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Lattice Boltzmann method (LBM) offers an alternative to the conventional simulation
of fluid flows.1,2 In this approach Navier-Stokes equations are not solved rather the lattice
Boltzmann equations (LBE) are solved in a mesoscopic limit thus enabling the numeri-
cal simulation of fluid flows. Navier-Stokes equations can derived from LBE by applying
Chapman-Enskog multiscale and small parameter expansion, so it establishes the theoret-
ical basis to simulate continuum using LBE. In the present project a 2D LBM solver is
developed in Fortran 90 programming language and applied to study bench mark prob-
lems such as initial sound pulse, monopole, dipole and quadrupole. The simulation results
of monopole are compared to the analytical solution for establishing the accuracy of the
present method. Sound radiation patterns obtained for monopole, dipole and quadrupole
conform to the theoretical ones discussed in the acoustics text book.9 Also, a study of lim-
iting frequencies of excitation and wavelength are conducted by keeping the grid resolution
fixed.

Nomenclature

ρ Macroscopic density τ Relaxation time
fα Particle distribution function t time
feq
α Particle equilibrium distribution function x Position vector
cα Particle velocity vector Ωα Collision operator
u Macroscopic velocity vector ν Viscosity
δt Unit time in space of lattice wα Lattice weights
δx Unit length in space of lattice cs Lattice sound speed
DnQm n dimensional lattice with m degrees of freedom α Lattice particle, subscript

Ŝ Monopole amplitude D̂ Dipole moment-amplitude-vector

I. Introduction

Lattice Boltzmann method (LBM) is emerging as a potential methodology for simulating fluid flow.
LBM finds its roots in lattice gas automata (LGA). Individual particles are tracked in LGA methods where
as in LBM a set of particles arranged in a symmetric lattice are used. In a microscopic approach to
simulating fluid flow one solves the effect of particles on other particles. In a continuum approach the
fluid particles are assumed to be packed abundant enough in a control volume that it can be approximated
as a continuous field and leads to simulations using Navier-Stokes equations by various techniques such as
finite difference, finite volume, finite element or spectral methods. A mesoscopic approach falls in between
these two methodologies and by fine tuning certain parameters it can be tailored to simulate either of
them. LBM is based on a mesoscopic approach, in which individual particles are not tracked rather a set
of particles arranged in a structured lattice are simulated. The effect of particles inside the lattice on each
other is represented using a collision operation. The collision operator that controls the rate of approach
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of the particles to an equilibrium state are modeled with Bhatnagar-Gross-Krook single-relaxation-time
approximation.1,6 Navier-Stokes equations can derived from LBE by applying Chapman-Enskog multiscale
and small parameter expansion, so it establishes the theoretical basis to simulate continuum using LBE.
There are two types of LBM that have been used for aeroacoustic simulations, they are classical LBM
(CLBM)4,5 and finite difference lattice Boltzmann method (FDLBM).3 CLBM is only second order accurate
in both space and time, where as FDLBM can be used to perform simulations with higher order accuracy
by choosing appropriate spatial and temporal discretizations. In this project we focus only on classical LBM
for all the simulations.

II. Literature Review

Recently, there have been a lot of interest in the scientific community in applying LBM to various fluid
flow simulations. Articles on LBM by Chen et al.,10 and Luo et al.2 provide a complete review of the state of
the art in the LBM simulations. Primarily, LBM is a compressible approach but keeping the Mach number
and the lattice velocities very low LBM can be used to simulate incompressible flows as well. A quick review
of the published literature is described below segregated by the application area.

• Direct Numerical Simulations:

Chikatamarla et al.7 performed three-dimensional direct numerical simulations (DNS) of Kida vortex,
a prototypical turbulent flow, using a higher-order LBM using D3Q41 lattice. They compare local
and global turbulent statistical quantities to the results obtained with a spectral element solver and
conclude that LBM is a promising alternative for DNS as it quantitatively captures the statistics of
incompressible fluid turbulence.

• Large Eddy Simulations:

Dong et al.1 performed LBM combined with LES to study the effects of sub-grid models on time
correlations in decaying isotropic turbulence. Two sub-grid models, inertial-range (IR) consistent
model and the classical Smagorinsky model are compared to the DNS results and they show that LBM
sub-grid models yield an underestimation of the magnitude of the time correlation on different time
intervals and on a variety of wave number modes, similar to NS sub-grid models. They also conclude
that among classical Smagorinsky model and IR consistent sub-grid model the latter shows promising
results on the prediction of the time-space correlations in turbulent flows accurately with different
initial spectra considered.

