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Predicting Gene Essentiality Using Genome-Scale
in Silico Models

Andrew R. Joyce and Bernhard @. Palsson

Summary

Genome-scale metabolic models of organisms can be reconstructed using annotated genome sequence
information, well-curated databases, and primary research literature. The metabolic reaction stoichiometry
and other physicochemical factors are incorporated into the model, thus imposing constraints that represent
restrictions on phenotypic behavior. Based on this premise, the theoretical capabilities of the metabolic
network can be assessed by using a mathematical technique known as flux balance analysis (FBA). This
modeling framework, also known as the constraint-based reconstruction and analysis approach, differs
from other modeling strategies because it does not attempt to predict exact network behavior. Instead, this
approach uses known constraints to separate the states that a system can achieve from those that it cannot.
In recent years, this strategy has been employed to probe the metabolic capabilities of a number of
organisms, to generate and test experimental hypotheses, and to predict accurately metabolic phenotypes
and evolutionary outcomes. This chapter introduces the constraint-based modeling approach and focuses
on its application to computationally predicting gene essentiality.

Key Words: computational modeling; constraint-based reconstruction and analysis; flux balance analy-
sis (FBA); gene essentiality prediction; metabolic phenotype; systems biology.

1. Introduction

The development of high-throughput experimental techniques in recent years has led
to an explosion of genome-scale data sets for a variety of organisms. Considerable
efforts have yielded complete genomic sequences for hundreds of organisms (Z), from
which gene annotation provides a list of individual cellular components. Microarray
technology affords researchers the ability to probe gene expression patterns of cells and
tissues on a genome scale. Genome-wide location analysis, also known as ChIP-chip
(2), provides transcription factor binding site information for the entire cell. Further-
more, advances in the fields of fluxomics (3) and proteomics further add to the vast
quantity of data currently available to researchers. Integration of these data sets to
extract the most relevant information to formulate a comprehensive view of biological
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systems is a major challenge currently facing the biological research community (4).
Achieving this task will require comprehensive models of cellular processes.

A prudent approach to gaining biological understanding from these complex data
sets involves the development of mathematical modeling, simulation, and analysis
techniques (5). For many years, researchers have developed and analyzed models of
biological systems via simulation, but these efforts often have been hampered by lack
of complete or reliable data. Some examples of the modeling philosophies and
approaches that have been pursued include deterministic kinetic modeling (6, 7),
stochastic modeling (8, 9), and Boolean modeling (10). Many of these approaches are
implicitly limited by requiring knowledge of unknown parameters that are difficult or
impossible to experimentally determine or approximate. Furthermore, the above
approaches typically require substantial computational power, thus limiting the scale
of the models that can be developed.

In recent years, however, great strides have been made in developing and using
genome-scale metabolic models of a number of organisms using another modeling
technique that is not subject to many of the aforementioned limitations. This approach,
known as constraint-based reconstruction and analysis (11-15), has been employed
to generate genome-scale models for organisms from all three major branches of
the tree of life. Although bacterial models dominate this growing collection, a model
from archaea has recently appeared, and several eukaryotic models are also available
(see Note 1 and Table 1 for an overview of existing constraint-based metabolic
models).

Among other uses (see Note 2 and Ref. 12), these models have facilitated the com-
putational investigation of gene essentiality. Flux balance analysis (FBA) (16, 17) is a
powerful mathematical approach that uses optimization by linear programming to study
the properties of metabolic networks under various conditions. When using FBA, the
investigator chooses a property to optimize, such as biomass production in microbial
models, and then calculates the optimal flux distribution across the metabolic model
that leads to this result. Accordingly, this methodology allows the investigator to assess
wild-type growth capabilities of the modeled organism. Furthermore, metabolic gene
knockout strains can be simulated simply by removing associated reaction(s) from the
model. By comparing predicted growth rates before and after introducing the simulated
gene deletion, the gene’s essentiality can be assessed (i.e., growth will be zero if the
removed gene is essential for biomass production). Given that this type of analysis
relies on computer simulation, computational results must be confirmed by generating
and studying the effects of gene knockouts at the lab bench. However, by first investi-
gating these situations at the computer workstation, or in silico, researchers can be
directed to the most interesting and scientifically meaningful experiments to perform,
thus limiting the amount of time spent conducting experiments of less scientific value.

In this chapter, we provide an introduction to the principles that underlie constraint-
based modeling and FBA of biological systems. We give a brief but practical example
to directly introduce the method and associated concepts. Furthermore, we discuss both
the utility and potential shortcomings of these models in studying gene essentiality by
reviewing results from several published studies. Finally, we briefly discuss additional
interesting applications and some potential future directions for constraint-based mod-
eling and analysis.
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Table 1
Currently Available Constraint-Based Models
Total Model Model Model
Organism genes genes  metabolites  reactions  Reference
Bacteria
Bacillus subtilis 4,225 614 637 754 91)
Escherichia coli 4,405 904 625 931 (68)
720 438 627 (55)
Geobacter sulfurreducens 3,530 588 541 523 (71)
Haemophilus influenzae 1,775 296 343 488 (56)
400 451 461 (92)
Helicobacter pylori 1,632 341 485 476 (58)
291 340 388 (57)
Lactococcus lactis 2,310 358 422 621 93)
Mannheimia succinciproducens 2,463 335 352 373 (94)
Staphylococcus aureus 2,702 619 571 641 (70)
Streptomyces coelicolor 8,042 700 500 700 (72)
Archaea
Methanosarcina barkeri 5,072 692 558 619 (59)
Eukarya
Mus musculus 28,287 1,156 872 1,220 (76)
Saccharomyces cerevisiae 6,183 750 646 1,149 (62)
672 636 1,038 (61)
708 584 1,175 (73)
Human cardiac mitochondria 615% 298 230 189 (50)
Human red blood cell NA NA 39 32 (77)

This table summarizes model statistics for the models developed and published to date. *This number

is based on the protein species identified in a proteomics study of the human cardiac mitochondria from
which the components of the reconstruction were derived (95). NA, not applicable.

