parts of one Runge-Kutta time step of the WenoHydro code.

Stage Operation Time in seconds

Predictor 1 Total 0.022
Communicate velocities 3.6× 10−4

Corrector 1 Total 0.025
Communicate velocities and pressure 6.0× 10−5

Corrector 2 Total 0.025
Communicate velocities and pressure 6.0× 10−5

Predictor 2 Total 0.022
Communicate velocities 3.6× 10−4

Corrector 3 Total 0.025
Communicate velocities and pressure 6.0× 10−5

Predictor 3 Total 0.022
Communicate velocities 3.6× 10−4

Corrector 4 Total 0.025
Communicate velocities and pressure 6.0× 10−5

Total time for RK3 step = 3 (0.022) + 4 (0.025) = 0.166 s
Total communication time = 3

(

3.6× 10−4
)

+ 4
(

6× 10−5
)

= 0.00132 s

where c1 is a constant. For a parallel execution on P processors, the computation on each individual processor
reduces by a factor of P . This is accompanied by an increase of the execution time due to communication.
As described earlier, all communication operations can be classified as either local or global communication
operations. The local communication operations are independent of number of processors. With c3 denoting
the time taken for one communication step with neighbours, the time required for local communication with
left, right, top and bottom neighbours is order O(4c3). Finally, global communication is involved in solving
the pressure Poisson problem, and involves one MPI AllReduce call for every corrector stage. Thus, the
time for global communication is of the order O(4 logP ), since each time step involves four corrector stages.
Putting it all together, the parallel computation time is

TP = c2N
2/P + 4c3 + c4 logP

The overhead time is given as

To = PTP − T1

= P
(

c2N
2/P + 4c3 + c4 logP

)

− c1N
2

To ∼ P logP

With W = KTo ∼ P logP , the theoretical iso-efficiency analysis indicates that the work should increase at
the rate of P logP with the number of processors P .

The iso-efficiency characteristics observed in our numerical experiments is now discussed. Figure 4b shows
that for all versions, the efficiency of N = 1282, P = 32 computations is slightly larger than the efficiency
of N = 642, P = 16 computations. In other words, increasing the number of processors by a factor of 2,
and simultaneously increasing the problem size by a factor of 4 results in a higher efficiency. This indicates
that the iso-efficiency function is better than O(P 2). The same can be concluded by considering data points
corresponding to N = 642, P = 32 and N = 1282, P = 64 computations. Figure 4b also shows that the
efficiency for the N = 1282, P = 64 computation is smaller than the efficiency of the N = 642, P = 16
computation. This indicates that the iso-efficiency function is not better than O(P ). Thus, our results show
that the iso-efficiency function lies between O(P ) and O(P 2), consistent with the theoretically predicted
O(P logP ). An analysis with more data points on the efficiency vs P plot can potentially show the exact
P logP scaling.
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3 FlowLBM

FlowLBM solver employs lattice Boltzmann method (LBM) [1, 2, 5] for the simulation of fluid flow. In
this method the Boltzmann equations are solved in a mesoscopic limit which enables the simulation of
incompressible fluid flow.

Each iteration of the solver includes the following steps:

• Collision step of the lattice points (can be executed in parallel)

• Apply boundary conditions (specific to each processor depending on whether the processor boundary
coincides with the domain boundaries or not)

• Streaming/advection step (exchanges data between processors for the ghost/overlap regions)

• Computation of macroscopic quantities such as density, and velocities (can be executed in parallel)

3.1 The Simulation Method

LBM is a numerical method for solving the Boltzmann equation (1), where fα(x, t) is a set of distribution
functions, which represents the probability of finding a particular particle at a position x at time t with a
velocity cα.

fα(x+ cαδt, t+ δt)− fα(x, t) = Ωα (1)

The collision operator Ωα models the collision of particles and controls the rate of approach of distribu-
tion functions to an equilibrium state given by feqα . Bhatnagar, Gross, and Krook [2] proposed the BGK
dynamics, where the collision operator Ωα is approximated as a single-relaxation-time (SRT) model as given
by equation. (2).

