

March 4, 2011

COMPLEX ANALYSIS: PROBLEMS SHEET - 4

M.THAMBAN NAIR

Integration

- (1) A curve $\eta : [\alpha, \beta] \rightarrow \mathbb{C}$ is called a *reparameterization* of the curve $\gamma : [a, b] \rightarrow \mathbb{C}$ if there exists continuous increasing bijection $\varphi : [\alpha, \beta] \rightarrow [a, b]$ such that $\eta = \gamma \circ \varphi$, and in that case we may say that η is equivalent to γ and we write $\eta \sim \gamma$.
 - (a) Given a curve $\gamma : [a, b] \rightarrow \mathbb{C}$ and a closed interval $[\alpha, \beta]$, find a curve $\eta : [\alpha, \beta] \rightarrow \mathbb{C}$ such $\gamma \sim \eta$.
 - (b) If $\tilde{\gamma}$ is the reverse of $\gamma : [a, b] \rightarrow \mathbb{C}$ and $\eta : [-b, -a] \rightarrow \mathbb{C}$ is defined by $\eta(t) = \gamma(-t)$ for $-b \leq t \leq -a$, then show that $\eta \sim \tilde{\gamma}$.
 - (c) If γ and η are piecewise smooth curves such that $\eta \sim \gamma$, then show that $\ell(\Gamma_\eta) = \ell(\Gamma_\gamma)$.
- (2) Given a piecewise smooth curve $\gamma : [a, b] \rightarrow \mathbb{C}$ and a partition $\Pi_n := a = t_0 < t_1 < \dots < t_n = b$ of $[a, b]$, let $S_n := \sum_{j=1}^n |\gamma(t_j) - \gamma(t_{j-1})|$. If $\max_{1 \leq j \leq n} |t_j - t_{j-1}| \rightarrow 0$, then show that $S_n \rightarrow \int_a^b |\gamma'(t)| dt$.
- (3) If η is a differentiable reparameterization of a piecewise smooth curve γ , and if f is continuous on Γ_γ , then show that $\int_\gamma f(z) dz = \int_\eta f(z) dz$.
- (4) Prove: $\int_{\gamma_1 + \gamma_2} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz$.
- (5) Given a piecewise smooth curve $\gamma : [a, b] \rightarrow \mathbb{C}$, a partition $\Pi_n := a = t_0 < t_1 < \dots < t_n = b$ of $[a, b]$, and a continuous function f on Γ , let $S_n(f) := \sum_{j=1}^n f(\gamma(t_j))[\gamma(t_j) - \gamma(t_{j-1})]$. If $\max_{1 \leq j \leq n} |t_j - t_{j-1}| \rightarrow 0$, then show that $S_n(f) \rightarrow \int_\Gamma f(z) dz$.
- (6) If $\varphi : [a, b] \rightarrow \mathbb{C}$ is continuously differentiable, then show that

$$\int_a^b \varphi'(t) dt = \varphi(b) - \varphi(a).$$
- (7) Let Γ be a closed curve and f has a primitive on an open set Ω containing Γ , i.e., there exists a continuously differentiable function g such that $g' = f$ on Ω . Then $\int_\Gamma f(z) dz = 0$. Justify.
- (8) Let Γ_n be the circle with center at z_0 and radius r traced n times, i.e., $\Gamma_n := \{z_0 + re^{it}, 0 \leq t \leq 2n\pi\}$. Then, show that $\int_{\Gamma_n} \frac{dz}{z - z_0} = 2n\pi i$.

(9) If $p(z)$ is a polynomial, then prove that $\int_{\Gamma_n} p(z) dz = 0$.

(10) If Γ is the circle with centre z_0 and radius r , then show that $\int_{\Gamma} \frac{dz}{(z - z_0)^n} = 0$ for every $n \in \mathbb{Z} \setminus \{-1\}$.

(11) Given distinct points α and β in \mathbb{C} , evaluate the integrals $\int_{[\alpha, \beta]} z^n dz$ and $\int_{[\alpha, \beta]} \bar{z}^n dz$, where $[\alpha, \beta]$ denotes the line segment joining α to β .

(12) If f is a real valued function defined on the interval $[a, b]$ and if $\gamma(t) = t$, $a \leq t \leq b$, then show that $\int_{[a, b]} f(z) dz = \int_a^b f(t) dt$.

(13) Let Γ be a closed piecewise smooth curve in the disc of convergence of a power series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ and let $f(z)$ represent this series in that disc. Then $\int_{\Gamma} f(z) dz = 0$. Justify.