2. Materials

1.

Scientific literature and textbooks; for example, the PubMed database (www.pubmed.gov)
and biochemical and organism-specific texts.

2. Online Genomic Databases and Resources (Table 2).

3. Software; for example, Microsoft Excel (office.microsoft.com), MATLAB
(www.mathworks.com), Mathematica (www.wolfram.com), LINDO (www.lindo.com),
GAMS (www.gams.com), and SimPheny (www.genomatica.com).

3. Methods

This section outlines the general procedure (Fig. 1) followed in constructing and

using a constraint-based model in conjunction with FBA to computationally investigate
gene essentiality. This model building and analysis procedure can be divided approxi-
mately into four successive steps:
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Fig. 1. Constraint-based modeling. Application of constraints to a reconstructed metabolic
network leads to a defined solution space that specifies a cell’s allowable metabolic phenotypes.
Flux balance analysis (FBA) uses linear programming to find solutions in the space that maxi-
mize or minimize a given objective. In the graphical representation on the right, the optimal
flux distributions that maximize [, which represents growth/biomass production for the purposes
of this chapter, are highlighted. The effects of gene knockouts on the solution space and meta-
bolic capabilities can be assessed by simulating a gene knockout and comparing its ability to
grow in silico relative to wild type. Impaired knockout strains are those that have a lower
maximum value for the objective function than wild type, and lethal knockout strains are those
that have a zero value for the objective function, indicating no growth capability when the strain
harbors that particular gene deletion. As a reference, the wild-type flux distribution vector is
also depicted by the dashed line on the impaired and lethal knockout plots.

Network reconstruction.

Stoichiometric (S) matrix compilation.

Identification and assignment of appropriate constraints to molecular components.
Assessment of gene essentiality via flux balance analysis (FBA).

Sl

In this section, each of the above components will be discussed in turn. In addition,
a simple example will be provided in Section 3.5 to illustrate directly the concepts
described herein.

3.1. Network Reconstruction

The first step in constraint-based modeling, known as network reconstruction,
involves generating a model that describes the system of interest. This process can be
decomposed into three parts typically performed simultaneously during model con-
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struction. We detail each of these components, known individually as data collection,
metabolic reaction list generation, and gene-protein-reaction (GPR) relationship deter-
mination in this section.

3.1.1. Model Component Data Collection

Perhaps the most critical component of the constraint-based modeling approach
involves the collection of data that is relevant to the system of interest. Not long ago,
this was among the most challenging steps as researchers had access to very limited
amounts of biochemical data. However, the success of recent genome sequencing (18)
and annotation (19, 20) projects and advances in high-throughput technologies as well
as the development of detailed and extensive online database resources has improved
matters dramatically.

After identifying the system or organism of interest, relevant data sources must be
identified to begin compiling the appropriate metabolites, biochemical reactions, and
associated genes to be included in the model. The three primary types of resources are
the biochemical literature, high-throughput data, and integrative database resources.

3.1.1.1. BIOCHEMICAL LITERATURE

Direct biochemical information found in the primary literature usually contains the
best-quality data for use in reconstructing biochemical networks. Important details,
such as precise reaction stoichiometry, in addition to its reversibility, are often directly
available. Given that scrutinizing each study individually is an excessively time-
consuming and tedious task, biochemical textbooks and review articles should be
utilized when available and the primary literature used to resolve conflicts. Further-
more, many volumes devoted to individual organisms and organelles, such as
Escherichia coli (21) and the mitochondria (22), are increasingly becoming available
and are typically excellent resources.

3.1.1.2. HIGH-THROUGHPUT DATA

Genomic and proteomic data are useful sources of information for identifying rele-
vant metabolic network components. In recent years, the complete genome sequence
for hundreds of organisms has been determined (18). Furthermore, extensive bioinfor-
matics-based annotation efforts (20) have made great strides toward identifying all
coding regions contained within the sequence. For those biochemical reactions known
to occur in the organism, but whose corresponding genes are unknown, sequence align-
ment tools such as BLAST and FASTA (23) can be utilized to assign putative functions
based on similarity to orthologous genes and proteins of known function. The subsys-
tem approach (19) is another strategy available to researchers looking for functional
gene assignments. Rather than focusing on the annotation of individual genomes, the
subsystem approach calls for the annotation of cellular pathways and processes across
all sequenced organisms. The associated online resource known as SEED is becoming
an increasingly useful tool in constraint-based model-building efforts. It should be
emphasized, however, that putative assignments are hypothetical and subject to revision
upon direct biochemical characterization. As one final note on genome annotation,
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interesting efforts are also under way to automatically reconstruct networks based on
annotated sequence information alone (24). However, these automated approaches are
limited in that they can only be as good as the genome annotation from which they are
derived. Therefore, considerable quality-control efforts should be conducted prior to
extensive use of these networks.

The proteome of a biological system defines the full complement, localization, and
abundance of proteins. Although these data are generally difficult to obtain, data for
some subcellular components and bacteria are available (25, 26). Proteomic data are
of particular importance in eukaryotic systems modeling, in which care must be taken
to assign reactions to their appropriate subcellular compartment or organelle. Similarly,
when modeling a system under a single condition, these data are important in identify-
ing active components.