Ωα =
1

τ
[fα(x, t)− feqα (x, t)] (2)

Where τ is the relaxation time related to the viscosity (ν) as follows:

τ =
3

δt
ν +

1

2
(3)

The equilibrium distribution function f
(eq)
α is obtained by discretizing the Boltzmann distribution. In the

present work the form given in equation (4) is used which involves terms in velocity up to second order,

feqα (ρ,u) = wα ρ

[

1 +
cα.u

c2s
+

(cα.u)
2

2c4s
−

|u|2

2c2s

]

(4)

with the lattice speed of sound cs =
1√
3
for the D2Q9 model and the lattice weights are given as follows:

wk=9 = 4/9 (5)

wk=1,2,3,4 = 1/9 (6)

wk=5,6,7,8 = 1/36 (7)

and the lattice is defined by the following vectors as shown in equation (8), for i = 1, 9.

ci =

[

1 0 −1 0 1 −1 −1 1 0
0 1 0 −1 1 1 −1 −1 0

]

(8)

The convention to define a lattice type is DnQm where Dn denotes the dimension of the lattice with n
set to 2 for 2D and 3 for 3D and Qm defines the number of lattice sites. For example D2Q9 lattice used in
the present simulations is a 2D lattice and has 9 lattice sites or degrees of freedom.

The macroscopic observable quantities are given by the moments of the particle distribution function as
follows. The integral of zeroth moment of distribution function gives the density and the first moment gives
the momentum as described in equations (9,10).
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ρ(x, t) =
∑

α

fα(x, t) (9)

ρ(x, t)u(x, t) =
∑

α

cαfα(x, t) (10)

With this introduction to the numerical method we present the general algorithm to solve the LBM on a
finite difference grid with a lattice attached to each of the grid point. The Algorithm to simulate using LBM
consists of three main steps as described below.

3.1.1 Algorithm

The overall simulation algorithm is composed of the following three steps:

1. Collision

2. Streaming

3. Boundary conditions

In the collision step the particle distribution function fα are relaxed towards their respective equilibrium

value f
(eq)
α according to equation (2). In the streaming step each fα is streamed, or advected to the respective

lattice site dictated by its lattice vector cα. The D2Q9 lattice is shown in Figure (5a) with the corresponding
lattice vectors. The streaming operation is shown in Figure (5b). With this we can explain how the stream-
ing/advection occurs which essentially represented on the left hand side of the equation (1). For example if
we assume that the lattice in the center with all solid arrows in Figure (5b) is the location where streaming
has to be performed, then the distribution function corresponding to each of the arrows/lattice sites are ad-
vected/streamed to the adjacent lattice as per the color coding and the final position where the distribution
function is assigned is represented by the broken arrows. Similarly the rest of the arrows shown in black
will also receive their values from their neighbors and so on. Care should be taken while doing streaming
operation such that we do not stream same value all along. For e.g. if we use a copying mechanism then
for copying the distribution function values for C6 on x-axis we should start at the x-max location first and
march towards x-min location. If we do it other way round then the value of C6 at x-min gets copied to
all the grid points because the distribution function at the next site gets over-written before they could be
copied. The present simulations are three-dimensional and hence a 3D lattice needs to be made use of. The
3D lattice used in present simulations is D3Q15 and is shown plotted in figure 5(c).

c3 c5

c7c1

c9c2

c4

c6

c8

(a) D2Q9 Lattice (b) Streaming operation (c) D3Q15 Lattice

Figure 5: Schematic showing the lattice structure and streaming operation

3.1.2 Boundary conditions

In the present simulations periodic boundary conditions are used on all boundaries. These are the simplest
type of boundary conditions. The periodic boundary condition implementation sets the outgoing distribution
functions as incoming distribution functions on the other matching periodic boundary.
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3.1.3 Simulation Results of FlowLBM solver

The Taylor-Green vortex (TGV) field which possess an exact solution to the Navier-Stokes equations is used
as a test case in the present simulations. The regular velocity field dictated by the TGV initialization evolves
into small scale turbulence and eventually dissipates depending on the viscosity. The results obtained from
the present simulation are shown in figure 6. The initial velocity field u is depicted in frame (a) of figure 6.
Frames (b) - (e) show the iso-surfaces of vorticity magnitude colored by velocity magnitude at the indicated
times. As we can see how the regular velocity field in frame (a) evolves into small scale structures (spaghetti
like structures) that are grouped together based on same value of vorticity (ω = ∇× u.).

