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Predicting Gene Essentiality Using Genome-Scale 
in Silico Models

Andrew R. Joyce and Bernhard Ø. Palsson

Summary
Genome-scale metabolic models of organisms can be reconstructed using annotated genome sequence 

information, well-curated databases, and primary research literature. The metabolic reaction stoichiometry 
and other physicochemical factors are incorporated into the model, thus imposing constraints that represent 
restrictions on phenotypic behavior. Based on this premise, the theoretical capabilities of the metabolic 
network can be assessed by using a mathematical technique known as fl ux balance analysis (FBA). This 
modeling framework, also known as the constraint-based reconstruction and analysis approach, differs 
from other modeling strategies because it does not attempt to predict exact network behavior. Instead, this 
approach uses known constraints to separate the states that a system can achieve from those that it cannot. 
In recent years, this strategy has been employed to probe the metabolic capabilities of a number of 
organisms, to generate and test experimental hypotheses, and to predict accurately metabolic phenotypes 
and evolutionary outcomes. This chapter introduces the constraint-based modeling approach and focuses 
on its application to computationally predicting gene essentiality.

Key Words: computational modeling; constraint-based reconstruction and analysis; fl ux balance analy-
sis (FBA); gene essentiality prediction; metabolic phenotype; systems biology.

1. Introduction
The development of high-throughput experimental techniques in recent years has led 

to an explosion of genome-scale data sets for a variety of organisms. Considerable 
efforts have yielded complete genomic sequences for hundreds of organisms (1), from 
which gene annotation provides a list of individual cellular components. Microarray 
technology affords researchers the ability to probe gene expression patterns of cells and 
tissues on a genome scale. Genome-wide location analysis, also known as ChIP-chip 
(2), provides transcription factor binding site information for the entire cell. Further-
more, advances in the fi elds of fl uxomics (3) and proteomics further add to the vast 
quantity of data currently available to researchers. Integration of these data sets to 
extract the most relevant information to formulate a comprehensive view of biological 
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systems is a major challenge currently facing the biological research community (4). 
Achieving this task will require comprehensive models of cellular processes.

A prudent approach to gaining biological understanding from these complex data 
sets involves the development of mathematical modeling, simulation, and analysis 
techniques (5). For many years, researchers have developed and analyzed models of 
biological systems via simulation, but these efforts often have been hampered by lack 
of complete or reliable data. Some examples of the modeling philosophies and 
approaches that have been pursued include deterministic kinetic modeling (6, 7), 
stochastic modeling (8, 9), and Boolean modeling (10). Many of these approaches are 
implicitly limited by requiring knowledge of unknown parameters that are diffi cult or 
impossible to experimentally determine or approximate. Furthermore, the above 
approaches typically require substantial computational power, thus limiting the scale 
of the models that can be developed.

In recent years, however, great strides have been made in developing and using 
genome-scale metabolic models of a number of organisms using another modeling 
technique that is not subject to many of the aforementioned limitations. This approach, 
known as constraint-based reconstruction and analysis (11–15), has been employed 
to generate genome-scale models for organisms from all three major branches of 
the tree of life. Although bacterial models dominate this growing collection, a model 
from archaea has recently appeared, and several eukaryotic models are also available 
(see Note 1 and Table 1 for an overview of existing constraint-based metabolic 
models).

Among other uses (see Note 2 and Ref. 12), these models have facilitated the com-
putational investigation of gene essentiality. Flux balance analysis (FBA) (16, 17) is a 
powerful mathematical approach that uses optimization by linear programming to study 
the properties of metabolic networks under various conditions. When using FBA, the 
investigator chooses a property to optimize, such as biomass production in microbial 
models, and then calculates the optimal fl ux distribution across the metabolic model 
that leads to this result. Accordingly, this methodology allows the investigator to assess 
wild-type growth capabilities of the modeled organism. Furthermore, metabolic gene 
knockout strains can be simulated simply by removing associated reaction(s) from the 
model. By comparing predicted growth rates before and after introducing the simulated 
gene deletion, the gene’s essentiality can be assessed (i.e., growth will be zero if the 
removed gene is essential for biomass production). Given that this type of analysis 
relies on computer simulation, computational results must be confi rmed by generating 
and studying the effects of gene knockouts at the lab bench. However, by fi rst investi-
gating these situations at the computer workstation, or in silico, researchers can be 
directed to the most interesting and scientifi cally meaningful experiments to perform, 
thus limiting the amount of time spent conducting experiments of less scientifi c value.

In this chapter, we provide an introduction to the principles that underlie constraint-
based modeling and FBA of biological systems. We give a brief but practical example 
to directly introduce the method and associated concepts. Furthermore, we discuss both 
the utility and potential shortcomings of these models in studying gene essentiality by 
reviewing results from several published studies. Finally, we briefl y discuss additional 
interesting applications and some potential future directions for constraint-based mod-
eling and analysis.
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2. Materials
 1. Scientifi c literature and textbooks; for example, the PubMed database (www.pubmed.gov) 

and biochemical and organism-specifi c texts.
 2. Online Genomic Databases and Resources (Table 2).
 3. Software; for example, Microsoft Excel (offi ce.microsoft.com), MATLAB 

(www.mathworks.com), Mathematica (www.wolfram.com), LINDO (www.lindo.com), 
GAMS (www.gams.com), and SimPheny (www.genomatica.com).

