

Complex Variables and Transform techniques*

Problem Sheet 1

January 23, 2015

In the following \mathbb{C} denotes the set of complex numbers, i.e. the complex plane.

1. For $z := (x, y)$, $z_1 := (x_1, y_1)$, $z_2 := (x_2, y_2)$ in \mathbb{R}^2 , define

$$z_1 + z_2 := (x_1 + x_2, y_1 + y_2), \quad -z := (-x, -y),$$

$$z_1 z_2 := (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1),$$

Also define $i := (0, 1)$, and for $x \in \mathbb{R}$, let $\tilde{x} := (x, 0)$. Show that

- $z = (x, y) \Rightarrow z = \tilde{x} + i\tilde{y}$;
- $i^2 = -1$;
- $(\tilde{x}_1 + i\tilde{y}_1) + (\tilde{x}_2 + i\tilde{y}_2) = (\tilde{x}_1 + \tilde{x}_2) + i(\tilde{y}_1 + \tilde{y}_2)$,
- $(\tilde{x}_1 + i\tilde{y}_1)(\tilde{x}_2 + i\tilde{y}_2) = (\tilde{x}_1 \tilde{x}_2 - \tilde{y}_1 \tilde{y}_2) + i(\tilde{x}_1 \tilde{y}_2 + \tilde{x}_2 \tilde{y}_1)$.

2. For $x \in \mathbb{R}$, denote \tilde{x} by x itself and \mathbb{C} the set of all *complex numbers* $z := x + iy$ (with $x, y \in \mathbb{R}$). Define

$$Re(z) := x, \quad Im(z) := y, \quad \bar{z} := x - iy, \quad |z|^2 := \bar{z}z,$$

and for $z \neq 0$, define $1/z := \bar{z}/|z|^2$. Show that

- $|Re(z)| \leq |z|$, $|Im(z)| \leq |z|$, $|\bar{z}| = |z|$.
- $|z_1 + z_2| \leq |z_1| + |z_2|$, $|z_1 - z_2| \geq |z_1| - |z_2|$, $|z - 1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$,
- $\overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2$, $\overline{z_1 z_2} = \bar{z}_1 \bar{z}_2$.

*B.Tech. Course MA2010, January–May 2014

Teacher: M.T. Nair

3. Verify:

$$i^3 = -i, \quad i^4 = 1, \quad i^5 = i, \quad 1/i = -i,$$

$$z \in \mathbb{R} \iff \bar{z} = z, \quad \operatorname{Re}(iz) = -\operatorname{Im}(z), \quad \operatorname{Im}(iz) = \operatorname{Re}(z)$$

4. Find

$$i^{4n}, \quad i^{4n+1}, \quad i^{4n+2}, \quad i^{4n+3} \quad \text{for } n \in \mathbb{N},$$

$$\operatorname{Re}\left(\frac{3+4i}{7-i}\right), \quad \operatorname{Im}\left(\frac{3+4i}{7-i}\right)$$

5. For a sequence (z_n) of complex numbers, define $z_n \rightarrow z$ iff $|z_n - z| \rightarrow 0$. Show that, for sequences (z_n) and (w_n) of complex numbers,

- (a) $z_n \rightarrow z, \quad w_n \rightarrow w \Rightarrow z_n + w_n \rightarrow z + w,$
- (b) $z_n \rightarrow z, \quad w_n \rightarrow w \Rightarrow z_n w_n \rightarrow z w,$
- (c) $w_n \rightarrow w$ and $w \neq 0$ implies there exists $N \in \mathbb{N}$ such that $w_n \neq 0$ for all $n \geq N$;
- (d) $z_n \rightarrow z, \quad w_n \rightarrow w$ with $w \neq 0 \Rightarrow z_n/w_n \rightarrow z/w$

6. For nonzero $z \in \mathbb{C}$, let $z = r(\cos \theta + i \sin \theta)$ with $r = |z|$. Define $\arg(z) := \theta$. Show that $\arg(z) = \theta + 2n\pi$ for any integer n .

7. Show, upto addition of multiples of 2π ,

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2), \quad \arg(z_1/z_2) = \arg(z_1) - \arg(z_2).$$

8. Write $\operatorname{Arg}(z) = \arg(z)$ whenever $-\pi \leq \arg(z) < \pi$ and call $\operatorname{Arg}(z)$ as the *principal value* of the argument of z . Find $\arg(z)$ if z is:

$$-7, \quad 1 + i\sqrt{3}, \quad -2i.$$

9. Let $S \subseteq \mathbb{C}$. Show that the following are equivalent:

- (a) S contains all its limit points,
- (b) S contains all its boundary points,
- (c) complement of S is an open set.

10. Show that

- (a) Union of any two open sets is open.
- (b) Intersection of any two open sets is open.
- (c) Union of any two closed sets is closed.
- (d) Intersection of any two closed sets is closed.