Malaspinas et al.13 performed LES studies on temporal mixing layer using the approximate deconvo-
lution model. They validate the new model on the turbulent, time developing mixing layer, and a very
satisfactory agreement is found with the DNS results.

• Aeroacoustic Simulations:

Kam et al.11 report simulations results of acoustic wave scattering using FDLBM. Two cases of
incoming acoustic waves are considered for scattering problem by the authors; one is the case of a
short wavelength, and the other has a relatively long wavelength compared with the characteristic
dimension. Only short wavelength waves could be simulated with fairly good accuracy using this
method.

Viggen12 in his dissertation, applied LBM to simulate a range of acoustic problems such as point source
to simulate cylindrical and plane waves, Doppler effect, diffraction and standing waves. He concludes
that LBM could be suitable for simulating acoustics in complex flows, at ultrasound frequencies and
very small spatial scales. Also, it was shown that LBM is not feasible at lower frequencies or for larger
scales.

Lew et al.4 predicted the the noise generated by a subsonic turbulent round jet in the far field using
LBM. The near field flow results such as jet center line velocity decay rates, and turbulence intensities
computed by LBM were found to be in good agreement with experimental and Navier-Stokes based
LES simulations. Also, the far field sound pressure levels were with in 2dB of the experimental results.
They conclude that LBM seems to be a viable approach, comparable to LES in accuracy for the
problem under consideration.
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III. The Simulation Method

LBM is a numerical method for solving the Boltzmann equation (1), where fα(x, t) is a set of distribution
functions, which represents the probability of finding a particular particle at a position x at time t with a
velocity cα.

fα(x+ cαδt, t+ δt)− fα(x, t) = Ωα (1)

The collision operator Ωα models the collision of particles and controls the rate of approach of distri-
bution functions to an equilibrium state given by feq

α . Bhatnagar, Gross, and Krook8 proposed the BGK
dynamics, where the collision operator Ωα is approximated as a single-relaxation-time (SRT) model as given
by equation. (2).

Ωα =
1

τ
[fα(x, t)− feq

α (x, t)] (2)

Where τ is the relaxation time related to the viscosity (ν) as follows:

τ =
3

δt
ν +

1

2
(3)

The equilibrium distribution function f
(eq)
α is obtained by discretizing the Boltzmann distribution. In

the present work the form given in equation (4) is used which involves terms in velocity up to second order,

feq
α (ρ,u) = wα ρ

[

1 +
cα.u

c2s
+

(cα.u)
2

2c4s
−

|u|2

2c2s

]

(4)

with the lattice speed of sound cs =
1√
3
for the D2Q9 model and the lattice weights are given as follows:

wk=9 = 4/9 (5)

wk=1,2,3,4 = 1/9 (6)

wk=5,6,7,8 = 1/36 (7)

and the lattice is defined by the following vectors as shown in equation (8), for i = 1, 9.

ci =

[

1 0 −1 0 1 −1 −1 1 0

0 1 0 −1 1 1 −1 −1 0

]

(8)

The convention to define a lattice type is DnQm where Dn denotes the dimension of the lattice with n
set to 2 for 2D and 3 for 3D and Qm defines the number of lattice sites. For example D2Q9 lattice used in
the present simulations is a 2D lattice and has 9 lattice sites or degrees of freedom.

The macroscopic observable quantities are given by the moments of the particle distribution function as
follows. The integral of zeroth moment of distribution function gives the density and the first moment gives
the momentum as described in equations (9,10).

ρ(x, t) =
∑

α

fα(x, t) (9)

ρ(x, t)u(x, t) =
∑

α

cαfα(x, t) (10)

With this introduction to the numerical method we present the general algorithm to solve the LBM on
a finite difference grid with a lattice attached to each of the grid point. The Algorithm to simulate using
LBM consists of three main steps as described below.
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A. Algorithm