In addition to the primary literature, genomic and proteomic data repositories can
be accessed via the Internet, as can the additional resources discussed in the next section
and listed in Table 2.

3.1.1.3. INTEGRATIVE DATABASE RESOURCES

In recent years, significant efforts have been devoted to developing comprehensive
databases that integrate many information sources, including those data types previ-
ously described. Of particular interest are resources that have incorporated these dis-
parate data sources into metabolic pathway maps. Kyoto Encyclopedia of Genes and
Genomes (KEGGQG) (27) is perhaps the most extensive and well-known among these
resource types. Pathway maps for numerous metabolic processes are available through
KEGG as is information regarding orthologous genes for a variety of organisms, thus
greatly enhancing the power of this resource. Additional organism-specific database
resources are also available. For example, EcoCyc (28) incorporates gene and re-
gulatory information as well as enzyme reaction pathways particular to E. coli. The
Comprehensive Yeast Genome Database (CYGD) (29) and Saccharomyces Genome
Database (SGD) (30) are other examples of Saccharomyces cerevisiae—specific
comprehensive resources. Finally, the BioCyc resource (31, 32) contains automated
annotation-derived pathway/genome databases for 250 individual organisms.

Additional important resources provide functional information for individual genes
and gene products. These ontology-based tools strive to describe how gene products
behave in a cellular context as they typically contain information regarding the function
and localization of gene products within the cell. Perhaps the most well-known resource
is Gene Ontology Consortium (GO) (33, 34), which contains ontological information
for a variety of organisms. In recent years, organism-specific ontologies, such as Gen-
ProtEC (35) for E. coli, have also appeared. In sum, these online resources are valuable
in that they typically incorporate information regarding individual genes and proteins
as well as information regarding their regulation, cellular localization, and participation
in enzymatic reactions into a single integrative resource.

3.1.2. Metabolic Reaction List Generation

The next step in defining a constraint-based model requires clearly specifying the
reactions to be included based on the metabolite and enzyme information collected in
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the previous step. A metabolic reaction can be viewed simply as substrate(s) conversion
to product(s), often by enzyme-mediated catalysis. Each reaction in a metabolic network
always must adhere to the fundamental laws of physics and chemistry; therefore, reac-
tions must be balanced in terms of charge and elemental composition. For example,
the depiction of the first step of glycolysis in Figure 2A is neither elementally nor
charge balanced. However, inclusion of hydrogen in Figure 2B balances the reaction
in both regards.

Biological boundaries also must be considered when defining reaction lists. Meta-
bolic networks are composed of both intracellular and extracellular reactions. For
example, in bacteria the reactions of glycolysis and the tricarboxylic acid cycle (TCA)
take place intracellularly in the cytosol. However, glucose must be transported into the
cell via an extracellular reaction in which a glucose transporter takes up extracellular
glucose into the cell. An additional boundary consideration must be recognized particu-
larly when modeling eukaryotic cells. Given that certain metabolic reactions take place
in the cytosol and others take place in various organelles, reactions must be compart-
mentalized properly. Data that will assist in this process is now being generated in
which proteins are tagged, for example, with green fluorescent protein (GFP), or rec-
ognized by antibodies and localized to subcellular compartments or organelles (36-38).
Furthermore, computational tools have also been developed to predict subcellular loca-
tion of proteins in eukaryotes (39).

Finally, reaction reversibility must be defined. Certain metabolic reactions can
proceed in both directions. Thermodynamically, this permits reaction fluxes to take
on both positive and negative values. The KEGG and BRENDA online resources
(Table 2) are two useful resources that catalogue enzyme reversibility.

3.1.3. Determining GPR Relationships

Upon completing the reaction list, the protein or protein complexes that facilitate
each metabolite substrate to product conversion must be determined. Each subunit of
a protein complex must be assigned to the same reaction. Additionally, some reactions
can be catalyzed by different enzymes. These so-called isozymes must all be assigned
to the same appropriate reaction. Biochemical textbooks often provide the general name
of the enzyme(s) responsible; however, the precise gene and associated gene product
specific for the model organism of interest must be identified. The database resources
detailed in Section 3.1.1 and Table 2 assist this process. In particular, KEGG and GO

A )
CeH120g + ATP* ey CeH110sPO> + ADP>

B )
CoHy,Og + ATPE "5 6 1 O,PO2 + ADPZ + H*
Fig. 2. Charge and elementally balanced reactions. (A) This depiction of the hexokinase-
mediated conversion of glucose to glucose-6-phosphate is neither elementally nor charge
balanced. (B) Inclusion of hydrogen both elementally and charge balances the reaction.
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provide considerable enzyme-reaction information for a variety of organisms. Further-
more, protein-protein interaction data sets, derived from yeast two-hybrid experiments
(40), for example, may be useful resources for defining enzymatic complexes in less-
defined situations. One must take care in using these data, however, given their gener-
ally high false-positive rate and questionable reproducibility (41, 42).

3.2. Defining the Stoichiometric Matrix

The compiled reaction list can be represented mathematically in the form of a stoi-
chiometric (S) matrix. The S matrix is formed from the stoichiometric coefficients of
the reactions that participate in a reaction network. It has m X n dimensions, where m
is the number of metabolites and » is the number of reactions. Therefore, the S matrix
is organized such that every column corresponds with a reaction, and every row corre-
sponds with a metabolite. The S matrix describes how many reactions a compound
participates in, and thus, how reactions are interconnected. Accordingly, each network
that is reconstructed in this way effectively represents a two-dimensional annotation of
the genome (11, 43).

