

February 25, 2011

## COMPLEX ANALYSIS: PROBLEMS SHEET - 3

M.THAMBAN NAIR

### Power Series

Note: Problems from 1-3 and 9-12 are discussed in class, either by proving them, or by way of indicating their proofs.

- (1) Suppose a power series  $\sum_{n=0}^{\infty} a_n(z - z_0)^n$  converges for all  $z$  with  $|z - z_0| < r$  for some  $r > 0$ . Then, prove that for any  $\rho$  with  $0 < \rho < r$ , the series  $\sum_{n=0}^{\infty} a_n(z - z_0)^n$  converges uniformly on the set  $\{z : |z - z_0| \leq \rho\}$ .
- (2) Let  $R$  be the radius of convergence of  $\sum_{n=0}^{\infty} a_n(z - z_0)^n$ . Prove the following:
  - (i) If the series converges at  $z_1$ , then  $R \geq |z_1 - z_0|$ .
  - (ii) If the series diverges at  $z_2$ , then  $R \leq |z_2 - z_0|$ .
  - (iii) If  $\sum_{n=0}^{\infty} |a_n(z - z_0)^n|$  diverges at  $z_2$ , then  $R \leq |z_2 - z_0|$ .
- (3) If  $(a_n)$  and  $(b_n)$  are sequences of complex numbers such that  $|a_n| \leq M|b_n|$  for all  $n \in \mathbb{N}$ , and if  $R_1$  and  $R_2$  are the radius of convergence of  $\sum_{n=1}^{\infty} a_n(z - z_0)^n$  and  $\sum_{n=1}^{\infty} b_n(z - z_0)^n$  respectively, then prove that  $R_1 \leq R_2$ .
- (4) Using Problem 3, show that radius of convergence of  $\sum_{n=1}^{\infty} n^{-n}z^n$  is  $\infty$ .
- (5) Prove that radius of convergence of  $\sum_{n=1}^{\infty} n^n z^n$  is 0.
- (6) Find a power series in a neighborhood of  $z_0 = 1$  which represents the function  $f(z) := 1/z$ .
- (7) Find the radius of convergence for each of the following series:
  - (i)  $\sum_{n=0}^{\infty} n^2 z^n$ , (ii)  $\sum_{n=0}^{\infty} \frac{2^n}{n!} z^n$ , (iii)  $\sum_{n=1}^{\infty} \frac{2^n}{n^2} z^n$ , (iv)  $\sum_{n=0}^{\infty} \frac{n^3}{3^n} z^n$ .
  - (v)  $\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} z^{3n}$ , (vi)  $\sum_{n=1}^{\infty} \frac{z^{n!}}{n}$ , (vii)  $\sum_{n=0}^{\infty} n^n z^{n^2}$ , (viii)  $\sum_{n=0}^{\infty} \frac{n+1}{n!} z^{n^3}$ .
- (8) Give one example each of a power series which
  - (a) converges only on the interior of the disc of convergence,
  - (b) converges/diverges on a proper subset of the boundary of the disc of convergence,
  - (c) converges on the closure of the disc of convergence.
- (9) Show that the series  $\sum_{n=0}^{\infty} a_n(z - z_0)^n$  and  $\sum_{n=1}^{\infty} n a_n(z - z_0)^{n-1}$  have the same radius of convergence.

(10) If  $(a_n)$  and  $(b_n)$  are sequences of complex numbers such that  $\limsup_n |b_n|^{1/n}$ , then show that the series  $\sum_{n=0}^{\infty} a_n(z - z_0)^n$  and  $\sum_{n=1}^{\infty} n a_n b_n (z - z_0)^{n-1}$  have the same radius of convergence.

(11) For a sequence  $(a_n)$  of nonzero complex numbers, let  $\gamma := \limsup_n \left| \frac{a_{n+1}}{a_n} \right|$ . Then show that  $R := 1/\gamma$  is the radius of convergence of  $\sum_{n=0}^{\infty} a_n(z - z_0)^n$ .

(12) If  $f$  represents a power series  $\sum_{n=0}^{\infty} a_n(z - z_0)^n$  on its disc of convergence, then  $a_k = \frac{f^{(k)}(z_0)}{k!}$  for every  $k \in \mathbb{N}$ . Justify.

(13) Let  $f$  be a holomorphic function in an open set  $\Omega$  such that  $f' = f$  and  $f(0) = 1$ . Then show that  $f(z) = e^z$ . Deduce that, for all  $z \in \mathbb{C}$ ,

- (i)  $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$
- (ii)  $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$ ,
- (iii)  $\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$ .

(14) Prove that, for  $|z| < 1$ ,

- (i)  $\frac{1}{1+z^2} = \sum_{n=0}^{\infty} (-1)^n z^{2n}$
- (ii)  $\log \frac{1}{1-z} = \sum_{n=1}^{\infty} \frac{z^n}{n}$ .

(15) Find the function represented by the series  $\sum_{n=1}^{\infty} n^2 z^n$ .

M. THAMBAN NAIR, DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY  
MADRAS, CHENNAI 600 036, INDIA.

*E-mail address:* mtnair@iitm.ac.in