(14) Evaluate the integrals $\int_{\gamma} f(z) dz$ in following, where

- γ is the curve joining $z_1 = -1 - i$ to $z_2 = 1 + i$ consisting of the line segment from $-1 - i$ to 0 and the portion of the curve $y = x^2$ from 0 to $1 + i$ and $f(z) = \begin{cases} 1, & y < 0, \\ 4y, & y > 0 \end{cases}$.
Answer: $-\frac{5}{8} + \frac{5}{2}i$
- γ is the curve consisting of the line segments joining the points 0 to 1 and 1 to $1 + 2i$ and $f(z) = 3x^2 - y + ix^3$.
Answer: $2 + 3i$
- $f(z) = \bar{z}$ and γ is the curve joining 1 to $1 + i$ along the parabola $y = x^2$.
Answer: $1 + \frac{1}{3}i$
- γ is the positive oriented circle $|z - 1| = 4$ traced once and $f(z) = \frac{1}{z-1} + \frac{6}{(z-1)^2}$.
Answer: $-6\pi i$

(15) Show that $\left| \int_{\gamma} \frac{z}{z^2 + 1} dz \right| \leq \frac{1}{2}$, where γ be the line segment joining 2 to $2 + i$.

(16) For piecewise smooth curve $\gamma : [a, b] \rightarrow \mathbb{C}$ and continuous function $f : \Gamma \rightarrow \mathbb{C}$, define $\int_{\gamma} f(z) |dz| := \int_a^b f(g(t)) |\gamma'(t)| dt$. Show that

$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz|.$$

(17) If Γ_r is the circle $\gamma(t) = z_0 + re^{it}$, $0 \leq t \leq 2\pi$ and if f is continuous on and inside Γ_r , then prove that

$$\lim_{r \rightarrow 0} \frac{1}{2\pi i} \int_{\Gamma_r} \frac{f(z)}{z - z_0} dz = f(z_0).$$

(18) For every closed piecewise smooth curve Γ , $\int_{\Gamma} e^{-z^2} dz = 0$. Why?

(19) For positive real numbers, let I_1, I_2, I_3, I_4 be the integrals of e^{-z^2} over the line segments

$$[-a, a], \quad [a, a+ib], \quad [a+ib, -a+ib], \quad [-a+ib, -a],$$

respectively. Prove that

- (i) $I_1 = \int_{-a}^a e^{-x^2} dx,$
- (ii) $|I_2| \leq be^{-a^2+b^2}.$
- (iii) $I_3 = -e^{b^2} \int_{-a}^a e^{-t^2} \cos(2bt) dt,$
- (iv) $|I_4| \leq be^{-a^2+b^2}.$
- (v) $e^{b^2} \int_{-\infty}^{\infty} e^{-t^2} \cos(2bt) dt = \int_{-\infty}^{\infty} e^{-x^2} dx.$

(20) Suppose $f_n \rightarrow f$ uniformly on Γ . Then show that

$$\int_{\Gamma} f_n(z) dz \rightarrow \int_{\Gamma} f(z) dz.$$

(21) Prove that $\int_0^{\infty} e^{-t^2} \cos t^2 dt = \frac{1}{4} \sqrt{\pi} \sqrt{1 + \sqrt{2}}$, by integrating e^{-z^2} over the positive oriented triangle with vertices at $0, R, Re^{i\pi/8}$ for $R > 0$ and letting $R \rightarrow \infty$.

(22) Evaluate the integrals $\int_0^{\infty} \cos t^2 dt, \int_0^{\infty} \cos t^2 dt$ by integrating e^{-z^2} over the positive oriented triangle with vertices at $0, R, Re^{i\pi/4}$ for $R > 0$ and letting $R \rightarrow \infty$.

(23) Let (Ω_n) be a sequence of nonempty compact sets in \mathbb{C} such that $\Omega_n \supseteq \Omega_{n+1}$ for all $n \in \mathbb{N}$ and $\text{diam}(\Omega_n) \rightarrow 0$ as $n \rightarrow \infty$. Let $z_0 \in \cap_{n=1}^{\infty} \Omega_n$. If f is a continuous function defined on Ω_1 , show that

$$\max_{z \in \Omega_n} |f(z) - f(z_0)| \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

(24) Suppose Ω be a simply connected domain and f be holomorphic on Ω . Suppose integral of f over every positively oriented triangle is zero. Prove that if Γ_1 and Γ_2 are two polygonal lines joining any two points z_0 and ζ_0 in Ω , then $\int_{\Gamma_1} f(z) dz = \int_{\Gamma_2} f(z) dz$.

M. THAMBAN NAIR, DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY
MADRAS, CHENNAI 600 036, INDIA.

E-mail address: mtnair@iitm.ac.in