Figure 3 shows how a simple two-reaction system can be represented as an S matrix.
In this example, v, and v, denote reaction fluxes and are associated with individual
proteins or protein complexes that catalyze the reactions. Element S; represents the
coefficient of metabolite i in reaction j. Furthermore, notice that substrates are assigned
negative coefficients and products are given positive coefficients. Also, for those reac-
tions in which a metabolite does not participate, the corresponding element is assigned
a zero value.

3.3. Identifying and Applying Appropriate Constraints

Having developed a mathematical representation of a metabolic network, the next
step requires that any constraints be identified and imposed on the model. Cells are
subject to a variety of constraints from environmental, physiochemical, evolutionary,
and regulatory sources (12, 14). In and of itself, the S matrix defined in the previous
section is a constraint in that it defines the mass and charge balance requirements
for all possible metabolic reactions that are available to the cell. These stoichio-
metric constraints establish a geometric solution space (see Fig. 1 for a graphical

v, v,
-1 0
-1 0
1 -1
0 -2
0 1

Vi

A+B —"» ¢ §=

>

C+2D —%+ E

Ho QW

Fig. 3. Generating the stoichiometric (S) matrix. The reaction list on the left is mathemati-
cally represented by the S matrix on the right. As a convention, each row represents a metabolite,
and each column represents a reaction in the network. Additionally, input or reactant metabolites
have negative coefficients and outputs or products have positive coefficients. Metabolites that
do not participate in a given reaction are assigned a zero value.
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representation of the solution space concept) that contains all possible metabolic
behaviors.

Additional constraints can be identified and imposed on the model, which has the
effect of further limiting the metabolic behavior solution space. Maximum enzyme
capacity (V.x), which can be determined experimentally for some reactions, is one
example and can be imposed by limiting the flux through any associated reactions to
that maximum value. Furthermore, the uptake rates of certain metabolites can be deter-
mined experimentally and used to restrict metabolite uptake to the appropriate levels
when mathematically analyzing the metabolic model. Additional types of constraints
have also been applied, including thermodynamic limitations (44), internal metabolic
flux determinations (13), and transcriptional regulation (45—48).

With respect to computationally assessing gene essentiality, a similar strategy to
setting the maximum enzyme capacity can be utilized. By simply restricting the flux
through reactions associated with the protein of interest to zero, a gene knockout can
be simulated. Flux balance analysis (FBA) then can be used to examine the simulated
knockout properties relative to wild type, as outlined in the next section.

3.4. Assessing Gene Essentiality via Flux Balance Analysis

Flux balance analysis (FBA) is a powerful computational method that relies on
optimization by linear programming to investigate the production capabilities and sys-
temic properties of a metabolic network. By defining an objective, such as biomass
production, ATP production, or by-product secretion, FBA can be used to find an
optimal flux distribution for the network model that maximizes the stated objective.
This section briefly introduces some main concepts that underlie FBA, with an empha-
sis on how FBA can be utilized to assess gene essentiality in a metabolic network.

3.4.1. Linear Programming

The solution space defined by constraint-based models can be explored via linear
optimization by utilizing linear programming (LP). The LP problem corresponding with
the optimal flux distribution determination through a metabolic network can be formu-
lated as follows:

Maximize Z=c™
Subjectto S-v=20
o;<v; <B; for all reactions i.

In the above representation, Z represents the objective function, and ¢ is a vector of
weights on the fluxes v. The weights are used to define the properties of the particular
solution that is sought. The latter statements represent the flux constraints for the meta-
bolic network. § is the matrix defined in the previous section and contains the mass
and charge balanced representation of the system. Furthermore, each reaction flux v; in
the system is subject to lower and upper bound constraints, represented by o, and f3;,
respectively.

The solution to this problem yields not only a maximum value for the objective
function Z, but also results in an optimal flux distribution (v) that allows the highest



444 Joyce and Palsson

Box 1: FBA using Matlab

Here we use Matlab to solve an FBA problem for 3 cases using the system Case 1: Wild Type
in Figure 4. The linprog() function accepts six arguments and returns two

values in the following form:
[v, Z] = linprog(c, Aeq, beq, S, b, a, B). 12
This solves the [ollowing LP problem:
Minimize L-cvy

Subject to Aeq-v < beq L R
S-v=bh Case 2 solves the same problem, but this time after knocking out

asy<B reaction v5 by moditying the 8 vector:

. . . . >> beta — [2 10 4 6 10 0 100 100)';
Since the system does not have inequality constraints other than flux vector t !

bounds, Aeq is set equal to the identity matrix and beq to B, so that Case 2: v6 Knockout
Aeq - v < beq
is equivalent to 5
s 8 ® s
The code to solve the wild type problem (Case 1) of interest in Matlab’s 0 I @
framework follows, using @ and 8 as defined in the text :
8
>>§=1[-1-10023¢C1C;
10-11-1¢C0¢;
011-1C-10C¢C
N [g g g 2]1 1o Finally, Case 3 simulates a “lethal” deletion strain by knocking
»> b = i 01 .
»> alpaa = [0000¢C 0C 0] outboth v5 and vé:
»> bete - [2 10 4 6 10 8 100 1000 ';
f[000003C11; >> beta = [2 10 4 6 0 0 100 100]';
neq = eye(8); .
>> [v,2] = lirprog{-c,heq, beta,s,b, alpha, beta) Case 3. v5 & v6 Double Knockout

Optimization terminated successfully.
v = 2.0000 10.0£20 £.1822 3.9137 5.7315 6.2685
12.0000  12.000C o
Z = -12.0000
Note that since Matlab defaults to solving a minimization problem we use
the negative of the optimization vector.

flux through Z. Furthermore, computational assessment of gene essentiality is per-
formed easily within this framework. By setting the upper and lower flux bound con-
straints to zero for the reaction(s) corresponding with the gene(s) of interest, a simulated
gene deletion strain may be created. The examination of simulation results from before
and after introducing the simulated gene deletion leads directly to gene essentiality
predictions.