1. Collision

2. Streaming

3. Boundary conditions

In the collision step the particle distribution function fα are relaxed towards their respective equilibrium

value f
(eq)
α according to equation (2). In the streaming step each fα is streamed, or advected to the respective

lattice site dictated by its lattice vector cα. The D2Q9 lattice is shown in Figure (1a) with the corresponding
lattice vectors. The streaming operation is shown in Figure (1b). With this we can explain how the
streaming/advection occurs which essentially represented on the left hand side of the equation (1). For
example if we assume that the lattice in the center with all solid arrows in Figure (1b) is the location where
streaming has to be performed, then the distribution function corresponding to each of the arrows/lattice
sites are advected/streamed to the adjacent lattice as per the color coding and the final position where
the distribution function is assigned is represented by the broken arrows. Similarly the rest of the arrows
shown in black will also receive their values from their neighbors and so on. Care should be taken while
doing streaming operation such that we do not stream same value all along. For e.g. if we use a copying
mechanism then for copying the distribution function values for C6 on x-axis we should start at the x-max
location first and march towards x-min location. If we do it other way round then the value of C6 at x-min
gets copied to all the grid points because the distribution function at the next site gets over-written before
they could be copied.

c3 c5

c7c1

c9c2

c4

c6

c8

(a) D2Q9 Lattice (b) Streaming operation

Figure 1. Schematic showing the lattice structure and streaming operation

B. Boundary conditions

In the present simulations periodic boundary conditions are used on all boundaries. These are the simplest
type of boundary conditions. In this the outgoing distribution functions are set as incoming distribution
functions on the other periodic boundary.

IV. Results

Various bench-mark problems in aeroacoustics are simulated here using the 2D LBM solver that was
developed during the course of the project. In all the simulations the background velocity (u, v) is set to zero
and density perturbation are imposed on a uniform density of ρo = 1.0. Then the evolution of the density
perturbations are tracked and also there will be tiny velocities that get set up because of traveling density
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waves in the domain. The off-equilibrium density or density perturbation ρ′ is computed as ρ′ = ρ − ρo.
In LBM simulations the pressure turns out to be proportional to density as p − c2sρ. Therefore, one can
compute pressure perturbations from the density perturbations using this relation and similarly we can write
p′ = p− po, where po = c2sρo.

In all the simulations we use periodic boundary conditions on the domain boundaries and the simulations
times performed are less than the time required for the wave to leave the domain and re-enter from the other
side. Also, the acoustic waves get damped before they reach one of the periodic boundaries. The domain
extent is set to 100X100 and τ = 1.0 was chosen.

A. Initial Pulse

First we test the code by using a simple test case in which a simple delta function in density is imposed
on a uniform density field. At t = 0, the density field is set to ρ = 1.0 every where except at the center
point (50, 50) of the domain where we set ρ = 1.1 This initial density pulse now should propagate into
the domain from its initial position with speed of sound. Because we set τ = 1 the viscosity is fixed
according to equation (3) and the density pulse should propagate according to the lattice speed i.e. with
cs = 1/

√

(3) = 0.577. The results obtained from the initial pulse case are shown plotted in Figure (2). The
evolution of the density perturbation is shown in Figures (2a)-(e). We can see from these figures that the
wave front travels outward in a circular pattern from the center. Figure (2f) shows the density fluctuation
as a function of x at various time instants along y = 0 line. The extracted wave signals again reveal the
property of traveling outwards from the center and this plot is used to calculate the speed of sound in this
medium from the speed of the wave. For e.g. at t = 10 the right side peak of the wave is at x = 56.54, so it
took t = 10 to travel a distance of 56.54− 50.0 = 6.54 giving a speed of sound of 0.654. Similarly the speeds
calculated at times t = 20, 30, 40 equal 0.795, 0.633, 0.625 respectively. As we can see all the speed of sounds
predicted are higher than the actual value of cs = 0.577. For some reason the value at t = 20 has a higher
value than the rest of the values.
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Figure 2. Propagation of density perturbation waves for the case of pulse
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B. Monopole

A monopole can be generated by a radially oscillating sphere. In the present case to produce a field similar to
that generated by a monopole the density of a particular point is locked so as to produce small perturbations
in density in a quiescent fluid. The density field is perturbed continuously according to the following equation
ρ = ρo + ρ′sin(2πt/T ). The density at the center of the domain i.e. at (x, y) = (50, 50) is locked to this
value. Where ρo = 1.0, ρ′ = 0.01, and T = 20.0. The evolution of the density perturbations from t = 10
to t = 50 are shown plotted in Figure (3a-e). As we can see from these plots the magnitude seen at the
center of the domain is same at frames t = 20 and t = 40 because the wave has a period of T = 20.
Also, the perturbations travel outwards from the center as can be seen from the plots. The same can be
better visualized in Figure (3f) where the wave is extracted on y = 0 line and plotted at different times.
In frames (g)-(i) of Figure (3) we compare the computed density perturbations to the analytic solution.
These plots reveal that the wave length seems to be better captured by LBM but not the magnitude. This
needs to be further investigated as to why the solution does not match perfectly. The analytical solution

to the monopole is given by p′ = AH
(2)
0 (kr)e(iwt) where k = ω

cs
and H

(
02) is Hankel function given by

H
(
02)(kr) = J0(kr)− iY0(kr), further J0, Y0 are Bessel functions of first, and second kind respectively. Using

