

January 22, 2011

COMPLEX ANALYSIS: PROBLEMS SHEET -1

M.THAMBAN NAIR

- (1) Show that \mathbb{C} is a field under the addition and multiplication defined for complex numbers.
- (2) Show that the map $f : \mathbb{R} \rightarrow \mathbb{C}$ defined by $f(x) = (x, 0)$ is a field isomorphism.
- (3) For a nonzero complex number x , show that $z^{-1} = \bar{z}/|z|$.
- (4) Show that for z_1, z_2 in \mathbb{C} , $|z_1 + z_2| \leq |z_1| + |z_2|$.
- (5) Show that $d(z_1, z_2) := |z_1 - z_2|$ defines a metric on \mathbb{C} , and it is a complete metric.
- (6) Show that $|z_1 - z_2| \geq |z_1| - |z_2|$ for all $z_1, z_2 \in \mathbb{C}$.
- (7) Suppose α, β, γ are nonzero complex numbers such that $|\alpha| = |\beta| = |\gamma|$.
Show that $\alpha + \beta + \gamma = 0 \iff \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 0$.
- (8) Suppose z_1, z_2, z_3 are vertices of an equilateral triangle. Show that $z_1^2 + z_2^2 + z_3^2 + = z_1 z_2 + z_2 z_3 + z_3 z_1$.
- (9) Show that the equation of a straight line using complex variable z is given by $\bar{\alpha}z + \alpha\bar{z} + \gamma = 0$ for some $\alpha \in \mathbb{C}$ and $\gamma \in \mathbb{R}$.
- (10) If $|z| = 1$ and $z \neq 1$, then show that $\frac{1+z}{1-z} = ib$ for some $b \in \mathbb{R}$.
- (11) For $n \in \mathbb{N}$, derive a formula for the n^{th} root of a complex number z using its polar representation.
- (12) Let S^2 be the unit sphere in \mathbb{R}^3 with centre at the origin, i.e., $S^2 := \{(\alpha, \beta, \gamma) \in \mathbb{R}^3 : \alpha^2 + \beta^2 + \gamma^2 = 1\}$. Show that the *stereographic projection*

$$z := x + iy \mapsto \left(\frac{2x}{1 + |z|^2}, \frac{2x}{1 + |z|^2}, \frac{|z|^2 - 1}{1 + |z|^2} \right)$$

is a bijective continuous function from \mathbb{C} onto $S^2 \setminus \{(1, 0, 0)\}$ with its inverse

$$(\alpha, \beta, \gamma) \mapsto \frac{\alpha + i\beta}{1 - \gamma},$$

which is also continuous.

- (13) Show that the functions $z \mapsto \Re(z)$, $z \mapsto \Im(z)$, $z \mapsto |z|$ are continuous functions on \mathbb{C} .
- (14) Show that $\lim_{z \rightarrow 0} \frac{z}{|z|}$ does not exist.

(15) Suppose u is a real valued function defined on an open set $\Omega \subseteq \mathbb{R}^2$. Let $(x_0, y_0) \in \Omega$.

- When do you say that u has partial derivatives u_x and u_y at (x_0, y_0) ?
- When do you say that u is differentiable at (x_0, y_0) ?
- What is gradient of u at (x_0, y_0) ?
- What is the relation between gradient and derivative of u ?

(16) Show that a function f is differentiable at $z_0 \in \Omega$ if and only if its real part u and imaginary part v are differentiable at (x_0, y_0) and u_x, u_y, v_x, v_y satisfy the equations

$$u_x(z_0) = v_y(z_0), \quad u_y(z_0) = -v_x(z_0),$$

and in that case

$$f'(z_0) = u_x(z_0) + iv_x(z_0) = v_y(z_0) - iu_y(z_0).$$

(17) Find points at which the following functions are differentiable:

(i) $f(z) = x$, (ii) $f(z) = \bar{z} = x - iy$,

(iii) $f(z) = |z|^2$, (iv) $f(z) = \bar{z}^2$.

(18) Find points at which the functions in the last problem satisfy CR-equations.

(19) Prove that the CR-equations in polar coordinates are $qr u_r = v_\theta$, $u_\theta = -rv_r$.

(20) Suppose f is holomorphic on an open set Ω . Prove that if f satisfies any of the following conditions, then f is a constant function.

- f' is constant on Ω ,
- f is real valued on Ω ,
- $|f|$ is constant on Ω ,
- $\arg(f)$ is constant on Ω .

(21) Suppose f is holomorphic on an open set Ω . Prove that the function $z \mapsto g(z) = \overline{f(\bar{z})}$ is holomorphic in $\Omega^* := \{\bar{z} : z \in \Omega\}$.

(22) (i) Show that the equation of a straight line is given by

$$\bar{\alpha}z + \alpha\bar{z} + \gamma = 0$$

for some α, β in \mathbb{C} and $\gamma \in \mathbb{C}$.

(ii) Show that the above line passes through 0 if and only if $\gamma = 0$.

(23) Show that the equation of a circle with centre at z_0 and radius $r > 0$ is given by

$$|z|^2 - (\bar{z}_0 z + z_0 \bar{z}) + |z_0|^2 - r^2 = 0$$

(24) Prove the following:

- For nonzero $a \in \mathbb{C}$, the function $z \mapsto az$ maps a straight line into a straight line and a circle into a circle.
- For nonzero $b \in \mathbb{C}$, the function $z \mapsto z + b$ maps a straight line into a straight line and a circle into a circle.

(25) For nonzero $a, b \in \mathbb{C}$, the function $z \mapsto az + b$ maps a straight line into a straight line and a circle into a circle - Why?