Problems of this type can be readily formulated and solved by commercial software
packages, such as MATLAB, Mathematica, LINDO, as well as tools available through
the General Algebraic Modeling System (GAMS). Section 3.5 and Box 1 present
simple, hypothetical examples that can be solved using MATLAB. It should also be
noted that these types of analyses yield a single answer; however, it is possible that
multiple equivalent flux distributions that yield a maximal biomass function value exist
for a given network and simulation conditions. This topic has been explored using
mixed-integer linear programming (MILP) techniques with genome-scale metabolic
models (49, 50) but is beyond the scope of this chapter and will not be further
discussed.

0
)0‘,@

3.4.2. Constraints

As previously stated, the S matrix constrains the system by defining all possible
metabolic reactions. In mathematical terms, the stoichiometric (§) matrix is a linear
transformation of the reaction flux vector,
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to a vector of time derivatives of metabolic concentrations
X=(x, X0 ...,X,)

such that

dx

—=S5-v.
dr

Therefore, a particular flux distribution v represents the flux levels through each
reaction in the network. Because the time constants that describe metabolic transients
are fast (of the order tens of seconds or less), whereas the time constants for cell growth
are comparatively slow (of the order hours to days), the behavior of cellular components
can be considered as existing in a quasi-steady state (51). This assumption leads to the
reduction of the previous equation to:

S-v=0.

By focusing only on the steady-state condition, assumptions or rough approximations
regarding reaction kinetics are not needed. Furthermore, based on this premise, it is
possible to determine all chemically balanced metabolic routes through the metabolic
network (52).

The second constraint set is imposed on the individual reaction flux values. The
constraints defined by

o, <v; <B; for all reactions i

specify lower and upper flux bounds for each reaction. If all model reactions are irre-
versible, oo equals 0. Similarly, if the enzyme capacity, or V.., is experimentally
defined, setting B to the known experimental value limits the allowable reaction flux
through the enzyme within the model. In contrast, a gene knockout is simulated by
setting 3; = 0 for gene i (Section 3.5 and Box 1). If constraints on flux values through
reaction v; cannot be identified, then o, and [3; are set to —eo and +oo, respectively, to
allow for all possible flux values. In practice, < is typically represented as an arbitrarily
large number that will exceed any feasible internal flux (see Section 3.5 and Box 1 for
examples). Finally, if a flux is “known,” for example, from detailed experimentation,
o, and ; can be set to the same non-zero value to explicitly define the flux value
associated with reaction v;.

A brief consideration should also be given to specifying input and output constraints
on the system. When analyzing metabolic models in the context of assessing cellular
growth capabilities, input constraints effectively define the environmental conditions
being considered. For example, organisms have various elemental requirements that
must be provided in the environment in order to support growth. Some organisms that
lack certain biosynthetic processes are auxotrophic for certain biomolecules, such as
amino acids, and these compounds must also be provided in the environment.

From an FBA standpoint, these issues mean that input sources must be specified in
the form of input flux constraints specified in v. For example, if one desires to simulate
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rich medium conditions, flux constraints are specified such that all biomolecules that
represent inputs to the system—in other words, all compounds that are available extra-
cellularly—are left unconstrained and can flow freely into the system. In contrast, when
modeling minimal medium conditions, only those inputs that are required for cell
growth, or biomass formation in the formalism being considered here, are allowed to
flow into the system with all other input fluxes constrained to zero (see Ref. 53 for an
example of a large-scale analysis of E. coli growth simulations performed using minimal
media). It should also be noted that certain output flux constraints may need to be set
appropriately in order to allow for the simulated secretion of biomolecules that may
“accumulate” in the process of forming biomass. A simple example of this is allowing
for lactate and acetate secretion when modeling fermentative growth of microbes.

3.4.3. The Objective Function

Given that multiple possible flux distributions exist for any given network, optimiza-
tion can be used to identify a particular flux distribution that maximizes or minimizes
a defined objective function. Commonly used objective functions include production
of ATP or production of a secreted by-product. When assessing the growth capabilities
of a wild-type or simulated mutant microbe using its associated metabolic model,
growth rate, as defined by the weighted consumption of metabolites needed to make
biomass, is maximized. The general analysis strategy asks the question, “Is the meta-
bolic reaction network able to support growth in the given environment, and further,
is the reaction network able to support growth despite a simulated gene deletion?”
Therefore, biomass generation in this modeling framework is represented as a reaction
flux that drains intermediate metabolites, such as ATP, NADPH, pyruvate, and amino
acids, in appropriate ratios (defined in the vector ¢ of the biomass function Z) to support
growth. As a convention, the biomass function is typically written to reflect the needs
of the cell in order to make 1g of cellular dry weight and has been experimentally
determined for E. coli (54). In sum, with the choice of biomass as an objective function,
cell growth, depicted as a non-zero value for Z, will only occur if all the components
in the biomass function can be provided for by the network in the correct relative
amounts. Accordingly, if the in silico knockout fails to exhibit simulated growth
(i.e., Z=0) (see Fig. 1 for a graphical representation of this case), the associated gene
is predicted to be essential.

