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(1) Let f be continuous in a neighbourhood of zg and I'; := {2z € C: |z — z| = r}.
Show that
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dz — f(z0) as r—0.
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(3) Let f be an entire function such that for some n € N and R > 0,
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(2) Evaluate the integral / (using complex integrals).
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bounded for |z| > R. Prove tht f is a polynomial of degree atmost n.
(4) Let f be holomorphic and map € := {z € C: |z| < 1} into itself. Prove that
|f'2)] < 1/(1 —|z]|) for all z € Q.
(5) Prove that there is no analytic function f on Q:={z € C: |z| < 1} such that
(i) f(1/n) = (1/2" for n € N\ {1}.
(i) f(1/n) = (=1)"/n* forn € N\ {1}.
(6) Let f be a nonconstant holomorphic function in a connected opens set Q. If
2o € QL is such that |f(z0)| < |f(2)] for all z € €, then prove that f(z9) = 0.
(7) Let u be a (real valued) harmonic function in a connected opens set Q. Let
g 1= u; — tu, on ). Justify the following:
(i) g is holomorphic on €.
(ii) There exists a holomorphic function f on € such that Rf = w.
(iii) u is infinitely differentiable.
(8) For 0 < a < 1, find the annulus of convergence of the series > > a’ 2",
(9) Locate and classify the isolated singularities of the following functions:
5
O ; — o (i) smlz —, (iil) sin(1/2).
Also, check whether zy = oo is an isolated singularity (i.e., wg = 0 is an

isolated singularity of f(1/z)) in each case.
(10) If f and g are holomorphic functions having z; a pole of the same order for
both, then prove that
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(11) Find the residues of the following functions:
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(12) If f and g are holomorphic in a neighbourhood of 2y, and z; is a simple a pole
of g, then prove that Res(f/g,20) = f(20)/9'(20)-
(13) Determine the residues of each of the following functions at each of their sin-

gularities:
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(14) If f is holomorphic in a neighbourhood of zy, and z is a zero of f order m,
then prove that Res(f'/f,z0) = m.

(15) Evaluate the following using complex integrals:
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