3. Methods
This section outlines the general procedure (Fig. 1) followed in constructing and 

using a constraint-based model in conjunction with FBA to computationally investigate 
gene essentiality. This model building and analysis procedure can be divided approxi-
mately into four successive steps:

Table 1
Currently Available Constraint-Based Models

Organism
Total 
genes

Model 
genes

Model 
metabolites

Model 
reactions Reference

Bacteria
Bacillus subtilis 4,225  614 637  754 (91)
Escherichia coli 4,405  904 625  931 (68)

 720 438  627 (55)
Geobacter sulfurreducens 3,530  588 541  523 (71)
Haemophilus infl uenzae 1,775  296 343  488 (56)

 400 451  461 (92)
Helicobacter pylori 1,632  341 485  476 (58)

 291 340  388 (57)
Lactococcus lactis 2,310  358 422  621 (93)
Mannheimia succinciproducens 2,463  335 352  373 (94)
Staphylococcus aureus 2,702  619 571  641 (70)
Streptomyces coelicolor 8,042  700 500  700 (72)

Archaea
Methanosarcina barkeri 5,072  692 558  619 (59)

Eukarya
Mus musculus 28,287 1,156 872 1,220 (76)
Saccharomyces cerevisiae 6,183  750 646 1,149 (62)

 672 636 1,038 (61)
 708 584 1,175 (73)

Human cardiac mitochondria 615*  298 230  189 (50)
Human red blood cell NA NA  39   32 (77)

This table summarizes model statistics for the models developed and published to date. *This number 
is based on the protein species identifi ed in a proteomics study of the human cardiac mitochondria from 
which the components of the reconstruction were derived (95). NA, not applicable.
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 1. Network reconstruction.
 2. Stoichiometric (S) matrix compilation.
 3. Identifi cation and assignment of appropriate constraints to molecular components.
 4. Assessment of gene essentiality via fl ux balance analysis (FBA).

In this section, each of the above components will be discussed in turn. In addition, 
a simple example will be provided in Section 3.5 to illustrate directly the concepts 
described herein.

3.1. Network Reconstruction

The fi rst step in constraint-based modeling, known as network reconstruction, 
involves generating a model that describes the system of interest. This process can be 
decomposed into three parts typically performed simultaneously during model con-

Fig. 1. Constraint-based modeling. Application of constraints to a reconstructed metabolic 
network leads to a defi ned solution space that specifi es a cell’s allowable metabolic phenotypes. 
Flux balance analysis (FBA) uses linear programming to fi nd solutions in the space that maxi-
mize or minimize a given objective. In the graphical representation on the right, the optimal 
fl ux distributions that maximize μ, which represents growth/biomass production for the purposes 
of this chapter, are highlighted. The effects of gene knockouts on the solution space and meta-
bolic capabilities can be assessed by simulating a gene knockout and comparing its ability to 
grow in silico relative to wild type. Impaired knockout strains are those that have a lower 
maximum value for the objective function than wild type, and lethal knockout strains are those 
that have a zero value for the objective function, indicating no growth capability when the strain 
harbors that particular gene deletion. As a reference, the wild-type fl ux distribution vector is 
also depicted by the dashed line on the impaired and lethal knockout plots.
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struction. We detail each of these components, known individually as data collection, 
metabolic reaction list generation, and gene-protein-reaction (GPR) relationship deter-
mination in this section.

3.1.1. Model Component Data Collection

Perhaps the most critical component of the constraint-based modeling approach 
involves the collection of data that is relevant to the system of interest. Not long ago, 
this was among the most challenging steps as researchers had access to very limited 
amounts of biochemical data. However, the success of recent genome sequencing (18) 
and annotation (19, 20) projects and advances in high-throughput technologies as well 
as the development of detailed and extensive online database resources has improved 
matters dramatically.

After identifying the system or organism of interest, relevant data sources must be 
identifi ed to begin compiling the appropriate metabolites, biochemical reactions, and 
associated genes to be included in the model. The three primary types of resources are 
the biochemical literature, high-throughput data, and integrative database resources.

3.1.1.1. BIOCHEMICAL LITERATURE

Direct biochemical information found in the primary literature usually contains the 
best-quality data for use in reconstructing biochemical networks. Important details, 
such as precise reaction stoichiometry, in addition to its reversibility, are often directly 
available. Given that scrutinizing each study individually is an excessively time-
consuming and tedious task, biochemical textbooks and review articles should be 
utilized when available and the primary literature used to resolve confl icts. Further-
more, many volumes devoted to individual organisms and organelles, such as 
Escherichia coli (21) and the mitochondria (22), are increasingly becoming available 
and are typically excellent resources.

3.1.1.2. HIGH-THROUGHPUT DATA

Genomic and proteomic data are useful sources of information for identifying rele-
vant metabolic network components. In recent years, the complete genome sequence 
for hundreds of organisms has been determined (18). Furthermore, extensive bioinfor-
matics-based annotation efforts (20) have made great strides toward identifying all 
coding regions contained within the sequence. For those biochemical reactions known 
to occur in the organism, but whose corresponding genes are unknown, sequence align-
ment tools such as BLAST and FASTA (23) can be utilized to assign putative functions 
based on similarity to orthologous genes and proteins of known function. The subsys-
tem approach (19) is another strategy available to researchers looking for functional 
gene assignments. Rather than focusing on the annotation of individual genomes, the 
subsystem approach calls for the annotation of cellular pathways and processes across 
all sequenced organisms. The associated online resource known as SEED is becoming 
an increasingly useful tool in constraint-based model-building efforts. It should be 
emphasized, however, that putative assignments are hypothetical and subject to revision 
upon direct biochemical characterization. As one fi nal note on genome annotation, 
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interesting efforts are also under way to automatically reconstruct networks based on 
annotated sequence information alone (24). However, these automated approaches are 
limited in that they can only be as good as the genome annotation from which they are 
derived. Therefore, considerable quality-control efforts should be conducted prior to 
extensive use of these networks.