3.5. A Simple FBA Example

In order to demonstrate the concepts previously introduced, this section presents
a specific example using a simple system. Figure 4A shows a hypothetical four-
metabolite (A, B, C, D), eight-reaction (v, vy, vs, V4, Vs, Vs, b1, by) network. By conven-
tion, each internal reaction is associated with a flux v;, whereas reactions that span the
system boundary are denoted with flux b;. Furthermore, external metabolites A and D
are denoted with subscript “o” to distinguish them from the corresponding internal
metabolite. External metabolites need not be explicitly considered in the stoichiometric
network representation, however.

Figure 4B outlines the reaction list associated with the system. Notice that the con-
version of metabolite B to C is reversible. Rather than treating this as a single reaction,
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Fig. 4. Anexample system. (A) A four-metabolite, eight-reaction system is first decomposed
into individual reactions in (B) and then represented mathematically in the S matrix depicted in
(C). By convention, internal reactions are denoted by v;, and reactions that span the system
boundary are denoted by b,. External metabolites A, and D, need not be represented explicitly
within this framework as they are outside the system under consideration.

however, for simplicity the reaction is decoupled into two separate reactions with indi-
vidual corresponding fluxes.

The S matrix for this system is detailed in Figure 4C. Again, notice how this repre-
sentation follows directly from the reaction list. Metabolite substrates and products are
represented with negative and positive coefficients, respectively. Recall that LP prob-
lems take on the following form:

Maximize Z=c'v
Subjectto S-v=0
a<v; <P for all reactions i.

For example, if the metabolite D output is to be maximized, corresponding with
maximizing the flux through b,, the objective function is defined as follows:

Z:(OOOOOOOI)(VI V2V3V4V5V6b] bz)T

Furthermore, in addition to the mass and charge balance constraints imposed by the
S matrix, lower (o) and upper () bound vectors must be specified for the reaction
vector v. Because all reactions in this network are irreversible, which constrains all
fluxes to be positive, the lower bound vector « is set to zero:

a=00000000)"

Upper bound values specified in vector B can be chosen to incorporate experimen-
tally determined maximal enzyme capacities, also known as V,,,, values, or some arbi-
trarily chosen values to explore network properties. An acceptable example vector is

B=(21046108 100 100)".
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The latter two upper bound values for the respective input and output fluxes are set
to an arbitrarily large number in this case to reflect an effectively unlimited capacity.
Accordingly, given the relatively low upper bounds on the internal fluxes, the actual
values of these fluxes in the calculated optimal flux distribution will never approach
these levels.

Utilizing the information compiled above, the MATLAB function linprog() can be
used to solve for a steady-state flux distribution that maximizes for the output of
metabolite D under wild-type conditions, as detailed in Box 1. It should be noted that
the default MATLAB optimization solver is only suitable for problems of this and
slightly larger magnitude. Typical biological problems that involve many more varia-
bles and constraints require more sophisticated optimization software such as the pack-
ages available through LINDO and GAMS (Note 1).

Having used the above information to simulate the wild-type case, the upper bound
B vector is modified to simulate a gene deletion. For example, if we want to examine
the effects of deleting the enzyme responsible for the conversion of metabolite C to D,
flux v is restricted to O:

B=(2104 6100 100 100)".
Similarly, a vs, v¢ double mutant is simulated using the following vector:
B=(2104600 100 100)".

Previous studies utilized this general strategy to simulate gene knockouts in compu-
tational investigations of gene essentiality using genome-scale bacterial models
(see, for example, E. coli [48, 55], H. influenzae [56], H. pylori [57, 58]) as well as in
the archaeal model of M. barkeri (59) and in the eukaryotic model of S. cerevisiae
(60-62) (Notes 3 and 4).

4. Conclusion

Constraint-based modeling and its associated analyses are powerful tools that can
be used to computationally predict gene essentiality with a high degree of success. This
strategy aids researchers by identifying the most interesting knockouts that warrant
future study, thus prioritizing experimental projects and saving considerable time.
Beyond addressing the biological question associated with determining gene essential-
ity, this computational approach also has medical relevance. In pathogenic microbial
models, each identified essential gene suggests a potential drug target that could be
used to develop effective therapeutics in the future. Furthermore, progress is being
made in applying this modeling framework to other aspects of the cell, such as in RNA
and protein synthesis (63), cell signaling (64-66), and transcriptional regulatory net-
works (67). Because each of these network types are interrelated in terms of shared
components and metabolites, these efforts are setting the stage for pushing the field a
significant step forward toward generating integrated models of the entire cell (Fig. 5).
As more genome-scale models are developed (Note 1), existing models enhanced
(Notes 4 and 5), and different types of models integrated, additional applications for
the constraint-based modeling approach will become apparent (Note 2). Consequently,
the flexibility of the constraint-based modeling framework will continue to be exploited
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Fig. 5. The next big challenge: model integration. This chapter has illustrated the utility of
constraint-based modeling and analysis in computationally assessing gene essentiality for
metabolism. The constraint-based approach has been applied to other systems as well. To date,
however, these models have been developed and analyzed in isolation despite the fact that these
systems are all interrelated, as shown in this conceptual figure. For example, cellular signals,
or inputs, are recognized by the cell signaling network, which in turn stimulates regulatory
processes. These regulatory processes mediate RNA and protein synthesis, ultimately leading
to the production of enzymes that perform metabolic processes that result in cell growth or
maintenance. The dashed arrows highlight the interconnectivity of these networks in the form
of shared molecular components or feedback mechanisms. In principle, the constraint-based
formalism can be used as a platform to capture these systems into a single picture. Accordingly,
one of the next major challenges facing the field is to integrate these models of disparate cellular
processes, thus pushing toward one of the field of system biology’s foundational goals: to com-
putationally represent and analyze models of entire cells and biological systems.

to aid in the prediction of gene essentiality and drive the exploration of countless other
exciting biological questions.