A = 0.135ρse
−2π/3 for T = 20 and cs = 1/

√

(3) the exact or the analytical solution shown in Figure (3) was
calculated.
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Figure 3. Propagation of density perturbation waves for the case of monopole

Next, we performed a study by varying the time period of oscillations. The time period of excitation was
varied from T = 1 to T = 100 and the density perturbation is shown plotted for these cases in Figure (4)
at simulation time of t = 60. As we can see from Figure (4), T = 1 does not seem to be captured by the
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current grid which has δx = 1, δt = 1. Where as T = 5 shows one wave length of perturbation and then
damps out. Larger excitation periods such as T = 10 and T = 20 show at least two wave lengths before they
damp out. And much higher excitation periods as T = 50 and T = 60 again show only one wave length.
Highest excitation period considered in this case was T = 100 and the present grid with the simulation time
of t = 60 could not capture even a single wave length. So we can conclude that moderate time periods of
excitation considered here such as T = 10 or T = 20 seem to be ideal candidates for the simulations on the
resolution considered. Both extremes such as T = 1 and T = 100 need much finer δt or longer domain sizes
respectively to be captured properly.
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Figure 4. Propagation of density perturbations for different time periods of excitation

C. Dipole

Having simulated the monopole case, we further perform simulation of a dipole. A dipole in practice could be
generated by a transversely oscillating sphere. In other words, a dipole can be thought of as a superposition
of fields of two or more monopoles located at different points.9 We use here two point sources each described
by the monopole perturbations of amplitudes Ŝ and −Ŝ, that is, 1800 out of phase with each other, and
located a distance d = 2δx apart. The density perturbations generated by such a dipole field are simulated
and shown in Figures (5a-e). Also, waves extracted from y = 0 plane are shown plotted in Figure (5f). From
these plots we can observe that unlike a monopole field which produced circular waves emanating outwards
from the center, out of phase waves are emitted at the center propagate canceling their effect on the x = 0
plane. Hence an observer located here will not perceive the sound radiated by a dipole field.
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Figure 5. Propagation of density perturbation waves for the case of a dipole

7 of 10

American Institute of Aeronautics and Astronautics



D. Quadrupole

Next, we simulate quadrupole using the LBM solver. A quadrupole as the name suggests can be conceptu-
alized as two closely spaced dipoles, with equal but opposite dipole-moment amplitude vectors D̂. In the
present simulations we simulate both a longitudinal and lateral quadrupole. Depending on whether the line
joining the dipoles d is parallel or perpendicular to the dipole-moment-amplitude vector D̂ we can call it a
longitudinal or a lateral quadrupole. The same can be seen plotted in frame (a) of Figures (6, 7).

1. Longitudinal Quadrupole

In the longitudinal quadrupole simulations the d is set to 2δy and the results obtained are shown plotted in
Figures (6a-e). The waves are extracted on x = 0 line and are shown in Figure (6f). The solution obtained
for the longitudinal quadrupole seems qualitatively similar to the one of dipole. The radiation wave pattern
obtained is similar to what is described in the text book,9 we can see that an eight-shaped pattern is obtained.

x

y

20 40 60 80

20

40

60

80

ρ’
8.9E-05
6.7E-05
4.4E-05
2.2E-05

-2.6E-07
-3.0E-05
-5.2E-05

d

D

D

(a) t=1

x

y

20 40 60 80

20

40

60

80

ρ’
8.9E-05
6.7E-05
4.4E-05
2.2E-05

-2.6E-07
-3.0E-05
-5.2E-05

(b) t=20

x

y

20 40 60 80

20

40

60

80

ρ’
8.9E-05
6.7E-05
4.4E-05
2.2E-05

-2.6E-07
-3.0E-05
-5.2E-05

(c) t=30

x

y

20 40 60 80

20

40

60

80

ρ’
8.9E-05
6.7E-05
4.4E-05
2.2E-05

-2.6E-07
-3.0E-05
-5.2E-05

(d) t=40

x

y

20 40 60 80

20

40

60

80

ρ’
8.9E-05
6.7E-05
4.4E-05
2.2E-05

-2.6E-07
-3.0E-05
-5.2E-05

(e) t=60

y

ρ’