The proteome of a biological system defi nes the full complement, localization, and 
abundance of proteins. Although these data are generally diffi cult to obtain, data for 
some subcellular components and bacteria are available (25, 26). Proteomic data are 
of particular importance in eukaryotic systems modeling, in which care must be taken 
to assign reactions to their appropriate subcellular compartment or organelle. Similarly, 
when modeling a system under a single condition, these data are important in identify-
ing active components.

In addition to the primary literature, genomic and proteomic data repositories can 
be accessed via the Internet, as can the additional resources discussed in the next section 
and listed in Table 2.

3.1.1.3. INTEGRATIVE DATABASE RESOURCES

In recent years, signifi cant efforts have been devoted to developing comprehensive 
databases that integrate many information sources, including those data types previ-
ously described. Of particular interest are resources that have incorporated these dis-
parate data sources into metabolic pathway maps. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (27) is perhaps the most extensive and well-known among these 
resource types. Pathway maps for numerous metabolic processes are available through 
KEGG as is information regarding orthologous genes for a variety of organisms, thus 
greatly enhancing the power of this resource. Additional organism-specifi c database 
resources are also available. For example, EcoCyc (28) incorporates gene and re-
gulatory information as well as enzyme reaction pathways particular to E. coli. The 
Comprehensive Yeast Genome Database (CYGD) (29) and Saccharomyces Genome 
Database (SGD) (30) are other examples of Saccharomyces cerevisiae–specifi c 
comprehensive resources. Finally, the BioCyc resource (31, 32) contains automated 
annotation-derived pathway/genome databases for 250 individual organisms.

Additional important resources provide functional information for individual genes 
and gene products. These ontology-based tools strive to describe how gene products 
behave in a cellular context as they typically contain information regarding the function 
and localization of gene products within the cell. Perhaps the most well-known resource 
is Gene Ontology Consortium (GO) (33, 34), which contains ontological information 
for a variety of organisms. In recent years, organism-specifi c ontologies, such as Gen-
ProtEC (35) for E. coli, have also appeared. In sum, these online resources are valuable 
in that they typically incorporate information regarding individual genes and proteins 
as well as information regarding their regulation, cellular localization, and participation 
in enzymatic reactions into a single integrative resource.

3.1.2. Metabolic Reaction List Generation

The next step in defi ning a constraint-based model requires clearly specifying the 
reactions to be included based on the metabolite and enzyme information collected in 
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the previous step. A metabolic reaction can be viewed simply as substrate(s) conversion 
to product(s), often by enzyme-mediated catalysis. Each reaction in a metabolic network 
always must adhere to the fundamental laws of physics and chemistry; therefore, reac-
tions must be balanced in terms of charge and elemental composition. For example, 
the depiction of the fi rst step of glycolysis in Figure 2A is neither elementally nor 
charge balanced. However, inclusion of hydrogen in Figure 2B balances the reaction 
in both regards.

Biological boundaries also must be considered when defi ning reaction lists. Meta-
bolic networks are composed of both intracellular and extracellular reactions. For 
example, in bacteria the reactions of glycolysis and the tricarboxylic acid cycle (TCA) 
take place intracellularly in the cytosol. However, glucose must be transported into the 
cell via an extracellular reaction in which a glucose transporter takes up extracellular 
glucose into the cell. An additional boundary consideration must be recognized particu-
larly when modeling eukaryotic cells. Given that certain metabolic reactions take place 
in the cytosol and others take place in various organelles, reactions must be compart-
mentalized properly. Data that will assist in this process is now being generated in 
which proteins are tagged, for example, with green fl uorescent protein (GFP), or rec-
ognized by antibodies and localized to subcellular compartments or organelles (36–38). 
Furthermore, computational tools have also been developed to predict subcellular loca-
tion of proteins in eukaryotes (39).

Finally, reaction reversibility must be defi ned. Certain metabolic reactions can 
proceed in both directions. Thermodynamically, this permits reaction fl uxes to take 
on both positive and negative values. The KEGG and BRENDA online resources 
(Table 2) are two useful resources that catalogue enzyme reversibility.

3.1.3. Determining GPR Relationships

Upon completing the reaction list, the protein or protein complexes that facilitate 
each metabolite substrate to product conversion must be determined. Each subunit of 
a protein complex must be assigned to the same reaction. Additionally, some reactions 
can be catalyzed by different enzymes. These so-called isozymes must all be assigned 
to the same appropriate reaction. Biochemical textbooks often provide the general name 
of the enzyme(s) responsible; however, the precise gene and associated gene product 
specifi c for the model organism of interest must be identifi ed. The database resources 
detailed in Section 3.1.1 and Table 2 assist this process. In particular, KEGG and GO 

Fig. 2. Charge and elementally balanced reactions. (A) This depiction of the hexokinase-
mediated conversion of glucose to glucose-6-phosphate is neither elementally nor charge 
balanced. (B) Inclusion of hydrogen both elementally and charge balances the reaction.
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provide considerable enzyme-reaction information for a variety of organisms. Further-
more, protein-protein interaction data sets, derived from yeast two-hybrid experiments 
(40), for example, may be useful resources for defi ning enzymatic complexes in less-
defi ned situations. One must take care in using these data, however, given their gener-
ally high false-positive rate and questionable reproducibility (41, 42).