Notes

1. This chapter presents the basic steps required to reconstruct and analyze genome-scale meta-
bolic networks. These model systems quickly grow in size and scale, introducing computa-
tional challenges that need to be addressed. As previously noted, with large-scale models it
may be necessary to use a robust computational platform designed specifically for optimiza-
tion problems, such as those developed by LINDO Systems, Inc., and available through
GAMS.

Furthermore, data management becomes difficult as models scale up in size. For example,
the most current E. coli model contains 904 genes and 931 unique biochemical reactions
(68). Building a genome-scale model within the framework proposed in Section 3 is possible
using ubiquitous spreadsheet software such as Excel (Microsoft, Redmond, WA), but this
effort would likely be slow, unwieldy, and error-prone. In recent years, an integrative data
management and analysis software platform called SimPheny (Genomatica, San Diego, CA)
has been developed specifically to address the data-management and computational chal-
lenges inherent in building large-scale cellular models. This versatile platform provides
network visualization, database support, and various analytical tools that greatly facilitate
the construction and study of genome-scale cellular models.
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Currently, more than a dozen genome-scale metabolic models have been published and
are available (Table 1) for further research and analysis. Most of these models represent
bacteria and range from the important model organism E. coli (55, 68, 69) to pathogenic
microbes such as H. pylori (57, 58) and S. aureus (70). Furthermore, recently developed
models of G. sulfurreducens (71) and S. coelicolor (72) may become important for their
facilitation of studies that probe these organisms’ respective potential bioenergetic and
therapeutics-producing properties.

Representative constraint-based models have also appeared from the other two major
branches of the tree of life. The recently developed metabolic reconstruction of M. barkeri
(59), an interesting methanogen with bioenergetic potential, represents the first constraint-
based model of an archaea that has been used to aid in the analysis of experimental data
from this relatively obscure group of organisms. Furthermore, several eukaryotic models also
have been developed. The metabolic models of the baker’s or brewer’s yeast S. cerevisiae
(61, 62, 73) are second only to the E. coli models in terms of relative maturity and have been
used in a variety of studies designed to assess network properties (for recent examples, see
Refs. 74 and 75). Metabolic models of higher-order systems are also becoming available,
such as a model of mouse (Mus musculus [76]), as well as human cardiac mitochondria (50)
and the human red blood cell (77).

As more of these genome-scale models are developed, the issue of making their contents
available to the broader research community is of primary concern. Given their inherent
complexity, there is a need for a standardized format in which their contents can be repre-
sented in order to circumvent potential problems associated with the current typical means
of distribution of models via nonstandard flat-file or spreadsheet format. In an effort to miti-
gate this deficiency, the Systems Biology Markup Language (SBML) (78), for example, has
been developed to provide a uniform framework in which models can be represented, and
the recently initiated MIRIAM (“minimum information requested in the annotation of bio-
chemical models”) project (79) and affiliated databases have appeared to provide greater
transparency as to the contents and potential deficiencies of models. The adoption of these
or similar standards will be important to the advancement of the field and in promoting its
general utility in biological research.

2. A rapidly growing collection of analytical methods have been developed for use in conjunc-
tion with constraint-based models (reviewed in Ref. 12), some of which we briefly introduce
in this section. Although the focus of this chapter is the use of constraint-based models to
assess gene essentiality, these models can also be used to predict behavior of viable gene
deletions. For example, FBA uses LP to identify the optimal metabolic state of the mutant
strain. In contrast, minimization of metabolic adjustment (MOMA) uses quadratic program-
ming (QP) to identify optimal solutions that minimize the flux distribution distance between
a wild-type and simulated gene deletion strain (86, 87). Experimental data seem to confirm
the MOMA assumption that knockout strains utilize the metabolic network similar to wild
type (86). It remains to be determined if this is true in all situations or if the network opti-
mizes for growth over time after gene deletion.

A more recently developed method known as regulatory on/off minimization (ROOM)
(88) is another constraint-based analysis technique that uses a mixed-integer linear program-
ming (MILP) strategy to predict the metabolic state of an organism after a gene deletion by
minimizing the number of flux changes that occur with respect to wild type. In other words,
this algorithm aims to identify flux distributions that are qualitatively the most similar to
wild type in terms of the number and types of reactions that are utilized. Whereas MOMA
seems to better predict the initial metabolic adjustment that occurs after the genetic perturba-
tion, ROOM, like FBA, better predicts the later, stabilized growth phenotype.
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Constraint-based modeling also has applications in the metabolic engineering field. Iden-
tifying optimal metabolic behavior of mutant strains using a bilevel optimization framework
has been employed by OptKnock (89). This metabolic engineering strategy uses genome-
scale metabolic models and a dual-level, nested optimization structure to predict which gene
deletion(s) will lead to a desired biochemical production while retaining viable growth char-
acteristics. This technique establishes a framework for microbial strain design and improve-
ment (90) and has the potential for significant impact.