(26) Given a curve $\gamma : [0, 1] \rightarrow \mathbb{C}$, let $\tilde{\gamma} : [a, b] \rightarrow \mathbb{C}$ be defined by

$$\tilde{\gamma}(t) = \gamma(a + (b - a)t).$$

If Γ and $\tilde{\Gamma}$ are the images of γ and $\tilde{\gamma}$ respectively, then show that Γ and $\tilde{\Gamma}$ are homeomorphic.

(27) Find the points at which the curve $\gamma : [0, 4] \rightarrow \mathbb{C}$ defined in the following are not regular. Justify your answer:

$$\gamma(t) := \begin{cases} t, & 0 \leq t \leq 1, \\ 1 + (t - 1)i, & 1 < t \leq 2, \\ 3 - t + i, & 2 < t \leq 3, \\ (4 - t)i, & 3 < t \leq 4. \end{cases}$$

(28) Let f be defined on an open set Ω and differentiable at a point $z_0 \in \Omega$ and $f'(z_0) \neq 0$. Then prove that f preserves angle between curves which are regular at z_0 and intersecting at z_0 .

(29) Define $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, and show that the real and imaginary parts of f satisfy the CR-equations if and only if

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0$$

(30) Define the operators $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial \bar{z}}$ and show that the real and imaginary parts of f satisfy the CR-equations if and only if $\frac{\partial f}{\partial \bar{z}} = 0$.

(31) Show that

$$\frac{\partial^2 f}{\partial \bar{z} \partial z} = \frac{1}{4} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right),$$

and deduce that f harmonic on $\Omega \iff \frac{\partial^2 f}{\partial \bar{z} \partial z} = 0$.

(32) Prove that v is a harmonic conjugate of u if and only if $-u$ is a harmonic conjugate of v .

(33) Prove that v_1 and v_2 are harmonic conjugates of u if and only $v_1 - v_2$ is a constant.

(34) Prove that if u is a real valued harmonic function on an open set Ω , then any two harmonic conjugates of u differ by a constant.

(35) Prove that if u is a real valued on an open set Ω such that both u and u^2 are harmonic on Ω , then u is a constant function.

(36) Prove that if u and v are harmonic functions on an open set Ω such that v is a harmonic conjugate of u , then uv and $u^2 - v^2$ are harmonic.

(37) Prove that the Laplace equation $\Delta u = 0$ can be written in polar coordinates as $r^2 u_{rr} + ru_r + u_{\theta\theta} = 0$.

(38) Prove that if u is a real valued harmonic function on an open set Ω , then $\frac{\partial u}{\partial z}$ is holomorphic on Ω .

(39) Suppose φ_1 and φ_2 are fractional linear transformations. Prove that $\varphi_1 \circ \varphi_2$ and $\varphi_2 \circ \varphi_1$ are fractional linear transformations.

(40) Consider a fractional linear transformation φ given by

$$\varphi(z) = \frac{az + b}{cz + d}, \quad z \in \widetilde{\mathbb{C}}.$$

(i) Show that φ is one-one and onto and its inverse is given by

$$\varphi^{-1}(z) = \frac{-dz + b}{cz - a}, \quad z \in \widetilde{\mathbb{C}}.$$

(ii) Show that φ is differentiable at every $z \in \mathbb{C}$ and its derivative is given by

$$\varphi'(z) = \frac{ad - bc}{(cz + d)^2}, \quad z \in \mathbb{C}.$$

(41) Show that the set of all fractional linear transformations is in one-one correspondence with the set of all 2×2 nonsingular matrices with complex entries.

(42) Let \mathcal{F} be the set of all fractional linear transformations. Define a binary operation on \mathcal{F} so that \mathcal{F} becomes a group.

(43) Show a fractional linear transformation maps every circle and straight line in \mathbb{C} onto either a circle or a straight line.

(44) Prove that the identity function is the only fractional linear transformation having more than two distinct fixed points.

(45) Given distinct points z_1, z_2, z_3 and distinct points w_1, w_2, w_3 in the plane $\widetilde{\mathbb{C}}$, show that the fractional linear transformation $w = \varphi(z)$ defined by

$$\frac{(w - w_1)(w_2 - w_3)}{(w - w_3)(w_2 - w_1)} = \frac{(z - z_1)(z_2 - z_3)}{(z - z_3)(z_2 - z_1)}$$

map z_1, z_2, z_3 onto w_1, w_2, w_3 , respectively.

(46) Find the fractional linear transformation φ that maps $-1, 0, i$ onto the points $0, 1, -i$, respectively.

What is the image of the circle passing through $-1, 0, i$? A circle or a straight line? Why?

(47) Find the fractional linear transformation φ that maps $0, 1, \infty$ onto the points $1, i, -1$, respectively.

What is the image of the real axis under this transformation? Why?

(48) Find the fractional linear transformation φ that maps $1, i, -1$ onto the points $i, 0, -i$, respectively.

What is the image of the unit circle (with centre at 0) under this transformation? Why?

(49) Suppose

$$\varphi(z) = \frac{az + b}{cz + d}, \quad z \in \widetilde{\mathbb{C}}.$$

is the fractional linear transformation that maps the real axis onto the unit circle (with centre 0). Show that

$$|a| = |c| \neq 0, \quad |b| = |d| \neq 0.$$

(50) If the fractional linear transformation in the last problem maps the upper half plane onto the open unit disk, then show that it is of the form

$$\varphi(z) = \alpha \frac{z - z_0}{z - \bar{z}_0}$$

for some α, z_0 in \mathbb{C} such that $|\alpha| = 1$ and $\Im(z_0) > 0$.

M. THAMBAN NAIR, DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY MADRAS, CHENNAI 600 036, INDIA.

E-mail address: mtnair@iitm.ac.in