3.2. Defi ning the Stoichiometric Matrix

The compiled reaction list can be represented mathematically in the form of a stoi-
chiometric (S) matrix. The S matrix is formed from the stoichiometric coeffi cients of 
the reactions that participate in a reaction network. It has m × n dimensions, where m 
is the number of metabolites and n is the number of reactions. Therefore, the S matrix 
is organized such that every column corresponds with a reaction, and every row corre-
sponds with a metabolite. The S matrix describes how many reactions a compound 
participates in, and thus, how reactions are interconnected. Accordingly, each network 
that is reconstructed in this way effectively represents a two-dimensional annotation of 
the genome (11, 43).

Figure 3 shows how a simple two-reaction system can be represented as an S matrix. 
In this example, v1 and v2 denote reaction fl uxes and are associated with individual 
proteins or protein complexes that catalyze the reactions. Element Sij represents the 
coeffi cient of metabolite i in reaction j. Furthermore, notice that substrates are assigned 
negative coeffi cients and products are given positive coeffi cients. Also, for those reac-
tions in which a metabolite does not participate, the corresponding element is assigned 
a zero value.

3.3. Identifying and Applying Appropriate Constraints

Having developed a mathematical representation of a metabolic network, the next 
step requires that any constraints be identifi ed and imposed on the model. Cells are 
subject to a variety of constraints from environmental, physiochemical, evolutionary, 
and regulatory sources (12, 14). In and of itself, the S matrix defi ned in the previous 
section is a constraint in that it defi nes the mass and charge balance requirements 
for all possible metabolic reactions that are available to the cell. These stoichio-
metric constraints establish a geometric solution space (see Fig. 1 for a graphical 

Fig. 3. Generating the stoichiometric (S) matrix. The reaction list on the left is mathemati-
cally represented by the S matrix on the right. As a convention, each row represents a metabolite, 
and each column represents a reaction in the network. Additionally, input or reactant metabolites 
have negative coeffi cients and outputs or products have positive coeffi cients. Metabolites that 
do not participate in a given reaction are assigned a zero value.
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representation of the solution space concept) that contains all possible metabolic 
behaviors.

Additional constraints can be identifi ed and imposed on the model, which has the 
effect of further limiting the metabolic behavior solution space. Maximum enzyme 
capacity (Vmax), which can be determined experimentally for some reactions, is one 
example and can be imposed by limiting the fl ux through any associated reactions to 
that maximum value. Furthermore, the uptake rates of certain metabolites can be deter-
mined experimentally and used to restrict metabolite uptake to the appropriate levels 
when mathematically analyzing the metabolic model. Additional types of constraints 
have also been applied, including thermodynamic limitations (44), internal metabolic 
fl ux determinations (13), and transcriptional regulation (45–48).

With respect to computationally assessing gene essentiality, a similar strategy to 
setting the maximum enzyme capacity can be utilized. By simply restricting the fl ux 
through reactions associated with the protein of interest to zero, a gene knockout can 
be simulated. Flux balance analysis (FBA) then can be used to examine the simulated 
knockout properties relative to wild type, as outlined in the next section.

3.4. Assessing Gene Essentiality via Flux Balance Analysis

Flux balance analysis (FBA) is a powerful computational method that relies on 
optimization by linear programming to investigate the production capabilities and sys-
temic properties of a metabolic network. By defi ning an objective, such as biomass 
production, ATP production, or by-product secretion, FBA can be used to fi nd an 
optimal fl ux distribution for the network model that maximizes the stated objective. 
This section briefl y introduces some main concepts that underlie FBA, with an empha-
sis on how FBA can be utilized to assess gene essentiality in a metabolic network.

3.4.1. Linear Programming

The solution space defi ned by constraint-based models can be explored via linear 
optimization by utilizing linear programming (LP). The LP problem corresponding with 
the optimal fl ux distribution determination through a metabolic network can be formu-
lated as follows:

Maximize Z = cTv
Subject to S · v = 0

        αi ≤ vi ≤ βi for all reactions i.

In the above representation, Z represents the objective function, and c is a vector of 
weights on the fl uxes v. The weights are used to defi ne the properties of the particular 
solution that is sought. The latter statements represent the fl ux constraints for the meta-
bolic network. S is the matrix defi ned in the previous section and contains the mass 
and charge balanced representation of the system. Furthermore, each reaction fl ux vi in 
the system is subject to lower and upper bound constraints, represented by αi and βi, 
respectively.

The solution to this problem yields not only a maximum value for the objective 
function Z, but also results in an optimal fl ux distribution (v) that allows the highest 
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fl ux through Z. Furthermore, computational assessment of gene essentiality is per-
formed easily within this framework. By setting the upper and lower fl ux bound con-
straints to zero for the reaction(s) corresponding with the gene(s) of interest, a simulated 
gene deletion strain may be created. The examination of simulation results from before 
and after introducing the simulated gene deletion leads directly to gene essentiality 
predictions.

Problems of this type can be readily formulated and solved by commercial software 
packages, such as MATLAB, Mathematica, LINDO, as well as tools available through 
the General Algebraic Modeling System (GAMS). Section 3.5 and Box 1 present 
simple, hypothetical examples that can be solved using MATLAB. It should also be 
noted that these types of analyses yield a single answer; however, it is possible that 
multiple equivalent fl ux distributions that yield a maximal biomass function value exist 
for a given network and simulation conditions. This topic has been explored using 
mixed-integer linear programming (MILP) techniques with genome-scale metabolic 
models (49, 50) but is beyond the scope of this chapter and will not be further 
discussed.

3.4.2. Constraints

As previously stated, the S matrix constrains the system by defi ning all possible 
metabolic reactions. In mathematical terms, the stoichiometric (S) matrix is a linear 
transformation of the reaction fl ux vector,
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v = (v1, v2, . . . , vn)

to a vector of time derivatives of metabolic concentrations

x = (x1, x2, . . . , xn)

such that

d

d

x
v

t
S= ⋅ .