3. Many studies have used genome-scale constraint-based models to assess gene essentiality,
in particular using models of E. coli (48, 55), H. influenzae (56), H. pylori (57), M. barkeri
(59), and S. cerevisiae (60, 62) under various growth conditions. Each study simulated gene
deletions by constraining the flux through the associated reaction(s) to zero, as described in
Section 3.4.2 and Box 1. Relatively few central metabolic genes are predicted to be lethal,
as shown in Table 3. This observation likely reflects the inherent redundancy and high degree
of interconnectivity that is characteristic of central metabolism. In addition, H. influenzae
seems to be less robust than E. coli against single-gene deletions as a higher percentage of
central metabolic genes are predicted to be essential. Furthermore, given that these networks
appear generally robust against single-gene deletions, perhaps future studies should focus on
lethal double mutants, known as synthetic lethal mutants, which are commonly studied in

Table 3
Computationally Predicted Gene Essentiality
Organism No growth Impaired growth
E. coli (49, 55) rpiAB, pgk, acnAB, gltA, icdA, tktAB, atp, fba, pfkAB, tpiA,
gapAC eno, gpmAB, nuo,
ackAB, pta
H. influenzae (56) eno, fba, fbp, pts, gapA, gpmA, pgi, pgk, cudABCD, atp, ndh,
ppc, prsA, rpiA, tktA, tpiA ackA, pta, gnd, pgl,
zwf, talB, rpe
H. pylori (57) aceB, ppa, prsA, tpi, tktA, eno®, pgi*, pgk*,
gap*, pgm*, ppaA*, rpe*, rpi*, fba*
M. barkeri (59) ackA*, pta*, cdhABCDE¥, cooS*,

fmdABCDEF*, fwdBDEG*, ftr*, mch¥,
mtd*, mer* mtrABCDEFGH?*, mtaABC%,
mcrABG*, hdrABCDE*,
fpoABCDFHIJKLMNO¥*, frhABDG¥*,
echABCDEF*, ahaABCDEFHIK*

S. cerevisiae (60, 62) ERGI3, ACS2, ERGIO0, IPP1, CDSI, PSAI, ATPI16, RKII, ILV3,
TRRI1, GUKI, PMI40, SAHI, SEC53, ILV5, PGII, TPII,
ERG26, OLEI, ERG25, ERGI, ERGI11, FBAI, PGKI
ERG7, ERGY, ERG20, FAS1, ERG27,

ERGI2, ERGS, ACCI, MVDI, IDII,
FAS2, PISI, DPM1

This table summarizes some results from studies that used constraint-based metabolic models to predict
gene essentiality. The “No growth” column lists the gene-deletion strains that had a simulated lethal
phenotype (i.e., Z = 0). The “Impaired growth” column lists gene-deletion strains whose simulated
phenotype was less than the wild-type strain, but not lethal (i.e., Zyid.ype > Zueletion-strain)-

*These genes are essential under some, but not all, tested environmental conditions.
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S. cerevisiae (80, 81). Results from such studies are beginning to appear (58, 61) and may
provide additional insight into gene and reaction essentiality as well as metabolic network
robustness.

4. Validating model predictions is a critical component in constraint-based model analysis.
Growth phenotype data, available for a number of knockout strains and organisms, can be
acquired from biochemical literature (82) and online databases, including ASAP (83) for E.
coli as well as CYGD and SGD for S. cerevisiae. Experimental growth phenotype data are
available to assess directly the predictive power of the model for four of the five organisms
listed previously and shows that correct predictions were made in ~60%, 86%, 83%, and
92% of cases for H. pylori (57), E. coli (48), S. cerevisiae (62), and M. barkeri (59), respec-
tively. These comparisons serve two important functions: validation of the general predictive
potential of the model and identification of areas that require refinement. In this sense, con-
straint-based models are particularly useful in experimental design by directing research to
the most or least poorly understood biological components. Note 5 details how to interpret
incorrect model predictions and their likely causes.

5. In the studies discussed in Note 3 and Note 4, the model predictions, when compared with
experimental findings, failed most often by falsely predicting growth when the gene deletion
leads to a lethal phenotype in vivo. This trend indicates that the most common cause of false
predictions is due to lack of information included in the network; for example, certain impor-
tant pathways not related to metabolism in which the deleted gene participates may not be
represented. In addition, the objective function may not be defined properly by failing to
include the production of a compound required for growth. This latter case was shown to
account for many false predictions when using a yeast metabolic model to account for strain
lethality (61) as a few relatively minor changes to the biomass function dramatically improved
the model’s predictive capability. Alternatively, the gene deletion may lead to the production
of a toxic by-product that ultimately kills the cell, a result for which this approach cannot
account. Furthermore, certain isozymes are known to be dominant, whereas current genome-
scale metabolic models typically assign equal ability to each isozyme. If this in fact is the
case, the model would predict viable growth for the dominant isozyme deletion, whereas in
vivo, the minor isozyme(s) would not sufficiently rescue the strain from the deletion of its
dominant counterpart.

An additional major error source stems from the lack of regulatory information incorpo-
rated into the previously described models. A Boolean logic approach has been used to
include transcription factor—metabolic gene interactions and enhance the accuracy of con-
straint-based model predictions (48) and in genome-scale models of E. coli (45) and yeast
(84). Regulatory information is available in the primary literature in addition to online
resources such as EcoCyc and RegulonDB (85). Furthermore, these interactions can be
derived from ChIP-chip analysis of transcription factors and corresponding gene expression
microarray data (45).

Incorrect predictions are less often due to false predictions of lethality. These uncommon
cases often suggest the presence of previously unidentified enzyme activities, which, if added
to the model, would lead to accurate predictions. They may also reflect improper biomass
function definition, but in a different sense from the situation described above. For example,
rather than failing to include compounds required for growth, it is also possible that certain
compounds are included in the biomass function erroneously and may actually not be essen-
tial to support biological growth. In any case, inaccurate predictions often can be attributed
to a paucity of information and not simply a technique failure, thus validating the general
strategy of constraint-based modeling.
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