(a) Initial (b) t = 1000 (c) t = 1500 (d) t = 2000 (e) t = 3000

Figure 6: Evolution of Taylor-Green vortex

3.2 Parallel Algorithm & Performance

Here we describe the parallel aspects of the general algorithm presented in section 3.1.1.

• The initialization step: Each processor will fill initialize its own data with the lattice speeds, weights,
and geometric and collision extents. This step also initializes the velocity according to the Taylor-Green
vortex equation.

• The collision step: Each processor will word individually on their own data and will compute the
collision terms shown on the right hand side of the equation 2.

• Application of periodic boundary conditions: Depending on the processor decomposition this step
changes. For e.g. in a 3D processor decomposition the data will be exchanged in all principal directions
and hence there is no need to explicitly assign the values for the periodic boundary condition. Where
as in a 1D(x − direction) decomposition this step needs to fill the periodic boundary values in the
remaining two directions (y, z - directions)

• Exchange of data: In this depending on the type of decomposition we will exchange data in xdir, ydir,
zdir. The data exchange involves communicating one layer of ghost cells for the 3D grid depending on
the decomposition type and a total of 15 values needs to be exchanged per grid point, because we are
using D3Q15 as the lattice here. New MPI types were defined based on a combination of VECTOR and
CONTIGUOUS types and these newly committed types were used for data exchange directly without a
need for additional buffers when exchanging data. This is the main communication step in the present
algorithm.

• Streaming step: In this step, each processor will advect its own particle distribution function to its
neighbors as described in section 3.1.1.

• Computation of primitive variables: In this step each processor will compute primitive variables
(ρ, u, v, w) on its own data.

• File I/O: In this step all processors sends data to the host processor and it then writes the data to a
single file so that this can be post processed. This step is not included in the present parallel timing
computations.
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3.2.1 Processor Decomposition

The processor decomposition is shown in figure 7. Three different kinds of decompositions have been im-
plemented in the FlowLBM code as part of this project. The one-dimensional (slab decomposition), two-
dimensional (pencil decomposition), and three-dimensional (box decomposition) are shown in figure 7(a)-(c)
respectively. The colors indicate various processors in the figure 7. The number of processors are 4, 16 and
64 in the decomposition shown in figures 7(a)-(c). Special care needs to be taken when the decompositions
are performed in 2D and 3D. Because in those decompositions cross communication/diagonal communication
shows up. To avoid this an existing strategy from the literature is used. Instead of sending the data to a
diagonally opposite compute node directly, the same was achieved in two separate communications in 2D
decomposition and three separate communications in the 3D decomposition.

(a) 1D (b) 2D (c) 3D

Figure 7: Schematic of processor decomposition

3.2.2 Speedup & Iso-efficiency

The speedup achieved (ψ) is shown plotted as a function of number of processors (p) for various problem
sizes in Figure 8. Frames (a) - (c) of Figure 8 show the three different decompositions used, namely 1D,
2D, and 3D respectively as discussed earlier. Please note that the simulations in the 1D decomposition were
only performed till 32 processors and hence, the plot in Frame (a) has a maximum value of 32 on both axes
where as in the other Frames (b) and (c) the axes extend till 64. In all the decompositions, the speedup is
increasing as the number of processors is increased, whereas the rate of increase of speedup (∂ψ∂p ) is decreasing

as the number of processors is increased. This can be clearly seen in Frame (a) where the curves flatten out
towards the end of the x-axis i.e. towards p = 32. In the 3D decomposition since there are only two sampling
points, it is not possible to comment on the rate of decrease/increase of speedup with respect to number of
processors. Among the three decompositions considered, the 2D decomposition seems to be giving better
speedup for the problem. For example, for the highest problem size of 2563 considered here, the speedup for
1D, 2D, and 3D decompositions is 13, 36, and 22 respectively. Although 3D decomposition is supposed to
have a smaller surface/volume ratio, 2D decomposition is showing better speedup. This is because of lesser
communication needed for 2D decomposition than for 3D decomposition.

Next we computed the efficiency for each of the cases considered and tabulated them in Tables 3 through
5. This gives an idea of how the efficiency of the program changes as the number of processors and the work
size is increased, thus enabling the user to run at optimum efficiency at specified number of processors. From
Table 3 we can see that the for p = 4 and a problem size of n = 64 in each direction we have an efficiency
of 66. If we increase the number of processors to p = 8 and the problem size to n = 256 we can see that
the efficiency decreases only slightly to 62. Similarly, we can see that the efficiency is close to 44 and 41 for
problem sizes (p = 8, n = 64), (p = 16, n = 128), and (p = 32, n = 256).