Therefore, a particular fl ux distribution v represents the fl ux levels through each 
reaction in the network. Because the time constants that describe metabolic transients 
are fast (of the order tens of seconds or less), whereas the time constants for cell growth 
are comparatively slow (of the order hours to days), the behavior of cellular components 
can be considered as existing in a quasi-steady state (51). This assumption leads to the 
reduction of the previous equation to:

S · v = 0.

By focusing only on the steady-state condition, assumptions or rough approximations 
regarding reaction kinetics are not needed. Furthermore, based on this premise, it is 
possible to determine all chemically balanced metabolic routes through the metabolic 
network (52).

The second constraint set is imposed on the individual reaction fl ux values. The 
constraints defi ned by

αi ≤ vi ≤ βi for all reactions i

specify lower and upper fl ux bounds for each reaction. If all model reactions are irre-
versible, α equals 0. Similarly, if the enzyme capacity, or Vmax, is experimentally 
defi ned, setting β to the known experimental value limits the allowable reaction fl ux 
through the enzyme within the model. In contrast, a gene knockout is simulated by 
setting βi = 0 for gene i (Section 3.5 and Box 1). If constraints on fl ux values through 
reaction vi cannot be identifi ed, then αi and βi are set to −∞ and +∞, respectively, to 
allow for all possible fl ux values. In practice, ∞ is typically represented as an arbitrarily 
large number that will exceed any feasible internal fl ux (see Section 3.5 and Box 1 for 
examples). Finally, if a fl ux is “known,” for example, from detailed experimentation, 
αi and βi can be set to the same non-zero value to explicitly defi ne the fl ux value 
associated with reaction vi.

A brief consideration should also be given to specifying input and output constraints 
on the system. When analyzing metabolic models in the context of assessing cellular 
growth capabilities, input constraints effectively defi ne the environmental conditions 
being considered. For example, organisms have various elemental requirements that 
must be provided in the environment in order to support growth. Some organisms that 
lack certain biosynthetic processes are auxotrophic for certain biomolecules, such as 
amino acids, and these compounds must also be provided in the environment.

From an FBA standpoint, these issues mean that input sources must be specifi ed in 
the form of input fl ux constraints specifi ed in v. For example, if one desires to simulate 
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rich medium conditions, fl ux constraints are specifi ed such that all biomolecules that 
represent inputs to the system—in other words, all compounds that are available extra-
cellularly—are left unconstrained and can fl ow freely into the system. In contrast, when 
modeling minimal medium conditions, only those inputs that are required for cell 
growth, or biomass formation in the formalism being considered here, are allowed to 
fl ow into the system with all other input fl uxes constrained to zero (see Ref. 53 for an 
example of a large-scale analysis of E. coli growth simulations performed using minimal 
media). It should also be noted that certain output fl ux constraints may need to be set 
appropriately in order to allow for the simulated secretion of biomolecules that may 
“accumulate” in the process of forming biomass. A simple example of this is allowing 
for lactate and acetate secretion when modeling fermentative growth of microbes.

3.4.3. The Objective Function

Given that multiple possible fl ux distributions exist for any given network, optimiza-
tion can be used to identify a particular fl ux distribution that maximizes or minimizes 
a defi ned objective function. Commonly used objective functions include production 
of ATP or production of a secreted by-product. When assessing the growth capabilities 
of a wild-type or simulated mutant microbe using its associated metabolic model, 
growth rate, as defi ned by the weighted consumption of metabolites needed to make 
biomass, is maximized. The general analysis strategy asks the question, “Is the meta-
bolic reaction network able to support growth in the given environment, and further, 
is the reaction network able to support growth despite a simulated gene deletion?” 
Therefore, biomass generation in this modeling framework is represented as a reaction 
fl ux that drains intermediate metabolites, such as ATP, NADPH, pyruvate, and amino 
acids, in appropriate ratios (defi ned in the vector c of the biomass function Z) to support 
growth. As a convention, the biomass function is typically written to refl ect the needs 
of the cell in order to make 1 g of cellular dry weight and has been experimentally 
determined for E. coli (54). In sum, with the choice of biomass as an objective function, 
cell growth, depicted as a non-zero value for Z, will only occur if all the components 
in the biomass function can be provided for by the network in the correct relative 
amounts. Accordingly, if the in silico knockout fails to exhibit simulated growth 
(i.e., Z = 0) (see Fig. 1 for a graphical representation of this case), the associated gene 
is predicted to be essential.

3.5. A Simple FBA Example

In order to demonstrate the concepts previously introduced, this section presents 
a specifi c example using a simple system. Figure 4A shows a hypothetical four-
metabolite (A, B, C, D), eight-reaction (v1, v2, v3, v4, v5, v6, b1, b2) network. By conven-
tion, each internal reaction is associated with a fl ux vi, whereas reactions that span the 
system boundary are denoted with fl ux bi. Furthermore, external metabolites A and D 
are denoted with subscript “o” to distinguish them from the corresponding internal 
metabolite. External metabolites need not be explicitly considered in the stoichiometric 
network representation, however.

Figure 4B outlines the reaction list associated with the system. Notice that the con-
version of metabolite B to C is reversible. Rather than treating this as a single reaction, 



Predicting Gene Essentiality Using Genome-Scale in Silico Models 447

however, for simplicity the reaction is decoupled into two separate reactions with indi-
vidual corresponding fl uxes.