0 20 40 60 80 100-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006
t = 10
t = 20
t = 30
t = 40
t = 50
t = 60

(f) wave motion

Figure 6. Propagation of density perturbation waves for the case of a longitudinal quadrupole

2. Lateral Quadrupole

A lateral quadrupole is formed when the dipole-moment-amplitude-vectors D̂ are perpendicular to the line
joining the dipoles d. Figure (7) shows the density perturbations at indicated times, and in frame (f) of
Figure (7) we show the extracted wave motion on x = y line. The acoustic radiation pattern obtained is
similar to what is expected for a lateral quadrupole which should be like two eight-shaped figures arranged
perpendicular to one another.

V. Conclusion

In this project we developed a 2D LBM solver in Fortran 90, that can simulate fluid flow and acoustic
problems. The developed solver was applied to simulate a variety of bench-mark problems in aeroacoustics
such as an initial sound pulse, a monopole, dipole, and both longitudinal and lateral quadrupole. The
simulation results seem to be qualitatively matching to the ones shown in theory. However, an exact match
is not achieved for the sound speed and to the analytic solution for the monopole case that were considered.
This could be related to the difference in sound speed predicted, and further investigation needs to be
performed. The radiation patterns produced by all the bench-mark cases are similar to those described in
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Figure 7. Propagation of density perturbation waves for the case of a lateral quadrupole

theory in the text book.9 A study on the time period of excitation for the monopole case was performed and
it is found that moderate time periods such as T = 10 and T = 20 are better resolved by the grid resolution
considered. In conclusion, lattice Boltzmann method seems to be a viable alternative approach to simulate
fluid flow and acoustics.

VI. Appendix

A. Code Snippets

Here couple of code snippets are shown from the 2D LBM Solver. The following shows the main program.

program LatticeBoltzmann2D

use lbm_memory

imp l i c i t none

c a l l read_input_file ( )

c a l l allocate_lbm_memory ( )

c a l l initialize_lbm ( )

c a l l solve_lbm ( )

c a l l deallocate_lbm_memory ( )

end program LatticeBoltzmann2D
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The code below is the solve lbm subroutine that performs the main solution loop.

subrout ine solve_lbm ( )
imp l i c i t none

do step = 1 , nsteps

c a l l collision ( )
c a l l periodic_bc ( )
c a l l streaming ( )
c a l l compute_primitive_variables ( )

wr i t e (∗ , ' ( i10 , 5x , f25 . 15 , 5d , f25 . 15 , 5x , f25 . 1 5 ) ' ) , step , sum ( u ( : , : ) ) , sum ( v ( : , : ) ) , ←֓
sum ( rho ( : , : ) )

i f ( mod ( step , 5) == 0 . or . step == 1) then
c a l l output_tecplot ( step )

end i f

end do

end subrout ine solve_lbm
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6Ricot, D., Marié, S., Sagaut, P., and Bailly, C., Lattice Boltzmann method with selective viscosity filter, Journal of

Computational Physics, 228, 4478-4490, (2009).
7Chikatamarla, S., S., Frouzakis, C., E., Karlin, I., V., Tomboulides, A., G., and Boulouchos, K., B., Lattice Boltzmann

method for direct numerical simulation of turbulent flows, Journal of Fluid Mechanics, 656, 298-308, (2010).
8Bhatnagar, P. L., Gross, E., P., and Krook, M., A Model for Collision Processes in Gases. I. Small Amplitude Processes

in Charged and Neutral One-Component Systems, Physical Review, 94(3), 511-525, (1954)
9Pierce, A. D., Acoustics, An Introduction to Its Physical Principles and Applications, Acoustical Socienty of America,

(1994)
10Chen, S., and Doolen, G., D., Lattice Boltzmann Method for Fluid Flows, Annual Review of Fluid Mechanics, 30, 329-364,

(1998)
11Kam, E., W., S., So, R., M., C., Fu, S., C., and Leung, R., C., K., Finite Difference Lattice Boltzmann Method Applied

to Acoustic-Scattering Problems, AIAA Journal, 48(2), (2010)
12Viggen, E., M. The Lattice Boltzmann Method with Applications in Acoustics, Masters Dissertation, Department of

Physics, NTNU (2009)
13Malaspinas, O., and Sagaut, P., Advanced large-eddy simulation for lattice Boltzmann methods: The approximate decon-

volution model, Physics of Fluids, 23, 105103 ,(2011)

10 of 10

American Institute of Aeronautics and Astronautics