The 2D decomposition shows a similar iso-efficiency pattern. As we can see from Table 4, the efficiency
is same almost constant for (p = 16, n = 64) and for (p = 64, n = 64, 128). Also a similar observation can
be made for the pairs (p = 16, n = 128) and (p = 64, n = 256). lines for the 2D decomposition considered
here. For 3D decomposition, the efficiency drops very quickly, even as the problem size is increased, as can
be seen from Table 5.
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(a) 1D (b) 2D (c) 3D

Figure 8: Parallel metrics for 1D, 2D, and 3D decompositions

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p=1 p=2 p=4 p=8 p=16 p=32

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
n=64 100 85 .37 66 .21 44 .00 32 .45 24 .10
n=128 100 96 .10 81 .04 69 .34 45 .00 31 .82
n=256 100 89 .51 76 .60 62 .04 53 .30 41 .30

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Table 3: Efficiency as a function of problem size (n) and number of processors(p) in 1D decomposition

From theoretical considerations, the serial computation time is of the order of n3. With tc denoting the
time taken for communication of order n2 elements with neighbouring processors, the communication time is
of the order of 2tc, 4tc, and 8tc in 1D, 2D, and 3D decompositions respectively. Therefore, we have a serial
time of T1 = n3, and a parallel time of TP = n3/p + 2tc for 1D decomposition. The overhead time, To is
computed as

To = pTp − T1

= p(n3/p+ 2tc)− n3

Hence, theoretically, the overhead time and workW should scale as p as the number of processors is increased.
However, from the tabulated results obtained from the computations we see that in the 1D case doubling the
number of processors increases the work size 8 times (scales as p3), where as in the 2D decomposition case
quadrupling the number of processors has increased the work size by 8 times to maintain the same efficiency.
So, the results show that work should scale as W = K× p3 in the 1D decomposition case, where as it should
scale as W = K × p3/2 in the 2D decomposition case. So, it seems that the 2D decomposition iso-efficiency
curve seems to be better approximating the theoretical one.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p=4 p=16 p=64

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
n=64 88 .66 49 .43 48 .74
n=128 77 .89 61 .25 48 .58
n=256 84 .42 67 .53 58 .08
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Table 4: Efficiency as a function of problem size (n) and number of processors(p) in 2D decomposition
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p=8 p=64

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
n=64 66 .17 05 .91
n=128 81 .93 13 .43
n=256 75 .80 37 .96
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Table 5: Efficiency as a function of problem size (n) and number of processors(p) in 3D decomposition

3.2.3 Karp - Flatt metric

The Karp-Flatt metric was calculated for all the parallel configurations simulated and is shown plotted in
figure 9. This metric is seen to initially in the 1D decomposition as shown in figure 9(a) and then decrease
there after. A monotonic decrease is observed for the 1283 and 2563 cases as shown plotted in frame (b) where
as an initial increase and decrease after wards trend is observed for the 643 case. For the 3D decomposition,
the 2563 case shows a decrease as the number of processors is increased.

(a) 1D (b) 2D (c) 3D

Figure 9: Karp - Flatt metrics for 1D, 2D, and 3D decompositions

4 Summary & Conclusions

Two numerical codes for computational fluid dynamics, WenoHydro and FlowLBM, have been parallelized
and evaluated in this project. The codes have been parallelized using the domain decomposition framework on
distributed memory systems, with MPI libraries used for message passing. Four versions of the WenoHydro
code, differing based on the amount and patterns communication and computation involved, have been
implemented and evaluated. Three kinds of processor grid arrangements have been studied for the FlowLBM
code. Parallel performance studies carried out indicate that the definition of the serial time has a drastic
impact on all metrics. The WenoHydro code shows very small speedup based on serial time, while it scales
super-linearly when metrics are computed based on the time for single processor execution of the parallel code.
In general, speedup increases with the number of processors, and efficiency reduces with number of processors.
Studies also indicate a dependence on problem size and the layout of processor grids. Finally, iso-efficiency
considerations show that for the WenoHydro code, work should scale as P logP , while for the FlowLBM,
work should scale as P . These theoretical predictions are reproduced by our numerical experiments for 2D
decomposition.
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