The S matrix for this system is detailed in Figure 4C. Again, notice how this repre-
sentation follows directly from the reaction list. Metabolite substrates and products are 
represented with negative and positive coeffi cients, respectively. Recall that LP prob-
lems take on the following form:

Maximize Z = cTv
Subject to S · v = 0

α ≤ vi ≤ β for all reactions i.

For example, if the metabolite D output is to be maximized, corresponding with 
maximizing the fl ux through b2, the objective function is defi ned as follows:

Z = (0 0 0 0 0 0 0 1) · (v1 v2 v3 v4 v5 v6 b1 b2)T

Furthermore, in addition to the mass and charge balance constraints imposed by the 
S matrix, lower (a) and upper (b) bound vectors must be specifi ed for the reaction 
vector v. Because all reactions in this network are irreversible, which constrains all 
fl uxes to be positive, the lower bound vector α is set to zero:

a = (0 0 0 0 0 0 0 0)T

Upper bound values specifi ed in vector b can be chosen to incorporate experimen-
tally determined maximal enzyme capacities, also known as Vmax values, or some arbi-
trarily chosen values to explore network properties. An acceptable example vector is

b = (2 10 4 6 10 8 100 100)T.

Fig. 4. An example system. (A) A four-metabolite, eight-reaction system is fi rst decomposed 
into individual reactions in (B) and then represented mathematically in the S matrix depicted in 
(C). By convention, internal reactions are denoted by vi, and reactions that span the system 
boundary are denoted by bi. External metabolites Ao and Do need not be represented explicitly 
within this framework as they are outside the system under consideration.



448 Joyce and Palsson

The latter two upper bound values for the respective input and output fl uxes are set 
to an arbitrarily large number in this case to refl ect an effectively unlimited capacity. 
Accordingly, given the relatively low upper bounds on the internal fl uxes, the actual 
values of these fl uxes in the calculated optimal fl ux distribution will never approach 
these levels.

Utilizing the information compiled above, the MATLAB function linprog() can be 
used to solve for a steady-state fl ux distribution that maximizes for the output of 
metabolite D under wild-type conditions, as detailed in Box 1. It should be noted that 
the default MATLAB optimization solver is only suitable for problems of this and 
slightly larger magnitude. Typical biological problems that involve many more varia-
bles and constraints require more sophisticated optimization software such as the pack-
ages available through LINDO and GAMS (Note 1).

Having used the above information to simulate the wild-type case, the upper bound 
b vector is modifi ed to simulate a gene deletion. For example, if we want to examine 
the effects of deleting the enzyme responsible for the conversion of metabolite C to D, 
fl ux v6 is restricted to 0:

b = (2 10 4 6 10 0 100 100)T.

Similarly, a v5, v6 double mutant is simulated using the following vector:

b = (2 10 4 6 0 0 100 100)T.

Previous studies utilized this general strategy to simulate gene knockouts in compu-
tational investigations of gene essentiality using genome-scale bacterial models 
(see, for example, E. coli [48, 55], H. infl uenzae [56], H. pylori [57, 58]) as well as in 
the archaeal model of M. barkeri (59) and in the eukaryotic model of S. cerevisiae 
(60–62) (Notes 3 and 4).

4. Conclusion
Constraint-based modeling and its associated analyses are powerful tools that can 

be used to computationally predict gene essentiality with a high degree of success. This 
strategy aids researchers by identifying the most interesting knockouts that warrant 
future study, thus prioritizing experimental projects and saving considerable time. 
Beyond addressing the biological question associated with determining gene essential-
ity, this computational approach also has medical relevance. In pathogenic microbial 
models, each identifi ed essential gene suggests a potential drug target that could be 
used to develop effective therapeutics in the future. Furthermore, progress is being 
made in applying this modeling framework to other aspects of the cell, such as in RNA 
and protein synthesis (63), cell signaling (64–66), and transcriptional regulatory net-
works (67). Because each of these network types are interrelated in terms of shared 
components and metabolites, these efforts are setting the stage for pushing the fi eld a 
signifi cant step forward toward generating integrated models of the entire cell (Fig. 5). 
As more genome-scale models are developed (Note 1), existing models enhanced 
(Notes 4 and 5), and different types of models integrated, additional applications for 
the constraint-based modeling approach will become apparent (Note 2). Consequently, 
the fl exibility of the constraint-based modeling framework will continue to be exploited 
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to aid in the prediction of gene essentiality and drive the exploration of countless other 
exciting biological questions.

Notes
1. This chapter presents the basic steps required to reconstruct and analyze genome-scale meta-

bolic networks. These model systems quickly grow in size and scale, introducing computa-
tional challenges that need to be addressed. As previously noted, with large-scale models it 
may be necessary to use a robust computational platform designed specifi cally for optimiza-
tion problems, such as those developed by LINDO Systems, Inc., and available through 
GAMS.

Furthermore, data management becomes diffi cult as models scale up in size. For example, 
the most current E. coli model contains 904 genes and 931 unique biochemical reactions 
(68). Building a genome-scale model within the framework proposed in Section 3 is possible 
using ubiquitous spreadsheet software such as Excel (Microsoft, Redmond, WA), but this 
effort would likely be slow, unwieldy, and error-prone. In recent years, an integrative data 
management and analysis software platform called SimPheny (Genomatica, San Diego, CA) 
has been developed specifi cally to address the data-management and computational chal-
lenges inherent in building large-scale cellular models. This versatile platform provides 
network visualization, database support, and various analytical tools that greatly facilitate 
the construction and study of genome-scale cellular models.

Fig. 5. The next big challenge: model integration. This chapter has illustrated the utility of 
constraint-based modeling and analysis in computationally assessing gene essentiality for 
metabolism. The constraint-based approach has been applied to other systems as well. To date, 
however, these models have been developed and analyzed in isolation despite the fact that these 
systems are all interrelated, as shown in this conceptual fi gure. For example, cellular signals, 
or inputs, are recognized by the cell signaling network, which in turn stimulates regulatory 
processes. These regulatory processes mediate RNA and protein synthesis, ultimately leading 
to the production of enzymes that perform metabolic processes that result in cell growth or 
maintenance. The dashed arrows highlight the interconnectivity of these networks in the form 
of shared molecular components or feedback mechanisms. In principle, the constraint-based 
formalism can be used as a platform to capture these systems into a single picture. Accordingly, 
one of the next major challenges facing the fi eld is to integrate these models of disparate cellular 
processes, thus pushing toward one of the fi eld of system biology’s foundational goals: to com-
putationally represent and analyze models of entire cells and biological systems.
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Currently, more than a dozen genome-scale metabolic models have been published and 
are available (Table 1) for further research and analysis. Most of these models represent 
bacteria and range from the important model organism E. coli (55, 68, 69) to pathogenic 
microbes such as H. pylori (57, 58) and S. aureus (70). Furthermore, recently developed 
models of G. sulfurreducens (71) and S. coelicolor (72) may become important for their 
facilitation of studies that probe these organisms’ respective potential bioenergetic and 
therapeutics-producing properties.

Representative constraint-based models have also appeared from the other two major 
branches of the tree of life. The recently developed metabolic reconstruction of M. barkeri 
(59), an interesting methanogen with bioenergetic potential, represents the fi rst constraint-
based model of an archaea that has been used to aid in the analysis of experimental data 
from this relatively obscure group of organisms. Furthermore, several eukaryotic models also 
have been developed. The metabolic models of the baker’s or brewer’s yeast S. cerevisiae 
(61, 62, 73) are second only to the E. coli models in terms of relative maturity and have been 
used in a variety of studies designed to assess network properties (for recent examples, see 
Refs. 74 and 75). Metabolic models of higher-order systems are also becoming available, 
such as a model of mouse (Mus musculus [76]), as well as human cardiac mitochondria (50) 
and the human red blood cell (77).

As more of these genome-scale models are developed, the issue of making their contents 
available to the broader research community is of primary concern. Given their inherent 
complexity, there is a need for a standardized format in which their contents can be repre-
sented in order to circumvent potential problems associated with the current typical means 
of distribution of models via nonstandard fl at-fi le or spreadsheet format. In an effort to miti-
gate this defi ciency, the Systems Biology Markup Language (SBML) (78), for example, has 
been developed to provide a uniform framework in which models can be represented, and 
the recently initiated MIRIAM (“minimum information requested in the annotation of bio-
chemical models”) project (79) and affi liated databases have appeared to provide greater 
transparency as to the contents and potential defi ciencies of models. The adoption of these 
or similar standards will be important to the advancement of the fi eld and in promoting its 
general utility in biological research.

2. A rapidly growing collection of analytical methods have been developed for use in conjunc-
tion with constraint-based models (reviewed in Ref. 12), some of which we briefl y introduce 
in this section. Although the focus of this chapter is the use of constraint-based models to 
assess gene essentiality, these models can also be used to predict behavior of viable gene 
deletions. For example, FBA uses LP to identify the optimal metabolic state of the mutant 
strain. In contrast, minimization of metabolic adjustment (MOMA) uses quadratic program-
ming (QP) to identify optimal solutions that minimize the fl ux distribution distance between 
a wild-type and simulated gene deletion strain (86, 87). Experimental data seem to confi rm 
the MOMA assumption that knockout strains utilize the metabolic network similar to wild 
type (86). It remains to be determined if this is true in all situations or if the network opti-
mizes for growth over time after gene deletion.

A more recently developed method known as regulatory on/off minimization (ROOM) 
(88) is another constraint-based analysis technique that uses a mixed-integer linear program-
ming (MILP) strategy to predict the metabolic state of an organism after a gene deletion by 
minimizing the number of fl ux changes that occur with respect to wild type. In other words, 
this algorithm aims to identify fl ux distributions that are qualitatively the most similar to 
wild type in terms of the number and types of reactions that are utilized. Whereas MOMA 
seems to better predict the initial metabolic adjustment that occurs after the genetic perturba-
tion, ROOM, like FBA, better predicts the later, stabilized growth phenotype.
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Constraint-based modeling also has applications in the metabolic engineering fi eld. Iden-
tifying optimal metabolic behavior of mutant strains using a bilevel optimization framework 
has been employed by OptKnock (89). This metabolic engineering strategy uses genome-
scale metabolic models and a dual-level, nested optimization structure to predict which gene 
deletion(s) will lead to a desired biochemical production while retaining viable growth char-
acteristics. This technique establishes a framework for microbial strain design and improve-
ment (90) and has the potential for signifi cant impact.

3. Many studies have used genome-scale constraint-based models to assess gene essentiality, 
in particular using models of E. coli (48, 55), H. infl uenzae (56), H. pylori (57), M. barkeri 
(59), and S. cerevisiae (60, 62) under various growth conditions. Each study simulated gene 
deletions by constraining the fl ux through the associated reaction(s) to zero, as described in 
Section 3.4.2 and Box 1. Relatively few central metabolic genes are predicted to be lethal, 
as shown in Table 3. This observation likely refl ects the inherent redundancy and high degree 
of interconnectivity that is characteristic of central metabolism. In addition, H. infl uenzae 
seems to be less robust than E. coli against single-gene deletions as a higher percentage of 
central metabolic genes are predicted to be essential. Furthermore, given that these networks 
appear generally robust against single-gene deletions, perhaps future studies should focus on 
lethal double mutants, known as synthetic lethal mutants, which are commonly studied in 

Table 3
Computationally Predicted Gene Essentiality

Organism No growth Impaired growth

E. coli (49, 55) rpiAB, pgk, acnAB, gltA, icdA, tktAB, 
gapAC

atp, fba, pfkAB, tpiA, 
eno, gpmAB, nuo, 
ackAB, pta

H. infl uenzae (56) eno, fba, fbp, pts, gapA, gpmA, pgi, pgk, 
ppc, prsA, rpiA, tktA, tpiA

cudABCD, atp, ndh, 
ackA, pta, gnd, pgl, 
zwf, talB, rpe

H. pylori (57) aceB, ppa, prsA, tpi, tktA, eno*, pgi*, pgk*, 
gap*, pgm*, ppaA*, rpe*, rpi*, fba*

M. barkeri (59) ackA*, pta*, cdhABCDE*, cooS*, 
fmdABCDEF*, fwdBDEG*, ftr*, mch*, 
mtd*, mer*, mtrABCDEFGH*, mtaABC*, 
mcrABG*, hdrABCDE*, 
fpoABCDFHIJKLMNO*, frhABDG*, 
echABCDEF*, ahaABCDEFHIK*

S. cerevisiae (60, 62) ERG13, ACS2, ERG10, IPP1, CDS1, PSA1, 
TRR1, GUK1, PMI40, SAH1, SEC53, 
ERG26, OLE1, ERG25, ERG1, ERG11, 
ERG7, ERG9, ERG20, FAS1, ERG27, 
ERG12, ERG8, ACC1, MVD1, IDI1, 
FAS2, PIS1, DPM1

ATP16, RKI1, ILV3, 
ILV5, PGI1, TPI1, 
FBA1, PGK1

This table summarizes some results from studies that used constraint-based metabolic models to predict 
gene essentiality. The “No growth” column lists the gene-deletion strains that had a simulated lethal 
phenotype (i.e., Z = 0). The “Impaired growth” column lists gene-deletion strains whose simulated 
phenotype was less than the wild-type strain, but not lethal (i.e., Zwild-type > Zdeletion-strain).

*These genes are essential under some, but not all, tested environmental conditions.
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S. cerevisiae (80, 81). Results from such studies are beginning to appear (58, 61) and may 
provide additional insight into gene and reaction essentiality as well as metabolic network 
robustness.

4. Validating model predictions is a critical component in constraint-based model analysis. 
Growth phenotype data, available for a number of knockout strains and organisms, can be 
acquired from biochemical literature (82) and online databases, including ASAP (83) for E. 
coli as well as CYGD and SGD for S. cerevisiae. Experimental growth phenotype data are 
available to assess directly the predictive power of the model for four of the fi ve organisms 
listed previously and shows that correct predictions were made in ~60%, 86%, 83%, and 
92% of cases for H. pylori (57), E. coli (48), S. cerevisiae (62), and M. barkeri (59), respec-
tively. These comparisons serve two important functions: validation of the general predictive 
potential of the model and identifi cation of areas that require refi nement. In this sense, con-
straint-based models are particularly useful in experimental design by directing research to 
the most or least poorly understood biological components. Note 5 details how to interpret 
incorrect model predictions and their likely causes.

5. In the studies discussed in Note 3 and Note 4, the model predictions, when compared with 
experimental fi ndings, failed most often by falsely predicting growth when the gene deletion 
leads to a lethal phenotype in vivo. This trend indicates that the most common cause of false 
predictions is due to lack of information included in the network; for example, certain impor-
tant pathways not related to metabolism in which the deleted gene participates may not be 
represented. In addition, the objective function may not be defi ned properly by failing to 
include the production of a compound required for growth. This latter case was shown to 
account for many false predictions when using a yeast metabolic model to account for strain 
lethality (61) as a few relatively minor changes to the biomass function dramatically improved 
the model’s predictive capability. Alternatively, the gene deletion may lead to the production 
of a toxic by-product that ultimately kills the cell, a result for which this approach cannot 
account. Furthermore, certain isozymes are known to be dominant, whereas current genome-
scale metabolic models typically assign equal ability to each isozyme. If this in fact is the 
case, the model would predict viable growth for the dominant isozyme deletion, whereas in 
vivo, the minor isozyme(s) would not suffi ciently rescue the strain from the deletion of its 
dominant counterpart.

An additional major error source stems from the lack of regulatory information incorpo-
rated into the previously described models. A Boolean logic approach has been used to 
include transcription factor–metabolic gene interactions and enhance the accuracy of con-
straint-based model predictions (48) and in genome-scale models of E. coli (45) and yeast 
(84). Regulatory information is available in the primary literature in addition to online 
resources such as EcoCyc and RegulonDB (85). Furthermore, these interactions can be 
derived from ChIP-chip analysis of transcription factors and corresponding gene expression 
microarray data (45).

Incorrect predictions are less often due to false predictions of lethality. These uncommon 
cases often suggest the presence of previously unidentifi ed enzyme activities, which, if added 
to the model, would lead to accurate predictions. They may also refl ect improper biomass 
function defi nition, but in a different sense from the situation described above. For example, 
rather than failing to include compounds required for growth, it is also possible that certain 
compounds are included in the biomass function erroneously and may actually not be essen-
tial to support biological growth. In any case, inaccurate predictions often can be attributed 
to a paucity of information and not simply a technique failure, thus validating the general 
strategy of constraint-based modeling.
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